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What Is a Virtual Experiment?

• An experiment run using a computer simulation model
• Standard experimental design procedures

• Identify  variables (parameters)
• Define a set of experimental cells
• Run a series of virtual experiments - Rerun simulation in each 

cell multiple times if stochastic elements 
• Statistically analyze results - Locate the best fit model (typically 

nonlinear).
• Typically done for models with large numbers of 

parameters.
• Basic Goal: Map inputs to outputs in area of concern
• Alternative Name: Local Response Surface Analysis
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Types of Virtual Experiments
• Monte Carlo.

• Parameters not directly varied are 'factored out' using a Monte Carlo 
approach  (large number of runs across which all other parameters are 
randomly selected from acceptable options).  Result is point estimate of 
behavior for each cell in the experimental design.

• Empirical  Monte Carlo.
• Model is initialized with 'real' data.  Then each cell in experimental 

design is estimated using a Monte-Carlo approach over values not set 
by 'real' data.

• Pattern matching.
• A set of simulations are run that correspond exactly to each 'real' case.

• Proof of concept.
• Model is run once each under a set of conditions to demonstrate what 

can happen.
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Key Questions 
Virtual Experiments Answer

• Likelihood
• Is A likely?  
• Will mimicry tend to improve performance?

• Relative impact
• Does A or B have a greater impact?  
• Does task or structure have a greater impact on performance?

• Possibility
• Is A possible?  
• Can organizations improve performance if individuals learn and the 

organization structurally adapts?
• Sufficiency & necessity

• Is A sufficient or necessary?   
• Is forgetting necessary to decrease interaction?
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Describing a Virtual Experiment

• Create a table 
• With 3 columns – variable, 

values, the number of values
• With one row per variable
• Last row contains 

• The number of repetitions 
per cell

• The time periods each 
repetition is run for

• The total number of cells 
(this is a nxmxz = p 
design)

Design = 
4x2x3=24 
cells

Time 
periods = 
100

Repetition
s per cell 
= 30

31,2,10New 
Ideas

2Male, 
female

Gender

40-20, 20-
40, 40-60, 
60+

Age 
ranges

NumberValuesVariable
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Virtual Experiments generate 
response surfaces

• Response surfaces are 
sometimes referred to as 
landscapes

• Illustrative Landscape for 
OrgAhead

Caveat:  For natural organizations 3 dimensions are not enough
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RESPONSE SURFACE METHODOLOGY

• One Definition:
• A statistical method 
• That uses quantitative data from appropriate Virtual Experiments
• To determine and simultaneously solve multivariate equations

• Another Definition:
• Statistical mapping of a Simulation Model’s Outputs to Inputs of 

Concern within a region
• Response surface analysis provides a means for 

optimization of process model
• Selection of parameters and values for virtual 

experiment is critical
• Each virtual experiment design has its own set of 

advantages and disadvantages
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Response Surface Modeling

• Mapping out the performance surface of a computational 
model.

• Typically done for models with large numbers of 
parameters.

• Typically done using Monte-Carlo estimation of surface.
• Select sets of parameters that span the surface are of 

concern.
• Cover extreme points.
• Known inflection points.

• Run series of virtual experiments.
• Locate the best fit model (typically non-linear).
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• 1. Identify core variables / parameters – limit the number if possible
• 2. Explore the parameter space.
• 3. Set non-core variables – limit the number is possible
• 4. Define parameter levels

• If too broad, optimization cannot be defined
• Levels may be restricted by cost, physical limits or regulation, so that optimum 

may be outside levels tested
• 5. Select test samples 

• Once parameters are set, first run a test at mid point to test levels
• 6. Select experimental design method
• 7. Choose Data analysis method
• 8. Run simulations in virtual experiment.

• Select test samples
• Select experimental design method

• 9. Statistically analyze results.
• 10. Formulate hypotheses.

