
Improving API Documentation Usability with Knowledge Pushing

Uri Dekel and James D. Herbsleb
Institute for Software Research, School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 USA

{udekel|jdh}@cs.cmu.edu

Abstract

The documentation of API functions typically conveys
detailed specifications for the benefit of interested readers.
In some cases, however, it also contains usage directives,
such as rules or caveats, of which authors of invoking code
must be made aware to prevent errors and inefficiencies.
There is a risk that these directives may be “lost” within
the verbose text, or that the text would not be read because
there are so many invoked functions. To address these con-
cerns for Java, an Eclipse plug-in named eMoose decorates
method invocations whose targets have associated direc-
tives. Our goal is to lead readers to investigate further,
which we aid by highlighting the tagged directives in the
JavaDoc hover. We present a lab study that demonstrates
the directive awareness problem in traditional documenta-
tion use and the potential benefits of our approach.

1. Introduction

Modern software systems combine code written by many
individuals and make heavy use of external libraries and Ap-
plication Programming Interfaces (APIS). Stakeholders in
these settings are not likely to be fully acquainted with all
current knowledge about artifacts and services in the project
and third-party code. When focused on a particular code
fragment, however, it may be critical for them to be well-
versed in all the services that it uses. A lack of awareness of
usage guidelines and caveats can result in runtime failures
and maintenance difficulties.

Since many API functions are meant for widespread use,
their authors are motivated to invest significant effort in
creating elaborate documentation that fully specifies every-
thing that a client may need to know about a function. Such
specifications are crucial for assuring correctness during in-
spections and the development of testing plans [5, 12]. Un-
fortunately, the potential consumers of this documentation
spend much of their time browsing code [4] that includes

numerous method invocations. They are therefore limited
in the time and effort they can spend on any particular call
and may therefore miss important information.

Figure 1. Example of method documentation

Consider, for example, the documentation of
method setClientId from the Java Messaging Ser-
vice (JMS) API, which is depicted in Fig. 1 as it is
displayed in the Eclipse IDE. The detailed narrative
covers many details, including purpose, configuration,
and exceptions. Stakeholders skimming the text may miss
the highlighted sentence deep within the third paragraph,
which defines a protocol that explicitly forbids prior
method invocations on this object.

This problem is compounded by the significant fan-out
(number of outgoing edges in the call graph) of many func-
tions. Sifting through the documentation of one invoked
function is challenging enough, so searching all targets for
important knowledge is even less practical. For instance,
consider the code excerpt of Fig. 2, which creates a mes-
sage queue in JMS. When writing or examining this rela-
tively straightforward code we must decide which, if any,
of the four invoked methods should have their documenta-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 320

tion examined for additional requirements. The IDE sup-
port does not offer any cues drawing us to (or away from)
any particular call, though we might be inclined to examine
the complex-looking calls that take one or more arguments.

Figure 2. Code excerpt with four invocations

It turns out, however, that the documen-
tation of the seemingly straightforward call
to createQueueConnection mentions that connec-
tions are created in a “stopped mode” and no messages will
be delivered until their start method is invoked. Since this
detail is not mentioned in the queue’s receive method, a
lack of awareness of this directive here may result in the
program hanging when messages are eventually retrieved.

Casual observations confirm that developers only in-
vestigate the documentation of a small portion of invoked
methods. We suspect that this may also have an indirect
effect on the willingness of authors of project artifacts to
document less “visible” functions. Such functions are often
written with specific assumptions, expectations, and limita-
tions in mind, but developers presumably weigh the poten-
tial future benefits to their peers against the immediate costs
of capturing this knowledge. Increasing the prospects that
the documentation would actually be read may create better
incentives for preserving it.

We also note that project artifacts are likely to have asso-
ciated action items or bug reports [11]. Stakeholders need
to become aware of these caveats in invoked functions to
avoid depending on a faulty implementation.

1.1 About this work

The goal of our work is to make developers examining a
code fragment more aware of important directives that are
associated with the invoked functions. We use this term
to distinguish knowledge that has immediate implications
for the clients from specifications that can be actively con-
sulted to improve one’s understanding. We believe that such
awareness not only will help stakeholders avoid or fix cer-
tain invocation errors, but also will assist those learning to
use the API from code samples.

