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label other people
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Stereotypes are the
meanings conveyed
by an identity

An EPA profile is a position in this 3D space

Affective
stereotypes
i are defined
Potency o by hOW we
" wse / aciviy f@@l about
® Evaluative **°°" identities

(Osgood, 1969; Heise 1987)
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Semantic
stereotypes
refer to
relationships we
presume
between
identities
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THE INTERFACE
NEEDS TO BE SO
SIMPLE THAT YOUR
MOTHER COULD
USE IT.

MY MOTHER TAUGHT
HERSELF RUBY ON RAILS
OVER A WEEKEND.

)

Our identities and the
stereotypes they carry have
important effects on our lives

Scott Adams, INC. Dt by Unwernsal Uckak

Dilbert.com DilbertCartoonist@gmail.com
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Overview

e Extracting affective stereotypes using “social
event networks”

* Extracting a network model of stereotypes
* Networks of identities
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The Data

| —-600K articles
Libyan Arab Jamahiriya C O U n Tri eS

S ‘ ‘rﬁ —LexisNexis, centered
W Kuwait '

* Newspaper data
M Islamic Republic of Iraq on ]6 MENA

S —Major news outlets
Syrila.

- -/7/10-12/12

M Yemen
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Measuring Stereotypes with ACT

(Osgood, 1969)

Strong 4.3'T\ buly‘/ winner o Aﬂ lefeCfive,
| protestor? attributional
Potency official? measurement|
|

Passive mOd el
3 toddler Activity
Weak 4.3 Active

Bad Evaluative Good4.3
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Inferring Stereotypes using ACT

=2 officials
= criticize

= women

ACT gives a mathematical model for how
social events imply stereotypes
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Caveat to applying event model
e officials
==  qccused 2

¢ protestors
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Soln. — allow stereotypesto “diffuse”

- officials <  officials
=  Criticize = accused
3= women 2= profestors
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A caveatto applying event model

Sometimes,
officials == officials

Solution:

Assume mulfiple latent stereotypes
of each identity/behavior exist

OAS0S Carnegie Mellon
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An overview of the approach

Che . .
Newljork Last week, Egyptian officials shot protestors
Cimes nmod;tmod ———
d d bj dobj
e g @ aRs " \veoy NS
— — A ,~)/\‘7.7\ f‘_./% — —_—
Last week, Egyptian | officials shot protestors
"=4* oy " | 1,
s I
protestors  shot W s Protestor
bully winner .
| RO
foddl e
official ‘ ;
CASOS Carnegie Mellony
S E‘_If LW 14 [ o




6/15/16

More on ex’rrac’ring events, identities

1. Ran dependency parser, extracted all
N->V->N

2. Cleaned text using, e.g., stemming (accused ->
accuse)

3. Hand-curated list of identities and behaviors

* 102 identities, 87 behaviors, 10K events
* Only 44% of identities in ACT dicts

Carnegie Mellon
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The Statistical Model

. ¢ ~ Dirichlet (1) . . e s
4 Dlrlchlet;m 9 ~ Disichlet(c) Officials criticize demonstrators
i ' :
#o ~ N(m, ko) a ~ Categorical(6) @ Q
of ~Inv—x%(v0,50) o~ Categorical() ° °
b ~ Categorical(Q) . \
Gaussian o¥e O

2o~ Categorical(r) 2 ~ Categorical(r)  z ~ Categorical(r) i
Ha~ N0z 082,) Mo~ N0y 082) o~ NHo,,,98.2,) MIXiure Mpo d e I e
d~ Laplace(3 (fi = MEGUN)EB) Where = [a, oy, fags o ity o Hop o)

ACT Dictionary

Affect Control
Theory logic
(event model)

criticize [-4 32
women [4 1 4]
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One Result w.r.1. religious identities
0s0 s e Sunnis universally
bad, powerful
5| wiler _ £ e Explanation:
20 . —~Events on the
0251 Exnts | LA ) T8 ground
Christjan (2) Muslimss —Western media
bias?
sases Carnegie Mellon
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NETWORK MODELS OF STEREOTYPE
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Parallel Constraint_Sa’risfacﬁon Models

@ Links in PCSMs
CED I
semantic
stereotypes

PCSMs are essentially Markov Random Fields
through which cognitive activation flows

SASOS Carnegie Mellon
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Hard to model Affect in PCSMs

Powerless
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Combining existing models
Brother Brother
Brother + — :
Sister Sister
Attributional Relational
Parsimonious, Cognitively More
Affective Plausible, Semantics
No semantic No affective
relationships meaning
SASOS Carnegie Mellon

Affective + Semantic Network of Stereotypes

Stereotypes as an

Grad Student attributed network

Now, how do we

Musician
Pancer Ylearn” from Twitter
Artist
datae¢
CASOS Carnegie Mellony
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Data Used (Population considered)

 Twitter data
— Subset of 50K users from Study 2

— Subsetting based on more restricted bot/celeb removal,
gender tagging (gender not used)

e 310 identities of interest
— From popularidentitiesin Study 2 results; some domain
relevant
e Sentiment data (EPA profiles)
— Smith-Lovin et al. (2015)
— Warriner et al. (2014)

SASOS Carnegie Mellon)
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A Statistical Mod_el for Twitter Data

