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lthough graph theory is one of the younger branches of mathematics, it is 
fundamental to a number of applied fields, including operations research, 
computer science, and social network analysis. In this chapter we discuss the 

basic concepts of graph theory from the point of view of social network analysis.  
 
Graphs 
 
The fundamental concept of graph theory is the graph, which (despite the name) is best 
thought of as a mathematical object rather than a diagram, even though graphs have a 
very natural graphical representation. A graph – usually denoted G(V,E) or G = (V,E) – 
consists of set of vertices V together with a set of edges E. Vertices are also known as 
nodes, points and (in social networks) as actors, agents or players.  Edges are also known 
as lines and (in social networks) as ties or links. An edge e = (u,v) is defined by the 
unordered pair of vertices that serve as its end points. Two vertices u and v are adjacent if 
there exists an edge (u,v) that connects them. An edge e = (u,u) that links a vertex to itself 
is known as a self-loop or reflexive tie.  The number of vertices in a graph is usually 
denoted n while the number of edges is usually denoted m.  
 
As an example, the graph depicted in Figure 1 has vertex set V={a,b,c,d,e.f} and edge set 
E = {(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 
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Figure 1. 
 
 
 

A 



1st Draft, written very quickly. May contain errors. Be aware. 

When looking at visualizations of graphs such as Figure 1, it is important to realize that 
the only information contained in the diagram is adjacency; the position of nodes in the 
plane (and therefore the length of lines) is arbitrary unless otherwise specified. Hence it is 
usually dangerous to draw conclusions based on the spatial position of the nodes. For 
example, it is tempting to conclude that nodes in the middle of a diagram are more 
important than nodes on the peripheries, but this will often – if not usually – be a mistake. 
 
When used to represent social networks, we typically use each line to represent instances 
of the same social relation, so that if (a,b) indicates a friendship between the person 
located at node a and the person located at node b, then (d,e) indicates a friendship 
between d and e. Thus, each distinct social relation that is empirically measured on the 
same group of people is represented by separate graphs, which are likely to have different 
structures (after all, who talks to whom is not the same as who dislikes whom).  
 
Every graph has associated with it an adjacency matrix, which is a binary n×n matrix A 
in which aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 
otherwise. The natural graphical representation of an adjacency matrix is a table, such as 
shown in Figure 2.  
 

 a b c d e f 
a 0 1 0 0 0 0 
b 1 0 1 0 0 0 
c 0 1 0 1 1 0 
d 0 0 1 0 1 0 
e 0 0 1 1 0 1 
f 0 0 0 0 1 0 

 
Figure 2. Adjacency matrix for graph in Figure 1. 

 
Examining either Figure 1 or Figure 2, we can see that not every vertex is adjacent to 
every other. A graph in which all vertices are adjacent to all others is said to be complete. 
The extent to which a graph is complete is indicated by its density, which is defined as 
the number of edges divided by the number possible. If self-loops are excluded, then the 
number possible is n(n-1)/2. If self-loops are allowed, then the number possible is 
n(n+1)/2. Hence the density of the graph in Figure 1 is 6/15 = 0.40.  
 
A clique is a maximal complete subgraph. A subgraph of a graph G is a graph whose 
points and lines are contained in G. A complete subgraph of G is a section of G that is 
complete (i.e., has density = 1). A maximal complete subgraph is a subgraph of G that is 
complete and is maximal in the sense that no other node of G could be added to the 
subgraph without losing the completeness property. In Figure 1, the nodes {c,d,e} 
together with the lines connecting them form a clique. Cliques have been seen as a way to 
represent what social scientists have called primary groups. 
 
While not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence 
of adjacent vertices from any vertex to any other. Graphs with this property are called 
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connected. Similarly, any pair of vertices in which one vertex can reach the other via a 
sequence of adjacent vertices is called reachable. If we determine reachability for every 
pair of vertices, we can construct a reachability matrix R such as depicted in Figure 3. 
The matrix R can be thought of as the result of applying transitive closure to the 
adjacency matrix A. 
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Figure 3.  
 

