
PL14CH12-Ward ARI 11 April 2011 14:20

Network Analysis
and Political Science
Michael D. Ward,1 Katherine Stovel,2

and Audrey Sacks2

1Department of Political Science, Duke University, Durham, North Carolina 27708;
email: mw160@duke.edu
2Department of Sociology, University of Washington, Seattle, Washington 98195;
email: stovel@u.washington.edu; sacks@u.washington.edu

Annu. Rev. Polit. Sci. 2011. 14:245–64

First published online as a Review in Advance on
March 1, 2011

The Annual Review of Political Science is online at
polisci.annualreviews.org

This article’s doi:
10.1146/annurev.polisci.12.040907.115949

Copyright c© 2011 by Annual Reviews.
All rights reserved

1094-2939/11/0615-0245$20.00

Keywords

networks, exponential random graphs, latent variables, social network
analysis

Abstract

Political science is fascinated with networks. This fascination builds
on networks’ descriptive appeal, and descriptions of networks play a
prominent role in recent forays into network analysis. For some time,
quantitative research has included node-level measures of network char-
acteristics in standard regression models, thereby incorporating net-
work concepts into familiar models. This approach represents an early
advance for the literature but may (a) ignore fundamental theoretical
contributions that can be found in a more structurally oriented network
perspective, (b) focus attention on superficial aspects of networks as they
feed into empirical work, and (c) present the network perspective as a
slight tweak to standard models that assume complete independence
of all relevant actors. We argue that network analysis is more than a
tweak to the status quo ante; rather, it offers a means of addressing
one of the holy grails of the social sciences: effectively analyzing the
interdependence and flows of influence among individuals, groups, and
institutions.
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INTRODUCTION

Probably the most famous network graph
in political science is Valdis Krebs’ (2002)
representation of the terrorist network that
was responsible for the 9/11 attack on the
World Trade Center and Pentagon. We
know now that Mohammed Atta, who flew
American Airlines Flight 11 into the North
Tower of the World Trade Center, was a
central organizing player in this terrorist
operation. However, Atta’s central role is not
obvious unless you look at the structure of
relationships among all the 19 known members
of this conspiracy. Krebs’ network analysis
shows qualitatively and quantitatively that Atta
was the ringleader of this network. Not only
does Atta have many connections to the other
members of this network, but in various other
network statistics—such as betweenness and
centrality—Atta pops up at or near the top
of the calculations. Social network analysis
shows—often visually, but also through quan-
titative measures—important aspects of social
organization that are not captured by the study
of individual attributes or characteristics. Over
the past decade, the idea of networks has com-
manded the attention of many policy makers
and academics, and the study of networks has
made incredible advances in popularity as well
as in the sophistication of the methods used
for network analysis. In this article, we provide
a selective review of the origins of network
analysis in sociology and political science,
and then describe recent methodological
developments and the promise we believe they
hold for research in political science.

Social network analysis refers to the study
of links between nodes. To make the analysis
social (rather than physical or biological),
nodes typically refer to persons or organi-
zations or states, while links represent some
form of connection or flow between the nodes
(e.g., friendship, trade, military engagement).
The network connecting nodes via links thus
represents patterns of relations among social or
political actors, and can be understood as a type
of structure. The motivation behind examining

these characteristics is that network structure
may capture important contours of opportu-
nity and constraint that shape social, political,
or economic behavior. For instance, sparse
networks tend to be fragile, whereas dense net-
works, which have many paths between groups
of nodes, are less likely to fall apart over time.

Formal network analysts typically encode
empirical information about linkages between
nodes into a matrix. Actors and nodes are listed
on the rows and columns, and data describing
connections between nodes are recorded as
cell entries in the matrix, which is often called
a sociomatrix. This matrix is isomorphic to a
graph where links connect the nodes. The fact
that networks can be represented as matrices
and graphs allows us to leverage important
mathematical features associated with graph
structures. Two broad classes of characteristics
can be elicited from network graphs: features
characterizing the entire network’s structure,
and features describing the network position of
particular nodes. At the network level, we may
be interested in how sparse or dense the graph
is, how tightly clustered it is, whether it shows
evidence of hierarchy, or if it is fragmented
and filled with holes and gaps. At the individual
level, we may ask how “close” a node is to oth-
ers in the network, whether the node is highly
connected, is central or peripheral, or whether
others are dependent on the node for access
to distant others. Each of these features can
be captured with a descriptive network statistic
calculated on the link structure recorded in the
matrix of network data. This mode of descrip-
tive network analysis has a long tradition in
sociology, where analyses have proven useful
for revealing meaningful characteristics of the
structure of relations that are not necessarily
obvious from—nor even contained in—the
type of individual-level information typically
collected about node characteristics.

Methodologically, this approach grew out of
Jacob Moreno’s (1938, 1960) efforts to develop
a science of sociometry in the early twentieth
century. Moreno is perhaps best known for hav-
ing invented group psychotherapy, but in the
network world he is known for his invention of
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sociograms, which are elementary network di-
agrams that depict the connections among ac-
tors. As early as April 13, 1933 his work con-
structing a wide variety of social network maps
was described in the New York Times. After
having charted the friendship ties among 500
young women in the New York State Training
School, he noted:

If we ever get to the point of charting a whole
city or whole nation, we would have an in-
tricate maze of psychological reactions which
would present a picture of a vast solar system of
intangible structures, powerfully influencing
conduct, as gravitation does bodies in space.
Such an invisible structure underlies society
and has its influence in determining the con-
duct of society as a whole. (New York Times
1933)

The idea that you could measure the actual
social network, whether of a small subset of
young women, an entire city, or the entire
nation was a powerful idea.1 Inspired in part
by Moreno’s challenge, in the 1960s, Stanley
Milgram conducted the “small-world ex-
periment,” wherein he sought to estimate—
through experiment—the number of steps
needed to connect two randomly selected
Americans.2 Later in the century, the use of
networks as a tool for identifying the structures
of society gained considerable prominence in
sociology largely through the work of Harrison
White and his graduate students at Harvard.
At about the same time, Lin Freeman and his
colleagues at the University of California Irvine
began to work seriously on the relationship
between networks and mathematical graph
theory, and as a consequence made a series of

1Moreno himself was not shy about his proclamations. In the
1930s, he estimated that there were 10–15 million isolated
individuals in the United States, based solely on his study of
500 women in the New York State Training School.
2In fact, polymath Manfred Kochen and political scientist
Ithiel de Sola Pool had speculated about this problem in an
earlier manuscript that circulated in unpublished form for
decades. When the journal Social Networks was founded in
1978, this paper was published as the lead article in the first
issue (de Sola Pool & Kochen 1978/1979).

major advances in the measurement of network
characteristics.

