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Abstract 
Over the past few years, reverse auctions have 
attracted a lot of attention in the AI community. 
They offer the prospect of more efficiently 
matching suppliers and producers in the face of 
changing market conditions. Prior research has 
generally ignored the temporal and finite capacity 
constraints under which reverse auctioneers typi-
cally operate. In this paper, we consider the 
problem faced by a reverse auctioneer (e.g. a 
manufacturer) that can procure key components 
or services from a number of possible suppliers 
through multi-attribute reverse auctions. This 
problem can also be viewed as a static abstraction 
of the procurement problem faced by agents in the 
new TAC’03 Supply Chain Trading Competition. 
Bids submitted by prospective suppliers include a 
price and a delivery date. The reverse auctioneer 
has to select a combination of supplier bids that 
will maximize its overall profit, taking into ac-
count its own finite capacity and the prices and 
delivery dates offered by different suppliers for 
the same components/services. The auctioneer’s 
profit is determined by the revenue generated by 
the products it sells, the costs of the compo-
nents/services it purchases as well as late delivery 
penalties it incurs if it fails to deliver prod-
ucts/services in time to its own customers. We 
provide a formal model of this important class of 
problems, discuss its complexity and introduce 
rules that can be used to efficiently prune the 
resulting search space. We also introduce a 
branch-and-bound algorithm and an efficient 
heuristic search procedure for this class of prob-
lems. Empirical results show that our heuristic 
procedure typically yields solutions that are 
within 10 percent of the optimum. They also in-
dicate that taking into account finite capacity 
considerations can significantly improve the re-
verse auctioneer’s bottom line. 

Keywords: Supply Chain Formation, Procurement, 
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1 Introduction 
Today’s global economy is characterized by fast changing 
market demands, short product lifecycles and increasing 
pressures to offer high degrees of customization, while 
keeping costs and lead times to a minimum. In this con-
text, the competitiveness of both manufacturing and ser-
vice companies will increasingly be tied to their ability to 
identify promising supply chain partners in response to 
changing market conditions. Today, however dynamic 
supply chain practices are confined to relatively simple 
scenarios such as those found in the context of MRO 
(Maintenance, Repair and Operations) procurement. The 
slow adoption of these practices and the failure of many 
early electronic marketplaces can in part be attributed to 
the one-dimensional nature of early solutions that forced 
suppliers to compete solely on the basis of price.  

Similarly, research in the area has generally ignored key 
temporal and capacity constraints under which most re-
verse auctioneers operate. For instance, a PC manufacturer 
can only assemble so many PCs at once and not all PCs are 
due at the same time. Such considerations can be used to 
help the PC manufacturer select among bids from com-
peting suppliers. In this paper, we summarize research 
aimed at exploiting these temporal and capacity con-
straints to help a reverse auctioneer select among com-
peting multi-attribute procurement bids that differ in 
prices and delivery dates. We refer to this problem as the 
Finite Capacity Multi-Attribute Procurement (FCMAP) 
problem. It is representative of a broad range of practical 
reverse auctions, whether in the manufacturing or service 
industry. We start by providing a formal definition of the 
FCMAP problem, discuss its complexity and introduce 
several rules that can be used to prune its search space. We 
then present a branch-and-bound algorithm and a heuristic 
search procedure along with empirical results showing that 
accounting for the reverse auctioneer’s finite capacity can 
significantly improve its bottom line.   

The balance of this paper is organized as follows. Section 
2 provides a brief review of the literature. In section 3, we 
introduce a formal model of the FCMAP problem. Section 
4 identifies three rules that can help the reverse auctioneer 
eliminate non-competitive bids or bid combinations. Sec-
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tion 5 introduces a branch-and-bound algorithm for the 
FCMAP problem. Section 6 presents a heuristic search 
procedure for the FCMAP problem that takes advantage of 
a property identified in Section 4. Empirical results are 
presented in Section 7, comparing variations of our search 
heuristic under different bid distributions, measuring dis-
tance from optimum and evaluating the impact of taking 
finite capacity considerations into account. Section 8 
provides some concluding remarks and discusses future 
extensions of this research.  

