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PREDICTING WITH NETWORKS: NONPARAMETRIC
MULTIPLE REGRESSION ANALYSIS OF DYADIC DATA *

David KRACKHARDT **

Johnson Graduate School of Management, Cornell University

This paper argues that the quadratic assignment procedure (QAP) is superior to OLS for testing
hypotheses in both simple and multiple regression models based on dyadic data, such as found in
network analysis. A model of autocorrelation is proposed that is consistent with the assumptions
of dyadic data. Results of Monte Carlo simulations indicate that OLS analysis is statistically
biased, with the degree of bias varying as a function of the amount of structural autocorrelation.
On the other hand, the simulations demonstrate that QAP is relatively unbiased. The Sampson
data are used to illustrate the QAP multiple regression procedure and a general method of testing
whether the results are statistically biased.

1. Introduction

We have witnessed tremendous advances over the past 15 years in the
area of formal network analysis (e.g. Breiger and Pattison 1986; Burt
and Minor 1983). Most of these advances have focused on sophisti-
cated techniques for better understanding and describing network
structures, often by reducing them to more parsimonious forms. As
Coleman (1983) has lamented, there has been a relative dirth of work
formally relating these (now elegantly described) structures to their
antecedents and consequences. He called for more complete models
that explored the relationship among network variables and other
dependent /independent variables of social interest.

Unfortunately, there are barriers to taking up this challenge. One of
the most serious problems is that the unit of analysis is the dyad—and
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dyads, it is reasonably argued, cannot be assumed to be independent of
one another. ' How can we perform inferential tests on data that are
(potentially) highly interdependent?

We wish to propose a general procedure for answering this question.
We suggest that Hubert’s quadratic assignment procedure (QAP) can
be extended to the multiple regression model. We first frame the
problem as an autocorrelation problem and then demonstrate how
QAP provides unbiased tests of significance of both simple and multi-
ple regression coefficients. To illustrate how the procedure may be used
in practice, we provide a simple example from Sampson’s (1968)
monastery data. Finally, we suggest that, to be safe, the degree of bias
in any given application of this procedure should be tested by simulat-
ing the particular kind of data being analyzed. We illustrate this by
simulating the Sampson data under the null hypothesis.

2. Structural autocorrelation

One way to approach this problem of non-independence of observa-
tions is to frame it as econometricians have—as an autocorrelation
problem. 2 If one had data that were temporally interdependent, or
autocorrelated, one could use any number of time series analytic tools
available (Judge er al. 1985) to estimate the autocorrelation and to
assess the significance of the various parameter estimates. But the
nature of the autocorrelation here is far more complex and intractable
than found in most econometric models.

To formalize this problem, consider the following simple regression
model:

y=BX+e, E(e)=0Q
where y and X represent vectors of observations on some variables of

! We are excluding from our discussions here analysis of attributes of actors that are derived from
networks, such as centrality (Freeman 1978) or position (Burt 1982). Inferential statements about
autocorrelation problems in such attribute-level data have been explored elsewhere (Dow e al.
1982; Ord 1975).

2 Lincoln (1984) has proposed a similar framing of this problem, although his solution, following
from Doreian, Teuter and Wang (1984) and Ord (1975), is very different from the one proposed
here. Kraemer and Jacklin’s (1979) solution poses even more restrictive assumptions about the a
priori knowledge of the structure of interdependence.
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interest. If we assume that £ = I, that is, that the error terms in the
model are independently and identically distributed, then the customary
approach to testing data consistent with this model is to use ordinary
least squares (OLS) analysis.

But we are interested in an autocorrelated models. In the general
case, autocorrelation can be represented by the scaled correlation
matrix in the error terms: '

€ € &y
e [1 P12 P1,n

€n pn,l pn’2 “ee 1

For network data, variables y and x, represent relations between
two actors, i (the “sender” of a relation) and j (the “receiver” of the
relation). With this in mind, we can write a simple network model as
follows:

Y, =B+ B X, +e,; foralli#j.

