
A Semantic Web Framework for Interleaving Policy
Reasoning and External Service Discovery

Jinghai Rao and Norman Sadeh

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue,

Pittsburgh, PA, 15213, USA
{sadeh; jinghai}@cs.cmu.edu

Abstract. Enforcing rich policies in open environments will increasingly require
the ability to dynamically identify external sources of information necessary to
enforce different policies (e.g. finding an appropriate source of location informa-
tion to enforce a location-sensitive access control policy). In this paper, we intro-
duce a semantic web framework and a meta-control model for dynamically inter-
leaving policy reasoning and external service discovery and access. Within this
framework, external sources of information are wrapped as web services with
rich semantic profiles allowing for the dynamic discovery and comparison of
relevant sources of information. Each entity (e.g. user, sensor, application, or or-
ganization) relies on one or more Policy Enforcing Agents responsible for enforc-
ing relevant privacy and security policies in response to incoming requests.
These agents implement meta-control strategies to dynamically interleave se-
mantic web reasoning and service discovery and access. The paper also presents
preliminary empirical results. This research has been conducted in the context of
myCampus, a pervasive computing environment aimed at enhancing everyday
campus life at Carnegie Mellon University.

1 Introduction

The increasing reliance of individuals and organizations on the Web to help mediate a
variety of activities is giving rise to a demand for richer security and privacy policies
and more flexible mechanisms to enforce these policies. People may want to selec-
tively expose sensitive information to others based on the evolving nature of their
relationships, or share information about their activities under some conditions. This
trend requires context-sensitive security and privacy policies, namely policies whose
conditions are not tied to static considerations but rather conditions whose satisfaction,
given the very same actors (or principals), will likely fluctuate over time. Enforcing
such policies in open environments is particularly challenging for several reasons:

− Sources of information available to enforce these policies may vary from one prin-

cipal to another (e.g. different users may have different sources of location tracking
information made available through different cell phone operators);

− Available sources of information for the same principal may vary over time (e.g.
when a user is on company premises her location may be obtained from the wireless
LAN location tracking functionality operated by her company, but, when she is not,
this information can possibly be obtained via her cell phone operator);

− Available sources of information may not be known ahead of time (e.g. new loca-
tion tracking functionality may be installed or the user may roam into a new area).

Accordingly, enforcing context-sensitive policies in open domains requires the abil-

ity to opportunistically interleave policy reasoning with the dynamic identification,
selection and access of relevant sources of contextual information. This requirement
exceeds the capability of decentralized trust management infrastructures proposed so
far and calls for privacy and security enforcing mechanisms capable of operating ac-
cording to significantly less scripted scenarios than is the case today. It also calls for
much richer service profiles than those found in early web service standards.

We introduce a semantic web framework and a meta-control model for dynamically
interleaving policy reasoning and external service identification, selection and access.
Within this framework, external sources of information are wrapped as web services
with rich semantic profiles allowing for the dynamic discovery and comparison of
relevant sources of information. While the framework is applicable to a number of
domains where policy reasoning requires the automatic discovery and access of exter-
nal sources of information (e.g. virtual/collaborative enterprise scenarios, coalition
force scenarios, inter-agency homeland security collaboration scenarios), we look more
particularly at the issue of enforcing privacy and security policies in pervasive comput-
ing environments. In this context, the owner of information sources (e.g. user, sensor,
application, or organization) relies on one or more Policy Enforcing Agents (PEA)
responsible for enforcing relevant privacy and security policies in response to incom-
ing requests. These agents implement meta-control strategies to opportunistically
interleave policy enforcement, semantic web reasoning and service discovery and
access. The example used in this paper introduces one particular type of PEA we refer
to as Information Disclosure Agents (IDA). These agents are responsible for enforcing
two types of policies: access control policies and obfuscation policies. The latter are
policies that manipulate the accuracy or inaccuracy with which information is released
(e.g. disclosing whether someone is busy or not rather than disclosing what they are
actually doing). The research reported herehas been conducted in the context of My-
Campus, a pervasive computing environment aimed at enhancing everyday campus
life at Carnegie Mellon University [7, 8, 19, 20].