2 Literature Review 
Few researchers have studied supply chain formation 
problems in the context of capacity-constrained environ-
ments. A notable exception is the work of Gallien and 
Wein who have proposed a reverse auction mechanism 
that takes into account supplier capacity constraints [Gal-
lien and Wein, 2002]. Babaioff and Nisan have designed 
information exchange protocols that enhance supply chain 
responsiveness in the face of surges or drops in demand 
and supply [Babaiofff and Nisan, 2001]. Their work 
however assumes infinite production capacity, where an 
increase in the production volume of one product does not 
impact the ability of the manufacturer to possibly increase 
or maintain production levels for other products. Other 
relevant work includes that of Walsh and Wellman [1998], 
though here again capacity constraints are ignored. Sadeh 
et al., discuss MASCOT, an agent-based supply chain 
decision support tool that supports finite capacity models 
[Sadeh et al., 2001]. Their work to date has focused on the 
empirical study of real-time available-to-promise and 
profitable-to-promise functionality and on scheduling 
coordination across static supply chains. Another sig-
nificant effort in this area is the work carried out by the 
team of Collins and Gini in the context of MAGNET 
[Collins et al., 2001]. 

3 The Finite Capacity 
Multi-Attribute Procurement 
Problem 

The Finite Capacity Multi-Attribute Procurement 
(FCMAP) problem revolves around a reverse auctioneer – 
referred below as the “manufacturer”, though it could also 
be a service provider. The manufacturer has to satisfy a set 
of customer commitments or orders O },...,1{, mMii =∈

idd
. 

Each order i needs to be completed by a due date , and 
requires one or more components (or services), which the 
manufacturer can obtain from a number of possible sup-
pliers. The manufacturer has to wait for all the components 
before it can start processing the order (e.g., waiting for all 
the components required to assemble a given PC). For the 
sake of simplicity, we assume that the processing required 
by the manufacturer to complete work on customer order 
Oi has a fixed duration , and that the manufacturer can 
only process one order at a time (“capacity constraint”). It 
should be noted however that the model and techniques 
presented in this paper can easily be generalized to ac-

commodate setups or situations where the manufacturer 
can process multiple orders at the same time. 

idu

Formally, for each order Oi and each component 
iiji },...1{, nNjcomp =∈ , the manufacturer organizes a 

reverse auction for which it receives a set of 
multi-attribute bids 1 nj ij

 from prospective 
suppliers. Each bid kB  includes a bid price kbp  and a 
proposed delivery date dl . Below we use the notation 
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Failure by the manufacturer to meet an order Oi’s due date 
results in a penalty iitard T× , where iT  is the time by 
which delivery of the product or service is late, and itard  
is the marginal penalty for missing the delivery date. Such 
penalties, which are commonly used to model manufac-
turing scheduling problems, reflect actual contractual 
terms, loss of customer goodwill, interests on lost profits 
or a combination of the above [Pinedo, 1995].  

A solution to the FCMAP problem consists of: 
• a selection of bids: 

}_,...,_{ 1 mCombBidCombBid
CombBid _ M∈

, 
where i ( i ) is a combination of 

i  bids - one for each of the components required 
by order O
n

i, and 
• a collection of start times: ST , },...,{ 1 mstst=

where i  is the time when the manufacturer is 
scheduled to start processing order O

st

,ij ∀
i, and 

ii  since orders cannot be proc-
essed before all the components they require have 
been delivered by suppliers. 

,,..,1 njdlst =≥

Given a solution (Bid_Comb,ST), the profit of the manu-
facturer is the difference between the revenue generated 
by its customer orders (once they have been completed) 
and the sum of its procurement costs and tardiness penal-
ties. This is denoted: 
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where, 

• i  is the revenue generated by the completion 
of order O
rev

i (i.e., the amount paid by the cus-
tomer), 

•  is the price of component comp  in 
Bid_Comb, 

ijbp ji

•  with  being the 
start time of order O

),0( iiii dddustMaxT −+= ist
i in ST. 

