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Abstract 
 
Agent-based simulation models are an important methodology for explaining social 
behavior and forecasting social change. However, a major drawback to using such 
models is that they are difficult to instantiate for specific cases and so are rarely re-
used.  We describe a text-mining network analytic approach for rapidly instantiating 
a model for predicting the tendency toward revolution and violence based on social 
and cultural characteristics of a large collection of actors. We illustrate our approach 
using an agent-based dynamic-network framework, Construct, and newspaper data 
for the sixteen countries associated with the Arab Spring. We assess the overall 
accuracy of the base model across independent runs for twenty different months 
during the Arab Spring, observing that although predictions led to several false 
positives, the model is able to predict revolution before it occurs in three of the four 
nations in which the government was successfully overthrown. 
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1. Introduction 
 
Computer simulation models, in particular agent-based models and system dynamic 
models, are a critical methodology for supporting human reasoning about complex 
socio-cultural systems (Epstein and Axtell 1996; Gilbert 2007).  A “feature” of these 
technologies is that as the models become more realistic, they become more capable 
both diagnostically and predictively.  Creating such a realistic model generally 
requires instantiating it using a wide variety of data for the case in question.  Such 
data often needs to be extracted from a wide range of sources, put into the same 
time frame, fused and otherwise massaged before it can be used to instantiate the 
model.  Thus, the process of using data to instantiate the model often takes as long 
or longer than it does to build and debug the model.  Due to the huge person-time 
cost of instantiating a model, shortcuts are often built into the simulation process to 
make special use of special data.  The result is methodologies, including toolkits for 
instantiation and entire simulation engines, which are basically usable only for the 
context for which they have been instantiated.   
 
To increase the usability of computer simulation technology to study socio-cultural 
phenomena, we see two methodological pieces that are necessary.  First, a validated, 
stable simulation engine that provides general and basic mechanisms of human 
social behavior.  On top of this framework, models for specific questions (e.g. state 
revolution) can then be rapidly pieced together by domain experts without worry of 
the validity of the underlying simulation engine.  A stable underlying simulation 
engine also provides a stable interface for input that is not amenable to unique 
processes or data hard-coded into the simulation engine itself. The second 
methodological tool is a means for automatically, or at least more automatically, 
instantiating simulation models with empirically grounded data. Reducing the 
challenge of building a simulation, providing a uniform mechanism for data entry 
and the automatic instantiation of models make for simulations that are easier to 
reuse and results that are easier to validate.  See Carley et al. (2012) for a discussion 
of validation techniques. 
 
The focus of the present work is to provide an overview of recent developments 
along these two methodological fronts. We give an approach that reduces the 
instantiation challenge for computer simulation models by extracting data for the 
model from online information sources using automated and semi-automated 
processes.  This data is then fed into the dynamic-network modeling framework 
Construct (Carley 1991; Carley 1990), and in particular a multi-level extension of 
Construct.  Construct accepts data in a uniform format, specifically in the form of a 
series of networks, which allows the framework to be used independently of the 
data at hand. Finally, on top of Construct, we build a model specific to the context at 
hand.    
 
Our work expands on previous efforts (Lanham, Morgan, and Carley 2014) by 
introducing technology that scales better to large numbers of agents and that is 



more rigorously automated. These efforts define the beginning of a new set of 
methodologies that have the potential to make simulation models of large social 
systems easier to build, reuse, and validate. While our approach does not generalize 
to all contexts, the methods described in the present work lay important ground-
work for domain and data-agnostic simulation models. 
 
Two advances have made our approach possible.  First, advances in text mining that 
support the extraction of multi-mode, multi-link networks, i.e., meta-networks, from 
texts have made it possible to automatically extract and make sense of relevant data.  
Second, the evolution of agent-based models into agent-based dynamic-network 
models have changed the basic representation of the data needed for instantiation 
from rules to networks, specifically meta-networks (Carley, 2002). Thus, our work is 
particularly valuable for agent-based dynamic-network models where the actors of 
interest are discussed in documents that can be text-mined and those that fit into 
the social mechanisms described by Construct. 
 
Herein we illustrate our advances by applying them to the Arab Spring, a series of 
revolutionary activities, some of which were violent, that began in December 2010, 
and in some cases are still ongoing.  We pulled over 400,000 news articles from 
Lexis-Nexis from July 2010 to February of 2012 and used unsupervised and semi-
supervised machine learning techniques to draw out the meta-networks necessary 
for instantiation of an agent-based dynamic network model. The focus of the model 
is on the dispersion of two beliefs – one centered on the need for revolution and one 
centered on the need for violence.  The model reflects the idea that there are 
multiple constituencies, linked in a network, each with a set of knowledge.  Some of 
this knowledge leads agents to view revolution and/or violence positively or 
negatively.  This model is run using Construct in tandem with the empirical data 
drawn from the newspaper text we study. 
 
While much work has considered the Arab Spring, most has been in the context of 
how new media affected the revolution (e.g. Hamdy and Gomaa 2012; Papacharissi 
and de Fatima Oliveira 2012) or in developing a better understanding of specific 
long-term factors that led to revolution (e.g. education, Campante and Chor 2012).  
In contrast, we focus on uncovering processes in the short term that may have led to 
violence and revolution, but also those that led certain nations to retain stability and 
peace.  These efforts are more in line with recent work by Pfeffer and Carley (2012), 
who took a portion of the data used in the present article and explored the dynamics 
of different terms during the Arab Spring. 
 
Our model generates predictions for each of the twenty months of data 
independently on a set of sixteen countries that have been identified as having the 
potential to be swept up in the frenzy of the Arab Spring.  This generates, in essence, 
twenty re-uses of the basic state revolution model, showing the ability of our 
methodology to be reused with different data sets.  Results are analyzed on a per 
country basis and contrasted with what actually happened using an outside data 
source that gives the time at which national governments were (or were not) 



overthrown.  The model correctly predicts three out of four successful revolutions 
before they occurred, predicting the fourth successful revolution two months after it 
occurred.  Importantly, however, the model also predicts revolution in six countries 
where a successful revolution did not occur. While significant revolutionary activity 
did exist in two of these countries, our results thus suggest that future tuning of the 
model is necessary and that results from such models should be evaluated 
conservatively.  
 
The paper continues as follows: in Section 2, we provide a methodological overview 
to give the reader a broad overview of the technical approach taken.  Section 3 
details the simulation framework, Construct, used in the present work, and Section 
4 details the state revolution simulation model we build on top of Construct.  Section 
5 details how we move from newspaper data to the data necessary to instantiate the 
model.  Section 6 provides results of the simulations1 and Section 7 concludes with 
limitations and prospects for future work. 