This paper presents a solution based on the premise
that if we: 1) explicitly identified important directives in
the function’s documentation, 2) could unobtrusively signal
which call targets have associated directives, and 3) offered
lightweight means to explore the utility of the information
without changing context, then: developers will be more
likely to become aware of directives.

We implemented this approach as part of our eMoose
memory aid for software practicioners, which currently sup-

ports JAVA developers in the Eclipse IDE. Our Eclipse plug-
in manages a knowledge space that maps atomic knowledge
items (KIs) to specific functions. All KIs in this paper are
directives or to-do items. The space is populated by manu-
ally tagged text in source code comments, and by download-
able collections of KIs. As part of this work, we systemat-
ically surveyed core parts of several major APIS, includ-
ing the JAVA standard library, Eclipse, JMS, and apache-
commons. We tagged several thousands of directives and
packaged them for users.

Figure 3. eMoose call decorations

Our plug-in continuously tracks the contents of the JAVA
editor window and identifies method calls whose static (or
possible dynamic) targets have associated directives. As can
be seen in Fig. 3, it then highlights these calls by surround-
ing them with a box and placing a small icon on their line.
These cues should alert users to the availability of poten-
tially relevant directives in certain calls while offering some
assurance of their absence on the other targets.

Figure 4. eMoose attachment to tooltip

When the user hovers over the decorated call, the usual
tooltip showing the documentation of the target method
(Fig. 1) is augmented with a lower pane listing the direc-
tives (Fig. 4) to facilitate their consumption.

Two natural concerns about this approach are whether
these interventions have the desired beneficial effects and
whether these effects would be offset by distraction and in-
formation overload. In addition, there is at present only lim-
ited evidence that developers actually miss important direc-
tives with standard techniques. We address these and other
concerns with results from a comparative lab study in which
developers were tasked with fixing errors within small code
fragments. eMoose users were significantly more successful
than non-users, and without being significantly distracted.

1.2 Contributions and importance

The first major contribution of this paper is in demon-
strating, via a controlled lab study, that developers indeed
fail to become aware of important directives in the func-
tions they invoke. This carries significant implications for
function authors, and should raise questions about docu-
mentation practices and API usability. Since developers

321

frequently learn new APIS from code examples, our find-
ings also have implications for current learning practices.

Our second contribution is in demonstrating (within the
limitations of the lab) that decorating method invocations
is an effective way to alert readers to potentially important
information associated with these targets, and without sig-
nificant overload. These results are also important because
such cues may be effective for other types of information
and perhaps for other mediums and link semantics.

Before we proceed, it is important to clarify the differ-
ence between our approach and the very active research
field of automated conformance checking. Techniques that
enforce design-by-contract (e.g., [1, 6]) allow function au-
thors to formally specify a usage contract and then use static
or dynamic analysis to ensure the conformance of invok-
ing code. While these techniques can be extremely useful
in automatically detecting certain violations, they require
significant investments and skills from those authors. In
addition, we note that some function documentations con-
vey contracts that are too abstract to be formally specified.
Others convey important information whose violation is not
necessarily an error, such as performance caveats.

There is therefore a need for a complementary approach
for the vast majority of directives that have not yet been
formalized and may never be. Our approach focuses on
increasing the clients’ awareness of a directive rather than
offering automated assurances. It leverages natural text in
existing documentation under a premise that manually tag-
ging directives is significantly more practical and general
than writing formal specifications.

The novelty of our approach lies in both the distinction
made between directives and the rest of the narrative, and in
the idea of “pushing” them to the awareness of clients. This
may reduce the risk for errors and potentially improve the
effectiveness of existing documentation practices.

Outline: The rest of this paper is organized as follows:
Sec. 2 discusses method documentation in JAVA, and Sec. 3
describes the nature and types of directives. Our tool is de-
scribed in Sec. 4. We present the design of our lab study in
Sec. 5 and its results in Sec. 6. We discuss these results in
Sec. 7, and the study’s limitations in Sec. 8. We conclude
and discuss current research directions in Sec. 9

2 Method documentation in JAVA

Methods in JAVA are documented via a JavaDoc com-
ment block placed just before their declaration in the source
code. Though any text is allowed, official guidelines [5,12]
recommend a specific structure: 1) A “summary sentence
containing a concise but complete description of the API
item”. 2) An “implementation-independent description and
specification that must include boundary conditions, pa-
rameter ranges and corner cases.”. 3) A series of tagged

lines that list parameters, return values, exceptions, and
other metadata, even if they are obvious or redundant with
the documentation text.

