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In a recent book I reviewed the development of social network analysis 
from its earliest beginnings until the late 1990s (Freeman, 2004).  There I 
characterized social network analysis as an approach that involves four 
defining properties:  (1) It involves the intuition that links among social actors 
are important.  (2) It is based on the collection and analysis of data that record 
social relations that link actors.  (3) It draws heavily on graphic imagery to 
reveal and display the patterning of those links.  And (4) it develops 
mathematical and computational models to describe and explain those 
patterns. 

 
In that book I reviewed both the history and the prehistory of social 

network analysis.  I showed that as early as the thirteenth century, and 
probably even earlier, people began to produce work that drew on one or more 
of the four properties listed above.  Until the 1930s, however, no one had used 
all four properties at the same time.  The modern field of social network 
analysis, then, emerged in the 1930s. 

 
In its first incarnation, modern social network analysis was introduced 

by a psychiatrist, Jacob L. Moreno, and a psychologist, Helen Jennings 
(Freeman, 2004, Chapter 3).  They conducted elaborate research, first among 
the inmates of a prison (Moreno,1932) and later among the residents in a 
reform school for girls (Moreno, 1934).  

 
Moreno and Jennings named their approach sociometry.  At first, 

sociometry generated a great deal of interest, particularly among American 
psychologists and sociologists.  But that interest turned out to be short lived; 
by the 1940s most American social scientists had returned to their traditional 
focus on the characteristics of individuals. 



During the same period another group, led by an anthropologist, W. 
Lloyd Warner, also adopted the social networks approach (Freeman, 2004, 
Chapter 4).  Their efforts were centered in the Anthropology Department and 
the Business School at Harvard, and their approach was pretty clearly 
independent of Moreno and Jennings work.  Warner designed the “bank 
wiring room” study, a social network component of the famous Western 
Electric research on industrial productivity (Roethlisberger and Dixon, 1939).  
And he involved business school colleagues and anthropology students in his 
community research.   They conducted social network research in two 
communities, Yankee City (Warner and Lunt, 1941) and Deep South (Davis, 
Gardner and Gardner, 1941). 

 
The Warner people never stirred up as much interest as did Moreno and 

Jennings.  And when Warner moved to the University of Chicago in 1935 and 
turned to other kinds of research the whole Harvard movement fell apart. 

 
The third version of social network analysis emerged when a German 

psychologist, Kurt Lewin, took a job at the University of Iowa in 1936 
(Freeman, 2004, pp. 66-75).  There, Lewin worked with a large number of 
graduate students and post-docs.  Together, they developed a structural 
perspective and conducted social network research in the field of social 
psychology (e. g. Lewin and Lippit, 1938). 

 
The Lewin group moved to the Massachusetts Institute of Technology 

in 1945, but after Lewin's sudden death in 1947, most of the group moved 
again, this time to the University of Michigan.  This Michigan group made 
important contributions to social network research for more than twenty years 
(e. g. Festinger and Schachter, 1950; Cartwright and Harary, 1956; Newcomb, 
1961).   

 
One of Lewin's students, Alex Bavelas, remained at MIT where he 

spearheaded a famous study of the impact of group structure on productivity 
and morale (Leavitt, 1951).  This work was influential in the field of 
organizational behavior, but most of its influence was limited to that field. 

 
All three of these teams began work in the 1930s.  None of them, 

however, produced an approach that was accepted across all the social 
sciences in all countries; none provided a standard for structural research.   

 



Instead, after the 1930s and until the 1970s, numerous centers of social 
network research appeared.  Each involved a different form and a different 
application of the social network approach.  Moreover, they worked in 
different social science fields and in different countries.  Table 1 lists thirteen 
centers that emerged during those thirty years.1 

 
   

Place Field Team Leaders Country 
Michigan State Rural sociology Charles P. Loomis 

Leo Katz 
USA 

Sorbonne Linguistics Claude Lévi-Strauss 
André Weil 

France 

Lund Geography Thorsten Hägerstrand Sweden 
Chicago Mathematical Biology Nicolas Rashevsky USA 
Columbia Sociology Paul Lazersfeld 

Robert Merton 
USA 

Iowa State Communication Everett Rogers USA 
Manchester Sociology Max Gluckman Great Britain 
MIT Political Science Ithiel de Sola Pool 

Manfred Kochen 
USA 

Syracuse Community Power Linton C. Freeman 
Morris H. Sunshine 

USA 

Sorbonne Psychology Claude Flament France 
Michigan Sociology Edward Laumann USA 
Chicago Sociology Peter Blau 

James A. Davis 
USA 

Amsterdam Sociology Robert Mokken Netherlands 
 

Table 1. Centers of Social Network Research from 1940 to 1969 
 
By 1970, then, sixteen centers of social network research had appeared.  