It is worth noting that the above model contrasts with 
earlier research in dynamic supply chain formation 
[Faratin and Klein, 2001, Collins et al., 2001, Walsh and 
Wellman, 1998], which has generally assumed manufac-
turers with infinite capacity or fixed lead times and ig-
nored delivery dates and tardiness penalties. 

From a complexity standpoint, it can easily be seen that 
the FCMAP problem is strongly NP-hard, since the special 
situation where all components are free and available at 



time zero reduces to the single machine total weighted 
tardiness problem, itself a well known NP-hard problem 
[Du and Leung, 1990].  
An example of an exact procedure to solve FCMAP 
problems involves looking at all possible procurement bid 
combinations and, for each such combination, solving to 
optimality a single machine weighted tardiness problem 
with release dates (e.g., using a branch-and-bound algo-
rithm). A release date is a date before which a given order 
is not allowed to be processed. Given a combination of 
procurement bids Bid_Combi, an order Oi has a release 
date: 
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where dl  denotes the delivery date of component compij
ij  

in Bid_Combi. In other words, the component that arrives 
the latest determines the order’s release date.  
Clearly, with the exception of fairly small problems, the 
requirements of the above procedure are computationally 
prohibitive. Instead, we identify below a number of rules 
that can be used to efficiently prune the search space as-
sociated with FCMAP problems.  

4 Pruning the Search Space 
Pruning Rule 1:  El iminating Expensive Bids 
with Late Delivery Dates 
Consider an FCMAP problem P with an order Oi requir-
ing a component compij for which the manufacturer has 
received a set of bids  from prospective 
suppliers. Let kkB  and  be 
two bids in 
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The correctness of this rule is obvious. Its application is 
illustrated in Figure 1, where it results in the pruning of 
three bids: , bid  and bid . 14bid 22 24

Pruning Rule 2:  Eliminat ing Expensive Bids 
with Unnecessari ly  Early Del ivery Dates 
Consider an FCMAP problem P with an order Oi requir-
ing a set of components iijicomp . Let 

j ij
 be the set of bids received by the 

manufacturer for each component comp
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kkk  We define i  as the earliest possi-
ble release date for order Oi. It can be computed as:  
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An intuitive explanation should suffice to convince the 
reader. While bid has an earlier delivery date than bid 

k , this earlier date is not worth paying more for: it does 
not add any scheduling flexibility to the manufacturer 
since the start of order O

ij
lB

ijB
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i remains constrained by 
li . A formal proof can easily be built based on 

the above observation. Application of this rule is also 
illustrated in Figure 1, where it results in the pruning of 
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Pruning Rule 3:  Eliminat ing Expensive Bid 
Combinations with Unnecessari ly Early  De-
l ivery Dates 
Consider an FCMAP problem P whose search space has 
already been pruned using Rule 1. In other words, given 
two bids kkkB  and l , ),( ijij bpdl= ),( ij

l
ij
l
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for the same component compij, if dl , then 
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i = bai . By “domi-
nated” we mean that, for every solution to problem P 
involving i , there is a better solution where 
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Again, this is easy to understand. Given that i  
includes a bid for a second component comp

aCombBid _

ikB

ikik bp>

ij that gets 
delivered at time aba , replacing bid a  with 
bid b  will not delay the start of order O

ikikil dldldl >≥
i and can only 

help reduce the cost of its components since babp  
(as indicated earlier, we assume that Rule 1 has already 
been applied to prune bids). Once again, it is easy to build 
a formal proof based on the above observation. Note that 
Rule 3 subsumes Rule 2. 
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 Figure 1. From 20 bid combinations to 4 non-dominated ones

The three pruning rules we just identified can be used to 
prune the set of bids to be considered. This is summarized 
in Figure 1, where the combination of three rules brings 
the number of bid combinations to be considered from 20 
to just for 4 non-dominated combinations. It should be 



clear that, for each order, Rules 1 and 2 can be applied in 
 time, where  is an upper-bound on the 

number of bids received for a given component and c  an 
upper-bound on the number of components required by a 
given order. It can also be shown that, for a given order O

)log( bbcO ⋅⋅ b

tb ⋅
i, 

Rule 3 can be applied in  time, where tb  is the 
total number of bids received for order O

)log( tbO
i across all the 

components it requires [Sun and Sadeh, 2003]. 