While the documentation of every class in the API is typ-
ically provided as an HTML file generated by the JavaDoc
tool, most IDEs provide means to read the JavaDocs
of specific methods from within the editor. Selecting a
method from a class outline or auto-complete list presents
its JavaDocs, but more importantly, hovering over a call
presents the JavaDocs of its target in a tooltip window,
which we call the JavaDoc hover.

In our survey of APIS we found many materials that
bloat JavaDocs and might make directives even more dif-
ficult to spot. These include general descriptions that would
fit better at the class level, and implementation details that
are only relevant to maintainers. A prevalent problem with
the JavaDocs of toolkits that rely on subclassing, such
as SWING, is that they mix the information relevant to
clients of a class instance with information that is relevant
only to subclass developers who override the method.

The subclassing mechanism also presents significant
challenges for the consumption of documentation. In
object-oriented languages like JAVA, polymorphism [7] al-
lows a variable declared with a certain type (termed static
type) to contain at runtime instances of subtypes (called dy-
namic types). When a method is invoked on the variable and
there is an overriding version in a dynamic type, the latter
is invoked. However, since the dynamic type of a variable
cannot be predicted and as it may change during runtime,
the actual target of such calls cannot be determined.

For this reason, most IDEs merely present the JavaDocs
for the static target, potentially leaving users unaware of
new or conflicting directives in an overriding version. This
can have severe consequences if conformance [7] is violated
and the documented behavior of the overriding version con-
flicts with that of the overridden. Though deprecated, we
encountered such violations even in quality library code.

3 Directives

Though directives play a central role in our approach,
there are no strict criteria to distinguish knowledge that
should be “pushed” into the awareness of clients from
materials that can “wait” for the user to actively seek
them. These decisions ultimately fall to whoever creates
the eMoose knowledge-items for that API. Our intention,
however, is for candidate directives to meet two require-
ments. First, they must demand or imply concrete steps
which the client can follow and for which it is straight-
forward to come up with a violating example. Second,
they should capture nontrivial, infrequent, and possibly un-
expected information. For example, since many methods
specify policies for null argument values, these policies
should not be considered directives.

322

We note that in our survey of standard APIS, many direc-
tives were relatively straightforward to identify and distin-
guish from the rest of the narrative. Authors frequently used
the imperative to address clients or talked about them in
the passive. They also frequently emphasized these clauses
with phrases such as be aware that or note that, and words
such as must, should, warning, etc. Most difficulties in de-
termining whether a clause constituted a directive occurred
when such constructs were not used.

To illustrate the breadth of important issues covered by
directives, we now present prominent types which we fre-
quently encountered in our survey of API documentation.

We begin with imperative directives, which represent
contract elements whose violations can have immediate
consequences, delayed and unpredictable runtime effects,
or future compatibility and extension issues.

Restrictions: Many methods explicitly restrict the set
of clients and contexts from which they may safely be in-
voked, such as “do not call from UI thread” or “for use only
by debugging code”. Interestingly, many of these restric-
tions are defined in abstract and human-readable terms that
would complicate formal specification and automated con-
formance checking. For instance, some refer to conceptual
sets of artifacts that may be difficult to enumerate, such as
“toolkit code” or “debugging infrastructure”, and others to
program states that are difficult to evaluate, such as: “only
from actions that are installed on a button”.

Protocols: Many methods are designed to be used as
part of a sequence of actions that set or transform the ob-
ject’s state. Their documentation includes protocol con-
straints that specify what should occur before and after the
call. Common examples state that the method must only be
called once, or that it must be called prior to or only after a
call to some other method. As with restrictions, many pro-
tocols are described in general natural text descriptions that
would be difficult to formally specify and validate. For ex-
ample: “All data in returned stream must be read prior to
getting value of other column”, “To reuse a closed internal
frame, add it to a container”, or “Cursor must be on the
insert row before this call”.

Locking: Some methods present clear synchronization
requirements for their use [13].

