
Socio-Technical Congruence: A Framework
for Assessing the Impact of Technical and Work

 Dependencies on Software Development Productivity
Marcelo Cataldo

Research and Technology Center
Bosch Corporate Research
Pittsburgh, PA 15212, USA

marcelo.cataldo@us.bosch.com

James D. Herbsleb
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jdh@cs.cmu.edu

Kathleen M. Carley
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Kathleen.carley@cmu.edu

ABSTRACT
The identification and management of work dependencies is a
fundamental challenge in software development organizations.
This paper argues that modularization, the traditional technique
intended to reduce interdependencies among components of a
system, has serious limitations in the context of software devel-
opment. We build on the idea of congruence, proposed in our
prior work, to examine the relationship between the structure of
technical and work dependencies and the impact of dependencies
on software development productivity. Our empirical evaluation
of the congruence framework showed that when developers’ co-
ordination patterns are congruent with their coordination needs,
the resolution time of modification requests was significantly
reduced. Furthermore, our analysis highlights the importance of
identifying the “right” set of technical dependencies that drive the
coordination requirements among software developers. Call and
data dependencies appear to have far less impact than logical
dependencies.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Productivity,
Programming Teams. K.6.1 [Management of computing and
information Systems]: Project and People Management – Soft-
ware development.

General Terms
Management, Measurement, Human Factors.

Keywords
Collaborative software development, coordination, software de-
pendencies.

1. INTRODUCTION
A growing body of research shows that work dependencies – i.e.,
engineering decisions constraining other engineering decisions –
is a fundamental challenge in software development organiza-
tions, particularly in those that are geographically distributed
(e.g., [11][16][25][28]). The modular product design literature has
extensively examined issues associated with dependencies. De-
sign structure matrices, for example, have been used to find alter-
native structures that reduce dependencies among the components
of a system [19][43]. These research streams can also inform the
design of development organizations so they are better able to
identify and manage work dependencies. However, we first need
to understand the assumptions of the different theoretical views
and how those assumptions relate to the characteristics of soft-
ware development tasks.

This study argues that modularization is a necessary but not a
sufficient mechanism for handling the work dependencies that
emerge in the process of developing software systems. We build
on the concept of congruence introduced by Cataldo et al [10] to
examine how different types of technical dependencies relate to
work dependencies among software developers and, ultimately,
how those work dependencies impact development productivity.
Our empirical evaluation of the congruence framework illustrates
the importance of understanding the dynamic nature of software
development. Identifying the “right” set of technical dependencies
that determine the relevant work dependencies and coordinating
accordingly has significant impact on reducing the resolution time
of software modification requests. The analyses showed tradi-
tional software dependencies, such as syntactic relationships, tend
to capture a relatively narrow view of product dependencies that
is not fully representative of the important product dependencies
that drive the need to coordinate. On the other hand, logical de-
pendencies provide a more accurate representation of the product
dependencies affecting the development effort.

The rest of this paper is organized as follows. We first discuss the
theoretical background concerning the relationship between tech-
nical and work dependencies in software development projects.
Next, we present the socio-technical congruence framework fol-
lowed by a description of data, measures and models used in the
empirical analysis. Finally, we discuss the results, their implica-
tions and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

2

2. THE NATURE OF SOFTWARE DEVEL-
OPMENT AND MODULAR DESIGN
The idea of dividing a complex task into smaller manageable
units is consistent with the reductionist view [41][44] which is
well developed in the product development literature [19]. Pro-
jects, typically, have a general description of the system’s com-
ponents and their relationships or a more detailed report such as
architectural or high-level design document. Managers use the
information in those documents to divide the development effort
into work items that are assigned to specific development teams,
minimizing the interdependencies among those teams
[13][19][43]. In the system design literature, it has long been
speculated that the structure of a product inevitably resembles the
structure of the organization that designs it [13]. In Conway’s
original formulation, he reasoned that coordinating product design
decisions requires communication among the engineers making
those decisions. If everyone needs to talk to everyone, the com-
munication overhead does not scale well for projects of any size.
Therefore, products must be split into components, with limited
technical dependencies1 among them, and each component as-
signed to a single team. Conway [13] proposed that the compo-
nent structure and organizational structure stand in a homomor-
phic relation, in that more than one component can be assigned to
a team, but a component must be assigned to a single team.

A similar argument has been proposed in the strategic manage-
ment literature. Baldwin and Clark [2] argued that modularization
makes complexity manageable, enables parallel work and toler-
ates uncertainty. The design decisions are hidden within the mod-
ules, which communicate through standard interfaces. Modulari-
zation adds value by allowing independent experimentation of
modules and substitution [2]. Moreover, Baldwin and Clark [2]
argued that a modular design structure leads to an equivalent
modular task structure. Thus, their view aligns with Conway’s
idea that one or more modules can be assigned to one organiza-
tional unit and work can be conducted almost independently of
others. In the context of software engineering, a similar approach
was first articulated by Parnas [39] as modular software design.
Parnas [39] argued that modules ought to be considered work
items instead of just a collection of subprograms. Development
work can continue independently and in parallel across different
modules. Parnas’ views also coincide with the theoretical argu-
ments from product design and strategic management literatures.

All three theoretical views rely on two interrelated assumptions.
The authors assumed a simple and obvious relationship between
product modularization and task (or work) modularization. Hence,
by reducing the technical interdependencies among the modules
of a system, the modularization theories argue, work interdepend-
encies are reduced, thereby reducing the need for communication
among work groups. Unfortunately, there are several problems
with these assumptions when applied in the context of software
development. One problem is that existing software modulariza-
tion approaches use only a subset of the technical dependencies,
typically syntactic relationships, of a software system [23]. Other

1 The terms “technical dependency” and “product dependency”

are used interchangeably through out this paper. Examples of
such relationships are syntactic or semantic dependencies be-
tween architectural components or modules.

potentially relevant work dependencies might be ignored. More-
over, recent empirical evidence indicates that the relationship
between product structure and task structure is not as simple as
previously assumed, and diminishes over time [11].