Consider the non-dominated bid combinations resulting 
from the application of our three pruning rules to an 
FCMAP problem. Let the non-dominated bid combina-
tions of order Oi be denoted 
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where  is the release date of bid combination 
i , as defined in Equation (2), and ik  is its 

total procurement cost, defined as the sum of its compo-
nent bid prices. It follows that:  

kBid _ Comb pc

Property 1: For each order Oi, , it must hold that, 
if ibia , then ibia , i∀  

Mi ∈
1{b ∈rr < pcpc > },,...,, ma ba ≠ , i.e, 

in other words, the total procurement costs of 
non-dominated bid combinations strictly decrease as their 
release dates increase 
Proof: A proof of this property can be found in [Sun and 
Sadeh, 2003]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Property 1 is illustrated in Figure 2, where we have two bid 
combinations  and  for an order 
O

a
iCombBid _

ia

3i
aib dlr >=

b
iCombBid _

i that requires three components. In this particular ex-
ample,  is determined by the delivery date of compo-
nent 3, while r  is determined by that of component 2. 
The two bid combinations share the same delivery dates 
for two out of three of the components required by order 
O

ibr

i: components 1 and 2. The difference in procurement 
cost comes from the higher price associated with the later 
delivery of component 3 in bid combination  
(namely, ). 

b
iCombBid _

3i
bdl

In the following sections, we introduce a branch-and 
-bound algorithm to solve the FCMAP problem along with 
a (significantly faster) heuristic search procedure that 
takes advantage of Property 1. Both procedures take ad-
vantage of the pruning rules we just introduced.  

5 A Branch-and-Bound Algorithm 
Following the application of the pruning rules introduced 
in the previous section, optimal solutions to the FCMAP 
problem can be obtained using a simple branch-and-bound 
procedure. Branching is done over the sequence in which 
orders are processed by the manufacturer and over the 
release dates of non-dominated bid combinations of each 
order. Specifically, the algorithm first picks an order to be 
processed by the manufacturer then tries all the release 
dates (of non-dominated bid combinations) available for 
this order. Note that, as orders are sequenced in this fash-
ion, some of their available release dates become 
dominated, given prior sequencing decisions. For instance, 
consider two orders 1O  and 2O , with 2O  having two re-
lease dates 2221r r<  - following the application of pruning 
rules 1 through 3. Suppose that, at the current node, 1O  is 
sequenced before O  and that 1 ’s earliest completion 
date is greater than 22r . It follows that release date 21r  is 
strictly dominated by release date 22r  at this particular 
node. Release dates that become dominated as a result of 
prior assignments can be pruned on the fly, thereby further 
speeding up the search procedure. Given a node n in the 
search tree, namely a partial sequence of orders and a 
selection of release dates for each of the orders already 
sequenced, it is possible to compute an upper-bound for 
the profit of all complete solutions (i.e. leaf nodes) com-
patible with this node: 
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where: Component 
i3 •  is the set of orders sequenced at node n; OS

pc  n
• i  is the total procurement cost associated with 

the non-dominated release date (or bid combina-
tion) assigned to order niO  and i  is its 
tardiness. Note that each order is scheduled to 
start as early as possible, given prior sequencing 
decisions and the release date assigned to it: there 
are no benefits to starting later; 

OS∈ T

Delivery time 

Figure 2.  Illustration of Property 1 

• 
n
 is the completion date of the last order in 

; 
OScd

nOS
mpc• i  is the minimum possible procurement cost 
of order Oi  - this cost is node-independent. 

If the upper bound of a node n is lower than the best fea-
sible solution found so far, the node n and all its descen-
dants are pruned. 