In political science, most early studies used
networks as a way to visualize hierarchy, espe-
cially the hierarchy of the world system. This
work includes Galtung (1971), Baumgartner
& Burns (1976), and Wallerstein’s (1974)
widely read attempt to leverage Ferdinand
Braudel’s ideas and create a picture of the mod-
ern world system. In political science (unlike
sociology), network analysis was largely quali-
tative and allegorical at this stage. One excep-
tion was among survey researchers (e.g., Robert
Huckfeldt), who began to collect data about the
networks surrounding individual respondents
in representative samples.

Contemporary work on political networks
has been stimulated by heightened interest in
terrorist networks in the wake of the attack on
the United States in September 2001. Coin-
cident with this has been phenomenal growth
in the availability of inadvertent and designed
data on a wide range of topics that can reveal
linkages among people and things. Finally, the
emergence of networking technologies (vide
Twitter as a tool of antiregime forces in Tehran)
has shattered the myth upon which a lot of em-
pirical investigations in political science were
predicated; namely, that individuals don’t affect
other individuals who are being studied. Thus
the past decade has witnessed an explosion of
studies invoking the idea of “networks” across
almost every topic social scientists investigate.

Because networks reflect structure, network
analysis is powerful when the empirical data
accurately reflect the totality of connections (or
accurately reflect the absence of connections)
between relevant nodes, and when these con-
nections are durable. Even with newly available
data sources, these conditions are rarely met
in practice, and often what is not known (e.g.,
“missing data” on nodes or links) or variable is
critically important for our interpretation of the
network. It turns out, for instance, that mea-
sures of network centrality are highly depen-
dent on knowledge of all the nodes and all the
linkages; if data involving a highly central actor
is missing, the descriptive centrality measures
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on the resulting graph will be far lower than
would have been calculated if all data were avail-
able. Thus if, for example, even some of Atta’s
linkages were missing in the 9/11 network—
because they were hidden or unobserved by
analysts—then different nodes would be identi-
fied as the most central players in the network.
Unfortunately, the vast majority of network
analyses to date rest on the usually unreason-
able assumption that all the data are static and
known and observed without error. Until very
recently, few studies have been able to provide
probability estimates of the uncertainty that the
network is correctly and completely described.

In our reading of the field, we identify three
distinct approaches to studying networks in po-
litical science today: qualitative and allegorical
invocation of network concepts, descriptive and
statistical examination of network graphs, and
latent variable approaches that explicitly model
the observation of links. We summarize and
evaluate each of these approaches, illustrating
the kinds of questions each can address. We
argue that most of political science remains
focused on a descriptive, sociometric approach
to network analysis, but that greater scholarly
leverage will be found by exploiting newly avail-
able latent space models for graphs.

ANALOGICAL NETWORKS
FOR POLITICS

Within political science, the idea of networks
or actors self-consciously organized to achieve
some political end has a long tradition. A nice
example of this type of work is Keck & Sikkink’s
(1998) award-winning book, which argues that
advocacy networks have long existed as a struc-
ture that facilitates collaborative and effective
advocacy. They note that such networks are
increasing in their importance in the realm
of international affairs. For Keck & Sikkink,
networks initially emerge from face-to-face en-
counters in which trust is established among the
advocates. Keck & Sikkink focus their inquiry
on the complex interactions among advocates
and activists as well as their construction of
broadly conformable frames of meaning and

context. In this work, networks are presumed to
be elusive exactly because they marry the actors
and the actions to one another. Broadly speak-
ing, a network in this sense is a social movement,
and for many scholars following in this tradi-
tion, network language can easily be replaced
with a social movement ontology. From this
perspective, networks accomplish two things
that are generally useful to advocates: They
accelerate the transmission of information
and they are helpful to establish and reinforce
“identities” and common frames of reference.

Keck & Sikkink find that the network of
activists is neither top-down and hierarchical
like military organizations, nor bottom-up and
market oriented like modern open economies.
Rather, the network is somehow bound
together by common goals, and it spans across
the hierarchy and transects the utilities of a
market. In Keck & Sikkink’s view, the net-
work is a unitary actor that is entirely con-
structed by the actions and identities of the ad-
vocates and activists (other actors). Advocacy
networks act within the context of campaigns,
such as the campaign to condemn Argentina’s
human rights policy, especially the disappear-
ance of dissidents. These networks themselves
influence the ebb and flow of politics in par-
ticular domains by rapid transmission of polit-
ically beneficial information, by the creation of
symbolic frames for common interpretation of
events, or by demanding that powerful agents
respond to particular issues. Advocacy networks
can also effectively illuminate the accountability
of individuals and groups in particular domains.

The qualitative and analogical analysis of
networks has proven enormously popular and
has become a widespread approach in political
science. Not only did Keck & Sikkink’s volume
win the 2000 Grawemeyer Award for World
Order, but it has inspired literally thousands
of other studies in the decade since its publi-
cation. The upside of this approach is that it
highlights the importance of considering con-
text and interdependencies in qualitative stud-
ies of political questions. The downside is that
the exact configuration of the networks is diffi-
cult to pin down and explicitly evaluate. Many
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network analyses following in Keck & Sikkink’s
footsteps do not emphasize how variation in
network structure shapes the processes under
investigation.