Procedure for Generating Hypotheses

Assumes you have 
a working 
simulation model
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ORGAHEAD Overview

ORGAHEAD

Command &
Communication 
structure

Capabilities

Task Assignment

TASK

DMU/SKILL
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0 
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 1 0 0 0 0
1 0 0 1 0 0 1

team1 team2

accuracy

team1 team2

workload

Other 
performance 
and vulnerability
measures
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• Core variables are the parameters of concern
• Parameters or model modules which are expected to be 

highly  relevant in affecting the dependent variable 
• Not all model parameters are core

Example:
• ORGAHEAD --- task complexity

1.  Identify Core Variables
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Which Variables/Parameters to Consider -
Assumptions

• Critical parameters are known
• Region of interest, where parameter levels are 

known or considered critical
• Parameters vary continuously through-out the 

experimental range tested
• A mathematical function relates the parameters to 

the response (outcome)
• The response defined by this function is a smooth 

curve
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Choosing Parameters

• Easy to generate too much data to analyze
• Most data generable by simulations is never analyzed
• Exhaustive analysis of response surface not possible
• Balance – the number of things varied, the number of 

replications, and the number of outcomes being 
observed

• Current state of the art 
• Run more small VE rather than one large one
• New directions

• Data farming environments
• Ants
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Which Parameters to Consider -
Assumptions

• Critical parameters are known
• Region of interest, where parameter levels are known or 

considered critical
• Parameters vary continuously through-out the 

experimental range tested
• A mathematical function relates the parameters to the 

response (outcome)
• The response defined by this function is a smooth curve
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2. Explore the Parameter Space

• Define which values for each parameter will be explored
• The choice should reflect 

• Concerns
• Expectations about impact on system level behavior
• Known points of relevance

• Choose 2 or more values for each parameter
• Preferably 3

Example
• Task complexity 

• Low, medium and high complexity
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3. Set Non-core Variables

• Non core variables should be
• Randomly set
• Fixed at a  level needed for the analysis
• Set to match conditions known to be true of human groups

Example 
• Fixed parameter: size - set randomly, but doesn’t change
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Considerations for Steps 2 and 3

• You are creating a virtual experiment
• Define parameter levels

• If too broad, optimization can not be defined
• Levels may be restricted by cost, physical limits or regulation so that 

the optimum is outside of levels tested
• Once parameter levels are set, run a test at midpoint on each 

parameters value to test the levels
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Choosing the Design for the Virtual Experiment

• Response predictions always have some degree of 
uncertainty

• Design should help ensure that the predictions are 
reasonable throughout the experimental range

• Try to pick points to ensure that a uniform prediction 
error is obtained by using an experimental design 
that fills the area of interest

• The final choice of the experimental design is 
affected by the shape of the area of interest
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Experimental Design

• Select an experimental design
• Commonly recommended:

• Central Composite designs
• Box Behnken design
• Draper and Lin, minimal central composite designs
• Morris designs

• See engineering statistics handbook e.g. ch. 5.3 -
• http://www.itl.nist.gov/div898/handbook/pri/section3/pri3.htm

• Suitable for fitting a second order process model
• Order:
• 1) Completely linear
• 2) Square or two-way interactions + 1
• 3) Cubed or three-way interactions + 2) + 1
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Central Composite

• Also known as Box-Wilson Central Composite Design 
• Contains imbedded factorial or fractional factorial 

design with center points 
• Augmented with a group of `star points' 
• This allows estimation of curvature
• Note – if the distance from the center of the design 

space to a factorial point is ±1 unit for each factor, the 
distance from the center of the design space to a star 
point is ± α with | α | > 1

• The value of α depends on the properties desired for 
design and on the number of factors involved

• The number of center point runs the design contains 
also depends on properties required for the design

Central Composite 
Design for Two 
Factors
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Box Behnken

• An independent quadratic design 
• Does not contain an embedded factorial or fractional factorial design
• Treatment combinations are at the midpoints of edges of the process space 

and at the center
• Designs are rotatable (or near rotatable) and require 3 levels of each factor
• Designs have limited capability for orthogonal blocking compared to central 

composite designs

Design for 3 Factors
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Extreme Point Analysis

• Examine the extreme points
• E.g., groups of 2
• Learning is off

• Rational
• Such points might have a mathematical equivalent
• Trace may be easier to follow
• May be useful for face validity
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LMH Rule