6 An Early/Tardy Search Heuristic 
Property 1 tells us that, following the application of the 
pruning rules, the procurement costs of non-dominated bid 
combinations strictly decrease as release dates increase. 
Figure 4 plots the total procurement cost and tardiness cost 
of an order for different possible start times. While tar-
diness costs increase linearly for start times that miss the 
order’s due date, procurement costs vary according to a 
decreasing step function.  The circles in Figure 4 represent 
the order’s non-dominated bid combinations. If the order 
starts at time t , its procurement cost is pci, namely, the 
procurement cost of the latest non-dominated bid combi-
nation  compatible with this start time. Its 
tardiness cost is equal to tard , where 
tard is its marginal tardiness penalty, dd its due date and p 
its duration (or processing time). The end result is an 
early/tardy scheduling problem with non-linear earliness 
costs. 
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Ow and Morton have introduced an early/tardy dispatch 
rule for one-machine scheduling problems subject to linear 
earliness and tardiness costs [Ow and Morton, 1989]. 
Because our earliness costs are not linear, this heuristic 
can not readily be applied. Below, we briefly review some 
of its key elements and discuss how we have adapted it to 
produce a family of heuristic search procedures for the 
FCMAP problem. 

Ow and Morton’s rule essentially interpolates between 
two extreme cases. The first extreme situation is one 
where all orders are assumed to have plenty of time and 
where only earliness costs need to be minimized. The 
second situation is one where all orders are assumed to be 
late and where only tardiness needs to be minimized. In the 
former case, it can be shown that an optimal solution can 
be built by sequencing orders according to a Weighted 
Longest Processing Time dispatch rule of the form: 

iiii pearlSP −=)( , 
where P  is the priority of order O)( ii S

iearl

i, S  is its slack at 
time t (defined as dd ),  its processing time 
and  its marginal earliness cost – namely the penalty 
incurred for every unit of time the order finishes before its 
due date. Conversely, in the latter case, when all jobs are 
assumed to be late, it can be shown that an optimal solu-
tion can be built by sequencing orders according to the 
Weighted Shortest Processing Time dispatch rule, where 
each order receives a priority: 

i
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Ow and Morton’s dispatch rule interpolates between these 
two cases by assigning to each order an early/tardy priority 
that varies with its slack: 
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where  is the average processing time of an order and k 
is a look-ahead parameter. This parameter can intuitively 
be thought of as the average number of orders that will 
typically get processed ahead of an order queueing in front 
of the machine. The above formula can easily be seen to 
reduce to the Weighted Shortest Processing Time dispatch 
rule when slack 0=iS  and to the Weighted Longest 
Processing Time dispatch rule when S . The value 
of the look-ahead parameter k controls the transition be-
tween these two extremes, with higher values of k making 
the transition start earlier.  

∞→i

In the FCMAP problem however, orders cannot start be-
fore their earliest possible release date (e.g. see Pruning 
Rule 2). In addition, earliness costs vary according to a 
step function. A marginal earliness cost can however be 
obtained through a simple regression, whether locally or 
globally. Specifically, we distinguish between the fol-
lowing two approaches to computing marginal earliness 
costs for an order in the FCMAP problem: 
1) Local Earliness Weight: At time t, the local marginal 
earliness cost associated with an order O (see Figure 4) can 
be approximated as the difference in procurement costs 
associated with the latest non-dominated bid combinations 
compatible with processing the order at respectively time t 
(namely ) and time iCombBid _ pkt ⋅+   (namely 

): jCombBid _
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Figure 4. An order’s tardiness and procurement costs
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2) Global Earliness Weight: An alternative involves 
computing a single global marginal earliness cost for each 
order. This can be done using a Least Square Regression: 

∑
∑
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where pc  is the average procurement cost of 
non-dominated bid combinations for the order, and rd is 
their average release date. 