A component of a graph is defined as a maximal subgraph in which a path exists from 
every node to every other (i.e., they are mutually reachable). The size of a component is 
defined as the number of nodes it contains. A connected graph has only one component. 
 
A sequence of adjacent vertices v0,v1,…,vn is known as a walk. In Figure 3, the sequence 
a,b,c,b,a,c is a walk. A walk can also be seen as a sequence of incident edges, where two 
edges are said to be incident if they share exactly one vertex. A walk in which no vertex 
occurs more than once is known as a path. In Figure 3, the sequence a,b,c,d,e,f is a path. 
A walk in which no edge occurs more than once is known as a trail. In Figure 3, the 
sequence a,b,c,e,d,c,g is a trail but not a path. Every path is a trail, and every trail is a 
walk. A walk is closed if vo = vn. A cycle can be defined as a closed path in which n >= 3. 
The sequence c,e,d in Figure 3 is a cycle. A tree is a connected graph that contains no 
cycles. In a tree, every pair of points is connected by a unique path. That is, there is only 
one way to get from A to B. 
 
The length of a walk (and therefore a path or trail) is defined as the number of edges it 
contains. For example, in Figure 3, the path a,b,c,d,e has length 4. A walk between two 
vertices whose length is as short as any other walk connecting the same pair of vertices is 
called a geodesic. Of course, all geodesics are paths. Geodesics are not necessarily 
unique. From vertex a to vertex f in Figure 1, there are two geodesics: a,b,c,d,e,f and 
a,b,c,g,e,f.  
 
The graph-theoretic distance (usually shortened to just “distance”) between two vertices 
is defined as the length of a geodesic that connects them. If we compute the distance 
between every pair of vertices, we can construct a distance matrix D such as depicted in 
Figure 4. The maximum distance in a graph defines the graph’s diameter. As shown in 
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Figure 4, the diameter of the graph in Figure 1 is 4.  If the graph is not connected, then 
there exist pairs of vertices that are not mutually reachable so that the distance between 
them is not defined and the diameter of such a graph is also not defined. 
 

 a b c d e f g 
a 0 1 2 3 3 4 3 
b 1 0 1 2 2 3 2 
c 2 1 0 1 1 2 1 
d 3 2 1 0 1 2 2 
e 3 2 1 1 0 1 1 
f 4 3 2 2 1 0 2 
g 3 2 1 2 1 2 0 

 
Figure 4. Distance matrix for graph in Figure 3. 

 
The powers of a graph’s adjacency matrix, Ap, give the number of walks of length p 
between all pairs of nodes. For example, A2, obtained by multiplying the matrix by itself, 
has entries 2

ija that give the number of walks of length 2 that join node vi to node vj. 
Hence, the geodesic distance matrix D has entries dij = p, where p is the smallest p such 
that p

ija > 0. (However, there exist much faster algorithms for computing the distance 
matrix.) 
 
The eccentricity e(v) of a point v in a connected graph G(V,E) is max d(u,v), for all u ∈ 
V. In other words, a point’s eccentricity is equal to the distance from itself to the point 
farthest away.  The eccentricity of node b in Figure 3 is 3. The minimum eccentricity of 
all points in a graph is called the radius r(G) of the graph, while the maximum 
eccentricity is the diameter of the graph. In Figure 3, the radius is 2 and the diameter is 4. 
A vertex that is least distant from all other vertices (in the sense that its eccentricity 
equals the radius of the graph) is a member of the center of the graph and is called a 
central point. Every tree has a center consisting of either one point or two adjacent 
points. 
 
The number of vertices adjacent to a given vertex is called the degree of the vertex and is 
denoted d(v). It can be obtained from the adjacency matrix of a graph by simply 
computing each row sum. For example, the degree of vertex c in Figure 3 is 4. The 
average degree, d , of all vertices depicted in Figure 3 is 2.29. There is a direct 
relationship between the average degree, d , of all vertices in a graph and the graph’s 
density: 
 

1−
=

n
ddensity  

 
The minimum degree of a graph G is denoted δ(G). A vertex with degree 0 is known as 
an isolate (and constitutes a component of size 1), while a vertex with degree 1 is a 
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pendant. Holding average degree constant, there is a tendency for graphs that contain 
some nodes of high degree (i.e., high variance in degree) to have shorter distances than 
graphs with lower variance, with the high degree nodes serving as “shortcuts” across the 
network.  
 