And the general autocorrelation structure for this model is given as:

€12 €13 Ut €un-1)
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€n(n-1) Prn-112  Pn(n-113 " 1

What makes network data particularly troublesome is represented in
this autocorrelation matrix. Network data are assumed not to consist of
independent observations, but rather have varying amounts of depen-
dence on one another according to which row or column they “belong”
to. That is, the error terms can be assumed to be autocorrelated, to at
least some (unknown) degree, within rows and columns.

3 The remaining assumptions of OLS are of less interest to us at this point in the paper. At the
moment, all data are assumed to be continuously and normally distributed. We will drop these
restrictions later when we specifically model the Sampson data.
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In particular, one way of representing network data is to assume that
they have an autocorrelation structure as follows:

1 if i=kand j=1I; (diagonalsof Q)
p;,u ifi=kand j#1I; (row autocorrelation parameters)
Pijkt =\ P ifi#kand j=1I; (column autocorrelation

parameters)
0 otherwise.

That is, there is a set of row parameters (p, ;1) that describe the
non-independence of observations that occur in the same row of the
original data matrix, and a set of column parameters (pjix) that
describe the non-independence of observations that occur in the same
column of the original data matrix.

The reader familiar with econometrics might be tempted to apply
general least squares (GLS) to this problem (a solution discussed by
Proctor 1969). There are certain advantages to such an approach. If one
knew what the set of row and column autocorrelation parameters were,
one could use GLS to transform the original observations and derive
appropriate estimates of the means and variances of a and 8. However,
I know of no theory to guide us in choosing such values. And, as Engle
(1974) has demonstrated, it can be far worse to assume an incorrect
autocorrelation structure than to incorrectly use OLS in the first place.
To those who wish to attack this problem by estimating the parameters
in a two-step estimation procedure (Judge et al. 1985), it is worth
noting that there are N(™; ') row parameters and an equal number of
column parameters (total = N(N — 1)(N — 2)) to estimate. Given that
there are only N(N — 1) observations, the autocorrelation parameters
“... cannot be satisfactorily estimated” (Judge et al. 1985: 174).

3. The quadratic assignment procedure

A nonparametric answer to this problem of testing the null hypothesis
that two network variables are uncorrelated has been proposed (Mantel
1967) and developed at length (Hubert and Schultz 1976; Hubert 1983;
Hubert 1985; Hubert and Golledge 1981). * By generating all correla-



D. Krackhardt / Predicting with networks ' 363

tions that result from permuting the rows and columns of one of the
structural matrices, one can determine the distribution of all possible
correlations given the structures of the two matrices. Thus, it builds
into the test statistic the kind of row/column interdependence that is
assumed in network data. This permutation procedure, referred to as
the quadratic assignment procedure (QAP) is one answer to the
aforementioned autocorrelation question. °

Our intent here is to compare OLS and QAP under various network
assumptions. It has been shown elsewhere that, even under extreme
autocorrrelation conditions in some models, OLS does not do badly in
estimating the first two moments of regression coefficients (e.g. Engle
1974; Kramer 1980). The question we explore here is how well or
poorly each does in providing a test of null hypotheses in structurally
autocorrelated models.

4. Monte Carlo simulations of structurally autocorrelated data: The case
of normally distributed data

Monte Carlo simulations were used to assess the effects of networks
autocorrelation on Type I errors. Data were generated that were
consistent with the null hypothesis (i.e. there is no correlation between
y and x) and tested using both OLS and QAP to determine whether
each test “reports” that the observed sample correlation was signifi-
cantly different from zero. For these tests, a was arbitrarily chosen to
be 0.10 (two-tailed).

4 Accessible and more detailed descriptions of this technique appear elsewhere (Baker and
Hubert, 1981; Krackhardt, 1987). For a clear description of the calculations, see Mantel (1967);
for a thorough, mathematical treatment and review, see Hubert and Schultz (1976) and Hubert
(1985).