DESCRIPTIVE AND STATISTICAL
EXAMINATION OF GRAPHS

It is hard to pin down the first recognition that
the entirety of social relations has strong im-
pacts on group as well as individual behavior,
though it is certainly a foundational insight for
the discipline of sociology. Georg Simmel is of-
ten credited with introducing the phrase “webs
of relations” into the study of society, and our
notions of the importance of dyads and triads
can be traced directly to his work. Moreno’s
creative work was also seminal, both for linking
the network to individual characteristics such
as mental health status, and for linking pic-
tures of networks to mathematical representa-
tions of graphs. A group of psychologists study-
ing small-group networks at the Massachusetts
Institute of Technology, led by Alex Bavelas,
pioneered the focus on network centralization
as a key structural feature that relates broader
network patterns to individual- and group-level
outcomes.

Harrison White helped to create the
modern study of social networks. White’s work
on social structure and social mobility was es-
pecially influential, in part because he focused
not on individual attributes but rather on how
relations among actors formed the architecture
of social structures. Thus, to study mobility,
he studied the structure of vacancies; to
understand kinship, he—like anthropologists
before him—studied how relations produce
role structures (White 1970). But perhaps
White’s most significant contribution was the
idea of structural equivalence. White and his
associates developed an algebra for analyzing
graphs and rearranging them so that similarly
connected actors would be grouped into
structurally equivalent (and jointly occupied)
positions (Lorrain & White 1971, Boorman &
White 1976, White et al. 1976). In subsequent

years, White’s loyal students developed his
fundamental ideas, applying social network
analysis in the field of sociology and a bit be-
yond. These students and students of students
included Mark Granovetter, Kathleen Carley,
Ronald Breiger, Peter Bearman, Roger Gould,
Barry Wellman, Margaret Theeman, Steve
Borgatti, and many others.

The preeminent example of White’s impact
is perhaps Granovetter’s pathbreaking article
on the strength of weak ties. This paper, initi-
ated while Granovetter was a graduate student,
illustrates that diffuse networks with bridging
ties could be more useful in contexts such as job
search and social mobilization than dense net-
works of many ties (Granovetter 1973). This
article continues to be the most cited article
in the network realm, and one of the most
highly cited social science articles in any field.
Granovetter attributes the origins of the paper
to discussions with Harrison White and others
in the Social Studies Department at Harvard
in the late 1960s. Slightly outside of White’s
orbit, but almost as influential, is Ronald Burt,
whose 1982 book expanded on Granovetter’s
insights and propelled the use of social network
models both methodologically and practically
(Burt 1982). Burt’s major contribution is to in-
troduce the idea of structural holes to network
analysis, although he has also built bridges into
the business world.

By the early 1980s, a “school” of empiri-
cally oriented structural network analysis had
developed out of the sociological tradition. Ad-
herents of this school studied a wide variety of
topics and social processes, including coopera-
tion (Eguı́luz et al. 2005), collaboration (Uzzi &
Spiro 2005), contagion (Centola & Macy 2007),
diffusion (Bearman et al. 2004), deliberation
and discussion (McPherson et al. 2008), vio-
lence (Kreager 2007), social connections among
employees (Castilla 2005), and behavior of mi-
grants (Korinek et al. 2005). The core idea was
to treat concrete patterns of relations as funda-
mental structures in society; the methodologi-
cal tools favored by this group were descriptive
measures of complete graphs that captured key
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structural features of networks.3 A summary of
these core concepts is offered below:

� Betweenness: the extent to which a node
lies between other nodes. High between-
ness often implies that other nodes are
dependent for access to information or
valued goods (e.g., Kolaczyk et al. 2009).

� In-degree: the number of links sent to a
node. In-degree is often used as a measure
of popularity (e.g., Hämmerli et al. 2006).

� Out-degree: the number of links sent by a
given node (e.g., Hämmerli et al. 2006).

� Centrality: how central or important
nodes are in a network. Several measures
capture aspects of this idea, including be-
tweenness, in/out degree, and closeness
(e.g., Maoz et al. 2006).

� Prestige: a measure of centrality that
weights in-degree more highly than out-
degree. High-prestige nodes are more
likely to receive ties than send them.

� Eigenvector centrality: a measure of node
centrality developed by Bonacich that as-
signs higher weight to links connecting
a node to other central nodes. Thus,
in large networks, important nodes are
those that are connected to other impor-
tant nodes (e.g., Fowler et al. 2007).

� Structural equivalence: the idea, developed
by White, that similarly situated actors
create a class. Structural equivalence is
measured by the extent to which nodes
have a common set of linkages to other
nodes in the system (e.g., Cao 2009).

� Homophily: the tendency of similar ac-
tors to form connections to one another
(McPherson et al. 2001).

� Path length: the number of steps it takes
to connect a pair of nodes. Directly con-
nected nodes have a path length of one;
indirectly connected nodes have a path

3An important mathematical premise of many of these mea-
sures is that the eigenstructure of the matrix/graph can be
used to yield numerical information about the centrality of
each node. Eigenvalues are scalars that are associated with
linear systems of equations. These are sometimes referred to
as characteristic or latent roots.

length of two. At the graph level, the av-
erage minimum path length between all
pairs of nodes reflects how “small” the
world is (e.g., the seminal work of de Sola
Pool & Kochen 1978/1979).

� Centralization: a graph-level measure that
tells how concentrated the links are
around a small number of nodes.

� Closeness: a graph-level measure of how
close nodes are to one another. Techni-
cally, it is the inverse of the sum of the
shortest distances between each node and
every other node.

� Clustering: a graph-level measure of the
extent to which the graph contains locally
dense clusters of nodes. It is measured as
the probability that two associates of a
node themselves are linked (e.g., Fowler
et al. (2011).

� Cliques: dense subnetworks in which
each node is connected to every other
node. Members of cliques often behave
similarly.

� Bridges: nonredundant links that connect
different parts of a network. Bridges often
play an important role in the diffusion of
information, and because they offer bro-
kerage opportunities, they can contribute
broad social integration.