You can't look for non-linearities with only two points

• When setting up a virtual experiment for non-categorical 
parameters use more than two points• Examples• size - 10, 20, 30, 40• density - .1 ,   .15,   .2,   .25

• Span the space• Pick values known to correspond to “physical world” data• Pick values distant enough for results to be distinguished• Run a small trial run first• The number of points depends on statistical significance 
considerations, computation time, space constraints, and 
theory
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Examples

low high

low high

low high

low highmed

low highmed

low highmed
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Equal or Unequal Spacing
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ORGAHEAD Parameter Space

Parameter Categories
Task limit 20,000 and 80,000
Task complexity binary and trinary
Task information 7 and 9
Agent ability 5 and 7
Stressors Stable and periodic
Unit Size 9, 12, 18, and 36
Shake-ups 1, 2, 3 and 4

Table 1:  Summary of Parameters

Choosing parameters and  values defines virtual experiment

512 cells
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Virtual Experiment Design 
Considerations

• Generally, the area of interest is determined by the 
ranges of the independent variables (parameters)
• E.g., if the region is cubical (in coded values of X (the 

parameters)) then the best design is face centered.
• If you need the precision of the predictions to be 

independent of the direction from the center – then the 
region is “spherical” and you should use a Box-
Behnken design

• Box-Behnken designs exclude the corners where all 
variables are simultaneously at the extremes

• This permits a wider range of individual variables
• If the shape of the virtual experiment is neither spherical 

or cubical and has strong constraints then the region 
may be an irregular tetrahedron and will require a 
special design
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Review the Design for Operability

• Review runs for operability
• How much space and time will this take

• Note – runs that set the variables at maximum or 
minimum values may not work 
• Programming errors
• Time and space issues

• Randomization can be “adjusted” to schedule these runs 
early to allow for adjustments

• Do exploratory testing of potentially troublesome runs 
before running the entire virtual experiment on auto-pilot
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How to Avoid Blunders

• Try out a simple case first
• Execute experiment with care
• Small statistical designs are susceptible to errors as 

every run estimates more than on effect
• Record results for all runs
• Plan for analysis from the start
• Statistical analysis (regression) is the basis for most 

analytic procedures
• Make sure the results “make sense”
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Limitations to Response Surface 
Modeling

• POLYNOMIAL MODELS DO A POOR JOB OF PREDICTING 
RESPONSE OUTSIDE THE REGION OF EXPERIMENTATION 

• LARGE VARIATIONS IN THE FACTORS CAN BE MISLEADING 
(ERROR, BIAS, NO REPLICATION)

• CRITICAL FACTORS MAY NOT BE CORRECTLY DEFINED OR 
SPECIFIED

• RANGE OF LEVELS OF FACTORS TO NARROW OR TO WIDE  -
OPTIMUM CAN NOT BE DEFINED

• LACK OF USE OF GOOD STATISTICAL PRINCIPLES
• OVER-RELIANCE ON COMPUTER - MAKE SURE THE RESULTS 

MAKE GOOD SENSE
• FEW TECHNIQUES FOR TIME VARIANT SURFACES
• DIFFICULT FOR HIGHLY RUGGED SURFACE
• CANNOT BE DONE EXHAUSTIVELY FOR LARGE COMPLEX 

MODELS
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• Run simulations
• If stochastic - run multiple simulations per cell  -

replications
Example - 40 replications per cell

• If deterministic - run one simulation per cell
• Comment:  virtual experiments generate LOTS of data

Example 
Virtual experiment described resulted in 

20480 data observations at each point in time

4. Run Simulations in Virtual 
Experiment
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5. Statistically Analyze Results

• Lots of data - multiple explorations
Example
• Exploration 1: the impact of meta-adaptation strategies 

on performance 
• Exploration 2: the impact of meta-adaptation strategies 

on the C3I structure
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General Approach to Response 
Surface

• Approach
• First run linear regression with all parameters (level 1)

• Don’t expect high R2 as the point is a non-linear system
• Now add in all simple products (level 2)

• R2 should be improved
• Now add in all cross terms with 3 variables (level 3)

• R2 should be improved
• …

• As increase number of terms have at least 25 cases per term
• Difficulties

• With many multi-agent systems you run out of storage space before you 
get to level 3

• It is easy to over-run existing stat packages
• Even if characterize the system at time x a different response may exist 

at time y
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What statistical method ?