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of relevant work in decentralized trust management and semantic web tech-
nologies. Section 3 introduces an Information Disclosure Agent architecture for en-
forcing privacy and security policies. It details its different modules and how their
operations are opportunistically orchestrated by meta-control strategies in response to
incoming requests. A motivating example is presented in Section 4. Section 5 details
our meta-control model based on query status information. Operation of the architec-
ture is illustrated in Section 6. Section 7 discusses our service discovery model. Sec-
tion 8 presents our current implementation and discusses initial empirical results.
Concluding remarks are provided in Section 9.

2 Related Work

The work presented in this paper builds on concepts of decentralized trust manage-
ment developed over the past decade (see [3] as well as more recent research such as
[2,11,14]) . Most recently, a number of researchers have started to explore opportuni-
ties for leveraging the openness and expressive power associated with semantic web
frameworks in support of decentralized trust management (e.g. [1, 4, 9, 12, 13, 23, 24]
to name just a few). Our own work in this area has involved the development of se-
mantic web reasoning engines (or “Semantic e-Wallets”) that enforce context-sensitive
privacy and security policies in response to requests from context-aware applications
implemented as intelligent agents [7, 8]. Semantic e-Wallets play a dual role of gate-
keeper and clearinghouse for sources of information about a given entity (e.g. user,
device, service or organization). In this paper, we introduce a more decentralized
framework, where policies can be distributed among any number of agents and web
services. The main contribution of the work discussed here is in the development and
initial evaluation of a semantic web framework and a meta-control model for opportu-
nistically interleaving policy reasoning and web service discovery in enforcing con-
text-sensitive policies (e.g. privacy and security policies). This contrasts with the more
scripted approaches to interleaving these two processes adopted in our earlier work on
Semantic e-Wallets [7,8].

Our research builds on recent work on semantic web service languages, (e.g. OWL-
S [26] and WSMO [27]) and semantic web service discovery functionality. Early work
in this area by Paolucci et al. [28] focused on matching semantic descriptions of ser-
vices being sought with semantic profiles of services being offered that include de-
scriptions of input, output, preconditions and effects (see also our own work in this
area [30]). More recently discovery functionality has also been proposed that takes into
account security annotations [29].

Other relevant work includes languages for capturing user privacy preferences such
as P3P’s APPEL language [25], and for capturing access control privileges such as the
Security Assertion Markup Language (SAML) [17], the XML Access Control Markup
Language (XACML) [16] and the Enterprise Privacy Authorization Language (EPAL)
[5]. These languages do not take advantage of semantic web concepts. On the other
hand [12] describes a semantic web policy framework for distributed policy manage-
ment. The framework allows policies to be described in terms of deontic concepts and
speech acts. It has been used to encode security policies of web resources, agents and
web services. Work by Uszok et al. has also resulted in the integration of KAoS policy
services with semantic web services [24]. Our own work on Semantic e-Wallets as
well as research described in this paper has relied on an extension of OWL Lite known
as ROWL to represent security and privacy policies that refer to concepts defined with
respect to OWL ontologies [7, 8]. While ROWL has been a convenient extension of
OWL to represent and reason about rules, it is by no means the only available option.
In fact, ROWL shares many traits with several other languages. One better known
language in this area is RuleML [18], a proposed standard for a rule language, based
on declarative logic programs. Another is SWRL [10], which uses OWL-DL to de-
scribe a subset of RuleML. The focus of the present paper is not on semantic web rule
languages but rather on a semantic web framework and a meta-control model for en-

forcing context-sensitive policies. For the purpose of this paper, the reader can simply
assume that the expressiveness of our own ROWL language is by and large similar to
that of a language like SWRL with both languages supporting the combination of
Horn-like rules with one or more OWL knowledge bases.

3 Overall Approach and Architecture

Fig. 1. Information Disclosure Agent: Overall Architecture

We consider an environment where sources of information are all modeled as services
that can be automatically discovered based on rich ontology-based service profiles
advertised in service directories. Each service has an owner, whether an individual or
an organization, who is responsible for setting policies for it, with policies represented
as rules. In this paper we focus on access control policies and obfuscation policies
enforced by Information Disclosure Agents, though the framework we present could
readily be used to enforce a variety of other policies.