With the development of each, knowledge and acceptance of the structural 
approach grew. Still, however, none of these centers succeeded in providing a 
generally recognized paradigm for the social network approach to social 
science research. 

 

                                                 
1 Important publications from each of these centers are listed in Freeman (2004). 



That all changed in the early 1970s when Harrison C. White, together 
with his students at Harvard, built a seventeenth center of social network 
research.  In my book I described the impact of this group (Freeman, 2004, p. 
127): 

 
From the beginning, White saw the broad generality of the 
structural paradigm, and he managed to communicate both that 
insight and his own enthusiasm to a whole generation of out- 
standing students. Certainly the majority of the published work 
in the field has been produced by White and his former students 
Once this generation started to produce, they published 
so much important theory and research focused on social net- 
works that social scientists everywhere, regardless of their field, 
could no longer ignore the idea. By the end of the 1970s, then, 
social network analysis came to be universally recognized 
among social scientists. 
 

Following the contributions of White and his students, social network analysis 
settled down, embraced a standard paradigm and became widely recognized 
as a field of research.   
 
 In the late 1990s, however, there was a revolutionary change in the 
field.  It was then that physicists began publishing on social networks.2  First, 
Duncan Watts and Stevan H. Strogatz (1998) wrote about small worlds.  And 
a year later Albert-Lásló Barabási and Réka Albert (1999) examined the 
distribution of degree centralities.  I ended the earlier account in my book by 
commenting on the entry of Watts, Strogatz, Barabási and Albert into social 
network research.  I expressed the pious hope that, like all the earlier potential 
claimants to the field, our colleagues from physics would simply join in the 
collective enterprise.   
 

That hope, however, was not immediately realized.  These physicists, 
new to social network analysis, did not read our literature; they acted as if our 
sixty years of effort amounted to nothing.  In a recent article, I contrasted the 
approach of these new physicists with that of earlier physicists who had been 
involved in social network research (Freeman, 2008): 
 

Other physicists had already been involved in social network 
analysis.  Notable among these were Derek de Solla Price, 
Harrison White and Peter Killworth (e. g. Price, 1965, 1976; White, 

                                                 
2 Scott, in the current volume, also describes the entry of physicists into social network analysis.  His 
description centers on their theoretical perspective. 



1970; White, Boorman and Breiger, 1976; Killworth, McCarty, 
Bernard, Johnsen, Domini and Shelley, 2003; Killworth, McCarty, 
Bernard and House, 2006).  These physicists read the social 
network literature, joined the collective effort and contributed to an 
ongoing research process.  
 

But neither Watts and Strogatz nor Barabási and Albert did any of these 
things.  They simply took research topics that had always been part of social 
network analysis and claimed them as topics in physics. 
 

The result was a good deal of irritation (and perhaps a certain amount of 
jealousy) on the part of many members of the social network research 
community.  Bonacich (2004) put it this way: 
 

Duncan Watts and Albert-Lásló Barabási are both physicists who 
have recently crashed the world of social networks, arousing some 
resentment in the process. Both have made a splash in the wider 
scientific community, as attested by their publications in high status 
science journals (Science, Nature). . . . Both have recently written 
scientific best-sellers: Six Degrees ranks 2547 on the Amazon list, 
while Linked ranks 4003.  
Watts, Strogatz, Barabási and Albert opened the door.  They managed 

to get a huge number of their physics colleagues involved—enough to 
completely overwhelm the traditional social network analysts.  Their impact, 
then, was to produce a revolution in social network research.  In the present 
essay I will focus on that revolution and its aftermath.  Here I will review the 
developments that have occurred since those two articles were published. 
 

The Origins of the Revolution 
 

The article by Watts and Strogatz (1998), addressed a standard topic in 
social network analysis, the “small world.”  Concern with that issue stemmed 
from one of the classic social network papers, “Contacts and influence,” 
written by Ithiel de Sola Pool and Manfred Kochen in the mid-1950s.  It 
circulated in typescript until 1978 when it was finally published as the lead 
article in Volume 1, Number 1 of the new journal, Social Networks. 
 

The questions raised by Pool and Kochen concerned patterns of 
acquaintanceship linking pairs of persons.  They speculated that any two 



people in the United States are linked by a chain of acquaintanceships 
involving no more than seven intermediaries.   
 