5 In his original formulation, Mantel (1967) provided an analytical solution to the problem of
calculating the mean and variance of all the correlations under all row-column permutations. This
direct, relatively simple method results in a Z-statistic which can be compared to the usual normal
distribution to ascertain the probability of observing such a correlation under the null hypothesis
that each permutation was an equally likely event. Of course, the interpretation of the Z-statistic
depends on the assumption that the correlations will be normally distributed under all permuta-
tions. As has been shown elsewhere (Faust and Romney, 1985; Mielke, 1979), this assumption is
questionable under certain conditions Costanzo et al. (1983) provide an alternative method to
cover cases where the Z-statistic is not normally distributed. For our purposes, however, we will
restrict ourselves to normally distributed cases that do not require such special treatment. All QAP
tests performed in this paper are based on Mantel’s Z statistic.
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The key issue is whether these results might be affected by the size of
the autocorrelation parameters. We could vary each one of the N(N —
1)(N — 2) parameters separately and record the effects of each on Type
I errors, but such effects would be difficult to report in any compre-
hensible way. For purposes of demonstration, then, we will vary all the
row parameters and column parameters together. This will provide a
simplified, tractable picture of the effects of degrees of structural
autocorrelation.

The data for the model were generated simply as follows:

yif = nyxij + e)"ij

or, since we are generating data from the null hypothesis, and thus
K, =0, simply

Vij =€y,
Autocorrelation was created with the following generators:
€,,=Kgu, + Kcuyj + Kij“y,.,
€, = Kpu, + Kcuxj + Kij“x,.,

with the following constraints:

0<K;;<1
Kr=1-K;
KC=KR.

The random variables Uy, Uy, Uy, Uy, Uy, and u,, , are all indepen-
dently drawn from a N(0, 1) dlstnbutlon The constants K r and K.
represent the degree of weight given to the row and column autocorre-
lations, respectlvely The constant K;; represents the degree of weight
given to the “purely” random term for each observation. It is the
relative size of K (and Kc) to K, that determines the autocorrelation

in the rows (and columns). By constraining K to equal Ko =1 — K,
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we can use the K constant to represent the strength of autocorrelation
in the population as a whole. When Ky equals 0, there will be no
autocorrelation in the data. When K equals 1, row and column
autocorrelations will be the maximum possible.

To summarize, we generate sample data sets from a well-defined
population. Each data set consists of two network variables, x and y,
each of size N X (N —1) dyadic observations. To construct y, N
random row components, N random column components, and N X (N
— 1) random error components are generated. Each y,; observation,
then, is the weighted sum of the ith row component, the jth column
component, and the jjth error component. This procedure is then
repeated with different random generators to create x. By this con-
struction, we assure that the null hypothesis is always true in these
populations (i.e. x and y are uncorrelated) and that the degree of
structural autocorrelation is a direct, monotonic function of the con-
stants Ky and K.

Results for the simple regression model

Forty-one populations were explored, with each succeeding population
differing from the preceeding one by a small degree of row/column
autocorrelation (increment in Ky = 0.025). From each population, 1,000
samples of y and x of size N =18 were generated (the sample size of
the Sampson data to be analyzed shortly). For each x—y pair of
samples, test statistics based on OLS and on QAP were calculated. If
the test indicated that the observed correlation between x and y was
significant at the 0.10 level (two-tailed), then a Type I error was
recorded for that test statistic for that particular simulation.

The results for all 41 populations are plotted in Figure 1 and
summarized in Table 1. The solid line in the plot represents the
proportion of samples where the OLS F-test was significant; the dotted
line represents the proportion of samples where the QAP test was
significant (a < 0.10, two-tailed).

Ideally, one would hope that a test statistic would indicate a signifi-
cant correlation about a fraction of the time (in this case, 0.1 of the
time). As can be seen, both QAP and OLS hover around this “ideal”
line when the autocorrelation is weak (K < 0.25). As the autocorre-
lation increases, however, the F-test starts to increase its Type I error
rate considerably. When the autocorrelation is only moderate (K =



366 D. Krackhardt / Predicting with networks
Proportion of

Type 1 Errors
0.7 r

06

——— OLS F-test
........ QAP Z-test

05}
04
03
0.2

. ot o,
0.1 7 N’ NCeveen DNt PR AN N L. . . ',-..' temema et T s s e -

0.0}

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree of Autocorrelation
Fig. 1. Plot of Type 1 error rates of significance tests for simple regression coefficients.