An Information Disclosure Agent (IDA) receives requests for information or service
access. In processing these requests, it is responsible for enforcing access control and
obfuscation polices specified by its owner and captured in the form of rules. As it proc-
esses incoming queries (or, more generally, requests), the agent records status infor-
mation that helps it monitor its own progress in enforcing its policies and in obtaining
the necessary information to satisfy the request. Based on this updated query status

information, a meta-control module (“meta-controller”) dynamically orchestrates the
operations of modules it has at its disposal to process queries (Fig. 1). As these mod-
ules report on the status of activities they have been tasked to perform, this informa-
tion is processed by a housekeeping module responsible for updating query status in-
formation (e.g. changing the status of a query from being processed to having been
processed). Simply put, the agent continuously cycles through the following three
basic steps:
1. The meta-controller analyzes its latest query status information and invokes one or

more modules to perform particular tasks. As it invokes these modules the meta-
controller also updates relevant query status information (e.g. updates the status of a
query from “not yet processed” to “being processed”).

2. Modules complete their tasks (whether successfully or not) and report back to the
housekeeping module – occasionally modules may also report on their ongoing pro-
gress in handling a task

3. The housekeeping module updates detailed status information based on information
received from other modules and performs additional housekeeping activities (e.g.
caching the results of recent requests to mitigate the effects of possible denial of
service attacks, cleaning up status information that has become irrelevant, etc.)

For obvious efficiency reasons, while an IDA consists of a number of logical mod-

ules, each operating according to a particular set of rules, it is typically implemented
as a single reasoning engine. In our current work we use JESS [6], a high-
performance Java-based rule engine that supports both forward and backward chain-
ing, the latter by reifying "needs for facts" as facts themselves, which in turn trigger
forward-chaining rules. The following provides a brief description of each of the mod-
ules orchestrated by an IDA’s meta-controller:
− Query Decomposition Module takes as input a particular query and breaks it down

into elementary needs for information, which can each be thought of as subgoals or
sub-queries. We refer to these as Query Elements.

− Access Control Module is responsible for determining whether a particular query or
sub-query is consistent with relevant access control policies – modeled as access
control rules. While some policies can be checked just based on facts contained in
the agent’s local knowledge base, many policies require obtaining information from
a combination of both local and external sources. When this is the case, rather than
immediately deciding whether or not to grant access to a query, the Access Control
Module needs to request additional facts – also modeled as Query Elements.

− Obfuscation Module sanitizes information requested in a query according to rele-
vant obfuscation policies – also modeled as rules. As it evaluates relevant obfusca-
tion policies, this module too can post requests for additional Query Elements.

− Local Information Reasoner corresponds to domain knowledge (facts and rules)
known locally to the IDA

− Service Discovery Module helps the IDA identify potential sources of information
to complement its local knowledge. External services can be identified through ex-
ternal service directories (whether public or not), by communicating via the agent’s
External Communication Gateway. Rather than relying solely on searching service
directories, the service discovery module also allows for the specification of what

we refer to as service identification rules. These rules directly map information
needs on pre-specified services. An example of such rule might be: “when looking
for my current activity, first try my calendar service”. When available, such rules
can yield significant speedups, while allowing the module to revert to more general
service directory searches when they fail. We currently assume that all service di-
rectories rely on OWL-S to advertise service profiles (see Section 7).

− Service Invocation Module allows the agent to invoke relevant services. It is impor-
tant to note that, in our architecture, each service can have its own IDA. As re-
quests are sent to services, their IDAs may in turn respond with requests for addi-
tional information to enforce their own policies.

− User Interface Agent: The meta-controller treats its user as just another module
who is modeled both as a potential source of domain knowledge (e.g. to acquire
relevant contextual information) as well as a potential source of meta-control
knowledge (e.g. if a particular query element proves too difficult to locate, the user
may be asked whether to stop looking - she could even be offered the option of mak-
ing an assumption about the particular value of the query element).

Modules support one or more services that can each be invoked by the meta-

controller along with relevant parameter values. For instance, the meta-controller may
invoke the query decomposition module and request it to decompose a particular
query; it may invoke the access control module and task it to proceed in evaluating
access control policies relevant to a particular query; etc. In addition, meta-control
strategies do not have to be sequential. For instance, it may be advantageous to im-
plement strategies that enable the IDA to concurrently request the same or different
facts from several services.

4 An Example

The following scenario will help illustrate how IDAs operate. Consider Mary and Bob,
two colleagues who work for company X. They are both field technicians who con-
stantly visit other companies. Mary’s team changes from one day to the next depend-
ing on her assignment. Mary relies on an IDA to enforce her access control policies. In
particular, she has specified that she is only willing to disclose the room that she is in
to members of her team and only when they are in the same building.