� Density: the ratio of ties in a network to the
total possible number of ties. Dense net-
works, which are more tightly connected
than sparse networks, are often associated
with solidary and hold collective action
potential.

� Structural hole: a gap in a network; an ab-
sent link that, if present, would create a
bridge between two or more nodes (e.g.,
Carpenter et al. 2004).

Throughout the 1970s and 1980s, a few po-
litical scientists began to use network concepts
in their research as well. Knoke (1976) began
his important research into the social bases of
politics. At about the same time, Franz Urban
Pappi at Mannheim began to promote the use
of networks in the study of policy (Laumann
& Pappi 1976), work that would be elaborated
and adapted during subsequent decades (Pappi
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& Henning 1998, Roch et al. 2000). It was in
the realm of American politics that the network
perspective really took root. Sometime during
the 1970s, Robert Huckfeldt was pointed to-
ward the sociological network literature by his
advisor, polymath John Sprague. Huckfeldt’s
(1977) dissertation was entitled “Political
Behavior and the Social Context of Urban
Neighborhoods.” Huckfeldt initially seized on
the idea of measuring a neighborhood social
context as a network, and he recognized the sig-
nificance of network ties for an individual’s po-
litical behavior. His first publication used con-
textual language familiar to political scientists
(Huckfeldt 1979), but by 1983 he had pub-
lished an important piece in sociology that
drew explicitly on the formal analysis of social
networks (Huckfeldt 1983). Four years later,
Huckfeldt & Sprague (1987) published what
may have been the first article devoted to net-
work analysis in the flagship journal of political
science. Throughout the 1980s and into the
current century, Huckfeldt continued to draw
upon and develop the idea of social networks
for studying political change, party loyalties,
social class, political choice, race politics, and
aspects of political communication.

By the 1990s, UCINET (http://www.
analytictech.com/ucinet/), one of the first
widely available social network analysis soft-
ware packages, made it easy to calculate
descriptive statistics on data arranged as
networks or graphs—something that had not
been feasible with the mainstream statistical
computing packages such as SPSS and SAS. As
a result, many political scientists followed the
sociological lead and focused on the statistical
description of network features, primarily con-
centrating on various measures of centrality,
which seemed to somehow capture the concept
of power.

As network analysis has penetrated the quan-
titative branches of political science, many
scholars have incorporated node-level descrip-
tive network statistics into standard statistical
models. [Montgomery & Nyhan (2010) em-
ploy this strategy; see also Roch et al. (2000),
and more recently Koger (2009).] An example

from the field of international relations is the
work of Maoz et al. (2006), which measures
structural equivalence in terms of in-degree and
out-degree and then uses these measures in
a fairly catholic regression framework to test
ideas about the impact of features of the net-
work. Victor & Ringe (2009) illustrate statisti-
cal tests on some network statistics in the con-
text of caucuses in the U.S. Congress. Fowler
(2006) maps more than a quarter of a million
pieces of legislation proposed between 1973
and 2004 in his study of the network structure
of Congress. Fowler derives a measure of the
social distance among all legislators from the
network of cosponsorship; these connectedness
measures are then introduced into simple re-
gression models to predict aspects of legislative
behavior, most notably showing that connected
legislators tend to vote in favor of bills more of-
ten than those less connected.

Inferential Statistics

In marked contrast to analogical and/or de-
scriptive modes of network analysis (Hafner-
Burton et al. 2009), Huckfeldt’s 1983 network
article developed a model of the “probability
that a member of group i in context j will form
a friendship with another member of group i
after k opportunities for friendly association”
(p. 655). Although it was not fully appreciated
at the time, Huckfeldt’s approach brought in-
ferential statistics into the realm of structural
network analysis. Huckfeldt (1983) did not cite
Frank (1971), nor the pathbreaking work of
Besag (1972)—who established the then-
practical approach to doing statistics on graphs
known as pseudolikelihood estimation—but he
did utilize (or perhaps reinvent) a strategy for
estimating the probability of a graph’s tie struc-
ture. By combining descriptive and inferen-
tial statistics, Huckfeldt bucked the dominant
trend of network analyses, which still empha-
sized mathematical description. Much of the
most exciting work in the study of networks
now builds on efforts to use modern statisti-
cal methods to model the structure of complete
networks.
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Long before Huckfeldt, the earliest at-
tempts at statistical modeling of complete social
network–like data was the Bernoulli random
graph distribution proposed independently by
Erdos & Rényi (1959) and Rapoport (1953).
Although this model is extremely important in
graph theory, its underlying assumption—that
network edges (links) are independent of each
other—is implausible in almost all human social
networks (Robins & Morris 2007). Building on
Besag’s (1974) seminal proof that showed how
to represent a Markov random field as a proba-
bility distribution, Frank & Strauss (1986) made
a crucial breakthrough. They realized that ap-
proaches from spatial statistics and statistical
mechanics could be translated to social network
contexts. They developed models that went be-
yond dyad independence, with assumptions that
could be viewed as empirically and theoretically
sound. Unfortunately, their paper on Markov
random graphs was not given much initial
attention by social network researchers. In the
second half of the 1990s, Stanley Wasserman
and Pip Pattison recognized the value of Frank
& Strauss’s work and reconnected Markov ran-
dom graphs and further generalizations to the
social networks field as so-called p∗ models
(Pattison & Wasserman 1999, Robins et al.
1999). At the same time, there was growing in-
terest in statistical models for other types of so-
cial network data, especially models for multiple
observations of networks across time (Snijders
2001).