0.5), samples have better than a 40 percent chance of appearing
significant to OLS. As the row autocorrelation becomes strong ( Ky >
0.8), the OLS tests show significant correlations in excess of 60 percent
of the time.

Table 1
Summary of Type 1 error rates in tests of simple regression coefficients in simulated normal
samples

Type 1 Type 1 Total number
errors for errors for of samples
OLS test (%) QAP test (%) generated

Autocorrelated weight

0t00.2 10.71 10.34 9000.00

0.225 to 0.4 20.01 9.76 8000.00

0.425 t0 0.6 44.39 10.00 8000.00

0.625 t0 0.8 55.63 9.94 8000.00

0.825t0 1.0 58.63 9.98 8000.00
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In stark contrast, the QAP test of significance consistently finds
approximately 10 percent of the samples to be significantly correlated
at the 0.10 level. This is true no matter how large the autocorrelation.

5. Multiple regression analysis of network data

QAP is inherently a two-variable test of significance. Of more interest
to most social scientists is the multiple variable case. How can we test
whether a particular beta coefficient in a multiple regression equation
is significantly different from zero when the data are structurally
autocorrelated? To answer this question, we digress to discuss alterna-
tive forms for calculating multiple regressions.

5.1. The unstandardized multiple regression coefficient

Assume we are concerned with a model of the following form:
y=By+Bx; +Bx,+ - Bx, +e.

The appropriate OLS solution to solving for the vector of beta weights,
B, is given by the following equation:

B=(X'X)"'Xy.

The usual interpretation given to each beta is that, controlling for all
the other independent variables in the equation, the beta represents the
unique contribution that this particular variable makes toward one unit
of the dependent variable, y. Another way to “control for” these other
independent variables is to statistically extract the information predic-
ted by the other independent variables, and then conduct a simple
regression on the residuals (cf. Krackhardt 1987). Let yJ%, , represent
the residuals y — j,;, , calculated by solving the regression equation
predicting y from the set of x variables x,, x;, x,,..., x,. Let x§,;,
represent the residuals x; — %, calculated by solving the regression
equation predicting x; from the set of x variables x,, x5, xg,..., x,,.

Then, if we calculate a new, simple regression coefficient between
the two sets of residuals:

* —_— X ¥ .k
Via. n=Bs + Br x4 T €
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the resulting B will be precisely equal to the B, in multiple regression
model above. Similarly, each B can calculated as the simple regression
coefficient between the residuals on y and the residuals on the ap-
propriate x variable. The advantage of this form of calculation for our
purposes is that the problem of calculating a multiple partial regression
coefficient has been reduced to a simple regression. In this bivariate
form, QAP can assess whether the correlation is significantly different
from zero, and, by implication, whether the corresponding multiple
regression B is significantly different from zero.

While QAP can mechanically assess the significance of the 8 coeffi-
cient, the question still remains as to whether this procedure is biased
in the multiple regression case. To determine its bias, we conducted
further simulations, this time on a three variable model. Observations

- were generated as follows:

ij Xl,»j

X2, = €,

yij = nylxllj + Eyij

or, again since we are generating data from the null hypothesis, and
thus K, =0,
Yij= €y,

i

In a similar manner to the first set of simulations, autocorrelation in
the error terms was created using the following generators:

€, = KR“y,. + Kcuyj + Kij“y,.,

€ L= KRux]i + Kcux]j + Kij“xl,.j

X1, .
‘Xz,, =K RUx, + K¢ uxzj + K, quZU
with the folloWing constraints:

0<K;;<1

i
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And, as before, Uy Uy Uy Uy ) Uy s Uy 5 Uy, Uy,
independently drawn from a Normal(0, 1) distribution.’
Again, two tests were computed: (1) an OLS F-test on the multiple
regression coefficient B8, to determine whether the observed coefficient
is significantly different from zero; and (2) a comparable QAP test on
the By coefficient as calculated using the aforementioned residuals
method.

and u, are
L)

5.2. Results of multiple regression simulations

Figure 2 plots the Type I error rates for each of the tests as a function
of increasing structural autocorrelation; Table 2 summarizes these
results. As can be seen by comparing the first two figures and tables,
the pattern of biases for both the OLS and QAP tests in the multiple
regression simulations are very close to those in the simple regression
simulations above. The OLS tests are relatively unbiased (that is, their
Type I error rate is approximately equal to a = 0.10) when the autocor-
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Fig. 2. Plot of Type 1 error rates of significance tests for multiple regression coefficients.
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Table 2
Summary of Type 1 error rates in tests of multiple regression coefficients in simulated normal
samples

Type 1 Type 1 Total number
errors for errors for of samples
OLS test (%) QAP test (%) generated
Autocorrelation weight
0t00.2 10.70 10.43 9000.00
0.225t004 19.84 9.90 8000.00
0.425 t0 0.6 44.34 10.44 8000.00
0.625t0 0.8 56.19 10.49 8000.00
0.825t0 1.0 59.30 10.51 8000.00

relation is weak (K < 0.25), but then the error rate accelerates rapidly
after that. On the other hand, the QAP test of the multiple regression
coefficient is virtually unbiased.

6. Example: Sampson’s monastery study

To illustrate how this procedure might work in practice, we provide an
analysis of the well-known Sampson data (1968). It was Sampson’s
intent to explore the effects of social relationships on perceptions and
judgment (using a classic autokinetic effect set of experiments) in a
total institution, a Catholic monastery. As he was collecting his data, he
discovered that 18 newcomers to the monastery were embroiled in an
ideological and political struggle that mirrored tensions found in the
Catholic Church following Vatican II. Sampson’s careful data collec-
tion was followed, serendipitously, by a small revolution. Four of the
eighteen were expelled from the monastery. Over the ensuing months,
ten others quit in a well-documented sequence (Sampson 1968:
373-382).

Many researchers have taken advantage of Sampson’s carefully
documented data collection during this time (e.g. White et al. 1976).
Much of this sophisticated analysis focused on the set of network
questions Sampson asked, accompanied by his rich, ethnographic de-
scription of the events that followed, including the order in which
people left (see Rice and Richards, 1985 for a review). Typically, this
rich description was used to make sense of the structures found by the
techniques being demonstrated.
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Our tack here will depart somewhat from this tradition. We will
explore this relationship, between social structure and order of leaving,
more formally and statistically. In particular, we will use order of
leaving as a dependent variable and the set of social relationships as
independent variables. We will ask the following dyadic question: Were
people who nominated others more likely to leave around the same
time as those others? And, conversely, did people who were not tied to
others tend to leave at very different times (much sooner or much later)
than those others?

6.1. Dependent variable: Similarity in leaving order

The order in which the 18 novices left the monastery is well-docu-
mented in Sampson’s original dissertation (pp. 373-382). The order is
reproduced in Table 3. The four who were expelled were the first to
leave (Gregory, Basil, Elias, and Simplicus), 10 others quit over the
next seven months during which Sampson collected his data, and the
remaining four novices (Bonaventure, Berthold, Ambrose, and Louis)
presumably did not leave until they “graduated” from the order in
good standing.

Since the question addressed is a dyadic one (similarity in exit
order), a square matrix of similarities was created from the vector of
ranks. Each cell in this matrix was simply the absolute difference
between the rank of i and the rank of j (see Table 3 for the completed
matrix).

6.2. Independent variable: Social ties

Eight different social relations were collected. Sampson asked each
participant to nominate and rank three people in both the positive and
negative categories for each relation. A portion of the questionnaire
used to collect the sociometric information follows:

1. List those three brothers [in order] whom you personally liked the
most.

2. List those three brothers [in order] whom you personally liked the

least.