Suppose that today Bob and Mary are on the same team. Bob is querying Mary’s
IDA to find out about her location. For the purpose of this scenario, we assume that
Mary and Bob are visiting Company Y and are both in the same building at the time
the query is issued. Both Bob and Mary have cell phone operators who can provide
their locations at the level of the building they are in – but not at a finer level. Upon
entering Company Y, Mary also registered with the company’s location tracking ser-
vice, which can track her at the room level. For the purpose of this scenario, we fur-
ther assume that Mary’s IDA needs to identify a service that can help it determine
whether Bob is on her team. A discovery step helps identify a service operated by
Company X (Bob and Mary’s employer) that contains up-to-date information about

teams of field technicians. This requires a directory with rich semantic service pro-
files, describing what each service does (e.g. type of information it can provide, level
of accuracy or recency, etc.). To be interpretable by agents such as Mary’s IDAs, these
profiles also need to refer to concepts specified in shared ontologies (e.g. concepts such
as projects, teams, days of the week, etc.). Once Mary’s IDA has determined that Bob
is on her team today, it proceeds to determine whether they are in the same building by
asking Bob’s IDA about the building he is in. Here Bob’s IDA goes through a service
discovery step of its own and determines that a location tracking service offered by his
cell phone operator is adequate. Completion of the scenario involves a few additional
steps of the same type. Note that in this scenario we have assumed that Mary’s IDA
trusts the location information returned by Bob’s IDA. It is easy to imagine scenarios
where her IDA would be better off looking for a completely independent source of
information. It is also easy to see that these types of scenarios can lead to deadlocks.
This is further discussed later in this paper.

Fig. 2. Illustration of first few steps involved in processing the example

5 Query Status Model

An IDA’s Meta Controller relies on meta-control rules to analyze query status infor-
mation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status infor-

mation, while RHS elements contain facts that result in module activations. Query
status information helps keep track of how far along the IDA is in obtaining the in-
formation required by each query and in enforcing relevant policies. Query status
information in the LHS of meta-control rules is expressed according to a taxonomy of
predicates that helps the agent keep track of queries and query elements - e.g., whether
a query has been or is being processed, what individual query elements it has given
rise to, whether these elements have been cleared by relevant access control policies
and sanitized according to relevant obfuscation control policies, etc. All status infor-
mation is annotated with time stamps. Specifically, query status information includes:
− Status predicates to describe the status of a query or query element
− A query ID or query element ID to which the predicate refers
− A parent query ID or parent query element ID to help keep track of dependen-

cies (e.g. a query element may be needed to help check whether another query ele-
ment is consistent with a context-sensitive access control policy). These dependen-
cies, if passed between IDA agents, can also help detect deadlocks (e.g. two IDA
agents each waiting for information from the other to enforce their policies)

− A time stamp that describes when the status information was generated or updated.
This information is critical when it comes to determining how much time has
elapsed since a particular module or external service was invoked. It can help the
agent look for alternative external services or decide when to prompt the user (e.g.
to decide whether to wait any longer).

A sample of query status predicates is provided in Table 1. Some of the predicates

list in the Table will be used in Section 6, when we revisit the example introduced in
Section 4. Clearly, different taxonomies of predicates can lead to more or less sophisti-
cated meta-control strategies. For the sake of clarity, status predicates in Table 1 are
organized in six categories: 1) communication; 2) query; 3) query elements; 4) access
control; 5) obfuscation and 6) information collection. ����Sample Status Predicates Description

Query-Received A particular query has been received.
Sending-Response Response to a query is being sent
Response-Sent Response has been successfully sent

1)

Response-Failed Response failed (e.g. message bounced back)
Processing Query Query is being processed
Query Decomposed Query has been decomposed (into primitive query elements)
All-Elements-Available All query elements associated with a given query are available (i.e. all

the required information is available)
All-Elements-Cleared All query elements have been cleared by relevant access control policies
Clearance-Failed Failed to clear one or more access control policies
All-Elements-Sanitized All query elements have been sanitized according to relevant obfuscation

policies

2)

Sanitization-Failed Failed to pass one or more obfuscation policies
Element-Needed A query element is needed. Query elements may result from the decom-

position of a query or may be needed to enforce policies. The query
element’s origin helps distinguish between these different cases

Processing-Element A need for a query element is being processed
Element-Available Query element is available
Element-Cleared Query element has been cleared by relevant access control policies
Clearance-Failed Failed to pass one or more access control policies
Element-Sanitized Query element has been sanitized using relevant obfuscation policies

