Exploring pro and anti-government movements during the 2019 Ecuadorian protests

Ramon Villa-Cox
rvillaco@andrew.cmu.edu

School of Computer Science, Carnegie Mellon
Summer Institute 2020

2019 Latin American Protests

- A series of protests that shocked the region at the end of 2019.
- They started in Haiti, followed by Ecuador, Chile, Bolivia and Colombia.

Rodrigo Buendia/Agence France-Presse — Getty Images
2019 Latin American Protests

- These effectively paralyzed the countries for weeks and in some cases, months.
- They also had a massive online presence and there was reported involvement of international and regional actors that sought to influence the evolution of the different protests.

2019 Latin American Protests

- We collected Twitter data across the different countries. More than 180 hashtags and terms were used for each country.
- A special effort was taken to collect conversations around antagonistic positions, by including hashtags that were used by different groups (for and against the different governments).
- During this hands-on session, we are going to focus on a subset of the Ecuadorian data.
Ecuadorian Protests

- Protests were originated as a response of an International Monetary Fund (IMF) sponsored austerity package which involved a rise in fuel costs.
- Interested parties that fomented the protests included indigenous leaders, student organizations and followers of former president.

Ecuadorian Protests

- Protests occurred from September to October and included violent incidents. The strike caused the paralysis of the economy due to looting and closed highways.
- After two weeks of violent manifestations in several of the main cities of the country, the President agreed with indigenous leaders to cancel the austerity package proposed.
Determining Pro and Anti Protests Tweets

- 180+ Hashtags and terms were used to collect data around the Ecuadorian protests, from September 20 to October 21 of 2019.
- This resulted in over 11 million tweets from 1.4+ million users.
- Hashtags were classified into either pro, anti or neutral to the protests based on a sample of the tweets.
- This resulted in 64 pro tags and 28 anti (the remainder being either neutral or not a hashtag).
Assigning Stance to Users

- Noisy stance labels were assigned to users based on their usage.
- Users were assigned a label if they only used tags for one side of the argument, either on their tweets or their user descriptions.
- This resulted in a subset of 203990 users.

User Protest Stance Distribution

What we can do with identified stances?

- Contrast Bot presence.
- Consumption of official and alternative news media. This includes Venezuelan and Russian news media.
- Presence of international campaigns seeking to incentivize the riots. There are multiple accounts from Venezuelan origins that were involved in the discussion across multiple countries.
- Interactions within and between groups.
- Construct a classifier to extrapolate the results from these accounts to the rest of the data collected.
PREPROCESSING THE DATA

Preparing Data for Hands On Session

- The subset of the data shown is too large to use in the present session. This provides the opportunity to review tools available in ORA to work with big data.
- The first thing is to exclude retweets and users that tweeted only one time. This was not done with ORA.
- The following slides show the steps taken in ORA to construct the data that is provided with the lecture.
Step 1: Importing Data

First, we are going to import the raw JSON file to ORA by using the Twitter importer as shown in the figures. By clicking in the derived networks tab, we also deselect networks related to location and words (as we won’t use it). Make sure Hashtag x Hashtag – Co-Ocurrence is selected.

Step 2: Selecting the Principal Component

- We are going first select users that are in the main component of the “Agent x Agent – Common Hashtags” network.
Step 3: Selecting the Principal Component

Then select the giant component and ask ORA to extract all the relevant networks that involve the Agent nodeset.

Step 4: Removing Isolates

- The newly created Meta-Network not only includes the main component of the Common Hashtag network, as it extracts it based on the networks selected at the end.
- We need to remove the remaining isolates.
Step 4: Removing Isolates

- We are going to remove isolates based on the following networks:
 - Agent x Agent – Common Hashtags
 - Agent x Agent – All Communication
 - Agent x Hashtag
 - Agent x Tweet – Sender

Step 5: Select Maximal K-Core

- Finally, we are going to select the Maximal K-Core of the Common Hashtag network.
- A K-Core of a network is a maximal subgraph where all nodes have at least K connections.
Step 5: Select Maximal K-Core

- This subset is still too big, so we are going to select the Maximal K-Core of the All Communication networks.

Step 5: Select Maximal K-Core

- This still includes isolates (as we specified the extraction of all other networks). So we are going to remove the remaining isolates (based on the same networks specified before), resulting in 2000+ agents.
Steps to take

- Open the file StancesEcuador.json. This is a de-identified version of the one constructed in the previous slides. This is done to adhere to Twitter’s regulations for sharing collected tweets.
- We are going to import the data and identify the different communities present in the data.
- Then we will contrast them to the observed stances derived for the users.
Import Data

- We are going to import the JSON data, making sure that we include the custom attributes included in the JSON specifying the stance of the users.

This imports the extra attribute as shown in the figure. We could also import the data if we have a separate file with the value for the different users.
Remove Extra-Tweets

- ORA parses the JSON strings taking the ids to users and tweets that were not part of our original sample.
- To maintain the small subset relevant to us, we are going to take again the K-Core of the relevant network.

Remove Extra-Tweets

- Again, given we extract all other networks, the extracted K-core includes a lot of isolates that we need to remove.
Determine User Communities

- There are several ways we can find the communities in the data. First, we can do it by using the visualizer.

- The previous methods do not create attributes in the nodeset. We can do this by using ORA reports.
Determine User Communities

- This creates additional attributes in the agent-set specifying the group membership of an agent.

Color Nodes by Group
Color nodes by stance

- We see that the users against the protests are also concentrated in one of the groups identified by either algorithm.

Discussion

- There is a clear pattern of communication within the anti-protest users. They are grouped together by both community detection algorithms.
- However, they are also grouped with several other pro-protest users.
- This is to be expected as we are not considering the nature of the interactions between the users.
Discussion

- Part of my research focuses on identifying the stances of those interactions.
- These stances can not only inform community detection algorithms, but they can be predictors of how tweets diffuse within the different communities.