The simplest possible release policy for the FCMAP 
problem involves releasing each order at its earliest pos-
sible release date, namely ir (see pruning rule 2 – it 
should be clear that this release date is never pruned by 
rule 3). We refer to this policy as an Immediate Release 
Policy. It might sometime result in releasing some orders 
too early and hence yield unnecessarily high procurement 
costs. Ow and Morton have suggested using what they 
refer to as an Intrinsic Release Policy, which amounts to 
releasing orders when their early/tardy priority iiP  
becomes positive. iiP  can be viewed as the marginal 
cost incurred for delaying the start of order O

earliest

)(S
)(S

i at time t. As 
long as this cost is negative, there is no benefit to releasing 
the order. The tipping point, where P , is the or-
der’s intrinsic release date: 

0)( =ii S
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Here again, one can use either the local or global earliness 
cost associated with an order. Intuitively, one would ex-
pect the global earliness cost to be more appropriate for the 
computation of an order’s release date and its local earli-
ness cost to be better suited for the computation of its 
priority at a particular point in time. This has generally 
been confirmed in our experiments. In Section 7, we only 
present results where priorities are computed using local 
earliness costs. We do however report results, where re-
lease dates are computed with both local and global 
earliness costs, as we have not found any significant dif-
ferences between these two policies.  

Rather than limiting ourselves to deterministic adaptations 
of Ow and Morton’s dispatch rule, we have also experi-
mented with randomized versions, where order release 
dates and priorities are modified by small stochastic dis-
turbances. This enables our procedure to make up for the 
way in which it approximates procurement costs and 
sample the search space in the vicinity of its deterministic 
solution. The resulting early/tardy search heuristic oper-
ates by looping through the following procedure for a 
pre-specified amount of time. As it iterates, the procedure 
alternates between the immediate release policy and the 
intrinsic release policy and successively tries a number of 
different values for the heuristic’s look-ahead parameter k. 
The following outlines one iteration – namely for one 

particular release policy and one particular value of the 
look-ahead parameter. 
1. For each order O , , compute the 

order’s release date. When using the immediate re-
lease policy, this simply amounts to setting the order’s 
release date RD . When using the intrinsic 
release policy, the order’s release date is computed as 
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k

k =

,

},...,1{ mMk =∈

earliest
k

}ˆ) kr×+α

r

1(earliest
kr{k MaxRD = α  is ran-

domly drawn from the uniform distribution 
]1,1[ devdev +− ;  

RDMin=2. Dispatch the orders, namely let t  kMk∈0

1) For all those orders O  that have not yet been 
scheduled and whose release dates are before t , 
compute the order’s priority at time t  as: 

k

dd

0

0
)()1()( 00 tpPtPR kkkk −−⋅+= β , where P  is 

the early/tardy priority defined in (3) and where 
k

β  
is randomly drawn from the uniform distribution 

]2,2[ devdev +− ; 
O2) Let order   be the order with the highest priority. 

Schedule O  to start at time t ; 
i

i 0
3) If all orders have been scheduled, then Stop. Else, 

let iptt += 01

0

 and  be the earliest release date 
among those orders that have not yet been sched-
uled. Set t

2t

,1 tt }{ 2Max=  and repeat Steps 1-3. 
4) Compute the profit of the resulting solution. If it is 

higher than the best solution obtained so far, make 
this the new best solution. 

A deterministic version of this procedure simply amounts 
to setting dev1 and dev2 to zero. 

7 Empirical Evaluation  
A number of experiments have been run to evaluate the 
impact of our pruning rules and the performance of our 
heuristic search procedure. Below we summarize results of 
two sets of experiments aimed at evaluating the impact of 
ignoring the manufacturer’s capacity constraints and at 
gauging the overall quality of the solutions produced by 
our search heuristic. 