Parameters and return values: While all methods are
expected to specify the nature and ranges for all parame-
ters and return values, some convey unexpected restrictions
or requirements which can be considered directives. For
instance, the replaceAll method in String warns users
from including $ and \ characters in the replacement string,
since it is implemented via regular expressions. Many meth-
ods that receive or return complex objects or platform re-
sources indicate whether internal copies are used, and what
the disposal responsibilities are.

We now turn to directives that are more informative in
nature. These are meant to be taken into consideration but

not necessarily acted upon, and may therefore be outside
the domain of tools for automatic conformance checking.
In some cases, however, ignoring these directives can lead
to actual errors.

Alternatives: The documentation of some methods sug-
gests that a different method be used. Though often re-
lated to encapsulation or deprecation, some alternatives of-
fer fundamentally different functionality, so a lack of aware-
ness may result in breakdowns. For example, the JavaDocs
for putLayer in SWING’s JLayeredPane suggest us-
ing setLayer to get “desired side-effects like repainting”.

Limitations: Some methods are less robust and compre-
hensive than their name may suggest; they may specifically
delineate the inputs or situations they are capable of han-
dling or describe limitations on their outputs. Other meth-
ods explicitly announce that certain events or side effects
will not occur. For instance, adding or removing items
from SWING containers does not cause visual change un-
til validate is called.

Side effects: Some methods have additional effects to
those conveyed in their signature and summary sentence.
For example, many getters perform lazy creation. Setting
certain properties in SWING automatically sets additional
properties. Changing the row sorter in a JTable will also
clear selections and reset row heights. Disposing of the last
displayable window in the JVM may terminate it.

Performance: Some methods use algorithms or services
that have performance implications of which clients must
be aware. For example, many methods return copies of
complex objects and therefore suggest caching or avoiding
excessive calls. Other examples include: “should only be
called on highly available system unless a progress monitor
is set up”, or “names should be provided to avoid querying
the entire registry”.

Threading: In addition to defining locking require-
ments or restricting calls to specific threads, some JavaDocs
present additional details related to multithreading behav-
ior. For example, some mention lock changes and block-
ing, while others suggest that clients manually synchronize
groups of calls.

Security: Some methods cause security vulnerabilities
that may be relevant in certain contexts.

4 The eMoose tool

The functionality described in this paper is only part
of our eMoose1 framework, which is designed to serve
as a comprehensive memory aid for software engineers
that manages both artifact-centric and temporal informa-
tion. Since this paper is concerned only with artifact-centric
information, we shall use the term eMoose solely for the

1Abbreviation for External Memory Of Open Source Efforts.

323

functionality for tagging and pushing knowledge supported
by the publicly-available client-side version of the tool [2].

4.1 Knowledge space

Every instance of the eMoose client plug-in manages
an abstract knowledge space which consists of knowledge
items (KIs). A KI is an atomic and concise element which is
intended to be captured rapidly and cost-effectively as a sin-
gle sentence or text line conveying one idea. In the scope of
this paper, every KI corresponds to a directive in a JavaDoc
or to an embedded TODO comment. Every KI can be as-
sociated with an entire class, a specific member, or even a
selection within the member. Every KI can also be assigned
a single type from a predefined set similar to that of Sec. 3.
The type can be used to facilitate input, presentation, and
filtering, but generally serves informational purposes.

One type of KIs in the client’s knowledge space are in-
ternal KIs , which reflect directives that are currently tagged
in source files within the workspace. Since the code must be
available and modifiable, such KIs are most appropriate for
project artifacts and libraries. We borrow the syntax used
in TAGSEA [10], and allow authors to create tag lines of
the form @tag TYPE: TEXT. These lines will typically be
added in the method’s documentation block and replace or
mirror directives in the text.

eMoose also automatically generate KIs for every TODO

comment in the code [11]. This allows us to offer users
indications that they are invoking unfinished methods, and
potentially prevent errors or lead to a faster resolution.

We note that developers working within the body of a
method can also add a KI to its header using popups, and
thus avoid the cost of changing locations. They can press
a key combination that brings up a series of three popups
which ask for the text, type and association of the KI. When
these are closed, the insertion point is returned to its original
location, but the appropriate tag line has been added to the
documentation, and a KI is generated to reflect it.

