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Abstract 

 

This paper extends the standard network centrality measures of degree, closeness and 

betweenness to apply to groups and classes as well as individuals. The group centrality 

measures will enable researchers to answer such questions as ‘how central is the engineering 

department in the informal influence network of this company?’ or ‘among middle managers 

in a given organization, which are more central, the men or the women?’ With these measures 

we can also solve the inverse problem: given the network of ties among organization 

members, how can we form a team that is maximally central? The measures are illustrated 

using two classic network data sets. We also formalize a measure of group centrality 

efficiency, which indicates the extent to which a group’s centrality is principally due to a 

small subset of its members.  



1 Introduction 

Network analysts have used centrality as a basic tool for identifying key individuals in a 

network since network studies began. It is an idea that has immediate appeal and as a 

consequence is used in a large number of substantive applications across many disciplines. 

However, it has one major restriction: with few exceptions, all published measures are intended 

to apply to individual actors. It is a simple matter to think of areas of application that would 

benefit from a formulation that applies to groups of actors rather than individuals. Are the 

lawyers more central than the accountants in a given organization’s social network? Is one 

particular ethnic minority more integrated into the community than another? To what extent are 

particular groups or classes (women, the elderly, African-Americans, etc.) marginalized in 

different networks? All of these questions could be answered to some extent by the application 

of a centrality measure that applied to a set of individuals rather than a single individual.   

 

In addition to a priori groups like the ones mentioned above, a group centrality measure could 

also be applied to sets of individuals identified by cohesive subgroup techniques (e.g., cliques), 

or by positional analysis techniques, such as structural equivalence or regular equivalence. For 

example, if applied to cliques in very large networks, we could use group centrality to identify 

which of many hundreds of cliques were the most important (in a well-specified sense) and 

should be analyzed more fully.   

 

Another application of a group centrality measure would be as a criterion for forming groups. 

That is, we can write an algorithm to construct a set of groups, optionally mutually exclusive, 

that have maximal group centrality. Or, less ambitiously, a manager wanting to put together a 

team for a highly politically charged project might choose individuals who, in addition to having 

the appropriate skills, would also maximize the team’s centrality.  
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2 General Principles 

 

 In order to develop a measure of group centrality we must first establish the criteria for success: 

the features and properties that we would like such a measure to possess. Our first requirement 

is that a group centrality measure be derived from existing individual measures. There are more 

than enough measures of centrality already in the literature, and we do not intend to introduce 

any more. Hence, what we introduce is a general method for applying existing measures to the 

group context, rather than new conceptions of centrality. Our second requirement is that any 

group measure be a proper generalization of the corresponding individual measure, such that 

when applied to a group consisting of a single individual, the measure yields the same answer as 

the individual version. An immediate consequence of this requirement is that we do not measure 

group centrality by computing centrality on a network of relationships among groups. Instead, 

the centrality of a group is computed directly from the network of relationships among 

individuals.  A side benefit of this approach is that there are no problems working with 

overlapping groups, where one individual can belong to many groups.  

 

An obvious approach to measuring group centrality would be to average or sum the individual 

centrality scores of group members (possibly disregarding ties to other group members). This 

approach has a number of problems. In a competitive situation, groups may form which seek to 

gain an advantage by having high centrality scores. Clearly it would de disadvantageous for the 

individual with the highest centrality to join with anyone else since the group centrality score 

would almost certainly be lower. More generally if a group had an average centrality score and 

an individual wanted to join them, unless the scores were equal, either the group should reject 
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the individual or the individual should reject the group. This problem would also prevent us 

from achieving one of our goals, namely to allow us to use the measure as a criterion for 

forming groups. Another problem with using an averaging method is that it takes no account 

of the fact that actors may be central to (connected to) the same or different actors. For 

example, suppose we have a group X with a certain group centrality score and two actors y 

and z, where y is central to the same actors as the group X but z is central to a different set of 

actors. If y and z have the same centrality score, then by the averaging method the groups 

X+y and X+z will also have the same score -- but clearly the X+z group should have a better 

score. 