2. Methodological Overview 
 

FIGURE 1 ABOUT HERE 

FIGURE 2 ABOUT HERE 

 
Figure 1 illustrates the workflow used in this article.  We begin by pulling 
newspaper articles from major English-based world news drawn from LexisNexis 
Academic. LexisNexis uses a proprietary algorithm to associate each article with a 
set of index terms.  We query the LexisNexis database for any articles indexed by one 
of the eighteen country names shown in the legend of the map in Figure 2 from the 
period of July 2010 to February 2012. In total, approximately 400,000 articles were 
collected.  Note that while the original data collection used these eighteen keywords, 
only sixteen countries were used for analysis.  This is because we were not able to 
obtain enough data on two nations, Western Sahara and Qatar, to merit further 
investigation.  
 
After obtaining the data, we split it up by month2 and generate a meta-network 
(detailed below) that serves as the input for our simulation model.  Much work has 
been done in the area of drawing social structure from text. Recent efforts have 
made a distinct push towards semi-supervised (e.g. Diesner and Carley 2008) and 
unsupervised (e.g. Eisenstein et al. 2010) learning approaches to extracting social 

                                                        
1 Code used for this article, as well as a sample of the data, can be found at 
https://github.com/kennyjoseph/arabspring 
 
2 We will hereafter refer to a set of articles as the collection of all articles within a 
single month. 

https://github.com/kennyjoseph/arabspring


information from text to combat the volume of information that can readily be 
extracted from the web today.  In the present work, our focus is on providing a suite 
of both semi-supervised and unsupervised techniques that draw out social networks, 
or more specifically, meta-networks, from text.   This approach is grounded in recent 
efforts showing the practicality of the meta-network concept when pulling social 
structure from textual data (Diesner and Carley 2008; Diesner, Frantz, and Carley 
2005; Lanham, Morgan, and Carley 2014; Martin, Pfeffer, and Carley 2013) though 
the methods are distinctly unique. 
 
After drawing out our meta-networks from the text, they are passed to Construct as-
is along with the simulation model we build specifically to analyze the Arab Spring.  
Thus, the meta-network we generate from the text is used to instantiate the 
simulation model.  Note that each month, because the simulations are based on 
stochastic processes, it was necessary to complete replications of each model. Each 
of the instantiated models was simulated eight times using slightly different 
parameterizations of the model, as prior study on the number of replications needed 
to generate robust results using Construct showed that anything more than five 
runs were sufficient for result stability (Lee and Carley, n.d.). Thus, this number of 
replications was deemed sufficient to generate a robust ensemble estimate of the 
average time to revolution or outbreak of significant violence.   
 
Finally, we use model output to determine the point, if any, at which our approach 
predicts a revolution in a particular nation is likely.  While this outcome could be 
compared to a variety of real-world data sources, we choose to compare decisions 
made from model output to real-world data on nations involved in the Arab Spring 
where the government in power was successfully overthrown.   
 
In the following three sections, we detail our simulation framework, Construct, the 
specific model instantiated here and how we extract the meta-network necessary to 
instantiate the model. We provide this discussion in the reverse order that these 
processes are introduced in Figure 1, as an explanation of the data needed by the 
model allows a better understanding of the techniques used to pull meta-networks 
from the newspaper articles.  

3. Construct 
 
Humans tend to hold social relationships with those that they are similar to 
(Lazarsfeld and Merton 1954; McPherson, Lovin, and Cook 2001;Kossinets and 
Watts 2009).  These relationships are bound together by persistent interaction 
(Licoppe 2004).   When humans interact with similar others, they share information 
and beliefs.  This sharing, when moved beyond the context of two individuals in a 
social relationship into a dynamic social network, creates cascades of information 
and beliefs that diffuse throughout the network (Rogers 2003). 
 



A plethora of methods have been put forth to model the diffusion between 
homophilous actors within a dynamic social network (e.g. Buskens and Yamaguchi 
2002; Centola and Macy 2007; Pfeffer and Carley 2013). In many of these models, 
agents hold a set of “knowledge bits” that spread throughout a network over time.  
An agent determines whom to interact with (and hence spread information or 
beliefs to) based on the similarity of his knowledge to the knowledge of his alters, a 
form of homophily. The process by which knowledge and belief structures co-evolve 
with the interactions between agents has been defined as Constructuralism (Carley 
1991). 
 
One weakness of earlier homophily based diffusion models addressed by 
Constructuralism is that agents in earlier models tended to be locally omniscient- 
each agent had a perfect perception of the knowledge bits of his alters.   In reality, 
humans work not with a precise notion of the knowledge of others, but rather with a 
perception of it.  Constructuralism addresses this using a mechanism similar to the 
transactive memory system described by Wegner (1995).  In a transactive memory-
based simulation, agents update their perception of the knowledge and beliefs of 
their alters when interactions occur.  This perception is then used to determine 
whom to interact with based on perceived homophily. 
 
Construct is a turn-based, agent-based dynamic-network framework (Carley 1990; 
Carley, Martin, and Hirshman 2009) that implements the theory of Constructuralism. 
Formally, each agent a in a Construct simulation holds a vector of knowledge bits, k, 
and also a perception of the knowledge of each other agent in the simulation that 
they are connected to in a modeler-specified social network.  On each turn, each 
agent computes the similarity of his knowledge with all others he is connected to by 
determining how many knowledge bits he perceives that he shares with them. 

Formally, the similarity a has to another agent b can be computed as 
𝒌 & 𝒑𝒃

|𝒌|
  where 

 𝒑𝒃 is a’s perception of b’s knowledge and both 𝒌 and 𝒑𝒃 are bit vectors.  After 
computing similarity with all others he is connected to, a probabilistically selects 
interaction partners based on relative similarity.  He then interacts with a modeler-
determined number of alters and exchanges knowledge bits with these actors.  This 
cycle is then repeated for each turn in the simulation. For more details on these 
mechanisms, we refer the reader to (Carley, 1991). 
 
In addition to knowledge, agents can also hold beliefs. Each belief in Construct is 
represented by a subset of 𝒌. For example, as we will discuss further below, the 
violence belief might be linked to certain knowledge facts, while the revolution 
belief might be associated with others.  The belief network is then computed using a 
simple summation of the positively and negatively valenced knowledge bits that a 
given agent holds for each belief.  For further details on how Construct computes 
this network beyond what is described in this article, we refer the reader to 
(Lanham, Morgan, and Carley 2014).   
 