Various students picked up on Pool and Kochen’s ideas, including 
Stanley Milgram who used them as the basis for his doctoral dissertation on 
the “small world.”  Milgram published several papers on the subject, one of 
which one was a popularization that appeared in Psychology Today (1967).   
 

Watts and Strogatz cited the Psychology Today article as well as a later 
book edited by Kochen (1989) on the small world idea.   But they apparently 
did not discover any of the other literature on the subject.  In any case, they 
introduced an entirely new model that was designed to account for both the 
clustering found in human interaction and the short paths linking pairs of 
individuals.   
 

The Watts and Strogatz model begins with an attempt to capture 
clustering—the universal tendency of friends of friends to be friends.  They 
represent links among individuals as a circular lattice like the one shown in 
Figure 1, where each node is an individual and each edge is a social link 
connecting two individuals.  They go on to define an average clustering 
coefficient C(p) that measures the degree to which each node and its 
immediate neighbors are all directly linked to one another.  The structure in 
Figure 1 embodies a good deal of clustering—neighbors of neighbors are, for 
the most part, neighbors—thus the clustering coefficient C(p) is high.  But, at 
the same time, L(p), the average length of the path linking any two individuals 
in the whole lattice, is relatively large.   
 

Place Figure 1 about here 
 

Since L(p) is large, the world represented by this circular lattice is 
certainly not small.  But Watts and Strogatz showed that they could produce a 
small world effect—where no individual is very far from any other 
individual—simply by removing just a few of the links between close 
neighbors and substituting links to randomly selected others.  As Figure 2 
shows, under those conditions some links span clear across the lattice.  The 
result is, that as random links are substituted for links to close neighbors, path 
length L(p) drops abruptly, but the clustering coefficient C(p) is hardly 
diminished at all.  Thus, for the most part, friends of friends are still friends, 
but the total world has become dramatically smaller. 
 



Place Figure 2 about here 
 

The article by Barabási and Albert (1999) also took up a standard 
network analytic topic, degree distribution.  The degree of a node is simply 
the number of other nodes to which it is directly connected by edges.  Much of 
the earliest research on social networks was focused on the distributions of 
degrees.  Research in sociometry often involved asking people whom they 
would choose, say, to invite to a party or to work with on a project (Moreno, 
1934).  As soon as the responses to such questions began to be tallied, it 
became apparent that the distribution of being chosen was dramatically 
skewed.  A few individuals were chosen extremely often while a large number 
were chosen rarely, if at all.   
 

Moreno and Jennings (1938) reported two empirical results: (1) such 
skewed distributions were universally observed, and (2) they departed from 
expectations based on random choices.  As they described it, “A distortion of 
choice distribution in favor of the more chosen as against the less chosen is 
characteristic of all groupings which have been sociometrically tested.” 
 

Barabási and Albert (1999) studied the distribution of connections in 
networks that grew as a consequence of adding new nodes.   Their examples 
included links between sites in the World Wide Web, links between screen 
actors who worked together on films and links between generators, 
transformers and substations in the U. S. electrical power grid.  Although 
Barabási and Albert were apparently unaware of the earlier findings of 
Moreno and Jennings, they discovered that the connections in the networks 
they examined were not random.  Instead, the links were skewed; just as 
Moreno and Jennings had reported, Barabási and Albert found a few nodes 
that displayed too many connections and a great many nodes that displayed 
too few. 

  
 Barabási and Albert went on to propose a simple model designed to 
account for the pattern of skewness they had observed.  Consider a collection 
of existing nodes.  Let ki be the number of links already established to node i.  
Then let the probability that a new node is going to link to any node i, depend 
on ki.  The model specifies the probability of that link connecting to node i as 



P(ki) ≈ ki
γ where 2 ≤ γ ≤ 3.3  The distribution of connections, then, follows a 

power law, or as Barabási and Albert characterize it, it is “scale free.”   
 
 

The Growth of the Revolution 
 

As a consequence of the interest generated by Watts and Strogatz and 
by Barabási and Albert, the revolution began in earnest.  As Figure 3 shows, 
physicists followed up on the Watts and Strogatz small world paper.  Within 
five years, the physics community had produced more small world papers than 
the social network community had turned out in forty-five years (Freeman, 
2004, pp. 164-166).   

 
Moreover, Figure 3 also shows that, at that point, 98% of the citations 

were made within either the physics community or the social network 
community.  For the most part, physicists ignored the earlier work by social 
network analysts.  And social network analysts responded in kind. 
 

Place Figure 3 about here 
 

Physicists were also quick to follow up on Barabási and Albert’s work 
on degree distributions.  According to Google Scholar their first paper had 
received over 4000 citations as of mid-November 2008.  But practically none 
of those citations was produced by a social network analyst.   
 