 

3 Group Centrality 

  

In this paper we consider four measures of centrality: degree, closeness, betweenness, and flow 

betweenness. For the sake of clarity of exposition, we shall assume that the data consist of a 

connected, non-directed non-valued graph. However, the extension to non-symmetric and 

valued data does not present any special problems. 

 

 Figure 1  

Degree. We define group degree centrality as the number of non-group nodes that are 

connected to group members. Multiple ties to the same node are counted only once. Hence, in 
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Figure 1, the centrality of the group consisting of nodes a and b is 6. We can normalize group 

degree centrality by dividing the group degree by the number of non-group actors. Hence, the 

normalized degree centrality of the group {a,b} is 1.0.  

 

Figure 2 

As an example of group centrality we shall look first at the primate data collected by Linda 

Wolfe and given as a standard dataset in UCINET (Borgatti, Everett and Freeman 1992). The 

data records 3 months of interactions amongst a group of 20 monkeys, where interactions were 

defined as joint presence at the river. The dataset also contains information on the sex and age 

of each animal. We shall consider six different groups. The first two groups will be formed by 

sex; the remaining four will be formed by age. The purpose of dividing them by age is merely a 

device to illustrate the techniques in this paper and we should emphasize that we have no 

substantive reason for these groupings. The data is symmetric and valued and we have 
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dichotomized it by taking the presence of a tie to be more than 6 interactions over the time 

period (see Figure 2).  

Table 1. Individual Centrality Scores 

Monkey 
Age 
Group Sex Degree 

Norm. 
Degree 

Closene
ss 

Norm. 
Closene
ss 

Betwee
nness 

Norm. 
Closene
ss 

Flow 
Betwee
nness 

Norm. 
Flow 
Betwee
nness 

1 14-16 Male 4 21.05 142 13.38 1 0.58 18 8.41 
2 10-13 Male 0 0 380 5 0 0 0 0 
3 10-13 Male 13 68.42 133 14.29 44.5 26.02 91 44.39 
4 7-9 Male 3 15.79 143 13.29 0 0 5 2.28 
5 7-9 Male 2 10.53 144 13.19 0 0 10 4.37 
6 14-16 Female 0 0 380 5 0 0 0 0 
7 4-5 Female 3 15.79 143 13.29 0 0 6 2.74 
8 10-13 Female 3 15.79 143 13.29 0.5 0.29 16 7.31 
9 7-9 Female 1 5.26 145 13.1 0 0 0 0 

10 7-9 Female 3 15.79 143 13.29 0 0 4 1.83 
11 14-16 Female 2 10.53 144 13.19 0 0 1 0.44 
12 10-13 Female 9 47.37 137 13.87 10.33 6.04 45 21.95 
13 14-16 Female 6 31.58 140 13.57 1.83 1.07 24 11.54 
14 4-5 Female 4 21.05 142 13.38 0 0 6 2.8 
15 7-9 Female 6 31.58 140 13.57 1.83 1.07 24 11.54 
16 10-13 Female 0 0 380 5 0 0 0 0 
17 7-9 Female 3 15.79 143 13.29 0 0 4 1.83 
18 4-5 Female 0 0 380 5 0 0 0 0 
19 14-16 Female 0 0 380 5 0 0 0 0 
20 4-5 Female 0 0 380 5 0 0 0 0 

 

Table 1 gives the individual centralities for each monkey on four centrality measures, including 

both normalized and un-normalized versions. Table 2 gives the group degree centrality and 

normalized group degree centrality for the six groups. 

Table 2. Group Degree Centrality 

Group Members Group Degree 
Centrality 

Normalized Degree 
Group Centrality 

1. Age 14-16 1 6 11 13 19 8 0.53 
2. Age 10-13 2 3 8 12 16 11 0.73 
3. Age 7-9 4 5 9 10 15 17 5 0.36 
4. Age 4-5 7 14 18 20 5 0.31 
5. Male 1-5 10 0.67 
6. Female 6-20 4 0.80 
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Among the age groups, the most central group is clearly the 10-13 year olds. This is the group 

that contains monkey 3, who (as shown in Table 1) is highly central as an individual. The effect 

