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S Block Modeling

* A block model is a reduced form representation such
that nodes are divided into a set of mutually exclusive
groups

* The resulting groups can then be analyzed as a network
such that

* The group’s connection to itself is the density of the connections
among members

® For each pair of groups, the inter-group connection is the density
of the connections of group 1 (row) to group 2 (column)

® The resulting block matrix can be turned into a binary matrix by
simply comparing the level of connections in the block to the
overall density of the original matrix such that there if the value of
the cell is >= to the overall density then we replace it with a 1,
else 0
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Illustrative Hierarchy
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i ORA Demonstration
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: al Qaeda Block Model
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Terminology

® Graph - (V,E)
® consists of a set of nodes V(G) and a set of links E(G)

* Alpha operator

* Let a(S1,S2) be the number of ties from members of set S1 to
members of the set S2

® o(u,S) is number of ties node u has with members of set S

® o(S) is number of ties from members of set S to members of V-S
(i.e., all other nodes)
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S Terminology: Components

® A subgraph S of a graph G is a component if S is maximal and
connected

® If Gis adigraph, then

® Sis aweak component if it is a component of the underlying
(undirected) graph

® Sis astrong component if for all dyads u,v in S, there is a path from u to
%

* Finding components is the first step in analysis of large graphs
* Analyze each component separately, or discard very small components
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B Terminology: K-Cores

* K-CORE
* A maximal subgraph S such that for alluin S, a(u,S) >=k
® S=A s 1-core & 2-core; B and C 3-core
® There is no 4-core or higher
® Finds large regions within which cohesive subgroups may be
found

* |dentifies fault lines across which cohesive subgroups do not
span .
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B Groups

® Set of nodes that meet some criteria — a node set

® Goal is to extract these automatically based on node
properties (such as — how they are connected)
* Finding groups is pattern analysis
* 2 types of approaches mechanistically
® Bottom up — combine
* E.g., Clustering nodes
* E.g., Cluster “dyads” or “links”
* Top down — split entire set into subsets
* E.g. break up groups (Concor)
* E.g. segregate set of links
* 2 types of approaches based on need
® Locate members, locate anomalies
* Break the network (locate components, sub-cells, ...), segregate

CASDS, links
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Group Rationales

3 conceptual reasons for why groups matter
* Cohesion

® Because the nodes have the same kind of position — relations to
same type of other nodes

* Network region might contain cohesive subgroups
* Equivalence

® Because the nodes have the same linkages = relationships to
the same other nodes

* Distinction

* Because the nodes are different from other nodes around them,
anomalies

I:AS“ . NOTE: A group may or may not be a component or a K-Cores
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Canonical Hypothesis

® Similar nodes have similar outcomes
* |f two nodes occupy the same position, then they will get the same
results, even if unconnected to each other
* Even if only connected to similar others — cohesion
® Only if connected to same others — equivalence
* Networks with similar structures will have similar outcomes
® Similar structures = similar topology

* E.g., Similarly structured teams will have similar performance outcomes
®* Members of group will have similar outcomes
°® l|deas, attitudes, illnesses, behaviors
* Due to interpersonal transmission
* Transference
¢ Influence / persuasion

® Co-construction of beliefs & practices
® As in communities of practice
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ﬁ Generic Mechanisms

® Structural substitutability
® Structural processes affect structurally similar nodes similarly

* Two nodes connected to the same other nodes can be
substituted with no loss — equivalence

* Two nodes connected to similar other nodes play the same role
in a group — cohesion
* Environmental determinism
® Location, location, location
* Nodes with similar environments are similarly affected by the
environment
® Important when environment is important

* Nodes connected to the same others get the same “stuff”
through identical paths — equivalence

® Nodes connected to similar others get the same “stuff’ through
equivalent paths

17,2006
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B Groups and Equivalences

® Many grouping mechanisms are based on equivalences

¢ Common ones:
® Structural
® Regular
® Automorphic *At least as defined in JMS paper in 1994.

®* These are subsets

Regular

Automorphic

16
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i Estimates of Equivalence

® Structural equivalence
* Two nodes are equivalent if connected to same others
* Concor

a b g h

* Regufar equiva%nce i j

* Two nodes are equivalent if connected to others who are
connected in the same way

* rege
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B Issues with Structural Equivalence

* |s there a Mechanism? What's the mechanism leading
to similarity?

i Parents?

According to structural equivalence, only parents
of the same children are playing the same role

* What kinds of entities should exhibit structural

equivalence?
* Aren’t humans too unique???
® Approximation — vs — Actual

* Tools for finding structural equivalent groups

anisms
Copyright © 2006 Kathleen Carley
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B Issue: SE is not necessarily a Social Role

Parents?