Exponential random graph models
(ERGMs) illustrate the processes that govern
the formation of links in networks by including
terms representing different aspects of node
or network structure. In an ERGM, the
predictors are functions of the ties themselves.
Called “network statistics,” each predictor in
an ERGM represents a specific configuration
of links—such as edges or triangles—that
is hypothesized to occur more often or less
often than expected by chance; the value of
the term is a function of the number of such
configurations in the network. These terms,
together with their coefficients, are sufficient
to represent the probability distribution over

the space of networks of a given size. As these
predictors are direct functions of the response
variable (a tie between i and j), ERGMs can be
thought of as autoregressive models, and this
changes many aspects of model specification
and estimation. The modeling class is general
(Wasserman & Pattison 1996) and should be
capable of capturing the structure of diverse
empirical networks, allowing for statistical
inference about that structure. The general
classes of ERGMs are defined by the terms in-
cluded as predictors; examples (Handcock et al.
2008) include dyadic-independent, dyadic-
dependent, and curved exponential-family
terms. Every predictor entered into an ERGM
must have an algorithm for calculating the
associated network statistic, or, more precisely,
an algorithm for calculating its associated
change statistic, defined as the difference in the
value of the network statistic for two networks
that differ from each other only in the presence
or absence of a proposed edge (or edges).

More specifically, assume that Yij is a so-
ciogram for which the entries are in the set 0,1,
and are 1 for yij if and only if a “relationship”
exists between i and j. A random graph model
that is exponential simply expresses the proba-
bility of the graph Y as an exponential function
of a set of parameters, θ , and a set of statistics,
s( y), on the graph:

Pθ (Y = y) ∝ exp θ ts(y).

To estimate this with standard approaches such
as maximum likelihood requires evaluating the
probability over all possible graphs of the same
size as Y, which is not feasible. Pseudolikeli-
hood approaches were developed, which looked
at the log probability of graphs conditional on
changing a single edge from 0 to 1. A more re-
cent alternative is to use a Markov chain to sam-
ple from the distribution that produces the de-
sired network. Fortunately, these Markov chain
Monte Carlo (MCMC) estimation approaches
are widely available in network software.

Underlying ERGMs is the assumption that
the observed network is generated by a stochas-
tic process in which relational ties come into
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being in ways that may be shaped by the pres-
ence or absence of other ties (and possibly
node-level attributes). These local social pro-
cesses could affect levels of reciprocity in dyadic
relations, or actors with similar attributes
could be more likely to form friendship ties
(homophily). Or, following the logic of balance
theory, slightly larger-scale influences could
operate: If two unconnected actors are con-
nected to a third actor, at some point a friend-
ship tie is likely to form between them (transi-
tivity). Note that in addition to the assumption
of stochasticity, this description is also implic-
itly temporal and dynamic.

A common application of ERGMs is
analyzing friendship in a school classroom.
The observed network to be modeled is the
network for which one will have measured
friendship relations. There are many possible
networks that could have been observed for
that particular classroom, and the model evalu-
ates the probability of observing that particular
configuration, conditional on the hypothesized
features. In other words, some structures in
the network may be quite likely and some very
unlikely to happen, and the set of all possible
structures with some assumption about their
associated probabilities is a probability dis-
tribution of graphs. The observed network
is placed within this distribution rather than
being compared to friendship networks in
other classrooms (Robins et al. 2007).

Robins et al. (2007) present five steps for
constructing an ERGM:

1. Each network tie is assumed to be a
random variable, not fixed.

2. A speculation about the process that gen-
erates the network linkages is proposed.
Ties can be independent of one another
or contingent in some way. For example,
if a node has one tie to another node with
two ties, it may be more likely to have or
form additional ties.

3. As a result of these speculations, the
dependency structures imply a particular
form to the network. Each parameter
corresponds to a configuration in the
network, and the model represents a

distribution of random graphs that
represent these configurations.

4. Complicated models are simplified by im-
posing constraints on some of the ties or
on some of the probabilities.

5. Finally, the parameters of the model can
be estimated using modern statistical and
numerical techniques.

Most work on ERGMs has focused on
a small set of model specifications, most
commonly the Markov graphs of Frank &
Strauss (1986). Recently, MCMC algorithms
have been developed that produce approximate
maximum-likelihood estimators. However, ap-
plying these models to observed network data
often has led to problems, most notably degen-
eracy. Degeneracy is the phenomenon in which
a seemingly reasonable model can actually be
such a poor misspecification for an observed
dataset as to render the observed data virtually
impossible under the model. The degeneracy
often prevents model estimation from converg-
ing on finite parameter estimates (Handcock
2003, Goodreau 2007).

The alternative forms proposed by Snijders
et al. (2006) and Hunter & Handcock (2006),
which have similar underlying interpretations
but more robust properties, not only avoid
degeneracy but have proven to be empirically
useful. These parameterizations, combined
with advances in computational algorithms,
now allow one to conduct general statistical
inference on networks between one and two
orders of magnitude larger than those that so-
cial network analysts have long been studying.
These specifications represent structural prop-
erties such as transitivity and heterogeneity of
degrees by more complicated graph statistics
than traditional star and triangle counts. Three
kinds of statistics are proposed: geometrically
weighted degree distributions, alternating
k-triangles, and alternating independent
two-paths (Goodreau 2007).

So far, there have been but a few appli-
cations of ERGMs in political science, but
interest in these models seems to be growing.
One nice example is Lazer et al. (2010),
which examines whether social affiliations
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and political attitudes tend to coevolve. The
authors find significant conformity effects that
may be attributed to one’s social network. This
work builds methodologically on the ERGM
as a way of evaluating the idea that homophily
is pervasive in politics, as it is in other domains.
The key result is that social and political ties are
more prevalent among similar individuals. This
turns out to be true in repeated examinations,
and it turns out to also be true that the attitudes
within a group of similar individuals tend to
move closer to one another over time. This
research is similar to work on the effects of
networks by Christakis & Fowler (2007). More
recently, Cranmer & Desmarais (2011) attempt
to use this approach in longitudinal analysis.

Clearly, modern ERGMs go far beyond the
first experiments with p∗ models, which re-
quired a substantive interpretation of various
types of links, such as 2∗ (links between two
nodes), 3∗ (links among three), and information
about the distribution of these kinds of links in
particular networks. Current implementations
of ERGMs are very general and allow analysts
to both describe and make inferences about the
network. What the ERGM approaches offer is a
way to combine descriptive social network anal-
ysis with a principled approach to estimation
of the probability of different complex linkage
structures within the network.