of normalization is readily apparent in comparing groups 3 and 4: they have the same raw group 

centrality score but group 3 is more central once the data have been normalized. The effect is 

even more dramatic when we look at the male and female groups. Un-normalized, the males are 

clearly more central than the females. But normalized, the situation is reversed. It is clearly 

easier for larger groups to achieve higher normalized centrality scores than smaller groups 

because they contain more individuals to connect with a smaller outside group. We shall return 

to this point in the next section. Normalization has greater significance in group centrality than 

in individual centrality. This is  because the differing sizes of groups mean that the 

transformation is non-linear and hence the rank order of the normalized group centralities can be 

quite different from the un-normalized ones. 

 

 Figure 3  

 

As we have already mentioned, we can use group centrality to examine emergent groups 

(revealed by standard network analysis procedures) as well as a priori classifications. Our 

second empirical example uses the Bank Wiring Room data of Roethlisberger and Dickson 
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(1939), available in UCINET as well. In particular we examine the Games matrix (see Figure 3). 

Isolates I3 and S2 were deleted before performing any analysis. A clique analysis of these data 

finds 5 cliques with a considerable amount of overlap of the groups. Table 3 gives the group 

degree and normalized group degree centrality for the cliques together with the members of the 

groups. 

Table 3. Group Degree Centrality of Bank Wiring Room Cliques 

Clique Group Degree 
Centrality 

Normalized Group  
Degree Centrality* 

1. I1 W1 W2 W3 W4 2 0.286 
2. W1 W2 W3 W4 S1 2 0.286 
3. W1 W3 W4 W5 S1 3 0.429 
4. W6 W7 W8 W9 2 0.250 
5. W7 W8 W9 S4 2 0.250 

*Isolates removed prior to computing normalized scores. 

Clearly, clique 3 has the highest group centrality score, but all the values are fairly similar. The 

first three groups are all the same size, and therefore, among those three, the raw and normalized 

scores are proportional to each other.  

 

There is an important point to be considered when we use the concept of group degree 

centrality on cohesive subgroups. To some extent, the notion of a cohesive subgroup includes 

the idea of many links within the group, and few links to outsiders (Borgatti, Everett and 

Shirey, 1991). Indeed, certain types of cohesive subsets (e.g., LS sets) are explicitly 

constructed in such a way that they must have weak links to the rest of the network. Such 

groups necessarily have low group degree centrality. Groups that have high degree centrality 

are groups with highly porous or ambiguous boundaries. 

  

Closeness. We can define group closeness as the sum of the distances from the group to all 
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vertices outside the group. As with individual closeness, this produces an inverse measure of 

closeness as larger numbers indicate less centrality. This definition deliberately leaves 

unspecified how distance from the group to an outside vertex is to be defined.  This problem has 

been well researched in the hierarchical clustering literature (Johnson, 1967) and we propose to 

adopt their methods. Consider the set D of all distances from a single vertex to a set of vertices. 

We can define the distance from the vertex to the set as either the maximum in D, the minimum 

in D or the mean of values in D.1 For example, in Figure 2, the group consisting of {8,1,7} is 

distance 1 from node 12 via the minimum method (because node 1 is just one link away from 

12), distance 2 from 12 via the maximum method (because both nodes 7 and 8 are two links 

from 12), and distance 1.67 via the mean method (because the average distance is (2+2+1)/3). 

Of course, when the group consists of a single node, all of these distances are identical and the 

group centrality is the same as individual centrality.  

 

Following Freeman’s (1979) convention, we can normalize group closeness by dividing the 

distance score into the number of non-group members, with the result that larger numbers 

indicate greater centrality. Tables 4 and 5 give the group closeness for the primate and games 

data using the same group numbering as before. In the primate data we have permanently 

deleted the isolates 2,6,16,18, 19 and 20, and in the Games data we have deleted the two isolates 

I3 and S2. 

 

 

Table 4. Group closeness for the Primate data. 

