

Carnegie	Mellon
	Key Questions
	Virtual Experiments Answer
•	Likelihood
	Is A likely?
	• Will mimicry tend to improve performance?
•	Relative impact
	Does A or B have a greater impact?
	• Does task or structure have a greater impact on performance?
٠	Possibility
	Is A possible?
	• Can organizations improve performance if individuals learn and the organization structurally adapts?
•	Sufficiency & necessity
	Is A sufficient or necessary?
	• Is forgetting necessary to decrease interaction?
CASOS	
	June 13, 2006 Copyright © 2006 Kathleen M. Carley, CASOS, ISRI, SCS, CMU 4

Describing a Vir	tual Ex	perime	ent
 Create a table With 3 columns – variable, values, the number of values 	Variable	Values	Number
 With one row per variable Last row contains The number of repetitions 	Age ranges	0-20, 20- 40, 40-60, 60+	4
per cell The time periods each repetition is run for 	Gender	Male, female	2
 The total number of cells (this is a nxmxz = p design) 	New Ideas	1,2,10	3
CASOS	Repetition s per cell = 30	Time periods = 100	Design = 4x2x3=24 cells
June 13, 2006 Copyright © 2006	Kathleen M. Carley,	CASOS, ISRI, SCS	S, CMU

Carnegie M	ellon ORGAHE	AD Paramet	ter Space
	Choosing parame	eters and values d	efines virtual experiment
	Parameter	Categories	
	Task limit	20,000 and 80,000	
	Task complexity	binary and trinary	
	Task information	7 and 9	
	Agent ability	5 and 7	512 cells
	Stressors	Stable and periodic	
	Unit Size	9, 12, 18, and 36	
	Shake-ups	1, 2, 3 and 4	
2019	Table 1: Summ	nary of Parameters	
CADIO	une 13, 2006	Copyright © 2006 Kathleen M. C	arley, CASOS, ISRI, SCS, CMU 26

Carnegie Mellon		
Set of	Equations	
 Assume 1 dependent (Y) and 2 independent X and Z 1st order (linear) (all possible combinations of linear terms) Y=a + b1Y + b2Z Y=a + b1Y Y=a + b2Z 2nd order (all possible combinations of linear and 2nd order terms) 3rd order (all possible combinations of linear and 2nd order terms) 3rd order (all possible combinations of linear and 2nd order and 3rd order terms) Note – we typically don't need to go over 3rd order At this point we don't worry about fancier forms with logs or exponentials 	$\begin{array}{c} 1 = a + b17 + b22 + b372 + b4Y2 + b522 \\ Y = a + b1Y + b3YZ + b4Y2 + b5Z2 \\ Y = a + b1Y + b2Z + b3YZ + b4Y2 + b5Z2 \\ Y = a + b1Y + b2Z + b3YZ + b4Y2 \\ Y = a + b1Y + b2Z + b3YZ + b4Y2 \\ Y = a + b1Y + b2Z + b3YZ + b5Z2 \\ Y = a + b1Y + b2Z + b3YZ + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b4Y2 + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b4Y2 + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b5Z2 \\ Y = a + b1Y + b2Z + b4Y2 \\ Y = a + b1Y + b2Z + b4Y2 \\ Y = a + b3YZ + b5Z2 \\ Y = a + b3YZ \\ Y =$	
June 13, 2006 Copyright © 2	2006 Kathleen M. Carley, CASOS, ISRI, SCS, CMU	35

Predictor	Coefficient	<u>p value</u>	
intercept	0.000000	1.000	
Task limit	0.031853	0.000	
Task complexity	-0.024068	0.000	
Environmental stressors	-0.014568	0.027	Resource
Unit size	0.170226	0.000	Size
Agent ability	0.265205	0.000	Task need
Task information	0.091118	0.000	
Shake-ups	-0.012299	0.063	
<u>R2 (adj)</u> = 10.9% ,	df = 7, 20472, p	><0.001	
Table 2. Sta	ndardized Regr	ession	
for]	Performance.		