List those three brothers [in order] whom you most esteemed.

4. List those three brothers [in order] whom you esteemed least.

w
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5. List those three brothers [in order] who had the most influence upon
you.

6. List those three brothers [in order] who had the least influence upon
you.

7. List those three brothers [in order] whom you went out of your way
to support, praise and /or help because their behavior was consistent
with your view of the Spirit of the Order. '

8. List those three brothers [in order] whom you went out of your way
to correct, encourage and/or help because their behavior was not
consistent with your view of the Spirit of the Order.

The nominations were converted to scores as follows: first choice
was recorded as ‘3’, second choice as a ‘2’, and third choice as a ‘1.

As might be expected, there was considerable overlap in nomina-
tions. That is, a person who chose another as someone they liked also
tended to choose that same person as someone who had influence over
them, and whom they esteemed and praised. In fact, the correlations
among these eight independent variables reveal a strong clustering
pattern (see Table 4). The four positively phrased questions are strongly
correlated with each other; the four negatively phrased questions are
also strongly correlated with each other; and, as would also be ex-
pected, there is a small negative correlation between the positively
phrased items and the negatively phrased items.

A factor analysis of the variables confirms these two clusters (see
Table 4). The first two factors extracted from a principle components
analysis account for 69 percent of the total variance in the data (the
eigenvalues for the remaining six factors were substantially less than
1.0). A varimax rotation of the two factors shows clearly that the
positive variables define the first factor and the negative variables
define the second. Therefore, we summed the four positive choice
questions into a combined choice matrix; and, similarly, we summed
the four negative choice questions into a combined negative choice
matrix. The individual scores in each cell of each summary matrix
could range from 0 (i did not choose j in any of the four questions) to
12 (i chose j as a first choice in all four questions). ® Chronbach’s

S In fact, the range for the sum of scores in the positive matrix was 0 to 12, and the sum of scores
in the negative matrix was 0 to 6.
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Table 5
Results of QAP multiple regression analysis of Sampson data

Dependent variable: Unstandardized regression coefficients
Difference in exit order and associated QAP test
Independent variable: Model 1 Model 2 Model 3
Positive ties —0.4025 —-0.3482
Z=-3981 Z=-3487
p <0.0001 p < 0.0005
Negative ties 0.3628 0.2800
Z=13.236 Z =12.466
p <0.005 p<0.05

alphas for the positive and negative combined scores were 0.88 and
0.80, respectively.

6.3. Results of QAP multiple regression analysis of Sampson data

Table 5 contains the results of this analysis. In the first model, positive
links contribute significantly (negatively) to dissimilarity. The —0.40
coefficient is significant beyond the 0.0001 level. Recall that a high
difference score in the dependent variable means that the pair of people
are dissimilar in their exit position. The negative coefficient, therefore,
suggests that when person i reports a positive connection to person j,
he is more likely to exit around the same time as j than if i did not
report such a positive connection. Similarly, in Model 2, negative
nominations (such as blame, dislike, etc.) contribute to the two people
leaving at different points in time (beta =0.36, p <0.005). In the
multiple regression model (Model 3), the coefficients and significance
levels lose a little strength, but they tell much the same story. One may
interpret these results hierarchically by simply stating that positive and
negative ties each add significantly to the variance explained by the
other.

7. Modeling the Sainpson data

As was shown in the simulations above, if dyadic data are continuous
and normally distributed, QAP does a reasonable job of testing the
significance of both simple and multiple regression coefficients no
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matter what degree of structural autocorrelation there might be. How-
ever, in the current example, the Sampson data are neither continuous
nor normally distributed. In fact, the dependent variable, because of its
construction as a set of differences, has a unique pattern of autocorre-
lations —a pattern that was not modeled in the above simulation. The
independent variables were also not modeled accurately in the previous
simulations. The underlying scores were skewed (only three nomina-
tions were permissible in each underlying relation). And, as Faust and
Romney (1985) point out, relying on QAP to test relationships between
data that may be skewed can be misleading.