Group Minimum Mean Maximum Normalized Normalized Normalized 

                                                 
1 There are, of course, many other well-known variants, including the median method.  
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Minimum Mean Maximum 
1. Age 14-16 14 18 20 0.79 0.61 0.55 
2. Age 10-11 11 15 21 1.00 0.73 0.52 
3. Age 7-9 11 13.7 15 0.73 0.58 0.53 
4. Age 4-5 19 20.5 22 0.63 0.59 0.55 
5. Male 10 16 20 1.00 0.63 0.50 
6. Female 4 6.4 7 1.00 0.63 0.57 

 

 

Table 5. Group closeness for the Games data. 

Clique Minimum Mean Maximum Normalized 
Minimum 

Normalized 
Mean 

Normalized 
Maximum 

1. I1 W1 W2 W3 W4 16 18.6 23 0.44 0.38 0.30 
2. W1 W2 W3 W4 S1 16 17.4 23 0.44 0.40 0.30 
3. W1 W3 W4 W5 S1 11 15.6 18 0.64 0.45 0.39 
4. W6 W7 W8 W9 16 21.5 24 0.50 0.37 0.33 
5. W7 W8 W9 S4 16 21.5 24 0.50 0.37 0.33 

 

As can be seen in Table 4, the minimum method does not provide much sensitivity: it is 

relatively easy to attain the maximal value. In contrast, the maximum method is the most 

stringent method, yielding the smallest value in all cases. The maximum and minimum methods 

are similar in the sense that in both methods the distance of an individual to the group is defined 

by the distance to a specific group member (either the closest or the furthest). In contrast, the 

average method defines the distance in terms of all group members.  

 

The choice of method for a given application will depend on the circumstances. If it is thought 

that the group, once formed, acts as a single unit, then the minimum method is appropriate. In a 

sense, the minimum method ignores internal structure (in particular, distances), and is therefore 

almost equivalent to collapsing the group down to a single node whose ties are the union of the 

ties to outsiders possessed by members. This may be appropriate when forming the group yields 

a qualitatively different kind of agent, such as a corporation or other legal entity. Another 
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situation in which the minimum method might be appropriate is a communication network in 

which cohesive groups have been identified consisting of individuals who have worked together 

closely for many years, learning each other’s ways and developing the ability to communicate 

with extraordinary efficiency. Even though individuals within the group are separated by a link 

(i.e., they are still separate individuals), communication across internal links is virtually 

instantaneous and complete, and so here again it is appropriate to ignore internal structure. In 

contrast, when internal communication is not particularly good (or totally non-existent, as could 

occur with classes defined on attributes), and it is important that all members of the group have 

received all information, then the maximum method may be more appropriate. When the rules 

of information transmission in the network suggest that a node transmits information to a 

randomly chosen node in its neighborhood, the average method may be the best choice, as the 

expected time-until-arrival of a message to the group will be a function of all the distance from 

group members to all other nodes in the network.  

 

Comparing the group closeness results with the group degree results we see a broad agreement 

between the measures across both data sets. The only striking difference is in the centrality of 

the male monkeys, where using the maximum method they are the least central of all the groups. 

This is because they contain an individual placed slightly further away than the others all of 

whom are very central. The minimum method will ignore him, the average method ameliorates 

the effect, while the maximum method exposes the situation. 

 

 Betweenness. We now examine the third classic centrality measure, betweenness. The 

properties of betweenness are radically different from those of degree and closeness and the 
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results are often correspondingly different. Let C be a subset of a graph with vertex set V.  Let 

gu,v be the number of geodesics connecting u to v and gu,v(C) be the number of geodesics 

connecting u to v passing through C.  Then the group betweenness centrality of C denoted by 

CB(C) is given by 

     Cvu     
(C)

  
g

g
vu

vu
 

v<u 
∉∑ ,

,

,  

 In other words the group betweenness centrality measure indicates the proportion of 

geodesics connecting pairs of non-group members that pass through the group. One way to 

compute this measure is as follows: (a) count the number of geodesics between every pair of 

non-group members, yielding a node-by-node matrix of counts, (b) delete all ties involving 

group members and redo the calculation, creating a new node-by-node matrix of counts, (c) 

divide each cell in the new matrix by the corresponding cell in the first matrix, and (d) take 

the sum of all these ratios.  