A node whose removal from a graph disconnects the graph (or, more generally, increases 
the number of components in the graph) is called a cutpoint or an articulation point. The 
graph in Figure 3 has three cutpoints, namely b, c, and e. A connected, non-trivial graph 
is called non-separable if it has no cutpoints. A block or bi-component is a maximal 
nonseparable subgraph. Blocks partition the edges in a graph into mutually exclusive 
edges. They also share no nodes except cutpoints. Thus, cutpoints decompose graphs into 
(nearly) non-overlapping sections. In blocks of more than two points, every pair of points 
lies along a common cycle, which means that there is always a minimum of two ways to 
get from any point to any other. In Figure 3, we find the following blocks: {a,b}, {b,c}, 
{c,d,e,g}, {e,f}. 
 
The notion of a cutpoint can be generalized to a cutset, which is a set of points whose 
joint removal increases the number of components in the graph. Of particular interest is a 
minimum weight cutset, which is a cutset that is as small as possible (i.e., no other cutset 
has fewer members). There can be more than one distinct minimum weight cutset in a 
graph.  The size of a graph’s minimum weight cutset defines the vertex connectivity κ(G) 
of a graph, which is the minimum number of nodes that must be removed to increase the 
number of components in the graph (or render it trivial). The point connectivity of a 
disconnected graph is 0. The point connectivity of a graph containing a cutpoint is no 
higher than 1. The point connectivity of a non-separable graph is at least 2. We can 
analogously define the vertex connectivity κ(u,v) of a pair of points u,v as the number of 
nodes that must be removed to disconnect that pair. The connectivity of the graph κ (g) is 
just the minimum κ (u,v) for all u,v in V. 
 
A famous theorem by Menger published in 1929 relates the vertex connectivity of a pair 
of nodes to the maximum number of node-independent paths connecting those nodes. A 
set of paths from a source node s to a target node t is node-independent if none of the 
paths share any vertices aside from s and t. Menger’s theorem states that for any source s 
and target t, the maximum number of node-independent paths between s and t is equal to 
the vertex connectivity of that pair – i.e., the number of nodes that must be removed to 
disconnect them. Hence, there might be many different paths from s to t, but if they all 
share a certain node (i.e., are not independent), then s and t can easily be disconnected by 
eliminating just that node.  
 
Thus, we can think of the point connectivity of a graph as an indicator of the 
invulnerability of the graph to threats of disconnection by removal of nodes. If κ(G) is 
high, or if the average κ (u,v) is high for all pairs of nodes, then we know that it is fairly 
difficult to disconnect the nodes in the graph by removing intermediaries.  
 
The vertex-based notions of cutpoint, cutset, vertex connectivity and node-independent 
path set have analogous counterparts for edges. A bridge is defined as an edge whose 
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removal would increase the number of components in the graph. Edge connectivity is 
denoted λ(G) and the edge connectivity of a pair of nodes is denoted λ(u,v). A 
disconnected graph has λ(G)=0, while a graph with a bridge has λ(G)=1. Point 
connectivity and line connectivity are related to each other and to the minimum degree in 
a graph by Whitney’s inequality: 
 

)()()( GGG δλκ ≤≤  
 
 
Directed Graphs 
 
As noted at the outset, the edges contained in graphs are unordered pairs of nodes (i.e., 
(u,v) is the same thing as (v,u)). As such, graphs are useful for encoding directionless 
relationships such as the social relation “sibling of” or the physical relation “is near”. 
However, many relations that we would like to model are not directionless. For example, 
“is the boss of” is usually anti-symmetric in the sense that if u is the boss of v, it is 
unlikely that v is the boss of u. Other relations, such as “gives advice to” are simply non-
symmetric in the sense that if u gives advice to v, v may or may not give advice to u.  
 
To model non-symmetric relations we use directed graphs, also known as digraphs. A 
digraph D(V,E) consists of a set of nodes V and a set of ordered pairs of nodes E called 
arcs or directed lines. The arc (u,v) points from u to v.  
 