Promoting minimal communication between teams responsible
for interdependent modules is also problematic. Recent studies
suggest that minimal communication between teams, collocated
or distributed, is detrimental to the success of projects. The prod-
uct development literature argues that information hiding, which
leads to minimal communication between teams, causes variabil-
ity in the evolution of projects, frequently resulting in integration
problems [46]. In context of software development, de Souza and
colleagues [17] found that information hiding led development
teams to be unaware of others teams’ work resulting in coordina-
tion problems. Grinter and colleagues [25] reported similar find-
ings for geographically distributed software development projects.
The authors highlighted that the main consequence of reducing
the teams’ communication was increased costs because problems
tended to be discovered later in the development process. Those
findings do not suggest that modularization is not useful. They
highlight the need to supplement it with coordination mechanisms
to allow developers to deal correctly with the assumptions that are
not captured in the specification of the dependencies.

Finally, another important problem associated with the assump-
tions of modular design is the role of change which can be charac-
terized along three interrelated dimensions: the evolution of re-
quirements, the stability of the interfaces between software mod-
ules and the dynamic nature of technical dependencies that arise
as design and implementation decisions are made.

Evolution of requirements. It is widely accepted among software
engineering researchers and practitioners that the requirements of
the system become known over time or those requirements
change as time progresses [35]. In some cases, the changes in the
requirements result in minor alterations of specific development
tasks. In other instances, new features have to be added or fea-
tures under development are eliminated. These events introduce a
certain level of dynamism in software development that chal-
lenges the determinism and stability assumptions of the modulari-
zation approach.

Nature and stability of interfaces. The interfaces between soft-
ware modules might differ in complexity and little is known about
the impact of instability on coordination among development
teams. However, recent research has started to examine those
issues. Cataldo et al [11] presented case studies where even sim-
ple interfaces between modules developed by remote teams create
coordination breakdown and integration problems. The authors
reported that semantic dependencies were often problematic and
they argued that the developers’ ability to identify and manage
dependencies was hindered by several inter-related factors such as
development processes, organizational attributes (e.g. structure,
management style) and uncertainty of the interfaces. In relation to
the stability of interfaces, de Souza [16] found, in a field study of
a large software project, that interfaces tended to change often and
their design details tended to be incomplete, increasing the likeli-
hood of future changes to them and leading to serious integration
problems. This lack of stability represents a constant challenge for
software development organizations in terms of coordination and,
ultimately, productivity and quality.

3

Dynamic nature of dependencies. Dependencies arise dynami-
cally as part of the development of a piece of code. The act of
developing a software system consists of a collection of design
decisions, either at the architectural level or at the implementation
level. Those design decisions introduce constraints that might
establish new dependencies among the various parts of the sys-
tem, modify existing ones or even eliminate dependencies. The
changes in dependencies can generate new coordination require-
ments that are quite difficult to identify a priori, particularly
when the dependencies are not obvious, or as a project matures
over time [27][42]. Failure to discover the changes in coordina-
tion needs might have a profound impact on the quality of the
product [15], on productivity [28] and even on the projects’ over-
all design [4]. In addition, little is known about the specific im-
pact of the various types of dependencies that arise among parts
of a software system such as explicit versus implicit dependencies
or syntactic versus logical dependencies.

The previous paragraphs highlight the limitations of the product
modularization approach, which does not necessarily yield an
equivalent task modularization structure. The nature of software
development such as the attributes and stability of interfaces
among modules and the dynamics of technical dependencies, are
a constant challenge for software development organizations,
particularly for those that are geographically distributed. Mecha-
nisms to complement the modular design approach are required to
maintain appropriate levels of coordination among development
groups. This leads us to the following research questions:

RQ1: How can relevant task dependencies be identified from
technical dependencies?

RQ2: What is the impact of those task dependencies on devel-
opment productivity?

3. SOCIO-TECHNICAL CONGRUENCE
Product development endeavors involve two fundamental ele-
ments: a technical and a social component. The technical proper-
ties of the product to develop, the processes, the tasks, and the
technology employed in the development effort constitute the
technical component. The second element consists of the organi-
zation and the individuals involved in the development process,
their attitudes and behaviors. In other words, a product develop-
ment project can be thought of as a socio-technical system where
the two components, the technical and the social elements, need
to be aligned in order to have a successful project. A key issue is
to understand how we can examine the relationship between those
two dimensions.
Two lines of work are particularly relevant in this context. First,
the idea of “fit” from the organizational theory literature provides
the conceptual framework. Fit is defined as the match between a
particular organizational design and the organization’s ability to
carry out a task [6]. This line of research has, traditionally, fo-
cused on two factors: the temporal dependencies among tasks that
are assigned to organizational groups and the formal organiza-
tional structure as a means of communication and coordination
[9][39]. The second relevant line of work is the research on dy-
namic analysis of social networks which provides an innovative
approach, called the meta-matrix, to examine the dynamic co-
evolution of relationships among multiple types of entities such as
resources, tasks, and individuals [8][33]. Building on those two

streams of research, we define socio-technical congruence as the
match between the coordination requirements established by the
dependencies among tasks and the actual coordination activities
carried out by the engineers. In other words, the concept of con-
gruence has two components. First, the coordination needs deter-
mined by the technical dimension of the socio-technical system
and, secondly, the coordination activities carried out by the or-
ganization representing the social dimension. The following para-
graphs discuss in detail the mathematical framework to measure
the two components of congruence originally introduced by
Cataldo and colleagues [10].

3.1 Identification of Coordination
Requirements
In order to identify which set of individuals should be coordinat-
ing their activities, we need to represent two sets of relationships.
One set is given by which individuals are working on which tasks.
The relationships or dependencies among tasks represent the sec-
ond element. In the rest of this section, we will use the example
depicted in Figure 1 to describe the sets of relationships involved
in determining coordination requirements. In the framework in-
troduced by Cataldo and colleagues [10], assignments of indi-
viduals to particular work items is represented by a people by task
matrix where a one in cell ij indicates that worker i is assigned to
task j. We refer to such matrix as Task Assignments (TA). In our
example (figure 1), we can think of the matrix TA as representing
the set of files modified by each developer that worked on a
modification request. The set of dependencies among tasks can
also be represented as a square matrix where a cell ij (or cell ji)
indicates that task i and task j are interdependent. We refer to such
matrix as Task Dependencies (TD). Figure 1 shows an example
where TD captures the syntactic dependencies among the source
code files of a system. For instance, file 1 (row 1) has three de-
pendencies (e.g. function calls) into file 3 (column 3). Multiplying
the TA matrix and the TD matrix results in a people by task matrix
that represents the extent to which a particular worker should be
aware of tasks that are interdependent with those that he or she is
responsible for. However, we are interested in a people to people
relationship of coordination needs. Such a representation of the
coordination requirements among the different workers is ob-
tained by multiplying the TA * TD product by the transpose of TA.
This product results in a people by people matrix where a cell ij
(or cell ji) indicates the extent to which person i works on tasks
that share dependencies with the tasks worked on by person j. In
other words, the resulting matrix represents the Coordination
Requirements (CR) or the extent to which each pair of people
needs to coordinate their work. In the context of the example
depicted by figure 1, the Coordination Requirements matrix
represents the extent to which the developers that work on a par-
ticular modification request need to coordinate their work given
the set of syntactic relationships that exits among a system’s mod-
ules. More formally, the CR matrix is defined by the following
product:

 CR = TA * TD * TA
T (Eq. 1)

where, TA is the Task Assignments matrix, TD is the Task De-
pendencies matrix and TA

T is the transpose of the Task Assign-
ments matrix. This framework provides alternative ways of think-
ing about coordination requirements among workers depending
on what type of data is used to populate the Task Dependencies

4

matrix. Past work had focused on temporal relationships between
tasks, for instance, task A needs to be done before task B (e.g.
[36]). In the context of software development, such way of think-
ing about task dependencies is quite common. Alternative views
could be based on high level roles in the development organiza-
tions (e.g. integration and testing depends on development) or
task dependencies based on product dependencies in the actual
software code (e.g. function calls between modules). The focus in
this paper is on the relationship between the structure of work
dependencies and the structure of product dependencies because,
as discussed earlier, the difficulty of identifying and managing
certain types of product dependencies is a critical factor in coor-
dination success and ultimately in productivity and quality.

Figure 1: Example on Computing Coordination Requirements

3.2 Computing Congruence
Given a particular CR matrix constructed from relating product
dependencies to work dependencies, we can compare it to an
Actual Coordination (CA) matrix that represents the coordination
activities of interactions software engineers. Then, congruence is
defined as the proportion of coordination activities that actually
occurred (represented in the CA matrix) relative to the total num-
ber of coordination activities that should have taken place (repre-
sented by the CR matrix). For instance, if the CR matrix shows that
10 pairs should coordinate, and of these, 5 show coordination
activities in the CA matrix, then the congruence is 0.5. Formally,
congruence is defined as follows:

Diff (CR, CA) = card { diffij | crij > 0 & caij > 0 }

|CR| = card { crij > 0 }

Then, we have:

 Congruence (CR, CA) = Diff (CR, CA) / |CR| (Eq. 2)

In sum, the value of congruence belongs to the [0,1] interval that
represents the proportion of coordination requirements that were
satisfied through some type of coordination activity or mecha-
nism. This measure of socio-technical congruence provides a new
way of thinking about coordination by providing a fine-grain
level of analysis of different types of technical dependencies and
allowing us to examine how coordination needs are impacted by
them.

3.3 Two Approaches to Identify Technical
Dependencies in Software Systems
The measure of congruence presented in the previous section
relies on a representation of dependency that drives the engineers’
coordination needs. In this section, we discuss two approaches to
identify technical dependencies from a software system.

The traditional view of software dependency has its origins in
compiler optimizations and they focus on control and dataflow

relationships [30]. This approach extracts relational information
between specific units of analysis such as statements, functions or
methods, as well as modules, typically, from the source code of a
system or from an intermediate representation of the software
code such as bytecodes or abstract syntax trees. These relation-
ships can represent either a data-related dependency (e.g. a par-
ticular data structure modified by a function and used in another
function) or a functional dependency (e.g. method A calls method
B). This type of dependency analysis technique has been widely
used in a research context to examine the relationship between
coupling and quality of a software system (e.g. [31][40]). Syntac-
tic dependency analyses are also used by software developers to
improve their understanding of programs and the linkages among
the various parts of those programs [37].

One characteristic of these relational structures such as a call-
graph, and for that matter other graphs such as inheritance and
data dependencies graphs, is that they provide a particular view of
the system-wide structure. Moreover, the accuracy of the informa-
tion represented in these graphs depends on the ability of the tool
used to identify all the appropriate types of syntactic relationships
allowed by the underlying programming language [37].

An alternative mechanism of identifying dependencies consists of
examining the set of source code files that are modified together
as part of a modification request. This approach is equivalent to
the approach proposed by Gall and colleagues [22] in the software
evolution literature to identify logical dependencies between
modules. A source code file can be viewed as representing a
“bundle” of technical decisions. If a modification request can be
implemented by changing only one file, it provides no evidence
of any dependencies among files. However, when a modification
request requires changes to more than one file, it can be assumed
that decisions about the change to one file in a modification re-
quest depend in some way on the decisions made about changes
to the other files involved in implementing the modification re-
quest. Dependencies could range from syntactic, for instance a
function call between files, to more complex semantic dependen-
cies where the computations done in one file affects the behavior
of another file. This approach would represent a better estimate
for semantic dependencies relative to call graphs or data graphs
because it does not rely on language constructs to establish the
dependency relationship between source code files. The remain-
der of this paper refers to this approach to identify dependencies
as the “Files Changed Together” (FCT) method. We will refer to
the method to identify dependencies based on syntactic functional
and data relationships described earlier as the CGRAPH method.

4. METHOD
4.1 Description of the Data
In this study, we used data from the first four releases of a com-
pany’s main product which was a large distributed system. Over-
all, the data covered a period of 39 months of development activ-
ity. A hundred and fourteen developers grouped into eight devel-
opment teams distributed across three development locations
worked full time on the project during the time period covered by
the data. Software developers communicated and coordinated
using various means. Opportunities for interaction existed when
the developers worked in the same formal team or when they
were located in the same development site. Developers also used
tools such as Internet Relay Chat (IRC) and a MR tracking system

5

(similar to Bugzilla) to interact and coordinate their work. For
instance, the MR tracking system kept track of the progress of the
task, comments and observations made by developers as well as
additional material used in the development process. We collected
communication and coordination information from those two
systems. Finally, we also collected demographic data about the
developers such as their programming and domain experience and
level of formal education.