 

 As with individual betweenness centrality, we can normalize group betweenness by dividing 

each value by the theoretical maximum. The theoretical maximum occurs for a group of a given 

size when the result of identifying all the group vertices (i.e. shrinking them to a single vertex) 

is a star with the group in the center. We therefore define the normalized group betweenness 

centrality C′B(C) as 

    C′B(C) = 2 CB(C)/(V-C)(V-C-1) 

 

 Tables 6 and 7 give the group betweenness scores for the primate and games data. 
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Table 6. Group Betweenness for the Primate data 

Group Group 
 Betweenness 

Normalized Group 
Betweenness 

1. Age 14-16 2.84 0.03 
2. Age 10-11 43.50 0.41 
3. Age 7-9 0.00 0.00 
4. Age 4-5 0.00 0.00 
5. Male 24.34 0.23 
6. Female 0.50 0.05 

 

 

 

Table 7. Group Betweenness for the Games data 

Clique Betweenness 
Normalized 

Betweenness* 
1. I1 W1 W2 W3 W4 0.00 0.000 
2. W1 W2 W3 W4 S1 6.00 0.286 
3. W1 W3 W4 W5 S1 10.00 0.476 
4. W6 W7 W8 W9 7.00 0.250 
5. W7 W8 W9 S4 7.00 0.250 

*Isolates removed 

 

 In examining the group betweenness results we notice that three of the groups have a value of 

zero. It should be noted that only one of these groups consists of individuals all of whom have 

individual betweenness centrality of zero – by joining a group, some individuals may “lose” 

centrality. For the primate data we note the high scores achieved by group 2 and the male group. 

If we look at individual betweenness for these data (see Table 1), we find that only six monkeys 

-- 1,3,8,12,13 and 15 -- have non-zero betweenness. Of these, monkey 3 has by far the highest 

score. Clearly groups that contain individuals with high individual centrality scores inherit some 

of these scores, but not if the high scores were due to their connections with other group 
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members. Thus, there is a sense in which individuals can enhance their betweenness scores by 

joining with individuals outside their own social circles. 

  

 Flow Betweenness.  The fourth standard centrality measure is flow betweenness (Freeman, 

Borgatti and White 1991). Individual flow betweenness can be extended to group flow 

betweenness in the same way as ordinary betweenness. To calculate the group flow betweenness 

of a group C, first calculate the sum of maximum flows in the network between all pairs of 

vertices not in C. Call this quantity DEN. Then delete all ties involving nodes in C and repeat 

the calculation, calling the result NUM. Finally, divide NUM by DEN. It should be noted that 

group flow betweenness is quite a natural generalization of individual flow betweenness since 

the computational algorithm we have presented is precisely the algorithm used for individual 

flow betweenness (Borgatti, Everett and Freeman, 1992), where C contains just one vertex.  

   

 4 Efficiency 

  

 As we have already remarked, larger groups find it easier to get higher normalized group 

centrality scores since they have to be central to (connected to) a smaller outside group. If we 

were to look at the inverse of the problem we have been addressing so far, namely, given a 

network, find a group with maximum group centrality, then we would quickly find it attractive 

to look for large groups. Consider degree centrality: if we take any non-isolated vertex and place 

all other vertices in a group, the group will have a normalized group degree centrality of one (an 

example is provided by nodes a  through g in Figure 1). The same would apply to the minimum 

option in the group closeness measure. For betweenness we need to identify two non-adjacent 
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non-isolated vertices (such as g and d in Figure 1) and place all the other vertices in a group. 

This group now has the maximum possible group betweenness score. Hence, by choosing large 

groups, we can almost always maximize group centrality. 

 

 However, notice that in larger groups most individuals are not contributing directly to the group 

centrality score. Their only contribution is to not be outside the group and therefore they do not 

have to be included in the computation, which means they only contribute indirectly. The 

presence of non-contributing members in a group suggests the concept of efficiency: the 

proportion of actors within the group who directly contribute to the centrality of the group. Of 

course, this conception of efficiency only makes sense for those centrality measure with the 

property that adding actors to the group cannot decrease the centrality score. We now formalize 

these concepts. 