�

3)

Sanitization-Failed Failed to pass one or more obfuscation policies

4) Clearance-Needed A query or query element needs to be cleared by relevant access control
rules

5) Sanitization-Needed Query or query element has to be sanitized subject to relevant obfusca-
tion policies

Check-Condition Check whether a condition is satisfied. Special type of query element.
Element-not-locally-
available

The value of a query element can not be obtained from the local knowl-
edge base

Element-need-service A query element requires the identification of a relevant service
No-service-for-Element No service could be identified to help answer a query element. This

predicate can be refined to differentiate between different types of ser-
vices (e.g. local versus external)

Service-identified One or more relevant services have been identified to help answer a
query element

Waiting-for-service-
response

A query element is waiting for a response to a query sent to a service
(e.g. query sent to a location tracking service to help answer a query
element corresponding to a user’s location)

Failed-service-response A service failed to provide a response. Again this predicate could be
refined to distinguish between different types of failure (e.g. service
down, access denied, etc.)

6)

service-response-available A response has been returned by the service. This will typically result in
the creation of an “Element-Available” status update.

Table 1. Sample list of status predicates.

Query status information is updated by asserting new facts (with old information
being cleaned up by the IDA’s housekeeping module). As query updates come in, they
trigger one or more meta-control rules, which in turn result in additional query status
information updates and the eventual activation of one or more of the IDA’s modules.
As already mentioned earlier, this meta-control architecture can also be used to model
the user as a module that can be consulted by the meta-controller, e.g. to ask for a
particular piece of domain knowledge or to decide whether or not to abandon a par-
ticular course of action such as looking for an external service capable of providing a
particular query element.

6 Updating Query Status Information: Example Revisited

The following illustrates the processing of a query by an IDA, using the scenario in-
troduced in Fig. 2. Specifically, Fig. 3 depicts some of the main steps involved in proc-
essing a request from Bob about the room Mary is in, highlighting some of the main
query status information updates. Bob’s query about the room Mary is in is first proc-
essed by the IDA’s Communication Gateway, resulting in a query information status
update indicating that a new query has been received. This information is expressed as
a collection of (predicate subject object) triples of the form:

(triple "Status#predicate" "status1" "query-received")
(triple "Query#queryId" "status1" "query1")
(triple "Query#parentId" "status1" nil)
(triple "Query#timestamp" "querystatus1" "324455")
(triple "Query#sender" "query1" "bob")
(triple "Query#element" "query1" "element1")
(triple "Ontology#office" "mary" "element1")

Next, the meta-controller activates the Query Decomposition Module, resulting in
the creation of two query elements – for the sake of simplicity we omit Mary’s obfus-
cation policy: one query element to establish whether this request is compatible with
Mary’s access control policies and the other to obtain the room she is in:

(triple "Status#predicate" "status2" "clearance-needed")
(triple "Status#predicate" "status3" "element-needed")

Let us assume that the meta-controller decides to first focus on the “clearance-
needed” query element and invokes the Access Control Module. This module deter-
mines that two conditions need to be checked and accordingly creates two new query
elements (“check-conditions”). One condition requires checking whether Bob and
Mary are on the same team:

(triple "Status#predicate" "status4" "element-needed")
(triple "Query#queryId" "status4" "element2")
(triple "Query#parentId" "status4" "query1")
(triple "Query#condition" "element2" "People#same-team")
(triple "People#same-team" "mary" "bob")

 Fig. 3. Query status updates for a fragment of the scenario introduced in Fig 2.

This condition in turn requires a series of information collection steps that are or-
chestrated by the meta-control rules in Mary’s IDA. In this example, we assume that
the IDA’s local knowledge base knows which team Mary is on but not Bob. According
the following query status information update is eventually generated:

(triple "Status#predicate" "status5" "element-not-locally-available")
(triple "Query#queryId" "status5" "element3")
(triple "Query#parentId" "status5" "element2")
(triple "People#team" "bob" "element3")

Mary’s IDA has a meta-control rule to initiate service discovery when a query ele-
ment can not be found locally. The rule, expressed in CLIPS [31], is of the form:

(triple "Status#predicate" ?s1 "element-not-locally-available")
(triple "Status#predicate" ?s2 "element-needed ")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?e1)
=>
(assert (triple "predicate" ?newstatus "element-need-service"))
(assert (triple "Query#queryId" ?newstatus ?e1)

Using this rule, the meta-controller now activates the Service Discovery Module. A

service to find Bob’s team is identified (e.g. a service operated by company X). This
results in a query status update of the type “service-identified”.