Digraphs are usually represented visually like graphs, except that arrowheads are placed 
on lines to indicate direction (see Figure 5). When both arcs (u,v) and (v,u) are present in 
a digraph, they may be represented by a double-headed arrow (as in Figure 5a), or two 
separate arrows (as shown in Figure 5b). 
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Figure 5a 
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Figure 5b 

 
In a digraph, a walk is a sequence of nodes vo,v1,…vn in which each pair of nodes vi, vi+1 
is linked by an arc (vi,vi+1). In other words, it is a traversal of the graph in which the flow 
of movement follows the direction of the arcs, like a car moving from place to place via 
one-way streets. A path in a digraph is a walk in which all points are distinct. A semiwalk 
is a sequence of nodes vo,v1,…vn in which each pair of nodes vi, vi+1 is linked by either 
the arc (vi,vi+1) or the arc (vi+1,vi). In other words, in a semiwalk, the traversal need not 
respect the direction of arcs, like a car that freely goes the wrong way on one-way streets.  
By analogy, we can also define a semipath, semitrail, and semicycle.  
 
Another way to think of semiwalks is as walks on the underlying graph, where the 
underlying graph is the graph G(V,E) that is formed from the digraph D(V,E’) such that 
(u,v) ∈ E if and only if  (u,v) ∈ E’ or (v,u) ∈ E’. Thus, the underlying graph of a digraph 
is basically the graph formed by ignoring directionality. 
 
A digraph is strongly connected if there exists a path (not a semipath) from every point to 
every other. Note that the path from u to v need not involve the same intermediaries as 
the path from v to u. A digraph is unilaterally connected if for every pair of points there is 
a path from one to the other (but not necessarily the other way around). A digraph is 
weakly connected if every pair of points is mutually reachable via a semipath (i.e., if the 
underlying graph is connected).  
 
A strong component of a digraph is a maximal strongly connected subgraph. In other 
words, it is a subgraph that is strongly connected and which is as large as possible (there 
is no node outside the subgraph that is strongly connected to all the nodes in the 
subgraph). A weak component is a maximal weakly connected subgraph.  
 
The number of arcs originating from a node v (i.e., outgoing arcs) is called the outdegree 
of v, denoted od(v). The number of arcs pointing to a node v (i.e., incoming arcs) is called 
the indegree of v, denoted id(v). In a graph representing friendship feelings among a set 
of persons, outdegree can be seen as indicating gregariousness, while indegree 
corresponds to popularity. The average outdegree of a digraph is necessarily equal to the 
average indegree.  
 
The adjacency matrix A of a digraph is an n × n matrix in which aij = 1 if (vi,vj) ∈ E and 
aij = 0 otherwise. Unlike the adjacency matrix of an undirected graph, the adjacency 
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matrix of a directed graph is not constrained to be symmetric, so that the top right half 
need not equal the bottom left half (i.e., aij <> aji). If a digraph is acyclic, then it is 
possible to order the points of D so that the adjacency matrix upper triangular (i.e., all 
positive entries are above the main diagonal). 
 
 
Social Network Extensions to Graph Theory 
 
In this section we consider contributions to graph theory from the study of social 
networks. There are two main groups of contributions: cohesive subsets and 
roles/positions. Note that the definitions of cohesive subsets assume graphs, while those 
of roles/position assume digraphs. 
 
Cohesive Subsets 
 
It was mentioned earlier that the notion of a clique can be seen as formalizing the notion 
of a primary group. A problem with this, however, is that it is too strict to be practical: 
real groups will contain several pairs of people who don’t have a close relationship. A 
relaxation and generalization of the clique concept is the n-clique. An n-clique S of a 
graph is a maximal set of nodes1 in which for all u,v ∈ S, the graph-theoretic distance 
d(u,v) <= n. In other words, an n-clique is a set of nodes in which every node can reach 
every other in n or fewer steps, and the set is maximal in the sense that no other node in 
the graph is distance n or less from every other node in the subgraph. A 1-clique is the 
same as an ordinary clique. The set {a,b,c,d,e} in Figure 6 is an example of a 2-clique. 
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Figure 6.  
 