Internal KIs are local and can only be collaboratively
edited when the source code is shared. However, collec-
tions of KIs can also be explicitly exported and distributed
to clients who may not have access to the source code of
the classes that they use. One can similarly annotate a third-
party API by obtaining its source code, adding the tags, and
exporting and distributing the KIs to others. eMoose is dis-
tributed with collections for several standard APIS, and up-
to-date data can be pulled from the public eMoose server.

A more comprehensive version of eMoose operates un-
der a client-server model and supports external KIs. Devel-
opers can use the popup mechanism to associate directives
with methods even in the absence of source code. Instead of
creating an embedded tag, the information is sent to a cen-
tral server that persists it in a database and distributes it to all
clients for inclusion in their knowledge space as a new KI.

This mechanism aims to allow an API user community to
add and improve annotations over time even without sup-
port from the vendor or access to the source code.

We note that since KIs do not have to mirror the doc-
umentation text, they can serve as an early or lightweight
alternative to documentation. They can also be used to con-
vey community-generated knowledge that is not part of the
official text, such as known errata or best practices.

4.2 Contextual Presentation

The contextual features of eMoose are responsible for
indicating in the JAVA editor that certain invocation targets
have associated KIs and offering efficient means of consum-
ing their content without having to wade through the en-
tire JavaDoc text. While this could merely help developers
quickly confirm existing suspicions or assumptions, we ex-
pect that in some cases it could make them aware of critical
knowledge that might otherwise not come to their attention.

It is important to note that while eMoose aims to inform
developers about methods which may be worth investigat-
ing, it does not force them to do so. Though method calls
will be constantly decorated, developers are not expected
to investigate all of them immediately or at all, especially
when they are focused on other goals. While some direc-
tives will likely be missed as a result, the distraction and
inconvenience to users should be minimized.

The Eclipse client continuously monitors the current
viewport in the code editor to see if the visible region, its
contents, or the cursor location have changed. When this
occurs, it calculates a relevancy tree that represents all the
paths leading from the current class’s methods through the
methods they invoke (statically or dynamically) and to the
associated KIs. The calculation algorithm and exact struc-
ture are straightforward and therefore omitted here. Note,
however, that our current implementation uses the Eclipse
built-in facilities to calculate class- and call- hierarchies,
and as a result all possible subtypes of a static type are con-
sidered as possible dynamic types and included in the tree.
We do not currently perform any (costly) static analysis to
eliminate or restrict them.

When the relevancy tree changes, the plug-in scans it
and applies filters that will be described later. If any un-
filtered KIs remain, the call locations responsible for their
inclusion are identified, and a corresponding Eclipse anno-
tation object is created. As was seen in Fig. 3, this presents
a dashed box around the call, an icon on the left bookmark
bar,2 and a small marker in the class overview map. Calls
whose targets do not have associated KIs are not decorated,

2At present there are only three icon types: directives, to-dos, and bugs;
we plan to add icons for specific directive types in the future.

324

offering some assurance of lack of KIs.3

Once the user decides to explore a decorated call, hover-
ing over it opens a floating tooltip window with two panes.
The upper pane contains the standard JavaDoc presenta-
tion which would have been displayed by default, while the
lower pane presents the KIs. Users are expected to first read
the KIs in the lower pane, and decide accordingly whether
to read the entire JavaDoc in the upper pane. Note that the
text for each KI is preceded by its type and can be followed
by metadata such as the creation timestamp.

In polymorphic situations, the lower pane takes the form
of a tree. The statically-invoked version of the target be-
comes the root, and its associated KIs become child-nodes.
Overriding versions and their KIs are represented via sub-
trees with a similar structure. If KIs are only associated with
the overriding method but not with the overridden version,
the latter is grayed out so users can focus on the former.

eMoose will also create decorations when users are view-
ing the source code of a method with associated KIs. If a
tag line is visible, it will be surrounded by a solid box. If
the KI is external, the method name will be decorated in the
same way, and the KI contents will be revealed upon hover.
This mechanism is designed to allow community-generated
knowledge to be presented with the method rather than in
external websites. Users can also activate an overlay layer
that presents all KIs in a semitransparent “bubble” next to
relevant locations, but this may increase clutter.