The unit of analysis is the modification request which corresponds
to a development work item associated with a defect or a new
feature. A total of 2375 multi-team modification requests were
identified. Those modification requests belonged to the first four
releases of the product and involved more than one software de-
velopment team. The decision to focus on such modification re-
quests is based on a growing body of research which shows that
difficulties in communication and coordination breakdowns are
recurring problems in software development [15][28][34], particu-
larly when the work items are geographically distributed [28] and
the task involves more than one organizational team [15][20][34].

4.2 Descriptions of Measures
The literature has identified a number of factors that affect devel-
opment time and, consequently, the resolution of modification
requests. Some of those factors are related to characteristics of the
task such as the amount of code to be written and the priority of
the task, whereas other factors capture relevant attributes of the
individual developers and the teams that participate in the devel-
opment task. In the following paragraphs, we first describe our
dependent variable, resolution time of modification requests. Sec-
ondly, the procedures used to construct the measures of congru-
ence are described. Finally, we describe a number of control
measures that were also included in the statistical models.

Productivity Measure: Our measure of development productivity
is Resolution Time which is defined as the time, in days, it took to
resolve a particular MR. We recognize that some modification
requests may have longer resolution times because people are
working on multiple MRs simultaneously, or because a MR was
temporarily suspended to address other higher priority work. We
addressed these concerns in two different ways. First, we col-
lected several control variables that impact resolution time and
they described later in this section. Secondly, our measure of
productivity accounts only for the time that the MR was assigned
to a particular developer. We were able to accurately determine
such time periods because the company had a process in which
modification requests were assigned to developers only when they
were actively working on them. Otherwise, MRs would be as-
signed to a generic team identifier. Inspection of a random sample
of modification requests suggested that this process rarely was not
followed.

Congruence Measures: The data for building the Coordination
Requirements matrix (equation 1) was extracted from several data
sources such as the modification request reports, the version con-
trol system as well as the software code itself. A modification
request provides the “developer i modified file j” relationship that
constitutes our Task Assignment matrix. Since two different meth-
ods for identifying dependencies were used, FCT and CGRAPH,
we constructed two different Task Dependency matrices. In the
case of the FCT method, the cell cij of the Task Dependency ma-
trix represents the number of times a particular pair of source

code files changed together as part of the work associated with a
modification request. A moving window of 19 months was used
to capture a representative set of logical dependencies among the
software modules. The resolution date of the modification request
was paired with the end of the time window used to collect the
task dependency information. In the case of the CGRAPH
method, the cell cij of the Task Dependency matrix represents the
number of data/function/method references from file i into file j.
The syntactic relationships were extracted from the system’s
source code using the C-REX tool [26]. We constructed quarterly
call-graphs of the entire system. The data from the quarter associ-
ated with the resolution date of the modification request was used
to collect the task dependency information. Given the Task As-
signments and Task Dependencies matrices just described, we
computed as described in equation 1, two Coordination Require-
ment matrices, one based on the FCT and a second based on the
CGRAPH method.

Software engineers can coordinate and exchange information
through numerous communication means. Therefore, we con-
structed four Actual Coordination matrices which represent coor-
dination activities that took place through different communica-
tion paths during the work associated with a modification request.
Structural Coordination captures the potential communication
and coordination activity that individuals that belong to the same
organizational team might have through mechanisms such as pe-
riodic team meetings. We built the actual coordination matrix
where a coordination activity between developers i and j exists if
they belong to the same formal team. An extension of the struc-
tural coordination measure is to consider all the developers that
are collocated in a same development facility as one group of
individuals that have opportunities to communicate and coordi-
nate given their physical proximity [1][38]. We refer to this meas-
ure as Geographical coordination and in terms of the matrix of
coordination activities, engineers i and j have a linkage if they
work in the same location.

The two Actual Coordination measures described so far are prox-
ies for expected coordination within teams and within locations.
We also constructed two additional measures that represent coor-
dination activity that was measured more directly. MR communi-
cation considers an interaction between engineers i and j only
when both i and j explicitly commented in the modification re-
quest report. Multiple modification requests might refer to the
same problem and later be marked as duplicates of a particular
modification request. All duplicates of the focal MR were also
used to capture the interactions among developers. We focused
on interactions among developers that explicitly commented on
the MR report because the MR-tracking system notified through
emails to all the individuals registered in a CC list every time an
MR is updated. Therefore the recipients of updates could be sig-
nificantly larger than the set of people actually providing informa-
tion to the MR. In other words, our approach creates a network
composed of only the engineers that contributed information to
the MR report. Finally, IRC communication was computed based
on interaction between developers from the IRC logs. Identifying
which IRC messages related to which modification request posed
a particular problem. The work on a MR could extend over days,
weeks or even months. The IRC logs must be examined through
out that period of time to identify interactions among engineers
that are relevant to that MR. Furthermore, developers could refer
to the MR id number (e.g. “<developer01> developer02: have you

6

looked at bug 12345”) or to the problem the MR represents with-
out any explicit reference to the MR (e.g. “<developer01> does
anyone know why would RPC call 123 return the error code
12345?”). Three raters, blind to the research questions, were
trained to examined the IRC logs corresponding to the period of
time associated with each MR and to established an interaction
between engineers i and j if they made reference to the bug ID or
to the task or problem represented by the MR in their conversa-
tions. In order to assess the reliability of the raters’ work, 10% of
the MRs where coded by all raters. Comparisons of the obtained
networks showed that 98.2% of the networks had the same set of
nodes and edges. All four Actual Coordination matrices were
symmetric.

Using the congruence computation described in Eq. 2, we con-
structed eight congruence measures, using all combinations of the
two Coordination Requirements matrices (FCT and CGRAPH)
and the four Actual Coordination matrices (Structural, Geo-
graphic, MR, and IRC). These congruence measures were used in
the regression models described in sections 4.3 and 5.