Small Worlds and Power Laws

One controversial idea, promulgated from the
earliest network studies, is the assertion that
different kinds of networks dominate different
arenas. Politics was thought to be characterized
by hierarchy and trade by center–periphery
structures. In the late 1990s, Watts & Strogatz
(1998) reintroduced and formalized the idea of
“small-world networks.” These are networks
in which most nodes are located in locally
dense clusters but yet can “reach” all other
nodes in the population via a very small
number of bridging connections. Watts (2004)
suggested that such small worlds characterize
a wide variety of human-generated networks,
in part because they offer a favorable blend

of the identity advantages of dense clustering
and the information advantages of bridges
or short path lengths. Although more recent
empirical analysis has shown mixed support
for this assertion, political scientists and others
have used the small-world concept to study
information cascades (Fowler 2005).

Another network structure that some argue
is general is a hub-and-spoke structure. For
example, because of their relatively high levels
of clustering, small-world networks may have
hubs located between many other cliques. In
hub-and-spoke networks, a small number of
nodes have many more connections than aver-
age; thus, hub-and-spoke structures produce a
characteristically skewed distribution in nodal
degree.4 Réka et al. (1999) showed that a pro-
cess of preferential attachment, in which nodes
form attachments to those nodes that already
have a large number of linkages, is sufficient
to generate a skewed degree distribution that
follows a power law.5 Since Barabasi’s work
became prominent in promoting the investi-
gation of the degree distribution of networks
via so-called fat tails, there have been many
discoveries of networks that can be described as
hub-dominated networks (Cederman 2003a,b),
although it is increasingly recognized that
generative mechanisms other than preferential
attachment produce networks with fat-tailed
degree distributions (Clauset et al. 2009). A
recent study by Farrell & Drezner (2008)
includes a careful examination of this idea.
These authors note that the network of blogs
may not be quite power-law distributed—even
though it does seem to be highly skewed along
similar lines (log normal).

In summary, social scientists are just begin-
ning to discover the different topologies that
may usefully describe a wide variety of political
networks at different scales.

4The degree distribution of a network is simply the distribu-
tion of the number of connections held by each node.
5Power laws have scale invariance in which the fraction of
nodes in a network having k connections is given by P (k) ∼
k−γ , where γ is bounded 2 < γ < 3.
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NETWORK DATA COLLECTION
TECHNIQUES

Collecting network data is more complex
than collecting other types of data commonly
used in political science. The challenges are
particularly acute when research questions
require complete network data (as opposed to
data describing the local network surrounding
a randomly selected respondent), since this task
requires determining both the boundary of the
relevant population and the presence or absence
of a tie between each pair of nodes. Sometimes,
as in studies of the networks in Congress, the
boundaries of a group are well defined. When
the boundary of the relevant population is
not known, snowball sampling (Useem 1972,
Erickson 1979) and respondent-driven sam-
pling (Salganik & Heckathorn 2004) can be
useful, although each presents problems when
the underlying structure of connectivity is
not well understood. In general, sampling
strategies appropriate for complete network
analysis are very much in their infancy (e.g.,
Handcock & Gile 2010).

The basic tools of network data col-
lection include questionnaires, interviews,
observations, archival records, and experi-
ments. Questionnaires and interviews typically
include some means of assessing membership
in a relevant group or population, either via a
name generator or a roster. For example, Bear-
man et al. (2004) use data from the National
Longitudinal Survey of Adolescent Health, a
massive roster-based dataset in which a nation-
ally representative sample of students attending
132 schools identified their friends and their
sexual and romantic partners from a roster of
other students attending their school. These
responses enabled researchers to map the com-
plete sexual network of an entire school.

The basic network questions ask about the
presence, type, and intensity of a relationship
between the respondent and other actors. Ad-
ditional questions may cover the attributes of
actors (age, gender, education, and occupa-
tional status in the case of individuals; or gover-
nance type, trade specialties, etc. for other types

of actors). Scholars have also included ques-
tions designed to gauge perceived and objec-
tive strength of ties, including the frequency
and duration of contact (Granovetter 1995), the
provision of emotional support and aid within
the relationship (Wellman 1982), and the social
distance between nodes (Marsden & Campbell
1984).

Questionnaires are most intuitive when
network nodes are individuals, but this tech-
nique can also be used when collective entities,
such as nonprofit organizations, corporations,
or international organizations, are nodes in
the network; in such cases, an individual
representing the collective reports the collec-
tive’s ties (Galaskiewicz 1985, Laumann et al.
1985). When questionnaires are not feasible,
interviews can be used to gather network data
(Galaskiewicz 1985, Wellman & Wortley
1990).

Some scholars have collected network data
by observing face-to-face interactions among
small groups of actors (Bernard & Killworth
1977, Killworth & Bernard 1976), while
others have turned to archival records to mea-
sure ties (Rosenthal et al. 1985, Hummon &
Carley 1993, Padgett & Ansell 1993). Burt &
Lin (1977) discuss how social network data can
be extracted from archival data including news-
papers, court records, and journal articles.

LATENT SPACE APPROACHES

Although the descriptive and inferential ap-
proaches to analyzing political networks have
much to recommend them, new developments
in network analysis allow us to take the inferen-
tial approach even further. Assume that there is
an unobserved network that is characterized by
the probability of interaction among its nodes.
The goal of this approach is to use a model, plus
data on observed relations, to make statements
about the underlying, though unobserved,
“space” in which the network actors interact.
This framework may be natural in international
relations, where countries are interacting with
one another, but it can be more widely applied.
In this conception, the data matrix represents
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the relations among the rows (which could
be documents, people, institutions, years, or
countries) and the columns (which could be
any of the above). In an international relations
example, the matrix might represent the trade
flows among a fixed set of countries during
a given year. Or the entries might represent
whether the countries are at war with one
another during a given period.