It soon became evident that the physicists’ interest in social networks 
was not going to be confined to small world phenomena and degree 
distributions.  Members of the physics community quickly began to explore 
other problems that had traditionally belonged to social network analysts.  Nor 
was that interest restricted to physicists.  At the same time, physicists 
succeeded in getting biologists and computer scientists involved their efforts.  
Two main foci of this new thrust involved the study of cohesive groups or 
what physicists call communities and the study of the positions that nodes 
occupy in a network—particularly their centrality.  I will review these foci in 
the next two sections. 
 

                                                 
3  The Barabási and Albert model, however, turns out to be essentially the same as that proposed by a 
social network analyst, Derek de Solla Price, in 1976. 



Cohesive Groups or Communities 
 

The notion of cohesive group is foundational in sociology.  Early 
sociologists (Tönnies, 1855/1936; Maine, 1861/1931; Durkheim, 1893/1964; 
Spencer, 1897; Cooley, 1909/1962) talked about little else.  Their work 
provided an intuitive “feel” for groups, but it did not define groups in any 
systematic way. 

 
When the social network perspective emerged, however, network 

analysts set out to specify groups in structural terms.  Freeman and Webster  
(1994) described the observation behind this structural perspective on groups: 

 
. . . whenever human association is examined, we see what can 
be described as thick spots—relatively unchanging clusters or 
collections of individuals who are linked by frequent interaction 
and often by sentimental ties. These are surrounded by thin 
areas-where interaction does occur, but tends to be less frequent 
and to involve very little if any sentiment. 
 
 Thus, the social ties within a cohesive group will tend to be dense; 

most individuals in the group will be linked to a great many other group 
members.  Moreover, those in-group ties will tend to display clustering—
where, as described above, friends of friends are friends.  In contrast, 
relatively few social ties will link members of different groups, and clustering 
will be relatively rare. 

 
An early social network analyst, George Homans (1950, p. 84) spelled 

out the intuitive basis for the social network conception of cohesive groups: 
 
. . . a group is defined by the interactions of its members. If we 
say that individuals A, B, C, D, E . . . form a group, this will 
mean that at least the following circumstances hold. Within a 
given period of time, A interacts more often with B, C, D, E, . . . 
than he does with M, N, L, O, P, . . . whom we choose to 
consider outsiders or members of other groups. B also 
interacts more often with A, C, D, E, . . . than he does with 
outsiders, and so on for the other members of the group. It is 
possible just by counting interactions to map out a group 
quantitatively distinct from others.  
 
Over the years, network analysts have proposed dozens of models of 



cohesive groups.  These models serve to define groups in structural terms and 
provide procedures to find groups in network data.  They all try to capture 
something close to Homans’ intuition in one way or another.  Some of them 
represent groups in terms of on/off or binary links among actors (e. g. Luce 
and Perry, 1949; Mokken, 1979).  Others represent them in terms of 
quantitative links that index the strength of ties inking pairs of actors (e. g. 
Sailer and Gaulin, 1984; Freeman, 1992).   
 

Currently, then, we have a huge number of models of cohesive groups.  
Most of them were reviewed by Wasserman and Faust (1994).  Some were 
algebraic (e. g. Breiger, 1974; Freeman and White, 1993), some were graph 
theoretic (e. g. Alba, 1973; Moody and White, 2003), some were built on 
probability theory (e. g. Frank, 1995; Skvoritz and Faust, 1999) and some 
were based on matrix permutation (Beum and Brundage, 1950; Seary and 
Richards, 2003).  All, however, were designed to specify the properties of 
groups in exact terms, to uncover group structure in network data, or both. 

 
Over the years social network analysts have also drawn on various 

computational algorithms in an attempt to uncover groups.  These include 
multidimensional scaling (Freeman, Romney and Freeman, 1987; Arabie and 
Carroll, 1989), various versions of singular value decomposition, including 
principal components analysis and correspondence analysis (Levine, 1972; 
Roberts, 2000), hierarchical clustering (Breiger, Boorman and Arabie, 1975; 
Wasserman and Faust, 1994, pp. 382-383), the max-cut min-flow algorithm 
(Zachary, 1977, Blythe, 2006), simulated annealing (Boyd, 1991, p.223; 
Dekker, 2001) and the genetic algorithm (Freeman, 1993; Borgatti and 
Everett, 1997). 

 
In social network research, the general tendency over the years has been 

to move from binary representations to representations in which the links 
between nodes take numeric values that represent the strengths of 
connections.  At the same time social network analysts have gradually shifted 
from building algebraic and graph theoretic models to developing models 
grounded in probability theory.  And, as time has passed, they have relied 
more often on the use of computational procedures to uncover groups.   