Finally, we note that though all KIs may be useful in cer-
tain situations, some may be more “interesting” or “surpris-
ing”, have worse outcomes if ignored, or be more frequently
relevant. In addition, some KIs may be outdated, erroneous,
or difficult to interpret. To this end, eMoose not only allows
users to filter out certain KI types but also supports collab-
orative filtering.

We define a notion of the “rating” of a KI to be a single
dimensional scalar that aggregates its perceived accuracy,
importance, and relevancy. The purpose of this rating is
to increase or reduce the saliency of KIs in relation to one
another. The average of all ratings for a particular KI affects
the contrast (and thus the visibility) of the corresponding
call decoration in the editor. Ratings can also be used to
filter out KIs that fall below user-defined thresholds, and to
sort KIs in the lower pane of the hover. Newly created KI
have a default rating of 3 unless they are explicitly assigned
a rating from 1 to 5. When other users see a KI in the hover,
they can provide their own rating, which is then transmitted
to the server for storage and distribution.

We note that users of the client-server version of eMoose
can also delete or edit KIs, which would allow them to in-
crementally correct errors or make the text more readable.

3At present, users cannot distinguish between targets that have no asso-
ciated directives even though they belong to APIS that have already been
annotated, and targets from other APIS. A planned extension will differ-
entiate the two using a special decoration for the former case.

5 Study design

Our discussion so far presented the notion of directives
and our technique for “pushing” them. However, there is
currently limited evidence for the severity of the directive
awareness problem with standard tools, and it is not clear
whether our technique is effective or distracting. Clearly,
these issues largely depend on the specific individual and
context during actual use. Nevertheless, we chose to also
investigate them via a comparative lab study.

5.1 Subjects and procedures

Subjects were recruited from our university campus with
ads that promised a fixed compensation and also raffle tick-
ets for each completed task as a motivation to perform well.
Applicants were required to be at least seniors in CS or re-
lated fields, with experience in JAVA and Eclipse, and at
least one internship. A total of 26 applicants met these re-
quirements. Due to the to the limitations of the academic
environment, however, 24 of them were male, and most
were students in a professional masters program who were
relative novices. Two other subjects were seniors with sig-
nificant experience, and three were Ph.D. candidates.

At the beginning of the session, subjects had to fill a
background questionnaire and pass a short skills test. We
we also verified that they were not familiar with the APIS
used in the study. They signed consent to screen- and
audio- recording, and then received a 10 minute tutorial
covering the concept of directives, and the purpose and use
of eMoose, including situations of polymorphism and con-
formance violations. They performed five tasks, and then
completed a detailed survey.

For every task we defined a control condition (CTL) to
be one in which the standard distribution of Eclipse is used,
and an experimental condition (EXP) in which eMoose is
activated and decorations are presented based on our cor-
pus of annotated APIS. All subjects were also given a web
browser with the HTML JavaDocs of all relevant APIS.

Every subject performed, in the same order, two small-
scale debugging tasks with JMS, a single full-program de-
bugging task with SWING, and two polymorphism-related
program-understanding tasks with collections. Within each
of the task pairs, each subject was randomly assigned to
perform one task in the control condition and the other in
the experimental. This design allowed us to compare the
impact of eMoose on the same task between subjects and
also between related tasks on the same subject. For the sin-
gle SWING task, subjects were randomly split between the
two conditions.

For each task, the subject read some background materi-
als and was then shown the codebase and execution results.
The subject was reminded of the goals and 15-minute time
limit, and a small stopwatch was started; eMoose decora-

325

tions were activated for subjects in the experimental condi-
tion. Subjects failed tasks if time ran out, although we let
them continue for a few more minutes to see if they were
close. Subjects passed debugging tasks if they could fix the
problem and explain why it occurred.

While working, subjects were allowed to ask concrete
questions about unfamiliar terms in the documentation, and
on the operation of the system outside the current problem
scope. When possible, the experimenter quoted “canned”
responses compiled during pilot sessions. In the few cases
where it was not, care was taken to avoid steering subjects
towards a solution. Note that subjects were not asked to
“think aloud” to avoid affecting their level of attention.

Subjects used a quad-core PC with a 20”
widescreen LCD, running Windows XP, Java 6, Eclipse 3.4,
and Camtasia 4. They were allowed to adjust the system
resolution, font, and mouse speed to their comfort.