If the sociomatrix is composed of values in
the set {0,1}, it can be thought of as a binary
graph; if the values in the sociomatrix are sim-
ply in the set R, then it can be treated as a
weighted graph. In some sense this is just a ma-
trix that contains information about the rows
and the columns. In principle this could be an-
alyzed by standard statistical frameworks, such
as ANOVA. But there are many dependencies
in these data that foil treating them in a stan-
dard statistical framework. In the first instance,
there is an inclination for actors to behave to-
ward others in a consistent manner, or, alter-
natively, for actors to be the object of con-
sistent policies from others. For instance, the
prevalence of reciprocity—a second-order de-
pendence among observations—in directional
network data challenges the basic assumption of
observational independence. Various forms of
third-order dependence may also be observed
in networks, and treating dyads {i, j}, {j, k},
and {k, i} as independent may ignore impor-
tant patterns in network data.

Third-order dependencies includes (a) tran-
sitivity, (b) balance, and (c) clusterability
(Wasserman & Faust 1994). Transitivity fol-
lows the familiar logic of “a friend of a friend
is a friend.” In particular, for directed binary
data, any triad i, j, k is transitive if whenever
yi,j = 1 and yj,k = 1, we also observe that
yj ,k = 1. A triad i, j, k is said to be balanced
if each pair of actors within the triad relates to
the remaining third actor in an identical fash-
ion: yi, j × y j,k × yk,i > 0. For example, if yi,j

is positive, then for the triad to be balanced,
yj,k and yk,i must be either both positive or both
negative. A triad is clusterable if it is balanced,
either because all ties are positive, or because it
contains one positive and two negative ties. A

clusterable triad can be divided into groups
where the measurements are positive within
groups and negative between groups.

Because of second- and third-order depen-
dencies, knowledge of the relations between i
and j and between j and k typically reveals
something about the relationship between i and
k, even when we do not directly observe it. Hoff
et al. (2002) note:

In some social network data, the probability
of a relational tie between two individuals may
increase as the characteristics of the individu-
als become more similar. A subset of individ-
uals in the population with a large number of
social ties between them may be indicative of
a group of individuals who have nearby posi-
tions in this space of characteristics, or “social
space.” If some of the characteristics are unob-
served, then a probability measure over these
unobserved characteristics induces a model in
which the presence of two individuals is de-
pendent on the presence of other ties.

In other words, the social space summarizing
these unobserved characteristics is another im-
age of higher-order dependence in these dyadic
data. Positions in such a latent space represent
these dependencies. Stated differently, once the
higher-order dependencies are taken into ac-
count, the dyadic data can be analyzed by tech-
niques such as regression that assume the data
are independent of one another.

The latent space approach essentially argues
that there is an unobserved multidimensional
latent space in which proximity is directly re-
lated to the probability of interaction. Actors
that are closer together are more likely to in-
teract and have ties with one another, whereas
actors distant in this space are less likely to inter-
act. For signed, or valued, interactions, actors
close to one another will have positive interac-
tions; actors at opposite ends of the social space
may have a high degree of interaction, but it
is likely to be negative. By conceptualizing the
latent space in this way, we can use it to cap-
ture the dependencies in the network such that,
conditional on the latent space, the nodes in the
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network may be treated as independent. That
is, the latent space captures the dependencies.
Since these methods are just being introduced
into the field of political science, we offer a brief,
though somewhat technical, introduction.

Consider a model for the sociomatrix
yi j = βT xi j + εi j . By standard assumptions,
the distribution of the errors is assumed to be
independently distributed (and invariant to per-
mutations of the labels of the observations). For
sociomatrices, this implies that the error distri-
bution is exchangeable to permutations of rows
and columns. Thus, for directed sociomatrices
we might have a linear specification that de-
composes the errors into three sorts of random
effects: εi j = ai + b j + γi j , with a, b, γ repre-
senting random variables. This implies that the
covariance structure of the errors has a partic-
ular form—and by implication, so do the actual
data.

This formulation is known as the round-
robin tournament, and this error structure can
be introduced into a linear model as:

θi j = βT xi j + ai + b j + γi j .

This formulation is a generalized linear mixed-
effects model in which observations are treated
as conditionally independent given the ran-
dom effects, but, like network data, are un-
conditionally dependent.6 This approach cap-
tures first- and second-order dependencies, but
third-order dependencies can be captured by a
bilinear effect that is added to the linear random
effects:

εi j = ai + b j + γi, j + uT
k vk,

with uTv representing latent positions in k
latent dimensions.7

6The notation used here is mostly from Hoff (2005). Sym-
metric sociograms would have latent positions represented
by uT u.
7Various formulations exist for the metric defining this space.
This product is chosen for its similarity to error metrics in the
regression framework (see Hoff et al. 2002 for more details).
This approach is similar to the work of Nowicki & Snijders
(2001) in terms of developing stochastic blockmodels.

This approach can be estimated with
modern statistical methods in the R packages
latentnet and eigenmodel. The advantage
of this formulation is that it permits the use
of a recognizable regression framework while
capturing the higher-order dependencies that
typify most network data. It also accommo-
dates attributes of nodes (separately as senders
and receivers) as well as attributes of dyads
themselves. In addition, it accommodates any
variety of link functions, allowing binary,
ordinal, and interval-level network data to be
analyzed. Moreover, because it is built on a
probability foundation, it can deal naturally
with missing data. It has been widely used to
estimate the probability of links that have not
(yet) been observed, an area of inquiry known
as link detection (Marchette & Priebe 2008).
In terms of interpretation, the regression part
is familiar, and the latent-positions part has
a quasi-geographical and easy interpretation:
The closer the nodes are together, the more
likely they are to have linkages.

In essence, latent space models provide a
principled way of locating the positions of nodes
so that their distances can be meaningful in
terms of the probability of interaction among
them. The latent positions can be statistically
estimated using Bayesian methods to estimate
the probability of linkages among nodes condi-
tional on observed data within and between the
known members of the system.