Note that the path of length n or less linking a member of the n-clique to another member 
may pass through an intermediary who is not in the group. In the 2-clique in Figure 6, 
nodes c and e are distance 2 only because of d, which is not a member of the 2-clique. In 
this sense, n-cliques are not as cohesive as they might otherwise appear. The notion of an 
n-clan avoids that. An n-clan is an n-clique in which the diameter of the subgraph G’ 

                                                 
1 Cohesive subsets are traditionally defined in terms of subgraphs rather than subsets of nodes. However, 
since most people think about them in terms of node sets, and because using subgraphs complicates 
notation, we used subsets here. 
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induced by S is less than or equal to n. The subgraph G’ of a graph G induced by the set 
of nodes S is defined as the maximal subgraph of G that has point set S. In other words, it 
is the subgraph of G obtained by taking all nodes in S and all ties among them. Therefore, 
an n-clan S is an n-clique in which all pairs have distance less than or equal to n even 
when we restrict all paths to involve only members of S. In Figure 6, the set {b,c,d,e,f} is 
a 2-clan, but {a,b,c,d,e} is not because b and c have distance greater than 2 in the induced 
subgraph. Note that {a,b,f,e} is also fails the 2-clan criterion because n-clans are defined 
to be n-cliques and {a,b,f,e} is not a 2-clique (it fails the maximality criterion since 
{a,b,c,d,e}).  An n-club corrects this problem by eliminating the n-clique criterion from 
the definition. An n-club is a subset S of nodes such that in the subgraph induced by S, 
the diameter is n or less. Every n-clan is both an n-club and an n-clique. The set {a,b,c,f} 
is a 2-club. 
 
Whereas n-cliques, n-clans and n-clubs all generalize the notion of clique via relaxing 
distance, the k-plex generalizes the clique by relaxing density. A k-plex is a subset S of 
nodes such that every member of the set is connected to n-k others, where n is the size of 
S. Although not part of the official definition, it is conventional to additionally impose a 
maximality condition, so that proper subsets of k-plexes are ignored. There are some 
guarantees on the cohesiveness of k-plexes. For example, k-plexes in which k < (n+2)/2 
have no distances greater than 2 and cannot contain bridges (making them resistant to 
attack by deleting an edge). In Figure 6, the set {a,b,c,f} fails to be a 2-plex because each 
member must have at least 4-2=2 ties to other members of the set, yet c has only one tie 
within the group. In the graph in Figure 7, the set {a,b,d,e} is a 2-plex. 
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Figure 7. 
 
More cohesive than k-plexes are LS sets. Let H be a set of nodes in graph G(V,E) and let 
K be a proper subset of H. Let α(K) denote the number of edges linking members of K to 
V-K (the set of nodes not in K). Then H is an LS set of G if for every proper subset K of 
H, α(K) > α(H). The basic idea is that individuals in H have more ties with other 
members than they do to outsiders. Another way to define LS sets that makes this more 
evident is as follows. Let α(X,Y) denote the number of edges from members of set X to 
members of set Y. Then H is an LS set if α(K,H-K) > α(K,V-H). In Figure 7, the set 
{a,b,d,e} is not an LS set since α({b,d,e},{a}) is not greater than α({b,d,e},{c}). In 
contrast, the set {a,b,d,e} in Figure 8 does qualify as an LS set. 
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Figure 8. 
 
A key property of LS sets is high edge connectivity. Specifically, every node in an LS set 
has higher edge connectivity (λ) with other members of the LS set than with any non-
member.  Taking this as the sole criterion for defining a cohesive subset, a lambda set is 
defined as a maximal subset of nodes S such that for all a,b,c ∈ S and d ∈ V-S, λ(a,b) > 
λ(c,d). To the extent that λ is high, members of the same lambda set are difficult to 
disconnect from one another because λ defines the number edges that must be removed 
from the graph in order to disconnect the nodes within the lambda set.  
 