 



Construct has been widely used to examine how ideas diffuse and beliefs change as 
a function of the underlying social structure in the community. It has been validated 
several times, most recently by Schreiber and Carley (2012).  Validated versions of 
Construct implemented agent cognition as perceived homophily using a transactive-
memory based system.    However, while transactive memory moves toward a more 
realistic simulation of the principle of homophily, a purely transactive-memory 
based model of agent cognition belittles the fact that humans constantly construct 
their image of both themselves and those around them at higher-order aggregations 
than the individual. Mead (1925) argued that humans utilize the concept of the 
generalized other, a perception of the knowledge and beliefs of everyone around us 
based on what we have learned in previous interactions of those around us and 
ourselves.  
 
Mead’s conceptualization of a single generalized other suggests that humans 
constantly stereotype the knowledge and beliefs of others based on what we can 
infer or recall about them.  With weaker ties, we rely on observable characteristics 
and things we can infer or recall about another person (e.g. their occupation) to 
construct a stereotypical view of their knowledge and beliefs3.  In truth, it is thus our  
constructed perceived homophily that influences our likelihood of interaction with 
others in a homophily-based diffusion model, rather than either of the previous 
mechanisms used to model interaction. 
 
The version of Construct used in the present work has been advanced to incorporate 
a more cognitively plausible and computationally feasible model of the construction 
of perceived homophily based on the concept of constructed perceived homophily.   
This model, including full details on mechanisms and the model’s faithfulness to 
socio-cognitive mechanisms, is described in more detail by Joseph et al. (2014).   
Here, we briefly review the functionality of this tool. To avoid confusion, we will 
refer to the version of Construct utilized here as Multi-level Construct (MLC) in the 
remainder of the article. 
 
MLC is based on the notion that agents use two levels of familiarity to construct the 
knowledge of a possible interaction partner.   The level of cognition an agent uses to 
construct the knowledge of a possible interaction partner (alter) is based on the 
strength of the tie between them. Where the tie is stronger, an agent will have a 
more precise cognitive representation of his alter’s knowledge.  More specifically, 
agents who frequently interact will have an individual-level perception of the 
knowledge and beliefs of each other, leading to a model of strong ties that is faithful 
to the original conceptualization of Constructuralism and a transactive-memory 
based scheme.  With a weaker tie, however, an agent must construct his alter’s 
knowledge via a process of stereotyping.   
 
The agent constructs what he perceives the alter to know from what he knows of the 
                                                        
3 See (Greenwald and Banaji 1995; Hilton and von Hippel 1996) for reviews of the 
plethora of social psychology literature addressing stereotyping. 



alter’s existence in social groups (Tajfel and Turner 1979).  Thus, for example, a 
revolutionary from Egypt, Agent A, who has rarely interacted with someone from 
Syria, Agent B, may construct what he expects Agent B to know based on the fact 
that Agent B is from Syria.  In the present work, we place agents into groups based 
on their beliefs about revolution and violence in addition to their nationality. Thus, 
Agent A may know that Agent B is from Syria, and that he is associated with a social 
group that is strongly in favor of revolution.  
 
Agents update their perception of social groups as they interact with members of 
them.  Thus, upon interaction, Agent B may pass information to Agent A about how 
to stage a successful protest.  Agent A would then ascribe the knowledge of 
successful protests to Agent B and to the social groups that Agent B belongs to.  
Agent A would then be more likely interact in the future with other agents belonging 
to the same social groups as Agent B, given that he expects that anyone in the group 
will share his knowledge of how to stage such a protest.  
 
Beyond these mechanisms employed to increase the faithfulness of the model to 
basic cognitive functions, the mechanisms employed in MLC allow it to run 
significantly larger simulation models than previous versions of Construct.  More 
specifically, a naïve implementation of agent cognition using only transactive 
memory would require a matrix of size O(Number of Agents * Number of Agents * 
Number of Knowledge bits) to function.  A matrix of this size dominates the memory 
cost of a social simulation, and updating it can have huge effects on time complexity 
as well.  Previous work  shows that MLC has an average space complexity of closer 
to O(Number of Agents * Number of Groups * Number of Knowledge Bits), which in 
practice reduces space constraints by an order of magnitude. 

4. Simulation Model 
MLC, as a generalizable simulation framework, allows for a diverse set of inputs and 
functionality- for more details, see (Carley et al. 2012).  The data and functionality 
required for a specific research question are detailed within a simulation model, 
specified to the framework as an XML document. This model can then be run using 
MLC. 
 
With respect to functionality, our state-revolution model is specified to run for 30 
turns.   On each turn, any agent can interact with any two others.  During each 
interaction, agents can pass a maximum of two knowledge bits.  While agents are 
allowed to interact with anyone else, they are seeded to have had previous 
interactions with specific others based on information in the raw data (explained 
below), making them more likely to interact with these individuals at the beginning 
of the model. However, as agents learn, they will become more likely to interact with 
those who share similar knowledge and beliefs, leading to a homophily-based 
diffusion model as the simulation progresses.  
 



TABLE 1 ABOUT HERE 

 
With respect to the data needed for instantiation, Table 1 gives a description of the 
meta-network necessary for our state revolution model.  It shows that four types of 
nodes are necessary- beliefs, agents, agent groups and knowledge.  We pull agents 
and knowledge from the raw text data and as modelers specify the form of the 
beliefs and agent groups. Our model is driven by these latter two nodeclasses, which 
are aggregate functions of knowledge and agents, respectively.  A belief in Construct 
clusters together a set of knowledge nodes that are relevant to a certain higher 
order concept.  In our state revolution model, we focused on change in the pro-
revolution and pro-violence sentiment of the Arab world, and we thus use violence 
and revolution as our two beliefs. Beliefs have both positive and negative sentiment-
as such, we will have knowledge aligned to both pro and anti sentiments for each of 
the two beliefs. An agent group clusters together agents that we as modelers believe 
are associated in such a way that others might form a stereotype about them as a 
collective.  In our model, this will be agents who are from the same country and 
agents that hold similar beliefs.  
 
Table 1 also shows that we require five networks to instantiate the model.   The 
Agent by Agent network details agents that will have a higher likelihood of 
interaction at the beginning of the simulation.  The Agent by Knowledge network 
specifies the concepts pulled from the text that each agent is associated with, and 
consequently those they may share with other agents during the simulation.  Both 
agents and knowledge are also connected to beliefs. The Agent by Belief network 
specifies an agent’s current sentiment for both violence and revolution.  The 
Knowledge by Belief network specifies how different concepts pulled from the text 
are associated either positively or negatively with the two beliefs.  Finally, the agent 
groups that agents are in are specified in the Agent by Agent Group Network. 
 