Control Measures: As described in Cataldo et al [10], numerous
factors impact the resolution time of modification requests. In this
paper, we used the same set of control measures utilized in the
baseline model reported by Cataldo et al [10]. The following
paragraphs describe the details of those measures that capture
attributes of the modification requests, the software engineers and
the teams associated with the development work. Several task-
specific factors such as the temporal dependency among MRs,
task priority and task re-assignments could have an important
effect on development time. Temporal Dependency was measured
as the number of modification requests that the focal MR depends
on in order for the task to be performed. Management prioritized
the activities of the developer by using a scale from 1 to 5 in the
modification request report where level 5 as the highest priority
and level 1 as the lowest priority. This rating constituted our
measure of priority of the MR. Task re-assignment was measured
as the number of times an MR was re-assigned to a different engi-
neer or team. Re-assignment impacts resolution time because each
new developer needs to build up contextual information about the
task. In addition, MRs opened by customers could represent work
items with higher importance consequently affecting the resolu-
tion time. A dummy variable was used to indicate if the MR is
associated with the service request from a customer. Multiple
Locations is a binary variable that indicates whether the all the
developers that worked on a particular MR were in the same geo-
graphical location (a value of 0) or were distributed across the
development labs (a value of 1). Finally, the release variable
identifies the release of the product that the modification request
is associated with. This variable could also be considered as a
proxy for time to control for efficiencies that might develop over
time and, consequently, affect the resolution time of the modifica-
tion requests. The change size measure is a proxy for the actual
amount of development work done and it was computed as the
number of files that were modified as part of the change for the
focal MR. Although past work [20] has used lines of code
changed as a measure of the size of the modification, our analysis
of both measures showed equivalent results in the statistical mod-
els used in this study.

It is well established that experience, along different dimensions
such as tools, programming languages and product domain, is

critical to software development productivity [5][14][15]. We
constructed several experience measures using archival informa-
tion. Programming experience was computed as the average
number of years of programming experience prior to joining the
company of all the engineers involved in the modification request.
Tenure was measured as the average number of months in the
company of all the engineers that worked in the modification
request at the time the work associated with the MR was com-
pleted. Component experience was computed as the average
number of times that the engineers responsible for the modifica-
tion request have worked on the same files affected by the focal
modification request. This measure was also log-transformed to
satisfy normality requirements. Finally, Team load is a measure of
the average work load of the teams responsible for the compo-
nents associated with the modification request. This control vari-
able was computed as the ratio of the average number of modifi-
cation requests in open or assigned state over the total number of
engineers in the groups involved in the focal modification request
during the period of time the MR was in assigned state.

4.3 Description of the Model
Past research has found that linear [20][29] and hierarchical linear
[20][34] models are appropriate techniques for examining the
effects of different factors on development productivity. In this
study, we examined the effect of congruence on resolution time
using the following linear regression model:

∑ +

+∑=

j jiableControlVarj

i iMeasureCongruenceieolutionTim

εδ

β

*

*Res

An examination of descriptive statistics and Q-Q plot indicated
that several of the variables (Resolution Time, Change Size and
Component Experience) were highly skewed to the left. The log
transformation provided the best approximation to a normal dis-
tribution. The analysis of the pair-wise correlations amongst the
variables in the model suggested no relevant collinearity prob-
lems. Only a small set of correlations were statistically significant
but their levels did not exceed +/- 0.343.

The measures of structural and geographical congruence could be
affected by personnel turnover and mobility across teams. We
examined archival data collected from the company and we de-
termined a yearly turnover rate of only 3% and an inter-group
mobility rate of less than 1%. The modification requests that in-
volved individuals that left the company or changed group mem-
bership were eliminated from the analysis. However, an analysis
including those modification requests showed results consistent
with those reported in section 5.

5. RESULTS
We performed several linear regression analyses to assess the
effect of the congruence measures on the resolution time of modi-
fication requests. As discussed in section 4, two different meth-
ods, FCT and CGRAPH, were used to identifying technical de-
pendencies which resulted in two sets of congruence measures.
We first discuss the results of the analyses done using the congru-
ence measures based on the FCT method. Table 1 shows the re-
sults from the OLS regressions. Model I is a baseline regression
model which only considers the control factors. Consistent with

7

previous empirical work in software engineering, factors such as
the size of the modification to the code, familiarity with the soft-
ware components, and general programming experience are sig-
nificant elements that affect resolution time of MRs [20][28].
Task-specific characteristics such as temporal dependencies with
other modification requests and the priority of the task are associ-
ated with an increase in development time. As it has been re-
ported in previous research [20][28], the results also show that
when developers are geographically distributed, the amount of
time required to resolve modification requests is likely to in-
crease. The coefficients from model I also suggest that time, cap-
tured by the variable Release, had no statistically significant ef-
fect. Since the Release measure is in fact a categorical variable,
we also examined its impact using two dichotomous variables to
represent the four possible values. The results were identical to
defining Release as an integer from 1 to 4 to represent the four
releases of the product.

Table 1: Effects on Resolution Time (FCT method)

 Model
I

Model
II

Model
III

(Intercept) 4.81** 4.63** 4.48**
Temporal Dependency 0.59** 0.59** 0.59**
Priority -0.40** -0.41** -0.40**
Re-assignment 0.01 0.01 0.01
Customer MR 0.09 0.10 0.09
Release -0.02 -0.02 -0.03
Change Size (log) 0.31** 0.31** 0.31**
Team Load -0.01 -0.01 -0.01
Multiple Locations 0.13** 0.13** 0.13**
Programming Experience -0.17** -0.17** -0.17**
Tenure -0.01+ -0.01+ -0.01+
Component Experience (log) -0.07** -0.07** -0.07**
Structural Congruence -0.18* -0.14*
Geographical Congruence -0.02* -0.04*
MR Congruence -0.06* -0.05*
IRC Congruence -0.21* -0.21*
Multiple Locations X
MR Congruence

 0.13

Multiple Locations X
IRC Congruence

-0.27*

N 2375 2375 2375
Adjusted R2 0.718 0.819 0.831
(+ p < 0.10, * p < 0.05, ** p < 0.01)

Model II introduces the measures of congruence into the analysis.
The results show statistically significant effects on all the congru-
ence measures computed using the FCT method. The estimated
coefficients of the congruence measures have negative values
which are associated with a reduction in resolution time. The
results highlight the important role of congruence on task per-
formance as well as the complementary nature of all communica-
tion paths. Structural congruence is associated with shorter devel-
opment times suggesting that when coordination requirements are
contained within a formal team and appropriate communication
paths exists, task performance increases. Geographical congru-
ence had a positive effect on resolution time, consistent with past
research that argued distance has detrimental effects on communi-
cation (see [28] and [38] for reviews). Communication congru-
ence based on the interactions amongst engineers through the MR

reports as well as IRC were also statistically significant suggest-
ing the usefulness of these tools in facilitating coordination
among individuals that belong to different teams and could poten-
tially be geographically distributed.