A k-core is a maximal subgraph H in which δ(H) >= k. Hence, every member of a 2-core 
is connected to at least 2 other members, and no node outside the 2-core is connected to 2 
or more members of the core (otherwise it would not be maximal). Every k-core contains 
at least k+1 vertices, and vertices in different k-cores cannot be adjacent. A 1-core is 
simply a component. K-cores can be described as loosely cohesive regions which will 
contain more cohesive subsets. For example, every k-plex is contained in a k-core.  
 
 
Roles/Positions 
 
Given a digraph D(V,E), the in-neighborhood of a node v, denoted Ni(v) is the set of 
vertices that send arcs to v. That is, Ni(v) = {u: (u,v) ∈ E}. The out-neighborhood of a 
node v, denoted No(v) is the set of vertices that receive arcs from v. That is, No(v) = {u: 
(v,u) ∈ E}. 
 
A coloration C is an assignments of colors to the vertices V of a digraph. The color of a 
vertex v is denoted C(v) and the set of distinct colors assigned to nodes in a set S is 
denoted C(S) and termed the spectrum of S. In Figure 9, a coloration of nodes is depicted 
by labeling the nodes with letters such as ‘r’ for red, and ‘y’ for yellow. Nodes colored 
the same are said to be equivalent. 
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Figure 9. 

 
 
A coloration is a strong structural coloration if nodes are assigned the same color if and 
only if they have identical in and out neighborhoods. That is, for all u,v ∈V, C(u) = C(v) 
if and only if Ni(u) = Ni(v) and No(u) = No(v). The coloration in Figure 9 is a strong 
structural coloration.  We can check this by taking pairs of nodes and verifying that if 
they are colored the same (i.e., are strongly structurally equivalent) they have identical 
neighborhoods, and if they are not colored the same, they have different neighborhoods. 
For example, b and d are colored the same, and both of their neighborhoods consist of 
{a,c,e}. 
 
Note that in strong structural colorations, any two nodes that are colored the same are 
structurally identical: if we remove the identifying labels from the identically colored 
nodes, then spin the graph around in space before placing it back down on the page, we 
would not be able to figure out which of the same-colored nodes was which. 
Consequently, any property of the nodes that stems from their structural position (such as 
expected time until arrival of something flowing through the network) should be the same 
for nodes that are equivalent. 
 
A coloration C is regular if C(u) = C(v) implies that C(Ni(u)) = C(Ni(v)) and C(No(u)) = 
C(No(v)) for all u, v ∈ V. In other words, in regular colorations, every pair of nodes that 
has the same color must receive arcs from nodes comprising the same set of colors and 
must send arcs to nodes comprising the same set of colors. Every structural coloration is a 
regular coloration. 
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Figure 10. Regular coloration. 
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The coloration in Figure 10 (which depicts the same digraph as in Figure 9) is regular, 
but not strongly structural.  To see this, consider that every red node has an out-
neighborhood containing only yellow nodes (e.g., C(No(a)={y}) , and an in-neighborhood 
containing only yellow nodes, while every yellow node has an out-neighborhood 
containing only red nodes and an in-neighborhood containing only red nodes. Figure 11 
depicts another regular coloration. Note that node g could not be colored the same as f or 
i, because it has an outneighborhood consisting of a white node, while f and i have no 
outneighborhood at all. Consequently node p could not be colored the same as c and e, 
since p’s out-neighborhood contains a node of a different color than the c and e. This also 
implies that g cannot be colored the same as f and i because it received a tie from a node 
of a different color. 
 

b

r

b

p r

gsy y

w

a b

ec
d

f g h i

j
 

Figure 11. Regular coloration 
 
 
If a graph represents a social network, we can think of the colors as defining emergent 
classes or types of people such that if one member of a certain class (blue) has outgoing 
ties to members of exactly two other classes (yellow and green), then all other members 
of that (blue) class have outgoing ties to members of those same two classes (yellow and 
green). Thus, regular colorations classify members of a social network according to their 
pattern of relations of others, and two people are placed in the same class if they interact 
in the same ways with the same kinds of others (but not necessarily with same 
individuals).  
 
Just as the various generalizations of cliques are attempts to capture mathematically the 
notion of a social group, regular colorations are an attempt to capture the notion of a 
social role system, in which people playing a certain role have characteristic relations 
with others who are playing complementary roles (such as doctors, nurses and patients).  
 