Note that there are five other networks that could have been considered that are not 
used in this model.  As beliefs are meant to represent conceptually separate 
mechanisms driving revolution, the belief by belief network that would represent 
correlations between these beliefs is not of interest in the present work.  Similarly, 
Construct has no current mechanisms to handle correlations between knowledge 
nodes (the knowledge by knowledge network) nor correlations between agent 
groups (the agent group by agent group network).  Such relationships may be 
interesting to model in future work. Finally, as agent groups are implicitly connected 
to beliefs and knowledge via the agents within these groups, we do not make explicit 
use of a belief by agent group or a knowledge by agent group network here. 
 
In order to instantiate a model for a particular month, we thus require information 
on the “who”, “what” and “where” of the events occurring in the sixteen countries of 
interest and relationships between entities in this realm.   While this data could have 
been collected by hand or taken from Subject Matter Experts, the interest of the 
present work is in a rapid and repeatable process for model instantiation.  We thus 



turned to publically available data and automated methods to pull the information 
we required for our state revolution model. 

5. Generating the meta-network for instantiation 
 
In this section, we detail how our model is instantiated with the meta-network 
described above. As opposed to simply pulling nodes and networks naively from the 
text, we must utilize the concepts of filtering and tuning to ensure the data is of 
practical size to run and will provide cogent results.  We first discuss these two 
concepts and then continue to our methodology for meta-network creation. 

5.1. Filtering and Tuning  
The data used to instantiate a simulation model needs to be both filtered and tuned.  
By filtering, we mean the process of selecting the subset of nodes that would be 
objects in the simulation.  By tuning, we mean the process of adjusting or adding 
edges in the relevant networks to support analysis.   
 
Why filter?  Clearly, filtering increases the amount of time it takes to prepare the 
data to instantiate the model.  Thus, keeping filtering to the minimum would be 
valuable from a rapid construction perspective.  However, the computational cost of 
the simulation must also be considered – the larger the number of actors and 
knowledge bits simulated, the longer it takes for the simulation to run.  Thus, from a 
purely time-savings perspective there is a tradeoff in time spent filtering versus 
time spent running the simulator.  A small amount of filtering can have large gains in 
reducing simulation time.  Filtering also aids in reducing data bias and increasing 
the prevalence of relevant data.  Recall that at its core the simulation being used 
examines the diffusion of pro-revolution and pro-violence beliefs within the country 
in question.  To that end, the presence of actors and knowledge not relevant to 
revolution or violence during the Arab Spring is not only not relevant, it is also 
distracting from the focus.   
 
The reason such nodes are present in the first place has to do with the nature of the 
news.  Much of the news is associated with events, activities, and actors that have 
little direct relation to the country in question.  An example would be articles about 
foreign soccer stars who had just played or were about to play a team in the country 
in question.  Another example would be a topic such as US gas prices, which might 
occur in an article about how violence in the country in question could impact US 
gas prices.  Filtering helps to remove these extraneous nodes; if it can be done in a 
rapid, principled and repeatable fashion it therefore enables both more rapid 
analysis and more accurate and focused analysis. 
 
Why tune? Like filtering, tuning increases the time to prepare the data to instantiate 
the model. Furthermore, tuning does not speed up model processing.  However it is 
necessary to enable the model to be used at all.  We use the concept of tuning to 
infer agent’s initial beliefs and their membership in social groups.  The news rarely 



directly provides input on what stance an actor takes toward the beliefs in a 
particular model and rarely distinguishes clear group memberships.  But to use the 
model, both of these connections are needed.  Tuning thus makes it possible to make 
inferences about the higher-order social structures, like beliefs and groups. If it can 
be done in a rapid, principled and repeatable fashion tuning supports both data 
augmentation with secondary sources and inference of missing data, thus enabling 
more detailed and nuanced simulations to be run. 
 

5.2. Meta-network creation 
 

Figure 3 ABOUT HERE 

Figure 3 shows the seven-step process we use to generate a meta-network from a 
set of articles.  In the figure, there are five different types of boxes.  All black boxes 
represent raw data input to the model, either by the modeler (the seed topics and 
list of Westerners, as discussed below) or from the LexisNexis articles.  White boxes 
with a black outline represent processes that manipulate data.  Boxes with grey 
outlines represent unfiltered or partial representations of nodeclasses, while the 
grey-filled colored boxes represent the final nodeclasses in the meta-network.  
Finally, boxes with dashed lines around them represent the networks in the meta-
network.  In addition to the boxes in Figure 3, arrows labeled with step numbers are 
drawn to indicate the movement of data through the generation mechanism.  Below, 
we detail each of the seven steps represented in the diagram. 

5.2.1. Step 1: Obtaining the raw agents, knowledge and countries from 
the text 

We are provided with two sources of information from the set of newspaper articles 
pulled from LexisNexis- the raw text of the articles and the terms used to index each 
article.  From the indexed terms, we obtain the topics and countries being discussed 
in any given article.  Note that topics are distinct from knowledge, as we will derive 
the actual knowledge nodeclass used in the simulation from the topics we discover. 
Because LexisNexis did not include key actors from the Arab Spring (for example, 
prime ministers of several of the countries studied) in the indexing system, it was 
necessary to extract the agents discussed in each article directly from the text.  In 
order to do so, we rely on the Stanford Named Entity Recognizer (NER), which uses 
a Conditional Random Fields approach to pull named entities from a given text 
(Finkel, Grenager, and Manning 2005).  Though the model is trained only on news 
from the United States and England, we find qualitatively that it provides a 
reasonable collection of persons involved in the Arab Spring from English news 
sources.   

5.2.2. Step 2: Filtering of agents 
 
There are four substeps in the filtering of the agent nodeclass: noise removal, de-
duplication, the removal of agents not associated with the countries of interest and 



the removal of agents not associated with the topics of interest. To reduce noise in 
the data, we first remove any names discovered by the NER that were of length one 
(e.g. Bill) and any names longer than length five. These names rarely referred to 
actual people of interest.  
 