Empirical Setup 
Problems were randomly generated to cover a broad range 
of conditions by varying the distribution of bid prices and 
bid delivery dates as well as the overall load faced by the 
manufacturer. Results are reported for 2 groups of prob-
lems: 
1. Problems with 10 orders, 5 required components per 

order and 20 supplier bids per component. These prob-
lems were kept small enough so that they could be 
solved with our branch-and-bound algorithm. Key pa-
rameter values were drawn from the following uniform 
distributions: 

• Order processing time: U[5,25] 
• Order marginal tardiness cost: U[1,10] 
• Order due dates: 2 distributions: 

a. Medium Load (ml) problems: U[100,300] 



b. Heavy Load (hl) problems: U[100,200] 
• Component bid deliveries: 2 distributions: 

a. Narrow distribution (nd): U[0,50] 
b. Wide distribution (wd): U[0,100] 

• Component bid prices: 2 distributions: 
a. Narrow bid price distribution (np): U[5,35] 
b. Wide bid price distribution (wp): U[5,65] 

A total of 20 problems were generated in each category 
(ml/hl, nd/wd, np/wp), yielding a total of 160 problems. 

2. Problems with 50 orders, 5 required components per 
order and 20 supplier bids per component. On these 
larger problems, we were only able to compare our 
search heuristic with a procedure that reflects traditional 
procurement practices by ignoring capacity constraints – 
referred below as an “infinite capacity” procedure. Key 
parameter values were drawn from the following uni-
form distributions: 

• Order processing time: U[10,50] 
• Order marginal tardiness cost: U[1,10] 
• Order due dates: U[500,1500] 
• Component bid deliveries: same 2 distributions as 

10-order problems (nd/wd) 
• Component bid prices: same 2 distributions as 

10-order problems (np/wp) 
A total of 20 problems were generated in each category 
for a total of 80 problems. 

Note that the above distributions were selected to be rep-
resentative of scenarios where the manufacturer’s capacity 
is not sufficient to deliver all orders in time and where 
therefore finding the right tradeoffs between minimizing 
tardiness costs and procurement costs is most critical. 
Note also that order revenues are irrelevant, since the 
orders to be produced are fixed. In other words, all solu-
tions admit the same overall revenue and overall profit is 
solely determined by the sum of tardiness and procurement 
costs associated with a given solution. Accordingly, we 
report overall costs rather than overall profits. 

Impact of Ignoring the Manufacturer’s Capacity 
Results presented in Figure 5 compare the performance of 
our Early/Tardy search heuristic (ET) with that of an “in-
finite capacity” procurement policy. This policy first se-
lects the cheapest bids compatible with each order’s due 
date, then schedules these orders using Vepsalainen and 
Morton’s Apparent Tardiness Cost dispatch rule [Vep-
salainen and Morton, 1987], a well-regarded heuristic to 
minimize tardiness costs – note that there are no earliness 
costs here, since procurement decisions have already been 
taken care of in the first step. This policy is representative 
of reverse auctions, where the manufacturer ignores its 
internal capacity constraints when selecting among com-
peting bids. The results in Figure 5 represent 95% confi-
dence intervals for the total cost per order – procurement 
cost plus tardiness cost, computed in all four categories of 
50-order problems. The version of our ET search heuristic 
used in these experiments relied on global earliness 
weights for release date computations and on local earli-

ness weights for dispatching computations. Deviation 
parameters were set as dev1=dev2=0.3. 

It can be seen that accounting for capacity constraints in 
selecting procurement bids significantly improves the 
manufacturer’s bottom line across all four problem sets. 
The most significant improvements are observed on the 
more difficult problem set, namely np/wd and wp/wd, 
where bid delivery dates can vary widely. A breakdown of 
average tardiness and procurement costs is provided in 
Table 1 for the most difficult problem set, wp/wd. It can be 
seen that our ET search heuristic yields solutions that have 
one third of the cost of an infinite capacity procurement 
policy. More specifically, in contrast to the infinite ca-
pacity policy, our ET heuristic is capable of sacrificing 
procurement costs to decrease overall costs through re-
ductions in tardiness penalties. In this particular case, a 
relatively minor increase in procurement costs of a couple 
of percent results in a major reduction in tardiness costs 
(of nearly 80%). These results strongly validate the 
FCMAP model advocated in this paper. 
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 Figure 5. Impact of ignoring the manufacturer’s capacity
 
Table 1. Impact of ignoring capacity - standard deviations 

are between parentheses 

wp/wd Proc. Cost Tard. Cost 
Total Cost per 

Order 

Infinite Capacity 
Policy 

37.35 (0.91) 206.79 (58.71) 244.14 (59.08) 