 
A notable exception to this trend can be found in the recent article by 



Moody and White (2003).  There, they used graph theory to define structural 
cohesion.  They defined structural cohesion “. . . as the minimum number of 
actors who, if removed from a group, would disconnect the group.”  Then they 
went on to define embeddedness in terms of a hierarchical nesting of cohesive 
structures.  This approach represents a new and sophisticated version of the 
traditional social network model building. 

 
 Since the early 1970s, mathematicians and computer scientists had also 
been interested in groups or communities.  They defined that interest in terms 
of graph partitioning (Fiedler, 1973, 1975; Parlett, 1980; Fiduccia and 
Mattheyses, 1982, Glover, 1989, 1990; Pothen, Simon and Liou, 1990).  
Social network analysts recognized this tradition when the work by Glover 
was cited and integrated into the program UCINET (Borgatti, Everett and 
Freeman, 1992).  And in 1993 the link in the other direction was made when a 
team composed of an electrical engineer and a computer engineer, Wu and 
Leahy, cited the work of the statistician-social network analyst, Hubert (1974).  
And in 2000 three computer scientists, Flake, Lawrence and Giles cited the 
social network text by Scott (1992).   
 

Until quite recently, however, these efforts did not stir up much interest 
in the physics community.  Instead, the physicists turned to the procedures 
developed in social network analysis.  Michelle Girvan and Mark Newman 
(2002), adapted the social network model of betweenness centrality (Freeman, 
1977) to the task of uncovering groups.  Their adaptation was based on the 
betweenness of graph edges, rather than nodes, and the result was a new 
algorithm for partitioning graphs.   

 
Edge betweenness refers to the degree to which an edge in the graph 

falls along a shortest path linking every pair of nodes.  A path in a graph is a 
sequence of nodes and edges beginning and ending with nodes.   Girvan and 
Newman reasoned that since there should be relatively few edges linking 
individuals in different groups, those linking edges should display a high 
degree of betweenness. So they began by removing the edge with the highest 
betweenness, and continued that process until the graph was partitioned.   
 

Two years later Newman and Girvan (2004) published a follow-up 
article.  Their second paper again focused on edge removal, but this time they 



introduced an alternative model that had two intuitive foundations.  In one, 
they showed that random walks between all pairs of nodes would determine 
the betweenness of edges—not just along shortest paths—but along all the 
paths linking pairs of nodes.  The other intuition was motivated by a physical 
model where edges were defined as resistors that impeded the flow of current 
between nodes.  The edge with the lowest current flow was removed.  If that 
did not yield a partition the process was continued until partitioning did take 
place.  These two models produced the same partitions.  

 
Newman and Girvan went on to show that all of their algorithms always 

partitioned the data even though some of the partitionings might not reflect the 
presence of actual communities.  So they introduced a measure called 
modularity.  Modularity is based on the ratio of within partition ties to those 
that cross partition boundaries and compares that ratio to its expected value 
when ties are produced at random.  Thus, it provides an index of the degree to 
which each partition embodies a group- or community-like form.  

 
The result of the two papers by Girvan and Newman was dramatic.  

Both physicists and computer scientists quickly developed an interest in 
groups or communities.  Radicchi, Castellano, Cecconi, Loreto and Parisi 
(2004) specified two kinds of communities.  One was characterized as 
“strong”; it defined a partition as a community if it met the condition that 
every node had more within-group ties than cross-cutting ones.4  The other 
they characterized as “weak”.  It proposed that a partition was a community if 
the total number of ties within each partition was greater than the total number 
of ties linking nodes in the partition to nodes outside the partition. 

 
Radicci et al. also pointed out that the Girvan and Newman 

betweenness-based algorithm was computationally slow.  So they introduced a 
new, more efficient, measure.  They reasoned that edges that bridge between 
communities are likely to be involved in very few 3-cycles (where friends of 
friends are friends).  So they based their measure on the number of 3-cycles in 
which each edge is involved, and they showed that their measure had 
moderate negative correlation with the Girvan-Newman measure.  The 
number of 3-cycles in which an edge is involved, then, turns out to be 
inversely related to the betweenness of that edge. 
                                                 
4  They did not cite the similar social network models introduced by Sailer and Gaulin (1984).  



 
Newman (2004) quickly jumped back in.  He, too, was troubled by the 

slowness of the Girvan-Newman algorithm for finding communities.  So he 
proposed a fast “greedy” algorithm.  A greedy algorithm makes the optimal 
choice at each step in a process, without regard to the long-term consequences 
of that choice.5  In this case, Newman proposed starting a process by having 
each cluster contain a single node.  Then, at each stage in the process, the pair 
of clusters that yields the highest modularity is merged.   