As a general procedure, it may be wise to heed Faust and Romney’s
warning by modeling the particular characteristics inherent in the data
being analyzed. To account for these possible peculiarities, another
simulation was conducted to test the bias of the QAP multiple re-
gression in the Sampson data. This time, the dependent variable was
created by generating a vector of length 18 of random numbers. These
numbers were converted to ranks, y. A dependent matrix, Y, was
calculated as follows:

Y;’j=|yi_yj|

To be conservative, the independent variables, X;, X,, were gener-
ated with maximum skew. This was done by reducing the summary
matrix to one relation, with each row containing one ‘1’, one ‘2’, one
‘3’, and fifteen ‘0’s. The location of the ‘1°, 2’ and 3’ in each row was
determined by generating a vector (length 18) of random numbers,
ranking them, converting the highest number to a ‘3’, the next highest
to a ‘2, the next to a 1°, and the remaining fifteen to ‘0’.

The opportunity to introduce autocorrelation presented itself in
these independent variables. It is quite possible, under the null hy-
pothesis that the time of exits is unrelated to social ties, that some j’s
would be popular choices (e.g., “everyone likes Sam” or “Steve could
never influence anyone”). In other words, there is room for a consider-
able amount of column autocorrelation. As before, we varied the degree
of autocorrelation in the independent variables as follows:

‘Xl,-, = KCuX]j + K,»qu‘ij

€x, = Kcuxzj + Kiquz,-,
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Fig. 3. Plot of Type 1 error rates of significance tests for multiple regression coefficients in
simulations of Sampson-type data.

with the following constraints:

Again, all u’s are independently and normally distributed. These
autocorrelated scores were converted to ranks (as previously described)
and the ranks converted to Sampson-type scores. As before, 41,000
samples were generated from 41 populations, each with a slightly
different degree of autocorrelation as determined by the size of the
constant K. )

The results of the simulation are depicted in Figure 3 and sum-
marized in Table 6. Once again, the F-test in the OLS analysis becomes
substantially biased with an increase in autocorrelation. The QAP test
does not.
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Table 6
Summary of Type 1 error rates in tests of multiple regression coefficients in simulations of
Sampson-type data

OLS Type-1 QAP Type-1 Total number
errors (%) errors (%) of samples
generated
Autocorrelation weight
0t00.2 8.86 9.72 9000.00
0.225t0 0.4 10.75 9.80 8000.00
0.425 t0 0.6 16.08 10.16 8000.00
0.625 t0 0.8 23.98 10.28 8000.00
0.825t0 1.0 29.49 10.24 8000.00

8. Conclusion

In summary, the results of these simulations suggest that, when the
assumptions behind OLS analysis are met (specifically, there is no
autocorrelation in the error terms), either OLS or QAP may be used to
test the significance of simple or multiple regression coefficients. When
structural autocorrelation exists, however, QAP provides a relatively
unbiased test of the coefficients, whereas OLS can become severely
positively biased. Given these results, and given that the degree of
autocorrelation in any set of network data cannot be reliably estimated,
then we conclude that the QAP test of regression coefficients are
interpretable and caution against using OLS procedures.

We wish to make clear, however, that QAP is not a universal answer
to all dyadic analysis problems. For example, the QAP test does not
adjust for the number of independent variables in the multiple re-
gression equation, as the OLS analysis does. If the ratio of independent
variables to number of actors gets too large, and the data are strongly
autocorrelated, then the estimates of B8’s and significance levels might
be severely biased. And, as mentioned before, other cases of potential
bias could arise if the data are highly skewed, although no apparent
bias was uncovered in the current Sampson example. In general, then,
it is advised that the researcher cautiously test for bias in questionable
cases by running simulations to model the specific data structures being
analyzed. Over time, with sufficient examination of the boundary
conditions for QAP multiple regression analysis, firmer guidelines for
its recommended use are likely to emerge.
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