5.2 Tasks

We expect eMoose to assist users in two major ways:
First, by attracting them to explore call targets containing
relevant directives that may not be investigated otherwise;
and second, by explicitly listing directives which may other-
wise not be noticed within the verbose documentation text.
We perceive the greatest weakness of eMoose to be in the
potential for distracting users by decorating calls and pre-
senting directives that are not relevant to the problem.

We decided to evaluate the impact of eMoose on tasks
for which it is potentially most-suited, since if it does not
perform well there then it is even less likely to perform in
other scenarios. In addition, we wanted to separately probe
its most apparent weakness. For these reasons, our study
begins with three tasks that correspond to the two strengths
and one weakness described above. Each is designed to
maximize the corresponding effect while minimizing the
other two. These tasks require subjects to debug problems
that result from the violation of a directive, so that the abil-
ity to fix the problem would constitute strong evidence of
awareness of the directive.

Developers and maintainers carry out many activities in
addition to investigating code and documentation. Since our
study aims to evaluate the impact of eMoose, we designed
tasks in which the examination of the same code fragments
would be the predominant activity for all subjects. These
tasks mimic the common situation in which a developer fa-
miliar with the core concepts of an API but not with its
intricacies works with existing code or samples.

5.2.1 First debugging task

The first debugging task is focused on the reading choices
that developers make and on the potential impact of decora-
tions. Its resolution depends on a directive documented in

an unexpected call target. Other factors are minimized as
the scope is limited and JavaDocs are generally short.

The task is based on Sun’s initial set of official ex-
amples4 for the Java Message Service API (JMS). This
task involves the point-to-point communication mecha-
nisms of JMS, which allow a single sender and a single
receiver to communicate asynchronously via a named mes-
sage queue hosted on a broker process. Subjects are first
shown the SenderToQueue test program which initializes
a queue, creates a sender object, and sends 20 text messages
followed by an empty one. They are assured that the test
works correctly and that the messages are now stored in the
JMS broker process.

Figure 5. Simplified code for 1st debug task

Next, they are shown a modified version
of SynchQueueReceiver. It begins with a queue
initialization that is almost identical to that of the server,
except that there is an added call to start that we elim-
inated. The program then creates a receiver and attempts
to receive and print text messages until the empty one is
received. Fig. 5 presents a simplified version of the focus
area (with eMoose decorations), which omits code that
does not execute. Note that in the the complete code, the
two try blocks are rarely visible at the same time.

Subjects are told that while no exceptions are thrown,
execution blocks the first time that receive is called and
messages are not received. They are instructed to find the
problem and correct it. We created this problem by remov-
ing the call to start on the connection, a plausible mistake
for someone writing the receiving code based on the send-
ing code. The seemingly innocent factory method for queue
connections states that it is created in a “stopped” mode
and that no messages will be delivered until it is started.
This notion is also reflected in the inline comment between
the try blocks. However, it is not conveyed by receive,

4We used version 1.0.2 of the examples which can be downloaded
from http://www.uridekel.com/emoose/misc. JMS is now
part of J2EE and distributed with other examples, but the JavaDocs for
all referenced methods are still identical.

326

which instead states that the the call will block indefinitely
until messages are produced (which they are), or until the
consumer is closed from another thread (not relevant here).

5.2.2 Second debugging task

This task focuses on the detection of directives in
long JavaDocs, and maximizes the importance of the aug-
mented hover. It minimizes the effect of decorations and
distractions by limiting scope to six statements.

Subjects receive background materials about the publish-
subscribe mechanism of JMS, and specifically about
durable subscriptions which allow undelivered messages to
be saved for a closed subscriber until it reconnects. Next,
they are shown the DurableSubscriberExample file and
are taken to the constructor of an internal class whose con-
tents are depicted in Fig. 6. The entire fragment is visible
on the screen at the same time.

Figure 6. Code for second debug task

Subjects are told that the program fails and are asked to
imagine that they have narrowed the problem down to this
small fragment which they must now fix without using the
debugger. We created this problem by switching the order
of the call to setClientID with a subsequent call that cre-
ates a topic session, a plausible mistake when mimicking
sample code. As a result, there is now a prior operation
on the connection, which is forbidden by a directive hidden
deep in the JavaDoc of setClientID (Figs. 1 and 4).