 
The concern with computing speed seems to have started a race to see 

who could develop the fastest algorithm to cluster nodes in terms of their 
modularity.  A computer scientist, Clauset, working with two physicists, 
Newman and Moor (2004) were able to speed up Newman’s “greedy” 
algorithm.  Two more computer scientists, Duch and Arenas (2005), devised 
an algorithm to speed it up even more.  And in 2006 Newman showed how to 
gain still more speed by applying singular value decomposition to the 
modularity matrix. Then, in 2007, a computer scientist, Djidjev, developed a 
still faster algorithm for constructing partitions based on modularities. 

 
Continuing the search for speed, two other computer scientists, Pons 

and Latapy (2006) took an entirely different approach.  They reasoned that 
since communities are clusters of densely linked nodes that are only sparsely 
linked together, a short (2 or 3 step) random walk should typically stay within 
the community in which it is started.  They proposed an algorithm that began 
with a series of randomly selected starter nodes.   Then each starter is used to 
generate a random walk.  Then the starter, along with the nodes that are 
reached, are tallied as linked.  The likelihood is that once these results are 
cumulated, they will display the clustered communities.  And finally, two 
industrial engineers and a physicist, Raghavan, Albert and Kumara (2007) 
produced a very fast algorithm based on graph coloring.  Nodes begin with 
unique colors, then, iteratively, acquire the color of the majority of their 
immediate neighbors.   

  
Other, quite different, procedures were also introduced.  A physicist and a 
computer scientist, Wu and Huberman (2004), developed a model based on 
assuming edges are resistors, as was the case in the earlier model introduced 
by Newman and Girvan.  But Wu and Haberman’s model turns out to be much 
                                                 
5  Hierarchical clustering is an example of a greedy algorithm. 



more complicated and ad hoc.  Four physicists, Capocci, Servedio, Caldarelli 
and Colaiori (2004) suggested using singular value decomposition to uncover 
communities.  And three others, Fortunato, Latora and Marchiori (2004) 
proposed a variation of edge centrality, called “information centrality.”  Their 
centrality is based on the inverse of the shortest path length connecting each 
pair of nodes.  Physicists Palla, Derényi, Farkas and Vicsek (2005) defined 
communities as cliques and focused on patterning of clique overlap.   
Reichardt and Bornholdt (2006) used simulated annealing to search for 
partitions that yield communities that have a large number of ties within 
groups and a small number of ties that cut across groups.   

 
Some of these ideas, like overlapping cliques and simulated annealing, 

will be familiar to seasoned social network analysts.  Many others, however, 
are new and several are quite creative.  In particular, edge betweenness, 
modularity, the use of 3-cycles, short random walks and graph coloring appear 
to have promise.   

 
Almost all of these contributions focused on building new tools to 

uncover groups or communities.  They all reported applications to data, but 
for the most part, their applications were merely illustrative.  The main thrust 
of this research has been to build better and faster group-finding algorithms.  
That preoccupation with developing ever faster algorithms may not seem too 
important to most social network analysts, but many applications—
particularly those in biology—involve data sets that involve connections 
linking hundreds of thousands or millions of nodes.  For those applications 
speed is essential. 
 

Positions 
 
Concern with the positions occupied by individual actors has been the 

second main theme in social network analysis.  Four kinds of positions have 
been defined.  First, positions in groups—core and periphery—have been 
specified.  Second, a good deal of attention has been focused on social roles.  
Third, some attention has also been devoted to the study of the positions of 
nodes in hierarchical structures.  And fourth, social network analysts have 
been concerned with the structural centrality of nodes in networks. 



 
Core and peripheral positions in groups were first defined by early 

network analysts, Davis, Gardner and Gardner (1941).  As they described this 
idea (p. 150): 

 
Those individuals who participate together most often and at the 
most intimate affairs are called core members; those who 
participate with core members upon some occasions but never 
as a group by themselves alone are called primary members; 
while individuals on the fringes, who participate only 
infrequently, constitute the secondary members of a clique. 

 
Various others followed up on this observation and algorithms for finding core 
and peripheral positions in groups were proposed by Bonacich (1978), 
Doreian (1979), Freeman and White (1993) and Skvoretz and Faust (1999).  
Finally, in a pair of articles, Borgatti and Everett (1999) and Everett and 
Borgatti (2000) developed a full model of core/periphery structure. 