(triple "Status#predicate" ?s1 "element-need-service")
(triple "Status#predicate" ?s2 "service-identified")
(triple "Query#queryId" ?s1 ?e1)
(triple "Query#queryId" ?s2 ?service)
(triple "Query#parentId" ?s2 ?e1)
=>
(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response"))
(assert (triple "Status#queryId" ?newstatus ?service))

Note that, if there are multiple matching services, the service discovery module
needs rules to help select among them.

Let us assume that the service identified by the service discovery module is now in-
voked and that it returns the team that Bob is on. The Housekeeping module updates
the necessary Query Status Information, indicating among other things that informa-
tion about Bob’s team has been found (“element-available”) and cleaning old status
information. This is done using a rule of the type:

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response")
?y <- (triple "Query#queryId" ?s1 ?service)
(triple "Status#predicate" ?s2 "service-response-available")
(triple "Query#queryId" ?s2 ?result)
=>
(retract ?x)
(retract ?y)
(assert (triple "Status#predicate" ?newstatus "element-available"))
(assert (triple "Query#queryId" ?newstatus ?result))

The scenario continues through several similar steps (see Fig. 3)

7 The Service Discovery Model

A central element of our architecture is the ability of IDA agents to dynamically iden-
tify sources of information needed by query elements. Sources of information are mod-
eled as semantic web services and may operate subject to their own access control and
obfuscation policies enforced by their own IDA agents. Accordingly service invocation
is itself implemented in the form of queries sent to a service’s IDA agent.

Each service (or source of information) is described by a ServiceProfile in OWL-S
[26]. In general, a ServiceProfile consists of three parts: (1) information about the
provider of the service, (2) information about the service’s functionality and (3) infor-

mation about non-functional attributes [21]. Functional attributes include the service's
inputs, outputs, preconditions and effects. Non-functional attributes are other proper-
ties such as accuracy, quality of service, price, location, etc. An example of a location
tracking service operated on the premises of Company Y can be described as follows:

<profileHierarchy:InformationService rdf:ID="PositioningServ">
 <!-- reference to the service specification -->
 <service:presentedBy rdf:resource="&Serv;#PositioningServ"/>
 <profile:has_process rdf:resource="&Process;#PositionProc"/>
 <profile:serviceName Positioning_Service_in_Y />

 <!-- specification of quality rating for profile -->
 <profile:qualityRating>
 <profile:QualityRating rdf:ID="SERVQUAL">
 <profile:ratingName SERVQUAL />
 <profile:rating rdf:resource="&servqual;#Good"/>
 </profile:QualityRating>
 </profile:qualityRating>

 <profile:hasPrecondition rdf:resource="&Process;#LocateInCompanyY"/>
 <profile:hasOutput rdf:resource="&Process;#RoomNoOutput"/>
</profileHierarchy:InformationService>

When invoking a service it has identified, an IDA may opt to provide upfront all
the input parameters required by that service or it may withhold one or more of these
parameters. The latter option forces the service to request the missing input parame-
ters from the IDA, thereby enabling the IDA to more fully determine whether the
invoked service meets its policies. This option is however more computation and
communication intensive.

Service outputs are represented as OWL classes, which play the role of a typing
mechanism for concepts and resources. Using OWL also allows for some measure of
semantic inference as part of the service discovery process. If an agent requires a ser-
vice that produces as output a contextual attribute of a specific type, then all services
that output the value of that attribute as a subtype are potential matches.

Service preconditions and effects are also used for service matching. For instance.,
the positioning service above has a precondition specifying that it is only available on
company Y’s premises.

8 Current Implementation: Evaluation and Discussion

Our policy enforcing agents are currently implemented in JESS, a high-
performance rule-based engine in Java [6]. Domain knowledge, including service
profiles, queries, access control policies and obfuscation policies are expressed in
OWL [8]. As already indicated earlier ROWL the language we currently use to define
rules that relate to ontologies could easily be replaced with languages such as RuleML,
SWRL or some similar language. XSLT transformations are used to translate OWL
facts and extensions of OWL (e.g. to model rules and queries) into CLIPS. Agent
modules are organized as JESS modules. Currently all information exchange between
agents is done in the clear and without digital signatures. In the future, we plan to use
SSL or some equivalent protocol for all information exchange. This will include sign-
ing all queries and responses.