De-duplication is completed according to two heuristics. First, we combine into a 
single actor any names returned by the NER that have a string edit distance of less 
than four.   We find that a distance of three generally suggests alternate spellings of 
Arabic names by Western journalists, while increasing the threshold any further 
results in a sharp decrease in the number of agents identified (i.e. too many 
combinations).  Second, we merge into a single agent all names pulled by the NER 
where one name is approximately consumed by another.  In order to do so, we take 
the smaller of the two names (or, where length is equal, either name) and determine 
the proportion of space-delimited terms in the longer name that are also in the 
shorter name.  If this proportion is greater than or equal to some threshold, then we 
assume the two names refer to the same actor.  In the present work, we chose a 
threshold of .75, meaning that, for example, Hillary Clinton and Hillary Rodham 
Clinton would not be merged, while President Barack Hussein Obama and President 
Barack Obama would be merged.  The selection of this threshold was used because 
qualitative exploration of the data suggested that the most frequent issues 
surrounding names being approximately consumed by others occurred when 
Western journalists only included “first, middle and last names” of Arabic names 
and, similarly cases where actors’ titles are included with their first, middle and last 
names in some articles and not in others.  In both cases, a threshold of .75 is 
effective in reducing the number of agents in our dataset. 
 
Our heuristics fall under the broader umbrella of query correction, for which there 
exist a variety of both formal (e.g. Li, Duan, and Zhai 2012) and informal4 techniques. 
More formal, intricate methodologies show promise in being able to further 
deduplicate terms produced by the NER. For example, we do not consider creating 
semantic cross-references; we make no attempt to identify Hosni Mubarak and “the 
president of Egypt” as referring to the same actor.  However, our relatively greedy 
heuristics provide a starting point from which to simulate while also being efficient 
to implement and run on large corpora.  
 
After noise removal and deduplication, we have a partial set of agents.  We wish to 
further filter this set, however, by retaining only agents associated with one of the 
sixteen countries of interest and at least one of the topics we use in the model. To 
associate each agent with countries, we use co-occurrence information, determined 
by calculating the number of times a given agent was mentioned in an article 
indexed by a given country.  We associate each agent with a single country, the one 
that they co-occurred most frequently with.  Thus, for example, Hosni Mubarak, if 
mentioned in ten articles indexed by Egypt and three articles indexed by the United 
                                                        
4 E.g. the FuzzyWuzzy python module, https://github.com/seatgeek/fuzzywuzzy, 
used by companies like StubHub 

https://github.com/seatgeek/fuzzywuzzy


States, would be associated with Egypt.  Agents are also associated to knowledge 
nodes through co-occurrence, but in this case with the topics these knowledge 
nodes represent. This process, and the final step in filtering the Agent nodeclass, is 
detailed in Step 4 (Section 5.2.4). 

5.2.3. Step 3: Generating the Knowledge by Belief Network and the 
Knowledge nodeclass 

 

TABLE 2 ABOUT HERE 

When generating the knowledge by belief network, we must have some indication of 
the relationship of each topic discussed to a particular valence (positive or negative) 
of the two beliefs that we use in the model.  We then will use the strength of each 
topic’s association with a given belief valence to generate a set of knowledge nodes 
for each topic. In order to determine the valence of topics, we first define a subset of 
the index terms in the LexisNexis database that can generally be associated with a 
valence on the two beliefs of interest. These seed topics are not specific to the Arab 
Spring per se, but are rather concepts for what generally may bring about or result 
from pro (anti) revolution (violence) sentiments within a population. Table 2 
defines the ten seed topics, selected via iterative coding, associated with positive and 
negative sentiments used in the present work along the revolution and violence 
beliefs. 
 
Using these seeds, we also wish to uncover a set of additional topics that are also 
associated with our beliefs. In other words, we would like to expand the seed topics 
with terms that are related in some way in our set of articles.   The procedure we 
use to do so is relatively straightforward and is common in both sentiment mining 
(see Pang and Lee 2008, p. 27-28) and automated query expansion (AQE), the 
process of uncovering terms related to a user’s query in order to provide them with 
more pertinent results (Carpineto and Romano, 2012).  More complex approaches 
to AQE tend to incorporate contextual information about documents in which terms 
are found (e.g. the term’s position in the document). Because we work only with 
index terms that may not even be in the document, we choose to utilize a more 
straightforward methodology that can be carried out based solely on co-occurrence 
information. 
 
Our method assumes that topics co-occurring frequently with one or more of the 
terms provided in Table 2 and infrequently without any of these terms will be most 
related to our two beliefs.  We refer to the lists of topics defined in the columns of 
Table 2 as 𝒓+, 𝒓−, 𝒗+and 𝒗−, respectively from left to right.   For each topic in 𝒓+ ∪
𝒓− ∪ 𝒗+ ∪ 𝒗−, we can construct a topic-article vector (TAV), 𝒕𝒕𝒐𝒑𝒊𝒄_𝒏𝒂𝒎𝒆, that has |𝑨| 
entries, where A is the set of all articles in the given month.  The ith entry of a given 

TAV, 𝑡𝒊
𝒕𝒐𝒑𝒊𝒄_𝒏𝒂𝒎𝒆

, is a binary value representing whether or not the topic appeared in 

the ith article of the given month.   
 



For each topic not in 𝒓+ ∪ 𝒓− ∪ 𝒗+ ∪ 𝒗−we can also compute a TAV.  We then 
calculate the similarity of each topic’s vector to all topics in Table 2 using a weighted 
version of the F1 metric similar to the one used by Raina, Ng, and Koller (2006).   
The F1 metric (equivalent to the Dice coefficient5) measures the extent to which a 
term appears in an article if and only if a second term appears. Thus, the F1 metric 
as used here can be thought of as the extent to which one topic, represented by the 
TAV 𝑥, occurs only in articles where the other topic, represented by the TAV 𝑦, also 
occurs.  Equation 1 specifies this mathematically, giving the formula for our 
weighted F1 (WF1) similarity metric. 
 

                               𝑊𝐹1(𝑥, 𝑦) = log(|𝑥𝑦|) ∗
2

|𝑥𝑦|
|𝑥| ∗ |𝑦|

1
|𝑥|

+
1

|𝑦|

                                                       (1) 

 

FIGURE 4 ABOUT HERE 

 
Figure 4 provides a visualization of the WF1 between two topics important to the 
Egyptian revolution and each of the terms in Table 2.  The set of articles used is all 
those written in January 2011, the month violence broke out in Egypt. On the y-axis, 
we observe the outcome of the similarity scores for food prices and internet social 
networking to each seed topic.  As is clear, food prices are highly associated with 
positive valences along our revolution belief.  A recent article from the Economist6 
suggests that this association is far from trivial, and that “food has played a bigger 
role in the upheavals than most people realise”.  Similarly, as previous work has 
suggested (Papacharissi and de Fatima Oliveira 2012), social networking online 
played an important role in the onset of revolution in Egypt.  These two examples 
give anecdotal evidence that our approach provides a useful mechanism to quickly 
pull relevant topics from newspaper articles. 
 
