Estimating the near-term changes of an organization with simulation

Jun/8/2006
Il-Chul Moon
Institute for Software Research, International
School of Computer Science
Carnegie Mellon University

Center for Computational Analysis of Social and Organizational Systems
http://www.casos.cs.cmu.edu/

Introduction

• Interesting ‘what-if’ scenarios
 • What if some employees in a company resign,
 • Can the company perform at the same level?
 • What if some officers in a unit are not operable,
 • Can the unit be as responsive as usual?
 • What if some terrorists in a terrorist network are captured,
 • Can the network perform operations successfully?

• Also,
 • What would be the worst/best scenarios?
 • Are there any ways to create the scenarios systematically?
Background and related works (1)

- Interesting experiments with people
 - Virtual software company (Weber et al, 2004)
 - Varied company structure, from centralized/hierarchical to decentralized/egalitarian
 - Centralized/hierarchical firms -> rapid development
 - Decentralized/egalitarian firms -> easy assimilation of new entrants
 - Decision makers of organizations (Jin and Levis, 1990)
 - A parallel structure versus a hierarchical structure
 - Individual difference has more influence on performance in the parallel organization
 - Interactions in the hierarchical organization restricted the choices of the decision makers.
 - Unit of Action experiments (Graham, 2005)
 - Role-playing with an experimental command and control structure
 - Small cell structures and inter-cell connections
 - Identified social distance, physical distance and background similarity as important factors of shared situation awareness

Background and related works (2)

- Interesting experiments with multi-agent simulations
 - CORP (Carley and Lin, 1995)
 - Examined organizational structures and their performance under various test conditions (operating in optimal conditions, operating under internal/external stresses, etc)
 - Construct (Schreiber and Carley, 2004)
 - A validation study on Construct
 - Compared the generated probability interaction matrix to the communication frequency from surveys
 - An empirically validated what-if analysis
 - Did what-if analyses with the cases showing high correlation between the simulation result and the survey result
 - Plot the expected performance changes over time
 - Virtual Design Team (Kunz, Levitt and Jin, 1998)
 - Develop computational tools to analyze decision making and communication behavior to support organizational reengineering
 - Output includes the predicted time to complete a project, the total effort to do the project, a measure of process quality, etc.
 - Reducing time to market -> previously sequential activities
Common aspects of previous papers

• Some important factors considered in the papers
 • Organizational structure
 • Distribution of resource/knowledge
 • Dependencies among tasks, resource and knowledge
 • Multi-agent simulation/experiment

Dynamic Network Analysis and Computational Modeling

• Proposed ‘Near-Term Analysis’ use Dynamic Network Analysis approach (Carley, 2003)
 • Input requires information about agent, knowledge, resource, task, and etc.
 -> Meta-Matrix
 • Generated networks have probabilistic ties.
 -> Treating ties as probabilistic
• Bridging ORA and Construct
 -> Combining social networks and multi-agent system
Near Term Analysis

- What if we isolate a few agents in a network
 - How fast can knowledge be diffused?
 - How accurately can tasks be performed?
 - How might the network structure be affected?

- Near Term Analysis assumes the what-if scenario (isolation of agents, resource, or knowledge) and performs a simulation with the scenario.

Input data – Network info.

- Need two datasets
 - network information and isolation scenarios

- Meta-Matrix
 - Knowledge, resource and task nodes are required for Near-Term analysis.

<table>
<thead>
<tr>
<th>People / Agents</th>
<th>Knowledge / Resources</th>
<th>Tasks / Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Network</td>
<td>Knowledge Network</td>
<td>Assignment Network</td>
</tr>
<tr>
<td>Knowledge / Resources</td>
<td>Information Network / Substitutes</td>
<td>Needs Network</td>
</tr>
<tr>
<td>Tasks / Events</td>
<td>Precedence Ordering</td>
<td></td>
</tr>
</tbody>
</table>
Input data - Isolation strategy (1)

- To make a what-if scenario, we need a set of agents for exploring isolation strategies
 - Input from ORA
 - Intelligence Report identifies several key nodes (agent, knowledge, resource, organization)
 - Isolate each node from Intelligence Report that is identified by any measures one at a time
 - Isolate all the top nodes for a measure as identified in Intelligence Report and repeat for each measure
 - Input from User
 - Isolate nodes as a user specifies

Input data - Isolation strategy (2)

- Intelligence report includes the lists of nodes identified by various measures.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive demand</td>
<td>Measures the total amount of effort expended by each agent to do its tasks.</td>
</tr>
<tr>
<td>Total degree centrality</td>
<td>The Total Degree Centrality of a node is the normalized sum of its row and column degrees.</td>
</tr>
<tr>
<td>clique count</td>
<td>The number of distinct cliques to which each node belongs.</td>
</tr>
<tr>
<td>eigenvector centrality</td>
<td>Calculates the principal eigenvector of the network. A node is central to the extent that its neighbors are central.</td>
</tr>
<tr>
<td>betweenness centrality</td>
<td>The Betweenness Centrality of node (v) in a network is defined as: across all node pairs that have a shortest path containing (v), the percentage that pass through (v).</td>
</tr>
<tr>
<td>high betweenness and low degree</td>
<td>The ratio of betweenness to degree centrality; higher scores mean that a node is a potential boundary spanner.</td>
</tr>
<tr>
<td>shared situation awareness</td>
<td>A measure of situation awareness between agents.</td>
</tr>
</tbody>
</table>
Other input parameters

- Length of simulation time period
- Number of replication

Note: The Near-Term Analysis runs using agents interactions based on relative similarity of the knowledge network by default
 - The ability to change these parameters will be available in upcoming versions.

Near Term Analysis Result

- The changes of performance measures
 - Knowledge Diffusion
 - Task accuracy
- The changes of network itself
 - An evolved meta-matrix

- These results shows the near term impact of isolating one agent in organization.
Near Term Analysis Result – meta-matrix evolution

• Evolved meta-matrixes
 • Three factors
 • Agent-to-Agent friendship matrix based on relative similarity (range: [0..1])
 • Agent-to-Agent advise matrix based on relative expertise (range: [0..1])
 • Agent-to-Agent interaction matrix based on interaction during simulation (range: integer)
 -> Generate a network with the weighted sum of the above matrixes

A sample dataset

• Embassy bombing case
 • Use embassy.xml meta-matrix
 • Use Its intelligence report from ORA
 • 3 replications
 • 52 simulated time-point
 • Isolate nodes at time-point 20

INTELLIGENCE REPORT FOR [EMBASSY]

KEY ACTORS

Emergent Leader (cognitive demand)
Measures the total amount of effort expended by each agent to do its tasks.

1 0.3793 Fazul Abdullah Mohammed
2 0.3411 Khalfan Khamis Mohamed
3 0.3007 Mohammed Rashed Daoud al-Owhali
4 0.2807 Jihad Mohammed Ali
5 0.2702 Mohammed Sadiq Odeh
6 0.2450 Abdullah Ahmed Abdullah
7 0.1925 Mohammed Salim
8 0.1842 Ahmed the German
9 0.1825 Wadih al Hage

……………………………….
Results from the sample dataset

- Results from Embassy bombing case with isolation strategies set by intelligence report.
- Jump at the isolation timing
- Changes over time
- Some strategies optimized the target organization, and others degraded the organization’s performance.

Near-Term Analysis for pseudo parallelism

- The workflow of Near-Term Analysis in MAUI computing center
- Can launch multiple replications at the same time
Questions

Reference