We have evaluated our solution on an IBM laptop with a 1.80GHz Pentium M CPU
and 1.50GB of RAM. The laptop was running Windows XP Professional OS, Java
SDK 1.4.1 and Jess 6.1. As part of the evaluation, we implemented the example intro-
duced in Section 4 and 6, using a light-weight rule/fact set. The set included 22 rules
and 178 facts and features a single semantic service directory with 50 services, each
represented by 5 to 10 Jess rules. A breakdown of the CPU times required to process
Bob’s query is provided in the table below. For each module the table provides a cu-
mulative CPU time, namely the sum of the CPU times of all invocations of that mod-
ule in processing the query.

Module CPU time in millisecond
Meta-Controller 28
Access-Controller 32
Local-KB 49
Service discovery / invocation 72
Total 181

While these results provide just one data point, they seem to suggest that our solu-

tion can be viewed as practical in at least some simple settings. It should be noted that
our solution is not JESS-specific. At the same time, a significant number of experi-
ments still need to be conducted to gain a more comprehensive understanding of the
scalability of our approach. Other complex issues such as dealing with deadlocks or
reasoning about provenance (i.e. possible conflicts of interest of information sources
used to build a proof) and inconsistent policies also require significant additional
work. Differentiating between situations where a policy has been shown not to be
satisfied and situations where the agent has not yet been able to determine whether a
policy is satisfied will likely call for differentiating between classical negation and
“negation as failure”. One possible solution here would be to use a framework such as
SweetRules as an add-on to our semantic web reasoner [22].

9 Concluding Remarks

In this paper, we presented a semantic web framework for dynamically interleaving
policy reasoning and external service discovery and access. Within this framework,
external sources of information are wrapped as web services with rich semantic pro-
files allowing for the dynamic discovery and comparison of relevant sources of infor-
mation. Each entity (e.g. user, sensor, application, or organization) relies on one or
more Policy Enforcing Agents responsible for enforcing relevant privacy and security
policies in response to incoming requests. These agents implement meta-control
strategies to dynamically interleave semantic web reasoning, service discovery and
access. These meta-control strategies can also be extended to treat the user as another
source of information, e.g. to confirm whether a given fact holds or to provide meta-
control guidance such as deciding when to abandon trying to determine whether a
policy is satisfied.

The Information Disclosure Agent presented in this paper is just one instantiation
of our more general concept of Policy Enforcing Agents (PEAs). Other policies (e.g.
information collection policies, notification preference policies) will typically rely on
slightly different sets of modules and different meta-control strategies, yet they could
all be implemented using the same meta-control architecture and many of the same
principles presented in this paper. In general, PEAs rely on a taxonomy of query in-
formation status predicates to monitor their own progress in processing incoming
queries and enforcing relevant security and privacy policies. They use meta-control
rules to decide which action to take next (e.g. decomposing queries, seeking local or
external information, etc.). Preliminary evaluation of an early implementation of our
framework seems encouraging. At the same time, it is easy to see that the generality of
the framework also gives rise to a number of challenging issues. Future work will
focus on exploring scalability issues, evaluating tradeoffs between the expressiveness
of privacy and security policies we allow and associated computational and communi-
cation requirements. Other issues of particular interest include studying opportunities
for concurrency (e.g. simultaneously accessing multiple web services), dealing with
real-time meta-control issues (e.g. deciding when to give up or when to look for addi-
tional sources of information/web services), breaking deadlocks [15], and integrating
the user as a source of information.

Acknowledgements

The work reported herein has been supported in part under DARPA contract F30602-
02-2-0035 (“DAML initiative”) and in part under ARO research grant D20D19-02-1-
0389 ("Perpetually Available and Secure Information Systems") to Carnegie Mellon
University’s CyLab.

This research has also benefited from interactions with Lujo Bauer, Lorrie Cranor,
Fabien Gandon, Jason Hong, Bruce McLaren, Mike Reiter and Peter Steenkiste.

References

[1] R. Ashri, T. Payne, D. Marvin, M. Surridge and S. Taylor, Towards a Semantic Web Secu-
rity Infrastructure. In Proceedings of Semantic Web Services Symposium, 2004.