Using our similarity metric, the valence of each topic can be defined via some 
combination of its WF1 score with the positive and negative valence terms we 
specified.  We choose here to sum the scores for each term, thus treating each seed 
topic as an independent indicator of the relevance of a topic to a particular valence 
on our two beliefs. As an example, Equation 2 gives the formula used to calculate 𝑟, 

the valence along the revolution belief for the TAV 𝒕
𝒇𝒐𝒐𝒅

.   

 

𝑟 =  ∑ 𝑊𝐹1(𝒕
𝒕𝒐𝒑𝒊𝒄

, 𝒕
𝒇𝒐𝒐𝒅

)

𝑡𝑜𝑝𝑖𝑐 ∈ 𝒓+  

 − ∑ 𝑊𝐹1(𝒕
𝒕𝒐𝒑𝒊𝒄

, 𝒕
𝒇𝒐𝒐𝒅

) 

𝑡𝑜𝑝𝑖𝑐 ∈ 𝒓−   

                      (2) 

                                                        
5 Trivially, see http://brenocon.com/blog/2012/04/f-scores-dice-and-jaccard-set-
similarity/ for a derivation 
6 http://www.economist.com/node/21550328 

http://brenocon.com/blog/2012/04/f-scores-dice-and-jaccard-set-similarity/
http://brenocon.com/blog/2012/04/f-scores-dice-and-jaccard-set-similarity/
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Most topics align close to zero along both beliefs.  In order to perform filtering, we 
removed all topics inside of two standard deviations from the mean for each belief.  
Importantly, topics that have a high valence on one belief and not another belief are 
set to zero on the opposing belief.  Figure 5 gives a display of the distribution of 
valences of all topics used in the model for January 2011, showing a gap near zero 
on both axes where uninteresting topics were removed or moved to zero along one 
of the beliefs. 
 
Having associated topics to beliefs, we now must determine how to move from the 
abstraction of a topic to the concept of a knowledge node that is central to our 
simulation model.  While a one-to-one mapping from topic to knowledge node 
would be a straightforward solution, we opt for a slightly more complex model to 
account for the fact that some topics have significantly stronger valence than others. 
To move from topics to knowledge bits, we allow extra knowledge bits for a given 
topic based on a logarithmic scaling of the similarity weights.  Thus, while in most 
cases a topic will be represented by a single knowledge bit, some topics that have a 
disproportionately high valence, such as internet social networking,  would be 
represented with multiple knowledge nodes, each of which has a valence of +1 in 
favor of revolution.  This relationship creates the knowledge by belief network.  

5.2.4. Step 4: Generating the Agent by Knowledge network and 
finalizing the Agent nodeclass 

 
The agent by knowledge network actually serves two functions.  The first 
determines the number of knowledge bits for a particular topic that an agent knows.  
Where a topic has only a single knowledge bit, an agent will be connected to it in the 
agent by knowledge network if the two co-occur in any article in the given month.  If 
the topic has more than one associated knowledge node (bit), the agent will only be 
connected to a larger number of bits if he co-occurs with the topic that number of 
times.  Thus, an agent co-occurring with the topic internet social networking three 
times would be given three of relevant knowledge bits, while an agent co-occurring 
with the term five times would obtain five of the knowledge bits associated with this 
topic (if five such bits existed). Given the heavy-tailed distribution of co-occurrences 
between agents and relevant topics in general, this heuristic provides a model 
suitable for instantiation. 
 
The second function of the agent by knowledge network utilized concerns the 
likelihood that an agent would transmit any given knowledge bit to an alter on a 
given interaction.    In order to obtain a probability distribution across knowledge 
bits, we first create a distribution across topics for each agent based on co-
occurrences. We rescale agent’s associations with all topics to sum to one, giving a 
probability of transmitting any given topic.  An agent will then transmit any given 



knowledge bit within a particular topic with equal likelihood.  Thus, if an agent had a 
50% chance of transmitting information about internet social networking on any 
given turn and knew two of the relevant knowledge bits, he would have 25% chance 
of transmitting either of these during interaction. 

5.2.5. Step 5: Generating the Agent by Belief network 
To create groups of agents according to their beliefs, we first must create a 
representation of agents’ beliefs.  This is done by summing the valences of all topics 
an actor co-occurred with for each belief.  Mathematically, we can represent the 
creation of the Agent by Belief network as the matrix multiplication I(AT)*TB. The 
term I(AT) represents the binarized form of the agent by topic network, where the 
index ATa,t is 1 if Agent a co-occurred in any article with Topic t, and is zero 
otherwise. The term TB simply represents the topic by belief network, where the 
value TBt,b is found via Equation 2. 
 

5.2.6. Step 6: Generating Agent groups and the Agent by Group Network 
We consider three types of agent groups in the model.  First, we define a Westerner 
group, which is used to define agents that were associated with one of the sixteen 
Arab Spring countries in Step 1 but who are known to be actors from Western 
nations.  In order to do so, we defines partial names, e.g. “Bush” and “Obama”, which 
represent these well known actors and then place any agent whose name contains 
the terms provided into the “Westerner” group.  These agents were not included in 
either of the other two grouping methodologies described below. 
 
The second type of groups are based on country.  Having aligned each agent with a 
country in Step 1, these groups are trivial to create. Finally, we create groups based 
on belief homophily at the global and per-country levels. From the Agent by Belief 
network obtained in Step 5, we have a two-dimensional representation of agents, 
which can be considered a latent social space (McPherson and Ranger-Moore 1991). 
Krivitsky et al. (2009) suggest that an appropriate technique for clustering actors in 
a latent social space is some form of model-based clustering. Here, we use a 
Gaussian mixture model to find clusters of agents in the latent belief space.   
 
All clustering was done using the mclust package (Fraley et al. 2012) in R (R Core 
Team, 2012) with a covariance matrix allowing for variable volume, shape and 
orientation of the clusters.   We determine the optimal number of clusters by taking 
the model with the best BIC, which gives a stricter penalty for “adding” another 
cluster than the AIC or other similar best-fit statistics (Wasserman, 2003).  Thus, the 
number of agent groups is variable, based on a clustering of the agents that best fits 
the data. However, we only consider a maximum of twenty clusters due to the 
computational costs associated with attempting groupings at higher levels.  
 