Finally, model III includes several interaction factors to assess
whether the role of congruence changes when the groups involved
in a particular MR are geographically distributed. The results
show a statistically significance impact only for the Multiple Lo-
cations X IRC term. The negative coefficient suggests that when
developers are geographically distributed the impact of IRC con-
gruence on resolution time is higher above and beyond the direct
effect.

Table 2 shows the results of our analysis obtained when the con-
gruence measures are computed using the CGRAPH method for
identifying technical dependencies. Model I is the same model
reported in table 1. We observe in model IV that only geographi-
cal congruence is statistically significant and its coefficient is
negative indicating a reduction in the resolution time as congru-
ence increases. Structural congruence was marginally significant.
Finally, Model V shows that interaction terms were not statisti-
cally significant. In sum, these results suggest that the two de-
pendency identification methods, FCT and CGRAPH, are captur-
ing different sets of technical dependencies that impact the devel-
opment tasks differently.

Table 2: Effects on Resolution Time (CGRAPH method)

 Model
I

Model
IV

Model
V

(Intercept) 4.81** 4.88** 4.81**
Temporal Dependency 0.59** 0.59** 0.59**
Priority -0.40** -0.40** -0.40**
Re-assignment 0.01 0.03 0.01
Customer MR 0.09 0.19 0.09
Release -0.02 -0.02 -0.02
Change Size (log) 0.31** 0.31** 0.31**
Team Load -0.01 -0.01 -0.01
Multiple Locations 0.13** 0.12** 0.13**
Programming Experience -0.17** -0.17** -0.17**
Tenure -0.01+ -0.01+ -0.01+
Component Experience (log) -0.07** -0.07** -0.07**
Structural Congruence -0.21+ -0.23+
Geographical Congruence -0.11* -0.03*
MR Congruence 0.41 0.48
IRC Congruence -0.01 -0.02
Multiple Locations X
MR Congruence

 0.05

Multiple Locations X
IRC Congruence

-0.41

N 2375 2375 2375
Adjusted R2 0.718 0.731 0.722
(+ p < 0.10, * p < 0.05, ** p < 0.01)

6. DISCUSSION
This study has significant contributions to the software engineer-
ing and management of product development organizations litera-
tures. First, the empirical evaluation of the congruence framework
showed the importance of understanding the dynamic nature of
software development. Identifying the “right” set of product de-

8

pendencies that determine the relevant work dependencies and
coordinating accordingly has significant impact on reducing the
resolution time of modification requests. The analyses showed
traditional software dependencies, such as syntactic relationships,
tend to capture a relatively narrow view of product dependencies
that is not fully representative of the important product dependen-
cies that drive the need to coordinate. On the other hand, logical
dependencies provide a more accurate representation of the most
relevant product dependencies in software development projects.
The statistical analyses showed that when developers’ coordina-
tion patterns are congruent with their coordination needs, the
resolution time of modification requests was, on average, reduced
by 32% when considering the collective effect of all four meas-
ures of congruence. Generalizing, the empirical examination of
the congruence framework and coordination patterns showed the
tight relationship between team design, coordination and perform-
ance providing an important contribution to the organizational
literature.
The congruence framework extends traditional conceptualizations
of coordination by taking a fine-grain level of analysis to better
examine the mismatches between dependencies and coordination
activities. Those gaps could have major implications for the pro-
ductivity and the quality of the output of product development
organizations [15][20][28][42]. Our empirical results suggest that
our measure of socio-technical congruence represents a useful
framework to examine how coordination needs that are not satis-
fied impact software development productivity. When the devel-
opers coordinate their task with the relevant set of workers, pro-
ductivity increases. Individuals have difficulties identifying task
interdependencies that are not obvious or explicit [42] and the
developers’ ability to recognize dependencies diminish as coordi-
nation requirements change over time [21]. For these reasons,
changes in the coordination requirements represent an important
obstacle for product development organizations, particularly,
when work groups are geographically distributed. Collaborative
tools and managerial techniques that utilize the congruence
framework could play an important role in reducing the gap be-
tween recognized and actual interdependencies.

7. LIMITATIONS
It is also important to highlight some of the limitations of the
work reported in this paper. First, the measures proposed by the
congruence framework are contingent on assumptions about the
software development processes used in the development organi-
zation as well as usage patterns of tools that assist the develop-
ment effort such as defect tracking and version control systems.
One key assumption is the possibility to identify (1) the set of
source code files that were changed as part of a modification re-
quest and (2) the developers that made those changes. For in-
stance, a policy of source code file ownership by particular devel-
opers could potentially bias the congruence measures. Developers
that own a particular source code might appear as participants in
the development effort associated with a modification request,
however, that might not be the case. In other cases, such as open
source projects, the nature of the work in certain project is such
that the information about which files changed together as part of
a MR is not easily reconstructible in a reliable way.
The alternative approach of computing coordination requirements
based on syntactic relationships also has its limitations. The
method relies on tools that can reliably extract the dependency

information among software modules for a specific programming
language. More importantly, projects that use multiple program-
ming languages will represent a challenge, particularly, in terms
of determining syntactic dependencies that involve modules writ-
ten in different programming languages.
Another limitation of the work presented in this paper is a poten-
tial concern for external validity. Our analysis examined only one
system with particular technical properties that might be condu-
cive to support the results found by the analysis. However, the
processes and tools used by the development organization are
commonplace in the software industry. Moreover, the general
technical characteristics of the system are similar to other types of
distributed systems developed into products in the software indus-
try. Hence, we think the results are generalizable, particularly, in
the context of development organizations responsible for deliver-
ing complex software systems. Finally, the study does not con-
sider all forms of coordination, such as telephone and e-mail
communication. Data on such communication were not available.