According to structural equivalence, only parents
of the same children are playing the same role
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S Structural Equivalence

* Compute similarity/distance between rows of adjacency
matrix
® Correlation
® Euclidean distance
®* Much argument over handling of diagonals
® Can then MDS or cluster the resulting proximity matrix
® Bottom-up
® Problem — stopping algorithm
* Or use Concor
® Correlation — iteratively
® Problem — top-down, and so imposes structure
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B Terminology: Isomorphism
* Two graphs are isomorphic if - b cHmmmN
you can find a 1:1 mapping O O

of nodes from one to the

other that preserves » : AEmmEE
adjacency structure pa ‘ b
* G(V,E) is isomorphic to 5

G'(V',E’) if there exists b

mapping p:V->V’ such that

(u,v) € E iff (p(u),p(v)) € E’

® Such a mapping p is called an
isomorphism

O T 9 <

(a,b) € (a,c)
(b,c) €~ (c,b)

Compliments of Steve Borgatti
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B Automorphism

® Aka structural isomorphism
* An automorphism is an isomorphism of graph to itself

v | p(v)
5 1 3
5 2 | 4
3 1
Vi
4
3 5 | 5

Compliments of Steve Borgatti
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Automorphic Equivalence

automorphism p such that u=p(v)

Compliments of Steve Bprgatti

® A coloration C is automorphic if C(u)=C(v) iff there exists
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Automorphic Equivalence
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i Automorphic Equivalence

* Fits with “role” mechanisms

* Powerful, fundamental intuitive concept

® Truly structural/positional, not confounded by contiguity
* Captures essentials of the role concept

* Generalization of structural equivalence
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B Issues with Automorphic Equivalence

® Very Strict mechanisms

® A parent with 2 children does not
play the same role as one with 3
children

* What kinds of entities should
exhibit automorphic

equivalence?
® Aren’t humans too unique???
* Approximation — vs — Actual

® Tools for finding structural
equivalent groups
* Rege — heuristic based routine
* Extremely difficult to compute

* No obvious way to relax the concept
for application to real world data
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Regular Equivalence

® Captures role concept really well

® Two actors are equivalent if they have the same relations with
equivalent others

® You call American airlines and talk to clerk about booking flight,
while | call USAIR and do same with their clerk

* You and | equivalent because the clerks are equivalent (and they
are equivalent because you and | are equivalent)

® Less strict than automorphiic
* Not concerned with quantities of colors
® Finds more equivalent nodes

n—— Complimgpt§ of Steve Bprgattil

R
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Regular Equivalence

® Also captures position in
hierarchies well, if no cycles
* Including trophic group

* Relatively easy to compute
(and to relax)

* Easy to generalize to 2-mode
data
® Consumers & brands
® Segments & positions
¢ identifying category boundaries
* Works well with multiple
relations

1T June 1

7, 2006 .
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B Issues with Regular Equivalence

® Often hard to interpret

* Humans good at understanding
pattern similarities, but not in the
context of social ties

* Data sets inappropriate for R.E.
analysis
® Too small, no real roles
* A graph may have multiple
colorations that are regular — & d
especially undirected graphs

® Heuristic tools can vary widely
in results and have poor
scaling properties

&' June 17, 2006 Copyright © 2006 Kathleen Carley 29
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B Cliques

* Definition
* Maximal, complete subgraph
® SetSs¢t. foraluyvins, (uv)inE

* Properties
®* Maximum density (1.0)
* Minimum distances (all 1) {cd.e}isthe
® overlapping
® Strict

only clique

1T June 17, 2006 Compliments of Steve Borgatti 20
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i Types of Relaxations

* Distance (length of paths)

® N-clique, n-clan, n-club
* Density (number of ties)

* K-plex, Is-set, lambda set, k-core, component
* Both Distance and Density

® Factions

® Look at ratio of within to without ties — optimize groups to
maximize this ration

&' Toune 17,200 Copyright © 2006 Kathleen Carley
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B N-cliques

* Definition
®* Maximal subset s.t. forallu,vin S, d(u,v) <=n
® Distance among members less than specified maximum
* When n =1, we have a clique

* Properties

. : b c
* Relaxes notion of clique
* Avg distance
can be greater d
than 1 a

f e

Is {a,b,c,f,e} a 2-clique?
o] Y — - .
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i Issues with N-Cliques

® Qverlapping
¢ {a,b,c,f,e}and {b,c,d,f,e} are both 2-
cliques a
* Membership criterion satisfiable
through non-members

* Even 2-cliques can be
fairly non-cohesive

* Red nodes belong to same 2-clique but
none are adjacent

#1155unea7,200800000, Compliments of Steve Borgatti
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