• If all variables are continuous you can use 
regression analysis

• Search for equation with minimum sum of squared 
errors

• If you want to “punish” outliers more use minimum 
sum of squared errors

• If you want to “punish” outliers less use the sum of 
the absolute value of the errors
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Set of Equations

• Assume 1 dependent (Y) and 2 
independent X and Z

• 1st order (linear) (all possible 
combinations of linear terms)
• Y=a + b1Y + b2Z
• Y=a + b1Y
• Y=a + b2Z

• 2nd order (all possible 
combinations of linear and 2nd 
order terms)

• 3rd order (all possible 
combinations of linear and 2nd 
order and 3rd order terms)

• Note – we typically don’t need 
to go over 3rd order

• At this point we don’t worry 
about fancier forms with logs or 
exponentials

• Y=a + b1Y + b2Z + b3YZ + b4Y2 + b5Z2• Y=a + b1Y + b3YZ + b4Y2 + b5Z2• Y=a + b2Z + b3YZ + b4Y2 + b5Z2• Y=a + b1Y + b2Z + b3YZ + b4Y2• Y=a + b1Y + b3YZ + b4Y2• Y=a + b2Z + b3YZ + b4Y2• Y=a + b1Y + b2Z + b3YZ + b5Z2• Y=a + b1Y + b3YZ + b5Z2• Y=a + b2Z + b3YZ + b5Z2• Y=a + b1Y + b2Z + b4Y2 + b5Z2• Y=a + b1Y + b4Y2 + b5Z2• Y=a + b2Z + b4Y2 + b5Z2• Y=a + b1Y + b2Z + b3YZ• Y=a + b1Y + b3YZ• Y=a + b2Z + b3YZ• Y=a + b1Y + b2Z + b5Z2• Y=a + b1Y + b5Z2• Y=a + b2Z + b5Z2• Y=a + b1Y + b2Z + b4Y2• Y=a + b1Y + b4Y2• Y=a + b2Z + b4Y2• Y =a + b3YZ + b4Y2 + b5Z2• Y = a +b3YZ + b4Y2• Y = a +b3YZ + b5Z2• Y =a + b4Y2 + b5Z2• Y =a + b3YZ• Y =a + b5Z2• Y =a + b4Y2
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Example Statistical Analysis
Predictor Coefficient p value

intercept 0.000000 1.000
Task limit 0.031853 0.000
Task complexity -0.024068 0.000
Environmental
stressors

-0.014568 0.027

Unit size 0.170226 0.000
Agent ability 0.265205 0.000
Task information 0.091118 0.000
Shake-ups -0.012299 0.063
R2 (adj) = 10.9%, df = 7, 20472, p<0.001

Table 2.  Standardized Regression

 for Performance.

Resources
Size
Task needs
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6. Generate Hypotheses

• Turn strong statistical results into hypotheses
• Sensitivity analysis set limits on these hypotheses
• Any types of hypotheses possible:

• Simple predictions of correlations
• Statements about the shape of a distribution
• Statements of relative impact
• Quantitative statements about impact
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Illustrative Hypotheses

• The more limited the task the higher the performance 
• The higher the level of task complexity the lower the level of 

performance
• As unit size increases so does unit performance
• Hiring capable personnel should improve performance more than 

increasing the amount of available information
• Increasing personnel capability will have a 1.5 time greater 

performance improvement than will increasing organization size
• Corollary: organizations who retrain, rather than hire new personnel 

should do better
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Theory Development

Generation of hypotheses

+ Model development
------------------------------------------------

Theory development
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Summary

• Computational models as hypotheses generators
• 6 key steps in generating hypotheses

• Virtual experiment - statistical analysis - hypotheses

• Basis of theory development
• Part of procedure for using scientific method for team 

design