8. FUTURE WORK
8.1 Enhancing coordination needs awareness
Collaboration, coordination, and task awareness tools are a natu-
ral application for the coordination requirements measure pre-
sented in this paper. Part of the research effort of the CSCW
community has been on improving traditional tools, such as email
and instant messaging, which have become an integral part of
work in the vast majority of organizations [3][45]. For instance,
the coordination requirements measure could provide a way of
identifying the email exchanges that are more relevant given the
task interdependencies among individuals. This information
would enable tools to present an enhanced task management ex-
perience by, for instance, prioritizing to-do lists and generating
reminders to respond to task-specific emails based on the coordi-
nation requirements. This email sorting approach could be
thought as a task-specific alternative to other social-based sorting
techniques such as the one proposed by Fisher and colleagues
[21]. A more recent set of tools, such as sidebars [7] and produc-
tivity assistants [24], would also benefit from the congruence
framework. These types of tools focus on activity-centric collabo-
ration and, as argued by Geyer and colleagues [24], the majority
of the tools assume user intervention in terms of deciding what
type of information to make part of the sidebar. The congruence
framework would provide an automatic mechanism to identify
people of interest giving a particular set of task dependencies
among the workers.
In the context of large software development projects, identifying
the appropriate person to interact with and coordinate interde-
pendent activities is not a straightforward task. In fact, it is well
established that software developers have serious difficulties iden-
tifying the right set of individuals to coordinate with [17][25]. The
coordination requirement measure provides a mechanism to aug-
ment awareness tools that provide real-time information regarding
the likely set of workers that a particular individual might need to
communicate with. For instance, integrated development envi-
ronments, such as Eclipse [18] or Jazz [32], could use the coordi-
nation requirement information to recommend a dynamic “coor-
dination buddy list” every time particular parts of the software are
modified. In this way, the developer becomes aware of the set of
engineers that modified parts of the system that are interdepend-
ent with the one the developer is working on. The concept of the

9

“buddy list” in communication and collaboration tools is not a
new idea. However, the novel contribution is to construct the
“buddy list” from accurate estimates of the set of individuals
more likely to be relevant to a particular developer in relations to
the work dependencies, information which is captured by the
coordination requirements measure.

8.2 Identification of coordination require-
ments in early stages of software projects
The empirical examination of the congruence framework showed
the relevance of matching coordination activity with the fine-
grained coordination needs that emerge in the development of
software systems. However, the measure of congruence, as com-
puted in the study, relies on archival data to capture the informa-
tion about product dependencies, task assignments as well as co-
ordination activity carried out by the development organization.
Our promising results highlight the importance of identifying
potential coordination needs as early as possible in the develop-
ment process in order to provide the development organization
with the appropriate communication and coordination mecha-
nisms. Certainly such a task is a challenging one.
In early stages of a project, only architectural or high level design
specifications of a system are available. Those documents by
definition abstract a significant portion of the technical details of
software systems in order to understand the overall attributes and
relationships among the main components of a system. A higher
level of abstraction could potentially hinder the identification of
relevant technical dependencies and consequently, important co-
ordination requirements. However, the use of standardized design
and modeling languages, such as UML, might represent a way of
overcoming these challenges. Researchers have proposed standard
graphical representations of software architectures that capture
different technical aspects of a software system [12]. Examples of
those graphical representations are the module view and the com-
ponents-and-connectors view.
We envision a coordination view of the architecture that com-
bines the product’s technical dependencies with relationships
among the organizational units responsible for carrying out the
development work. In order to generate such representations,
methods of identifying relevant dependencies from the technically
focused views of the architecture are to be devised. One poten-
tially promising approach is to synthesize the dependencies repre-
sented in the various types of UML diagrams (e.g. class diagrams,
sequence diagrams, etc.) into a single set of technical relation-
ships among modules. Such a method could be able to identify
logical relationships among parts of the systems which, as shown
in this paper, are an important factor driving the work dependen-
cies in software development organizations.

9. ACKNOWLEDGMENTS
We gratefully acknowledge support by the National Science
Foundation under Grants No. IIS-0414698, IIS-0534656 and
IGERT 9972762; the Software Industry Center at Carnegie Mel-
lon University and its sponsors, especially the Alfred P. Sloan
Foundation; and a Software Engineering Institute IRD grant.

10. REFERENCES
[1] Allen, T.J. 1977. Managing the Flow of Technology. MIT

Press.

[2] Baldwin, C.Y. and Clark, K.B. 2000. Design Rules: The
Power of Modularity. MIT Press.

[3] Bellotti, V. et al. 2003. Taking email to task: the design and
evaluation of a task management centered email tool. In Pro-
ceedings International Conference on Human Factors in
Computing Systems (CHI’03), Ft. Lauderdale, FL.

[4] Bass, M., Bass, L., Herbsleb, J.D. and Cataldo, M. 2006.
Architectural Misalignment: an Experience Report. To ap-
pear in the Proceedings of the 6th International Conference
on Software Architectures (WICSA ’07).

[5] Brooks, F. 1995. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison Wesley.

[6] Burton, R.M. and Obel, B. 1998. Strategic Organizational
Diagnosis and Design. Kluwer Academic Publishers.

[7] Cadiz, J.J. et al. 2002. Designing and deploying an informa-
tion awareness interface. In Proceedings of the Conference
on Computer Supported Cooperative Work (CSCW’02),
New York, NY.

[8] Carley, K.M. 2002. Smart Agents and Organizations of the
Future. In Handbook of New Media. Edited by Lievrouw, L.
and Livingstone, S., Sage, Thousand Oaks, CA.

[9] Carley, K.M and Ren, Y. 2001. Tradeoffs between Perform-
ance and Adaptability for C3I Architectures. In Proceedings
of the 6th International Command and Control Research and
Technology Symposium, Annapolis, Maryland.

[10] Cataldo, M. et al. Identification of Coordination Require-
ments: Implications for the Design of Collaboration and
Awareness Tools. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW’06), Banff,
Alberta, Canada.

[11] Cataldo, M. et al. 2007. On Coordination Mechanism in
Global Software Development. In Proceedings of the Inter-
national Conference on Global Software Engineering
(ICGSE’07), Munich, Germany.

[12] Clements, P. et al. 2002. Documenting Software Architec-
tures: Views and Beyond. Addison-Wesley.

[13] Conway, M.E. 1968. How do committees invent? Datama-
tion, 14, 5, 28-31.