 

 We say that a group centrality measure gpc is monotone if for every group C and subset K of C 

gpc(K) ≤ gpc(C). We assume here that the centrality measure assigns values in such a way that 

higher numerical scores indicate more centrality (as in degree). If the measure assigns values 

such that lower numerical scores indicate more centrality (as in closeness), then we reverse the 

inequality.  The contribution of K for a monotone group centrality measure is the (un-

normalized) group centrality of K with respect to the actors outside C. As an illustration of this 

concept consider degree centrality. The group centrality of C is the number of actors outside C 

directly adjacent to the members of C. The contribution of K is the number of actors outside C 

that are adjacent to a member of K. (We do not count actors who are in C and adjacent to K.) If 

the contribution of K is as great as the group centrality of C then we say K makes a full 
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contribution and we call the members of K active members (implicitly we must have a 

monotone group centrality measure). Let k be the size of the smallest subset K that makes a full 

contribution to C. The efficiency e of a group C, with respect to a monotone group centrality 

measure, is k divided by the size of C.  

  

 Degree, minimum closeness, betweenness and flow betweenness are all monotone group 

centrality measures and so we can define efficiency when we use them. The average and 

maximum closeness measures are not monotone hence efficiency is not defined for those 

measures. For example, consider the clique {W1, W3, W4, W5, S1} of the Games data (see 

Figure 3). The centrality of the group using the maximum method is 18.  But the centrality of 

actor W5 is 13, which is considerably better than the whole group.2 Clearly, we cannot measure 

the contribution of W5 to the whole group since their individual contribution exceeds that of the 

whole group, it follows that, in these circumstances, efficiency as we have developed it cannot 

be applied. We note that any averaging method used to define group centrality would not be 

monotone and consequently we would not be able to examine efficiency. Monotonicity is an 

important property of group centrality and non-monotone methods should be used with extreme 

caution. This is another reason that we do not advocate taking the average centrality score of a 

group as a means of defining group centrality. 

 

 Table 8 gives the efficiency measure for each of the group centralities for the games data.  Note 

that betweenness efficiency for the first clique has not been computed since the betweenness of 

the group is zero.  

                                                 
2 Recalling, of course, that unnormalized closeness is an inverse measure of centrality so that 
a larger value indicates less centrality. 
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Table 8. Efficiency Scores for the Games Data 

Clique Degree 
efficiency 

Closeness efficiency 
(Minimum method) 

Betweenness efficiency 

1. I1 W1 W2 W3 W4 0.20 0.20 NA* 
2. W1 W2 W3 W4 S1 0.20 0.20 0.80 
3. W1 W3 W4 W5 S1 0.40 0.40 0.80 
4. W6 W7 W8 W9 0.25 0.25 0.25 
5. W7 W8 W9 S4 0.25 0.25 0.25 

*Group centrality is zero 

 

 For degree and closeness, the combination of several poorly connected actors and one or two 

well-connected actors in a group means that the efficiency of the group must be low.  However, 

for betweenness centrality, the situation is quite different. The presence of an extremely central 

member does not necessarily reduce group efficiency by making other nodes redundant. For 

example, in Clique 3 of the Games data, actor W5 has enormous individual betweenness. But he 

is in fact the one member of the clique that is expendable in the special sense that a subset of 

Clique 3 that does not include him (namely, the subset K = {W1 W3 W4 S1}), achieves full 

contribution as defined above. 

 

5 Searching for Central Groups 

 

As already mentioned, we could use the definition of group centrality as a basic tool to find 

important subgroups within a given network. A manager who wishes to introduce some new 

practices within an organization may wish to identify a well-connected subgroup that can 

develop and champion the cause. This subgroup would need to have a very high group centrality 

score. Yet to be effective, it would be desirable for the group to be as small as possible without 
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sacrificing centrality. We could therefore search for a minimal subgroup with maximal group 

centrality. 