 
The intuitive idea of social role was introduced by the anthropologist, 

Ralph Linton (1936).  The notion was that two individuals who were, say, 
both fathers of children, occupied a similar position as a consequence of their 
being fathers.  They could, it was assumed, be expected to display similar 
behaviors. 

 
This idea was spelled out by Siegfried Nadel (1957) and formalized by 

Lorrain and White (1971) in their model of structural equivalence.  In that 
model, two individuals are structurally equivalent if they have the same 
relations linking them to the same others. 

 
Other social network analysts concluded that structural equivalence was 

too restrictive to capture the concept of social role (Sailer, 1978).  So they 
were quick to propose other models that relaxed the restrictions of structural 
equivalence.  These include regular equivalence, isomorphic equivalence, 
automorphic equivalence, and local role equivalence.  These ideas are all 
thoroughly reviewed in Wasserman and Faust (1994). 

 



The third kind of positional model used in social network analysis is 
focused on hierarchies or dominance orders.  The study of dominance began 
with Pierre Huber’s (1802) observations of dominance among bumblebees.  
Huber was an ethologist, and most of the research and model building about 
dominance has remained in ethology.   But Martin Landau (1951), who was 
both an ethologist and a social network analyst, created a formal model of 
hierarchical structure for social network analysts.  And another social network 
analyst, James S. Coleman (1964), proposed an alternative model.  More 
recently, Freeman (1997) adapted an algebraic model from computer science 
(Gower, 1977) to be used in social network analysis.  And Jameson, Appleby 
and Freeman (1999) took a model from psychology (Batchelder and Simpson 
(1988) and applied it to the study of social networks. 

 
The fourth and final kind of model of social position is based on the 

notion of centrality.  Alex Bavelas (1948) and Harold Leavitt (1951) originally 
developed the idea of structural centrality at the Group Networks Laboratory 
at the Massachusetts Institute of Technology.   Their conception of centrality, 
based on the distance of each node to all the others in the graph, was used to 
account for differences in performance and morale in an organization. 

 
Very soon a large number of other conceptions of centrality were 

introduced.  Those based on graph theory were reviewed (Freeman, 1979) and 
reduced to a set of three.  They included Sabidussi’s (1966) measure based on 
closeness, Nieminen’s (1974) measure based on degree and Freeman’s (1977) 
measure based on betweenness.   

 
In addition to these graph theoretic measures, Bonacich (1972, 1987) 

introduced an algebraic centrality measure. His measure is based on the 
concept of eigenstructure; it is determined by a combination of the degree of a 
node, the degrees of its neighbors, the degrees of their neighbors and so on. 

 
The community of physicists has not displayed any major interest in the 

first three of these kinds of positions developed in social network analysis.  
Physicist Petter Holme (2005) did write an article about core/periphery 
structures.  And in a review article, Mark Newman (2003) introduced 
structural equivalence to physicists.  Petter Holme and Mikael Huss (2005) 
reviewed the social network equivalence measures and applied them in the 
study of protein function in yeast.  Finally, Juyong Park and Mark Newman 



(2005) introduced a new model of dominance and applied it to ranking 
American college football teams.  

 
The physicists, however, were quick to adopt the ideas about centrality 

that had been developed in social network analysis.  And they immediately 
passed them on to biologists.  Figure 4 displays the number of articles on 
centrality published each year by social network analysts and the number 
published by physicists and biologists.  It is clear that once they began 
publishing in this area, the physicists and biologists quickly overtook the 
social network analysts. 

 
Figure 4.  Articles on Centrality by Date and by Field (From 

Freeman, 2008) 
 
 In working with centrality, though, the physicists took a very different 

approach than the one they used when they dealt with the group or community 
concept.  As we saw above, most of their contributions to the study of groups 
involved the development of new models and the introduction of refined 
procedures for finding groups.  But, with centralities, most of the physicists’ 
work has involved applications; they simply found new problems to which 
standard centrality measures could be fruitfully applied. 

 
Many of the areas in which physicists applied centrality may seem quite 

surprising.  Only a few of their applications fall into what most outsiders 
would think of as belonging to physics.  These include packet switching in the 
internet, electronic circuitry and the electric power grid (Freeman, 2008).   

 
A great many more of these applications involve areas that traditionally 

are considered to fall in the domain of social network analysis.  These include 
studies of friendships linking students, contacts among prisoners, email 
contacts, telephone conversations, scientific collaboration, corporate interlock 
and links among sites in the World Wide Web (Freeman, 2008). 