 

FIGURE 6 ABOUT HERE 



 
Figure 6 shows the best clustering for January 2011 across all agents associated 
with the country Egypt.  Agents are aligned by their revolution belief (the x-axis) 
and their violence belief (the y-axis).  The visualization was created using the 
network analysis tool ORA (Carley et al. 2012).  In the figure, the color of the 
underlying nodes represents their association with a particular cluster.  The origin 
can be determined by observing the large clustering of agents near the bottom right 
of the figure, showing that most agents are relatively neutral along both beliefs.  
Figure 6 also shows that variances of the clusters near the origin are thus much 
smaller, indicating that groups of agents who have more extreme beliefs must 
capture a larger subset of the latent space to include a similar number of agents. 
Finally, we note that most extreme beliefs were aligned heavily with anti-revolution.  
These entities were nearly all government officials.  

5.2.7. Step 7: Generating the Agent by Agent Network 
The final step is to create the Agent by Agent network.  This step must be completed 
last, as our final agent nodeset is not determined until we generate both the agent 
by topic network and the agent by country network (a subset of the Agent by Group 
network).   Once we obtain the final set of agents, the Agent by Agent network is 
uncovered simply using co-occurrence data. This network is used to seed agents 
with possible initial interaction partners.  More specifically, in MLC (as in real life- 
see Joseph et al., 2014) agents are more likely to interact with individuals they have 
recently interacted with. As noted above, this is modeled by giving agents an 
individual-level perception of the knowledge of this specific interaction partner, as 
opposed to perceiving this alter as part of a group.  Over time, this individual-level 
perception is forgotten, and the alter again becomes just another member of a group.   
 
Thus, by using the Agent by Agent network to seed agents with previous 
interactions, agents begin the simulation with these more concrete cognitive 
representations of any other alter they co-occurred with in an article, analogous to a 
stronger tie between these actors. While this does not guarantee that these two 
agents will interact during the simulation, it does make it more likely. This matches 
our intuition that actors mentioned in the same newspaper article are more likely to 
have interacted in real life than individuals not mentioned together, but still 
somewhat unlikely to have done so.  

6. Outcome Description 
Overall, we simulate 20 months of data.  Eight replications are performed for each 
month of data, each with slightly different parameterizations of MLC.  With eight 
replications of each month this is a total of 160 simulation runs, each of which 
simulates between 7000 and 13000 agents.  Parameter differences were motivated 
by previous work (Joseph et al., 2014).  As output, we collected the Agent by Belief 
network from the last time period for each run and subtract the initial agent by 
belief network created in Step 5.  We then sum the resulting matrix across all agents 
associated with each of the sixteen countries we study here, giving us the change in 



belief of the agents associated with each country from the beginning to the end of 
the simulation. Because we found no interesting differences across 
parameterizations, we use the mean of these replications for point estimates.  Note, 
however, that we use all replications individually to compute inter-quartile ranges 
(IQR), as described below.   
 
Because our focus is on initial change points that might indicate a revolution will 
occur in a particular country, we translate change in belief into a binary predictor 
which indicates whether or not revolution is possible in a particular country for a 
particular month.  In order to do so, we leverage our expectation that revolution and 
violence beliefs in a country on the verge of revolution would be 1) noticeably 
different than the values of previous months for that same country and 2) noticeably 
different than the values of the same month for all other countries. 
 
Because beliefs across countries were not normally distributed, we adopt a non-
parametric approach.  To determine whether or not a single country’s revolution 
and/or violence beliefs were noticeably different than previous months, we 
consider all twenty-four simulation runs for the present month and the two 
previous months. For each country and each belief, we compute the inter-quartile 
range of the simulation outputs using R, which determines the IQR using Definition 
7 in (Hyndman and Fan, 1996).  We refer to these ranges as intra-country ranges7. If 
a country’s belief value for a particular month is outside of its intra-country range, 
the value is said to have noticeably changed.  Similarly, to determine whether or not 
a country’s revolution and/or violence belief is noticeably different from all other 
countries in that month, we compute the IQR of each belief for all countries in that 
month.  We refer to this statistic as the inter-country range. 
 
If the changes in a country’s violence and revolution beliefs are both outside of their 
respective intra-country range and inter-country range in a given month, we 
determine that revolution is likely. For the purposes of predicting revolution, we use 
the first such month as our binary predictor of revolution.  Thus, we obtain as a final 
outcome, for each country, zero or one month in which the model predicts 
revolution has become likely.   

7. Results 
 

FIGURE 7 ABOUT HERE 

 
Figure 7 shows the mean change in the revolution and violence beliefs for each 
country and each month.  The grey line represents change in the revolution belief 

                                                        
7 So, for example, the intra-country range for Egypt’s change in violence belief in 
January of 2011 would be computed as the IQR of Egypt’s change in violence belief 
from all runs covering January of 2011 or November or December of 2010. 



and the black line represents violence. Vertical black lines at each month represent 
the inter-country ranges and grey lines at each month represent the intra-country 
ranges.  Large black dots indicate the month in which the model predicts that a 
revolution is likely.  Note that the magnitude of the scale for each country is unique 
in order to show variation on a month-by-month level for each nation.  
 
Before discussing the relation of model predictions to real-world findings, obvious 
features of the results are discussed.  First, Figure 7 shows that the magnitude of 
change for the two beliefs closely mirrored each other.  This suggests that agents 
who were frequently mentioned in the context of one belief were often mentioned in 
the context of the other as well.  However, while violence tended to increase when 
moving outside of a baseline range, revolution sentiment tended to decrease.  This 
contradicts our a priori belief that revolution sentiment would increase when 
protests and revolution occurred in the Arab world.  Instead, results and qualitative 
analysis of the data suggest that when English-speaking journalists discussed the 
Arab Spring, the focus was on what was being done to construct solutions to the 
violence that was occurring.  These steps often involved actions related to the anti-
revolution seed topics listed in Table 2. Because of this, we adopted our mechanism 
for predicting revolution to make predictions based on the absolute value of beliefs 
(and the respective inter-quartile ranges).  Thus, revolution was indicated when the 
revolution belief was noticeably negative and the violence belief was noticeably 
positive. 
 

TABLE 3 ABOUT HERE 

Table 3 shows, for each country, the month and year that the reigning government 
was overthrown by revolution (or None if this never occurred) and the month our 
model predicted revolution first became likely.  The model correctly raises no sign 
of revolution in six nations only tangentially associated with the Arab Spring.  The 
model also correctly predicts that revolution would occur in the four nations where 
governments were overthrown during the period of study.  Importantly, however, 
the model does so with varying levels of temporal accuracy.  Model predictions of 
revolution preceded actual overthrow by six months, four months and zero months 
in Libya, Egypt and Tunisia respectively.  In Yemen, the model first predicted a 
revolution would occur two months after the government was overthrown, a 
prediction we consider to be incorrect. 
 