 

For closeness or degree group centrality this would amount to finding the smallest group of 

actors within the network such that every actor outside the group is adjacent to a member of the 

group. This is a standard concept in graph theory, where the size of such a group is called the 

domination number of a graph (Carre 1979).  We may not have such a stringent requirement and 

may only demand a group centrality greater than a certain value. Alternatively we may wish to 

find a group with a fixed size which has the maximum group centrality. Or we may wish to find 

a set of (possibly mutually exclusive) groups that, overall, maximize centrality. Any of these 

searches amount to searching all subgroups for the group or groups which best fit the required 

conditions. These therefore fall into the category of combinatorial optimization problems and 

can be solved by any of the standard heuristic methods such as a genetic algorithm (Holland 

1975). 

 

We can perform such a search on the Games data. The domination number for the Games graph 

is 2, and this can be achieved with a number of different pairs, including {W1, W7}, {W1, 

W8}, and {W1, W9}.3 As we have already noted, the maximal betweenness occurs when the 

group forms the center of a star. This can always be achieved by a group smaller than the whole 

group, provided we do not have a complete graph. In the Games data, the smallest group with 

maximal betweenness is surprisingly large (size 8), and there are three of these. One example is 

{I1,S1,W1,W3,W4,W7,W8,W9}. This example is interesting because it does not contain the 

                                                 
3 The fact that W1 occurs in all of these is interesting and suggestive of a new measure of 
individual centrality. But this is beyond the scope of the present paper. 
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highly central actor W5, although there is an alternative group of the same size which does 

contain him.  

 

6 Alternative Group Centrality Approach: The Reduced Model Approach 

 

The methods and principles of the paper represent just one of a number of approaches that could 

be taken to defining group centrality. In this section we briefly outline an alternative and discuss 

some associated problems and advantages of this approach.  

 

An intuitively obvious approach is to replace all the members of a group by a single “super” 

vertex whose neighborhood is the union of the neighborhoods of all group members. That is, 

there is a connection from the new vertex to another vertex if there was at least one actor in the 

group who had that connection. If G was the original graph, then we call the new graph the 

group reduced graph denoted by G*. If G had n actors and a group C had c actors then G* 

contains n-c+1 actors. We could then submit G* to any standard individual centrality routine to 

obtain the centrality measure for the group. This procedure would give exactly the same results 

for degree centrality as we obtained using our group degree centrality measure. If we apply 

closeness centrality to G* then we obtain the same results as the group closeness measure based 

on the minimum method. We cannot, however, reproduce the mean and maximum closeness 

methods using this technique.  
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< Figure 4 > 

Differences also occur when we apply the betweenness centrality measure. The reason is that 

the internal structure of the group has no effect on the reduced model, but does affect the group 

betweenness measure we defined earlier. In the reduced model, connections internal to the 

group do not exist, so geodesics passing through the group can be shorter.  An example is 

shown in Figure 4. Using our original group betweenness measure, the centrality of the group 

{b, c} is zero, as the internal link increases the length of the path from a to d passing through the 

group to 3 links, which is longer than the geodesic distance of 2.   

 

The fact that, in the reduced model, the internal cohesion of a group does not affect its 

centrality, is an important conceptual advantage of the reduced model. There are practical 

benefits as well. In the earlier model, if the individual betweenness of each member of a group 

is zero, the centrality of the group must be zero as well, much like the averaging method. 

Therefore, for completely peripheral individuals, there is no strategic benefit to forming a group. 

In contrast, using the reduced model approach, the centrality of the group in Figure 4 is 0.5, as 

there are now two geodesics from a to d, and one of them passes through the group. This 

approach therefore lends itself to a more strategic view of group formation, perhaps based on a 

rational actor model. For example, a peripheral actor in a communication network might seek to 
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increase their betweenness centrality by partnering with other peripheral actors, such that the 

combination has high centrality. This assumes, of course, that once actors are teamed, 

communication among members is complete and instantaneous.  

 

Tables 9 and 10 give the results of the reduction method on our two data sets using betweenness 

centrality. For the Games data, the betweenness scores were exactly the same as using the 

original group betweenness definition. This is not the case for the primate data. We can see in 

Table 10 that all the group centrality scores have increased and two of the groups that had a zero 

score now have a positive betweenness value. 