[2] L. Bauer, M.A. Schneider and E.W. Felten. "A General and Flexible Access Control System
for the Web", In Proceedings of the 11th USENIX Security Symposium, August 2002.

[3] M. Blaze, J. Feigenbaum, an J. Lacy. “Decentralized Trust Management”. In Proceedings of
IEEE Conference on Security and Privacy. Oakland, CA. May 1996.

[4] L. Ding, P. Kolari , T. Finin , A. Joshi, Y. Peng and Y. Yesha. On Homeland Security and
the Semantic Web: A Provenance and Trust Aware Inference Framework, In Proceedings of
the AAAI Spring Symposium on AI Technologies for Homeland Security, 2005.

[5] IBM, EPAL 1.1. http://www.zurich.ibm.com/security/enterprise-privacy/epal/.
[6] E. Friedman-Hill. Jess in Action: Java Rule-based Systems, Manning Publications Com-

pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

[7] F. Gandon, and N. Sadeh. A semantic e-wallet to reconcile privacy and context awareness.
In Proceedings of the Second International Semantic Web Conference (ISWC03), 2003.

[8] F. Gandon, and N. Sadeh. Semantic web technologies to reconcile privacy and context
awareness. Web Semantics Journal, 1(3), 2004.

[9] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and A.
Vyas. Enabling context-aware and privacy-conscious user data sharing. In Proceedings of
2004 IEEE International Conference on Mobile Data Management, January 2004.

[10] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL:
Semantic Web Rule Language Combining OWL and RuleML. Version 0.6.

[11] T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. Knutson. Mobile Trust Negotia-
tion: Authentication and Authorization in Dynamic Mobile Networks. Eighth IFIP Confer-
ence on Communications and Multimedia Security, Lake Windermere, England, 2004

[12] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing environment.
IEEE 4th International Workshop on Policies for Distributed Systems and Networks, 2003

[13] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin and K. Sycara, Authorization
and Privacy for Semantic Web Services, In Proceedings of Semantic Web Services Sympo-
sium, AAAI 2004 Spring Symposium Series, Stanford University, California, March 2004.

[14] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to USENIX Security 2005.

[15] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons, M. Winslett, T. Yu, and C. Zhang, How
to Exploit Ontologies in Trust Negotiation. Workshop on Trust, Security, and Reputation on
the Semantic Web, part of ISWC04, Hiroshima, Japan, November 2004.

[16] OASIS, eXtensible Access Control Markup Language (XACML)
[17] OASIS, Security Assertion Markup Language (SAML)
[18] The Rule Markup Initiative. (http://www.ruleml.org)
[19] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. Takizawa. Creating an open agent

environment for context-aware m-commerce. In Agentcities: Challenges in Open Agent En-
vironments, 2003.

[20] N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Ambient Intelligence: The MyCampus
Experience. Carnegie Mellon University Technical Report. CMU-ISRI-05-123. June 2005.

[21] J. O'Sullivan, D. Edmond, and A.T. Hofstede. What's in a service? Towards accurate de-
scription of non-functional service properties. Distributedand Parallel Databases,
12:117.133, 2002.

[22] SweetRules. http://sweetrules.projects.semwebcentral.org/
[23] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and A. Joshi. A secure infrastructure for

service discovery and access in pervasive computing. ACM Monet: Special Issue on Security
in Mobile Computing Environments, October 2003

[24] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton and S. Aitken, Policy
and Contract Management for Semantic Web Services. In Proceedings of Semantic Web Ser-
vices Symposium, AAAI 2004 Spring Symposium Series, Stanford California.

[25]A P3P Preference Exchange Language(APPEL1.0) http://www.w3.org/TR/P3P-preferences/
[26] OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S
[27] Web Service Modeling Ontology, WSMO. http://www.wsmo.org/
[28] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, Semantic Matching of Web Ser-

vices Capabilities, In Proceedings of the First Intl Semantic Web Conference, 2002.
[29] G. Denker, L. Kagal, T. Finin, M. Paolucci and K. Sycara, Security For DAML Web Ser-

vices: Annotation and Matchmaking, In Proceedings of the Second Intl Semantic Web Con-
ference, 2003.

[30] J. Rao. Semantic Web Service Composition via Logic-based Program Synthesis. PhD The-
sis. Norwegian University of Science and Technology. December 10, 2004.

[31] CLIPS. http://www.ghg.net/clips/CLIPS.html.