 
By far the most common application of centrality has been to problems 

in biology.  This work was started by physicists (Jeong, Mason, Barabási and 
Oltavi, 2001) who studied interactions among proteins.  But, almost 
immediately, biologists themselves began to use centrality ideas in their 
research.  Two biologists, Wagner and Fell (2001) examined centrality in a 
study of metabolic networks.  And a year later, four molecular biologists, 
Vendruscolo, Dokholyan, Paci and Karplus (2002) used centrality in a study 



of protein folding.  These three themes, protein-protein interaction, metabolic 
networks and protein folding have all come to rely heavily on the use of 
various centrality models and have produced a great deal of research 
(Freeman, 2008). 

 
 

Summary and Conclusions 
 

In social network analysis we have a field with a long history.  It began 
in the late 1930s.  And it emerged again and again in different social science 
disciplines and in various countries.  But in the 1970s all these separate 
research efforts came together and merged into a single coherent research 
effort embodying a structural perspective. 

 
 But in the late 1990s a new kind of situation arose.  A completely alien 

field, physics, embraced the same kind of structural perspective that was 
embodied in social network analysis.  Moreover, a good many of these 
physicists did not limit their research to the physical realm, but studied the 
patterning of links among social actors.  One physicist, T. S. Evans (2004), 
reported on this trend to his fellow physicists: 

 
If you are naturally skeptical about trendy new areas of physics 
and attempts to mix physics with anything and everything, then 
the citations of papers in journals of sociology . . . and of books 
on archeology and anthropology . . . may just be the last straw!  
  

Thus, though it may not be mainstream physics, at least some physicists have 
defined social network analysis as a proper part of their discipline.    
 

To understand how this occurred, we need to look at physics and 
biology in the late 1990s.  Both fields were suddenly faced with mammoth 
amounts of structural data.  In physics, data on the internet became available.  
These data involve millions of computers, all linked by wires, fiber-optic 
cables and wireless connections.  And in biology data on genetic and 
metabolic networks was being produced by all the genome research.  In both 
fields investigators were confronted with data on very large networks.   

 
These investigators needed tools—both intellectual and 

computational—that would help them to grapple with these huge new network 
data sets.  So they turned to a field that had been dealing with network data for 



sixty years, social network analysis.  They drew on ideas from social network 
analysis and they used analytic tools developed in that field.  They refined 
existing tools and developed new ones.  Sometimes they reinvented 
established tools and sometimes they rediscovered known results, but often 
they contributed important new ways to think about and analyze network data. 

 
More important, at least some of these physicists have become 

increasingly involved in social network research.  They have developed new 
tools aimed toward the study of social networks (Watts and Strogatz, 1998).  
They have reanalyzed standard social network data sets (Girvan and Newman, 
2002; Holme, Huss and Jeong, 2003; Kolaczyk, Chua and Barthelemy, 2007; 
Newman, 2006).    

 
Physicists have increasingly begun to cite social network articles.  

Girvan and Newman (2002), for example, cited 8 social network articles 
among their 29 citations.  Fortunato, Latora and Marchiori (2004) cited 9 
social network articles in 27 citations.  And  Holme and Huss (2005) cited 5 in 
34 citations.  On the other hand, most social network analysts have resisted 
citing physicists.  Many, I suspect, still view the physicists as “alien invaders.” 

 
Physicists have used computer programs produced by social network 

analysts in their data analyses, and they have produced new programs that 
include some of the models developed in social network analysis (Freeman, 
2008).  In addition, a few physicists have attended the annual Sun Belt social 
network meetings.6  And a few social network analysts have been invited to 
the meetings of the physicists.7  Representatives of each discipline are 
beginning to publish in journals usually associated with the other.8  There are 
even some joint publications (e. g. Reichardt and White, 2007; Salganik, 
Dodds, Sheridan and Watts, 2006).   

 
My earlier hope for rapprochement between physics and social network 

analysis, it seems, is beginning to take place.  All that is required now is that 
the social network analysts relax their claim of ownership of the field.  The 

                                                 
6  Freeman (2004, p. 166) mentions the attendance of physicists Watts, Newman and Hoser at the 
social network meetings. 
7  Social network analysts, Vladimir  Batagelj and Linton Freeman were invited to the Summer 
Workshop in Complex Systems and Networks put on by physicists in Transylvania in 2007. 
8  See, for example, physicists Watts (1999), Holme, Edling, Liljeros (2004) and Newman (2005) 
publishing in Social Networks or network analysts, Borgatti, Mehra, Brass and Labianca (2009) appearing in 
Science. 



physicists are making important contributions to what could easily end up as a 
collective effort.9  
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