The model also predicts revolution in six nations where governments were not 
overthrown.  In two of these nations, revolution indeed occurred but, as of the 
writing of this article, has not been successful in overthrowing the government in 
place. In Bahrain, though the government was not overthrown, significant attempts 
at revolution were made before being crushed by the reigning regime8.  In Syria, 
though the government has not yet been overthrown, a civil war continues that 

                                                        
8 See, e.g., http://www.guardian.co.uk/world/interactive/2011/mar/22/middle-east-protest-
interactive-timeline.    

http://www.guardian.co.uk/world/interactive/2011/mar/22/middle-east-protest-interactive-timeline
http://www.guardian.co.uk/world/interactive/2011/mar/22/middle-east-protest-interactive-timeline


began in late March of 2011.  Thus, though model output is here compared to 
successful revolutions, these two nations represent model output that correctly 
predicted the rise of revolution. 
 
Finally, the model predicts that revolution was likely in four nations that have seen 
little coverage in connection with the Arab Spring.   All four of these countries 
represent nations with strong diplomatic functions in the region, and thus were the 
foci of journalists covering the broader impacts of the Arab Spring on the region. 
Furthermore, the ongoing conflicts between Iraq, Iran and the United States during 
the timeperiod of study provided additional coverage of these nations not related to 
the Arab Spring.  Consequently, we observe that the model could be improved in the 
future by learning to differentiate the context in which the topics in Table 2 are 
covered.   

8. Conclusion 
 
We have presented an approach that enables a simulation model to be instantiated 
in a semi-automated fashion.  The core advantage is this enables model reuse, and 
supports improved validation.  We illustrated this approach using the Arab Spring. 
We created a state level revolution model using the Construct framework that we 
instantiated and ran across twenty different months.  The suite of simulations from 
start to finish the model took less than a week to run (or approx. 6 hours per 
simulated month start to finish), albeit on powerful hardware9.  At the technological 
level our results indicate the value of this semi-automated approach to instantiating 
an agent-based dynamic network.   
 
On the strict prediction task of determining when a successful revolution would 
occur in a country before it actually occurred, our model achieved 75% recall at the 
expense of 30% precision.  On the looser scale of correctly predicting significant 
revolutionary activities in a country, the model does much better, achieving 100% 
recall and 60% precision. At the theory level, our state-revolution model thus 
appears to be useful for predicting revolutionary activity.   
 
Model accuracy could likely be improved via model tuning, in particular, the 
modification of parameters to MLC and changes to the seed topics to provide more 
complete coverage.  While such tuning would need to be carefully conducted in 
order to avoid overfitting, the issue of topic coverage is critical.  In other recent 
work, we found that immediately prior to the initial revolutionary event the 
complexity of the topics (number of topics and their interconnectivity in a topic 
network) and the number of actors of interest actually increases (Pfeffer and Carley 
2012).  Thus, we suggest that accuracy could be further improved by a more 
extensive extraction of data from the news articles, and accounting for the inherent 
                                                        
9 All replications for a single month were run in parallel using 8 cores of a 60 core 
machine with a 250 GB SSD drive and 120 GB of RAM. 



non-linearity due to topic interconnectivity.   Furthermore, as we focus only on 
English-language newspaper data, results could also likely be improved by 
incorporating data from both foreign language newspapers and mediums on which 
information is disseminated more rapidly, such as Twitter.  
 
Though some model tuning did occur over the course of model development, the 
focus of the present work was the process by which the model was instantiated and 
utilized to make predictions.  To this end, future efforts to improve the techniques 
described here are also important.  For example, efforts to incorporate less 
heuristically based deduplication approaches are needed, as the wholly 
unsupervised approach we take to entity recognition is likely to provide a moderate 
level of false de-duplications (i.e. combining two people into one agent) and 
duplicates. Additionally, determining a methodology to update results from each 
month in a Bayesian fashion using the priors from the previous months seems like 
an appropriate methodology to construct more accurate predictions.  Finally, while 
our approach was intended to be domain agnostic, future work should consider how 
well the methods described really do transfer to new domains. 
 
Irrespective of the need for these future efforts, the present work bodes well for the 
field of simulation as a real policy tool as it provides the methodological 
groundwork for methods of making models re-usable through reduced effort in 
instantiation across different contexts. 
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Captions 
Figures 
 

Figure 1- Graphical overview of the methodology presented in the 
article 

Figure 2 – A map of the countries considered in the present article. The 
legend shows country names, used as search terms used to obtain the 
sample of newspaper articles from Major News Publications from the 
LexisNexis database for the present study. 

Figure 3- Graphical overview of process used to go from raw newspaper 
data to the meta-networks used for instantiation of the model 

Figure 4 – A bar plot of the WF1 similarity score (y-axis) between the 
food prices (turquoise bars) and internet social networking (red bars) 
topics with each seed topic for positive (pro) and negative (anti) 
sentiments for the violence and revolution beliefs (terms along the x-
axis) during January of 2011.  

Figure 5 – A scatterplot of the valences of all topics during January of 
2011 along the revolution (x-axis) and violence (y-axis) beliefs as 
computed via Equation 2.  Topics within two standard deviations of the 
mean of both beliefs have been removed. 

Figure 6- A scatterplot of all agents discovered in the text in January 
2011 associated with Egypt.  The x-axis of the plot represents the agents’ 
revolution belief and the y-axis represents their violences belief.  Agents 
are greyscaled based on the social group they have been assigned to – 
because this makes it difficult to discern groups, we also add a bounding 
polygon around groups. 

Figure 7- A plot of the sum of the belief change from the beginning until 
the end of the simulation for agents in each of the sixteen nations 
studied.  On the x-axis, time is represented. Grey and black lines 
represent change in revolution and violence beliefs over time, 
respectively.  Dark Grey and black vertical bars at each month represent 
intra-country and inter-country ranges, respectively.  Large dots 
represent the points at which the model predicted revolution- if these 
dots do not appear for a given country, revolution was never predicted.  
Note that scales  



 

Tables 
 

Table 1 - The necessary node classes and networks to be mined from the 
raw text 

Table 2- The list of "seed topics" used 

Table 3- Model prediction results.  Predictions were correct for rows 
colored white (top rows of the table), inconclusive for rows colored 
light grey (middle), and incorrect for rows colored dark grey (bottom). 
Within each color group, countries are sorted by the month in which the 
model predicted revolution. 

 
 