Semantic Model

ol % " Tofilele

T i R e U

Tweet data (per user)

CASOS Carnegie Mellony
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Generative model - affective stereotypes

p, X) ~ NI W(uo, Xo, Kos > Y0.5)
p(P) ~ N(u, 2)
P(d) ~ LaPIaCC{Qu,n(¢ua Xu,na Cu,n, Z)1ﬁ)

* Draw per-identity distrib. in EPA space from survey
priors

* Draw per-user EPA profiles from this distribution

* Draw per-tweet "deflection” balancing by user’s
current views, constraints in tweet

SASOS Carnegie Mellon
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Details on deflection
p(d) ~ Laplace(qun(@u» Xun» Cun» 2), 8)

* In ACT, deflection defines likelihood of social event
— “Teacherinstructs student” haslow deflection
— “Teacher hits student” has high deflection

e | use the same concept for likelihood of a tweet

* Like social event “suggests”, or constrains, EPA
profiles for identities, so too does textin a tweet

* Formalize using quadratic constraints, ke ACT does

.“.Jor evenT mOdel Carnegie Mellony
ST R ssons— 26 [0 ek
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Strategy for mining affect

Solterrible|that alyoung man was killed by a police officer.

For each identity of interest:

. |denT|fy any it iS inV@lved in - Identity of interest
« man (young) -> killed_by -> police_officer [] otheridentity
+ Find any “senfiment words" (in our @ Vorovehave
. . . . sentiment INfo Tor
sentiment dictionary) in the tweet n
. . - Mo@ﬂerwg have
« Construct q by summing constraints — sentiment info for

« "Terrible™ constraint on police officer (¢,,):
(¢po,e o t6T6)2 + (Cbpo,p - t67"p)2 + (¢po,a - tera)2

SASOS Carnegie Mellon
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Validation - Se_mqn’ric model

Associative Model | Ppl. Fill in the blank (on
ISJimplBe - :-2_613 left out data):
ser Baseline .
Our Model 1363 ____rule, boys drool
Baselines:

(P : — Simple: Just based on
.N\em?.' Pe.rpllefx“y of frequency of each identity
identifies in e f-out — User: Laplace-smoothed
data (lower is better) language model

CASOS Carnegie Mellony
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Validation - Affecﬁve model

Affective Model | Avg. Rank Fill in the blank (Ol‘l
Simple 134.744 left out data):
User Baseline 127.272 rule, boys drool
Our Model 126.042
. e Baselines:
Me’rr!c. avergge . ) — Simple: Tweet-based
rankings of identities in average using VADER
left-out data (lower is — User: Simple back-oft
bett tweet-based model using
etter) VADER
SASOS Carnegie Mellon
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Results for Thug
residen] gt " hyPOCL"jgoonJ * Top right —
zos am Tt B4 ™ affectively similar &
E o oo 0, ! semantically related
o -l vicogig T
%0.4— \hacke.r.]: . ‘gﬂ N (—O) word
% i ‘, .N“ ] semantically, not
or Lt R affectively related
0.3 0.0 03 056
Semantic Relationship Strength
cASeS Carnegie Mellon
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Existing NLP methods - Thug

E.g. deep learning... what words are related to

thug?
0 [ ]
[

£ .
o Ii) °
QT ..
o0
= .

TJ ([ ]

Y b $:h - °

ghetto- e | | | | |
0625 0.650 0.675 0700  0.72
Cosine Similarity
.“g.q' (GloVe Twitter model, 200-dimensional) Carmesie vt
STFF casaus 31

NETWORKS OF IDENTITIES
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Approach

e Twitter data

— 150K Twitter users who sent >5 tweets from within the original
Arab Spring dataset

News data
— Original news data
Construct common vocabulary; common data format

Run through Bamman et al. Word2Vec embedding
model

Determine list of interesting identities

— 280 identities prevalent in both datasets

* Construct network of similarity between these identities
for High/Low stability, News/Twitter (4 networks total)

SASOS Carnegie Mellon
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Tweets/News Sentences count by couniry

6,000,000 - (Uried Avab Emates)
Egypt
4,000,000 -
2
(]
s
. Saudi Arabia
ZYOOOYOOO ] :Lebanon
Kuwait Jordar‘\t
P :Bahram:
{OfMorocco -
L ahisia) N —
0 M @{leya' | Syria | [Iran]
1 1 1 1 1
0 25,000 50,000 75,000 100,000 125,00

News Sentences
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Tweets/News articles by unrest level of country

News Tweets

400,000 +

300,000 10,000,000 -

2>
<
@© 200,000 -
&
5,000,000 -
o -
0 | 0 -
high low high low )
sAses Level of Unrest Qarneg;le Mellon

High/Low Civil Unrest Categorization
High Unrest Countries Low Unrest Countries
Bahrain Qatar
Iraq Kuwait
Iran Morocco
Libya Jordan
Algeria Saudi Arabia
Egypt Oman
Syria United Arab Emirates
Tunisia Yemen
Lebanon
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High Unrest, Newspaper

Meta Network - Transformed
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Low Unrest, News (.73, LCC)

Meta Network - Transformed
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Conclusion

e Extracting affective stereotypes using “social
event networks”

* Extracting a network model of stereotypes
* Networks of identities

* Many different ways to think about identities,
text and networks!
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