 

Table 9. Reduced-graph group centrality for the Games data 

Clique Betweenness Normalized 
Betweenness* 

1. I1 W1 W2 W3 W4 0.00 0.000 
2. W1 W2 W3 W4 S1 6.00 0.286 
3. W1 W3 W4 W5 S1 10.00 0.476 
4. W6 W7 W8 W9 7.00 0.250 
5. W7 W8 W9 S4 7.00 0.250 

*Isolates removed 

 

Table 10. Reduced-graph group centrality for the Primate data. 

Group Betweenness Normalized 
Betweenness 

1. Age 14-16 6.33 0.06 
2. Age 10-11 43.33 0.41 
3. Age 7-9 1.33 0.01 
4. Age 4-5 0.67 0.01 
5. Male 24.33 0.23 
6. Female 1.5 0.02 

 

Another advantage of the reduced graph approach is that it allows us to construct group versions 
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of any centrality measure, including ones that are difficult to generalize along the lines presented 

earlier in this paper. An example of such a measure would be eigenvector centrality (Bonacich, 

1972). Eigenvector centrality is defined as the principal eigenvector of the adjacency matrix for 

the graph. As such, it is virtually impossible to generalize along the lines presented earlier, but 

easy to handle via the reduced graph approach.4  

 

The basic criticism of the reduced graph method is that the removal of the internal links in a 

group is hard to justify substantively. If in the network in general the links represent com-

munication channels among actors, and if longer paths take longer to traverse (or involve decay 

of usable information), how is it that, by forming a group, these basic laws of propagation are 

suspended within the group? It is hard to imagine what substantive processes might correspond 

to these algorithmic procedures.  

 

7 Conclusion 

 

We have proposed some general principles that have allowed us to develop centrality measures 

for groups and classes in networks. These have been illustrated on two empirical datasets, using 

both a priori classes of nodes such as age and sex and empirically derived groups such as 

cliques. We believe the potential for group centrality measures as independent variables is 

enormous. For example, in the team effectiveness literature, researchers have used a number of 

internal team composition variables to predict performance (Katz 1982; Nelson and Winter 

1982). More recently (Ancona 1990; Geletkanycz and Hambrick 1997), researchers have 

                                                 
4 Of course, radically different approaches, such as proposed by Bonacich (1991), are also 
possible. 
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suggested that maintaining strong ties with people outside the team is an important determinant 

of team success. However, measures of the group’s connections with the rest of the organization 

have not been available. We believe that our measures fill this gap and that a fruitful line of 

future research will use group centrality measures to predict the performance of teams in 

organizations. 

 

Another recent stream of research has focussed on strategic networking, particularly at the 

individual level (Burt 1992; Baker 1994). For example, Burt (1992) considers how to evaluate 

potential partners so as to maximize the reach of an actor’s ego network.  Computationally, the 

problem is equivalent to finding a maximally central subset of actors that include ego. An 

interesting line of research would be to discover the conditions under which individuals’ 

sociometric choices do or do not accord with strategic principles (i.e., maximizing ego network 

centrality). For example, we might expect that business contacts conform to strategic principles 

while friendship contacts do not. Conversely, from a consulting or prescriptive point of view, 

group centrality measures may provide a guide for selecting partners, either among persons or 

corporations.  

 

Group centrality measures may also provide an avenue for defining or operationalizing 

substantive concepts. For example, the notion of a core/periphery structure is prevalent in many 

literatures (notably the study of elites and in world systems theory). But no formal definition of 

a core (or periphery) has been proposed. Given the existence of group centrality measures, it 

would be quite natural to define the core of a network as that subset of actors whose group 

centrality is greater than all others. Another example of operationalizing fundamental constructs 



 

 
 

23  

is provided by the notion of ‘social capital’. Social capital has come to mean many very 

disparate things, but one of them is surely the set of benefits that accrue from the set of ties that 

an individual or group possesses with others in the network. Group centrality measures clearly 

provide a way to operationalize this aspect of the concept of social capital.  
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