[14] Curtis, B. 1981. Human Factors in Software Development.
Ed. by Curtis, B., IEEE Computer Society.

[15] Curtis, B., Kransner, H. and Iscoe, N. 1988. A field study of
software design process for large systems. Communications
of ACM, 31, 11, 1268-1287.

[16] de Souza, C.R.B. 2005. On the Relationship between
Software Dependencies and Coordination: Field Studies and
Tool Support. Ph.D. dissertation, Donald Bren School of
Information and Computer Sciences, University of
California, Irvine.

[17] de Souza, C.R.B. et al. 2004. How a Good Software Practice
Thwarts Collaboration – The multiple roles of APIs in Soft-
ware Development. In Proceedings of the 12th Conference on
Foundations of Software Engineering (FSE ’04), Newport
Beach, CA.

[18] Eclipse Project. 2008. http://www.eclipse.org. URL accessed
on February 28th, 2008.

10

[19] Eppinger, S.D. et al. A Model-Based Method for Organizing
Tasks in Product Development. Research in Eng, Design, 6,
1-13.

[20] Espinosa, J.A. 2002. Shared Mental Models and Coordina-
tion in Large-Scale, Distributed Software Development. Un-
published Ph.D. Dissertation, Graduate School of Industrial
Administration, Carnegie Mellon University.

[21] Fisher, D., Brush, A.J., Gleave, E. and Smith M.A. 2006.
Revisiting Whittaker and Sidner’s “Email Overload”: Ten
Years Later. In Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW’06), Banff, Alberta,
Canada.

[22] Gall, H. Hajek, K. and Jazayeri, M. 1998. Detection of Logi-
cal Coupling Based on Product Release History. In Proceed-
ings of the International Conference on Software Mainte-
nance (ICSM ‘98), Bethesda, Maryland.

[23] Garcia, A., et al. 2007. Assessment of Contemporary Modu-
larization Techniques, ACOM’07 Workshop Report. ACM
SIGSOFT Software Engineering Notes, 35, 5, 31-37.

[24] Geyer, W. et al. 2007. Malibu Personal Productivity Assis-
tant. In Proceedings International Conference on Human
Factors in Computing Systems (CHI’07) – Work in Progress
Section, San Jose, CA.

[25] Grinter, R.E., Herbsleb, J.D. and Perry, D.E. 1999. The Ge-
ography of Coordination Dealing with Distance in R&D
Work. In Proceedings of the Conference on Supporting
Group Work (GROUP’99), Phoenix, Arizona.

[26] Hassan, A.E. and Holt, R.C. 2004. C-REX: An Evolutionary
Code Extractor for C. CSER Meeting. Canada.

[27] Henderson, R.M. and Clarck, K.B. 1990. Architectural Inno-
vation: The Reconfiguration of Existing Product Technolo-
gies and the Failure of Established Firms. Adm. Sci. Quar-
terly, 35, 9-30.

[28] Herbsleb, J.D. and Mockus, A. 2003. An Empirical Study of
[29] Speed and Communication in Globally Distributed Software

Development. IEEE Trans. on Software Engineering, 29, 6.
[30] Herbsleb, J.D., Mockus, A. and Roberts, J.A. 2006. Collabo-

ration in Software Engineering Projects: A Theory of Coor-
dination. In Proceedings of the International Conference on
Information Systems (ICIS’06), Milwaukee, Wisconsin.

[31] Horwitz, S., Reps, T., and Binkley, D. 1990. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems, 22, 1, 26-60.

[32] Hutchens, D.H. and Basili, V.R. 1985. System Structure
Analysis: Clustering with Data Bindings. IEEE Transactions
on Software Engineering, 11, 8, 749-757.

[33] Jazz Project. 2008. http://jazz.net/pub/index.jsp. URL ac-
cessed on February 28th, 2008.

[34] Krackhardt, D. and Carley, K.M. 1998. A PCANS Model of
Structure in Organization. In Proceedings of the 1998 Inter-
national Symposium on Command and Control Research and
Technology.

[35] Kraut, R.E. and Streeter, L.A. 1995. Coordination in Soft-
ware Development. Communications of ACM, 38, 3, 69-81.

[36] Leffingwell, D. and Widrig, D. 2003. Managing Software
Requirements: A Use Case Approach, 2nd Edition. Addison-
Wesley.

[37] Levchuk, G.M. et al. 2004. Normative Design of Project-
Based Organizations – Part III: Modeling Congruent, Robust
and Adaptive Organizations. IEEE Trans. on Systems, Man
& Cybernetics, 34, 3, 337-350.

[38] Murphy, G.C. et al. 1998. An empirical study of call graph
extractors. ACM Trans. on Software Engineering Methodol-
ogy, 7, 2, 158-191.

[39] Olson, G.M. and Olson, J.S. 2000. Distance Matters. Human-
Computer Interaction, 15, 2 & 3, 139-178,

[40] Parnas, D.L. (1972). On the criteria to be used in decompos-
ing systems into modules. Communications of ACM, 15, 12,
1053-1058.

[41] Selby, R.W. and Basili, V.R. (1991). Analyzing Error-Prone
System Structure. IEEE Transactions on Software Engineer-
ing, 17, 2, 141-152.

[42] Simon, H.A. 1962. The Architecture of Complexity. In Pro-
ceedings of the American Philosophical Society, 106, 6, 467-
482.

[43] Sosa, M.E., Eppinger, S.D., and Rowles, C.M. 2004. The
Misalignment of Product Architecture and Organizational
Structure in Complex Product Development. Management
Science, 50, 12, 1674-1689

[44] Sullivan, K.J. et al. 2001. The Structure and Value of Modu-
larity in Software Design. In Proceedings of the Interna-
tional Conference on Foundations of Software Engineering
(FSE ’01), Vienna, Austria.

[45] Von Hippel, E. 1990. Task Partitioning: An Innovation Proc-
ess Variable. Research Policy, 19, 407-418.

[46] Wattenberg, M. et al. 2005. E-Mail Research: Targeting the
Enterprise. J. of Human-Computer Interaction, 20, 139-162.

[47] Yassine, A. et al. 2003. Information Hiding in Product De-
velopment: The Design Churn Effect. Research in Eng. De-
sign, 14, 145-161.

11