Figure 1 compares a latent space model
with a more typical social network analysis of
the communication and affiliation networks of
18 monks in a cloister undergoing rapid change
(Sampson 1969). These data have been analyzed
using many network methods, many of which
reveal three groups of monks: the loyal, the out-
casts, and the so-called Turks. But analyzis of
the latent network clusters permits an empir-
ical discovery or confirmation of these three
groups. As shown in Figure 1c, three clusters
are evident in the latent analyses, and these are
brought into strong visual and statistical relief
by the use of latent cluster analysis, a type of la-
tent analysis developed as an extension of latent
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(b) Monks in Latent Space
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(c) Monks in Latent Clusters

Figure 1
Three network representations of Sampson’s (1969) monk data. (a) The 18 monks in the cloister are
represented using a standard Fruchterman Reingold algorithm for locating nodes. Nodes 16 and 9 are close
to one another because they share a linkage. (b) Now the same monks are located in a social space estimated
by a latent space model. Three clusters are apparent. Nodes 16 and 9 are no longer close to one another
because each has a greater estimated probability of being linked with separate sets of nodes. Node 16 is in a
particular region of the social space, but 9 is in a different region of the latent space. (c) Latent cluster
analysis illuminates the three distinct groups, showing the links within them as well as among them.
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space analysis (Handcock et al. 2007).8 In par-
ticular, one not only sees the three groups, but
the density of links within as well as between
clustered nodes.

Latent space approaches allow the empir-
ical estimation of proximities of actors in a
latent network, along with measures of uncer-
tainty about those locations.9 These approaches
can be used to make accurate predictions about
networks without requiring complete knowl-
edge of the network as a starting point. Nodes
need not be individuals; networks may include
mixtures of products, experiences, groups, or-
ganizations, and individuals. Indeed, current
work (McCormick & Zheng 2010a,b) has ap-
plied the latent space model developed by Hoff
(2005) to study the implicit network structure
gleaned from random-digit dial surveys that
ask questions like “How many Kevins do you
know?” Deriving representations of networks
from such limited data opens up a wide range
of possibilities in the realm of political science
survey analysis.

AN AGENDA AND A
PROGRESS REPORT

Network analysis is currently a vibrant area
of political science. Lazer (2011) provides
a broad overview, while Huckfeldt (2009)
describes recent work in the field of American
politics, Siegel (2011) reviews network analysis
in comparative politics, and Hafner-Burton
(2009) surveys the research in international
relations. There is already an organized
section of the American Political Science
Association devoted to the study of net-
works, and with the help of the National
Science Foundation and the Office of Naval
Research, planning is under way for the
fourth Annual Political Networks Conference
(http://sitemaker.umich.edu/fordschool-

8See Krivitsky & Handcock (2008) for details on software to
implement such clustering.
9Ward & Hoff (2007) and Ward et al. (2007) provide exam-
ples in international relations; see also Greenhill (2010) and
Cao (2009).

pnc/home). Exciting new directions are
emerging, including the use of agent-based
simulation and analytical perspectives such as
game theory that will help us better understand
the relationship between networks and behav-
ior (McCubbins et al. 2009, Hassanpour 2010).
In particular, there is an emerging literature in
economics dedicated to modeling the strategic
formation of ties and the strategic behavior of
agents linked together, but this line of inquiry
is just beginning to influence political science
(Bramoullé & Kranton 2007, Jackson 2008).
It is clear that analysis of networks is here to
stay, and that insights from network studies
will be a growing part of the broader agenda
in political science, in ways that are analogical,
descriptive, empirical, and analytical.

In the midst of this rapid growth, an
important challenge is to find the substantive
concepts in political science that map most
naturally to networks. Sociology marries
easily to networks because sociologists are
primarily interested in the relationships among
individuals and groups in society. Thus, a wide
variety of well-developed sociological concepts
map almost directly onto the network frame-
work and vocabulary. At the other end of the
disciplinary spectrum, physicists have also eas-
ily embraced network science, not just because
the cold war is over but because physical mod-
els of percolation, organization, and collapse
have natural analogues in large-scale networks
describing a range of activities. To date, most
political scientists from a variety of subfields
have found the network approach useful for
identifying meso-level effects and impacts that
had been ignored in their traditional arena
of study, be it voting, spending, or bombing.
Yet many network concepts have not yet been
translated into the conceptual vocabulary of
political science (and vice versa); this must hap-
pen if the full potential of a network approach
to political science questions is to be realized.
Fortunately, we are beyond trying to explain
two-stars and three-stars in substantive terms
to the political science community, and the
discourse has moved toward a broader empha-
sis on the interdependence of actors in specific
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political contexts. Connecting concepts is a big
challenge, but we remain optimistic; it may well
be that one of the most pressing open questions
in political science—how to effectively measure
power and influence—can ultimately be solved
in a network setting, even when the data appear
to be trivial individually.10

Beyond forging better linkages between
theoretically meaningful concepts and network
characteristics, there are a few methodological
problems that will need to be solved for net-
work analysis to succeed more widely. Progress
is being made on a number of fronts. First and
foremost, for several decades the most powerful
network analyses have required a complete
map of the network. This debilitating con-
straint continues to plague some approaches.

10Interesting and promising work is being done now on the
power of 140-character utterances (Baksy et al. 2011).

Fortunately, new data sources and new
methodological advances (Gile & Handcock
2010) are serving to reduce this limitation. The
flip side of this problem is the degeneracy prob-
lem for ERGMs. Fortunately, approaches that
treat the network as a data problem, as opposed
to a graph problem, offer promise in this area.
Second, we have only begun to develop dynam-
ical models of networks. This is currently one
of the hottest areas in network methodology
[see Krivitsky & Handcock (2008) for ERGMs,
and more generally Hoff (2011), Westveld &
Hoff (2011), Snijders et al. (2012)].

As noted recently in Science (Lazer et al.
2009), the use of network insights will be crucial
in mastering the torrent of data that faces mod-
ern analysts, including political scientists. We
are convinced that the growing network data
cloud poses myriad new and fascinating puz-
zles and—in some instances—challenges our
accepted answers to old questions.
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