ET 
(Global – Local) 

39.11 (1.14) 41.53 (25.80) 80.64 (25.79) 

Distance from the Optimum 
Experiments have been conducted to measure distance 
from the optimum, using the branch-and-bound procedure 
introduced in Section 5. Just like our ET heuristic, 
branch-and-bound was used following the application of 
the pruning rules introduced in Section 4. Clearly, even 
with the pruning rules, this procedure remains very slow 
and is only practical on relatively small problems. Tables 1 
and 2 report distance from the optimum (obtained with 
branch-and-bound) for several variations of our 
early/tardy search heuristics (ET) as well as the infinite 



capacity procurement policy introduced earlier in this 
Section. The variations of our ET heuristics included both 
a deterministic version where  dev1=dev2=0 and stochastic 
version  where dev1=dev2=0.3. While dispatching deci-
sions were made using local earliness costs, we report 
results obtained with release policies using both local and 
global earliness costs. Standard deviations are between 
parentheses. As can be seen, our ET heuristic is generally 
within 10 percent of the optimum. Even the deterministic 
version yields solutions that are within 15% of the opti-
mum across all 8 problems sets, suggesting that the insight 
given by Property 1 and the adaptation of Ow and Mor-
ton’s dispatch rule are rather effective.  

Table 2. Distance to optimum – medium load 

ET Search Heuristic 

Global RD / 
Local Priority 

Local RD / 
Local Priority 

  
Infinite 

Capacity 

Determ. Stoch. Determ. Stoch. 

np/nd 49.07 
(32.79) 

6.36 
(2.97) 

6.31 
(2.96) 

6.08 
(3.23) 

5.62 
(3.31) 

wp/nd 32.51 
(28.29) 

13.63 
(6.35) 

12.04 
(5.01) 

13.63 
(6.35) 

10.73 
(5.05) 

np/wd 112.29 
(100.06) 

9.31 
(2.67) 

9.20 
(2.68) 

9.33 
(2.69) 

6.97 
(2.95) 

wp/wd 60.66 
(64.89) 

15.08 
(6.10) 

13.18 
(5.85) 

14.68 
(6.74) 

12.95 
(4.75) 

Table 3. Distance to optimum – heavy load 

ET Search Heuristic 

Global RD / 
Local Priority 

Local RD / 
Local Priority 

  
Infinite 

Capacity 

Determ. Stoch. Determ. Stoch. 

np/nd 51.96 
(44.51) 

6.71 
(2.91) 

6.47 
(2.99) 

7.13 
(3.19) 

6.58 
(2.94) 

wp/nd 46.08 
(36.01) 

13.07 
(5.40) 

11.70 
(4.54) 

13.07 
(5.40) 

11.60 
(4.54) 

np/wd 176.67 
(117.53) 

9.64 
(3.39) 

8.75 
(3.89) 

9.97 
(3.39) 

8.81 
(3.81) 

wp/wd 134.35 
(98.64) 

13.96 
(7.01) 

13.14 
(6.64) 

13.96 
(7.01) 

13.30 
(6.85) 

8 Concluding Remarks 
Prior work on dynamic supply chain formation has gen-
erally ignored capacity and delivery date considerations. 
In this paper, we have introduced a model for finite ca-
pacity multi-attribute procurement problems faced by 
manufacturers who have to select among supplier bids that 
differ in terms of prices and delivery dates. We have 
identified several dominance criteria that enable the 
manufacturer to quickly eliminate uncompetitive combi-
nations of bids. A branch-and-bound algorithm and a 
heuristic search procedure have been introduced to help 
the manufacturer select a combination of bids that maxi-

mizes its overall profit, taking into account its finite ca-
pacity as well as the prices and delivery dates associated 
with different supplier bids. We have shown that this 
heuristic greatly improves over simpler infinite capacity 
bid selection models. Comparison with optimum solutions 
obtained using branch-and-bound, suggest that our search 
procedure generally yields solutions that are within 10% 
of the optimum.  
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