5.2.3 Third debugging task

Our third debugging task maximizes the potential for dis-
tractions by asking subjects to debug an entire program with
many decorated methods. Other effects are minimized since
the solution depends on a specific directive that appears
within a short JavaDoc for a call in a short block.

Figure 7. Code for third debug task

The task is based on the official LayeredPaneDemo ex-
ample from Sun’s SWING tutorial5. This 219-line program
renders a JLayeredPane with several layers, each contain-
ing a single label, and places an image in one of the layers.
The image can be moved to another layer using a list box,
while clicking a checkbox moves it behind or in front of the
label of its current layer. However, subjects are shown that
changing the layer has no effect unless the checkbox state
is modified; they are asked to find the problem and fix it.

The problem lies in the event handler method depicted in
Fig. 7, where we have swapped the call to setLayer with a
similar and plausible call to putLayer. The JavaDocs for
the latter state that it merely adjusts the layer number and
that one must call setLayer to get the correct side effects,
including repainting.

5.2.4 First polymorphism task

Only a portion of method calls in JAVA involve dynamic
dispatching, and a much smaller portion of these involve
dynamic targets whose documentation adds to or conflicts
with that of the overridden static target. However, we sus-
pect that when these situations do occur, they present a par-
ticularly difficult challenge to developers, who are only ex-
posed to the documentation for the static type. To inves-
tigate these suspicions, we added two tasks to our study
which we shall briefly discuss.

The first task aims to evaluate whether developers be-
come aware of conflicting directives in overriding meth-
ods with present techniques. This task is based on col-
lections from the JAVA standard library and from the pop-
ular apache-collections API. Subjects are presented with
code that generates an array of random integers with guar-
anteed duplicates and adds them in the same order to new
instances of five Collection implementations: HashSet,
PriorityBuffer, TreeList, HashBag, and Vector. The code it-
erates over every permutation of two collections, first assert-
ing with containsAll that the receiver contains all mem-
bers of the argument, and then calling retainAll to re-
move members not in the argument. Subjects are asked to
explain why the assertion fails.

The reason is that while the documentation of
the Collection interface is unclear, these methods
are supposed to ignore cardinality (and thus duplicates),
whereas the documentation of Bag states that it violates
conformance by respecting cardinality. As a result, running
the Bag against the Set eliminates duplicates, and when it
is subsequently compared to any of the others, it has fewer
instances and the assertion fails. To realize this, subjects
in the control group would need to intentionally investigate
the documentation of subclasses.

5http://java.sun.com/docs/books/tutorial/
uiswing/components/layeredpane.html

327

5.2.5 Second polymorphism task

The second task aims to investigate how developers find
directives in overriding methods when they can anticipate
their existence. Recall that in web-based JavaDocs, the
documentation for each method version is presented with
the class that declares it. The code instantiates six types
of maps: HashMap, TreeMap, DualTreeBidiMap, Double-
OrderedMap, MultiHashMap, ListOrderedMap. For each
map, the code creates mappings from members of an array
of distinct labels to an array of numbers with duplicates,
and then asserts whether all keys and values are in the map.
Users are asked to explain why this fails for two maps.

One culprit is the the bi-directional map, which removes
mappings if a duplicate value is assigned. The second is
the double-ordered map, whose internal representation re-
quires unique keys and values. eMoose users can find these
answers within the hover for the put method (which also
includes directives from unrelated subtypes), while controls
have to search the web-based JavaDocs.

6 Study Results

Of 26 subjects in our study, 25 performed all tasks, and
one left early for personal reasons after completing two
tasks which we included in the results. We report here pri-
marily on the differences in success rates between the ex-
perimental and control conditions.

Fig. 8 summarizes for the three debugging tasks the
proportions of subjects in the experimental and control
groups who fixed the problems within the alloted time.
Since eMoose was expected to help performance, we used
a one-tailed test to determine statistical significance. Given
the small sample size, we used Fisher’s exact test to test the
independence of eMoose use and success, rejecting the null
hypothesis in each case.

Figure 8. Success rates for debugging tasks

First debug task: Whereas 10 of 13 eMoose users suc-
cessfully fixed the problem, only 4 of 13 controls were suc-
cessful. These results are significant (p = .024). We note
that all eMoose users but only a few controls explored the
call to createQueueConnection.

Second debugging task: All 13 eMoose users but only 7
controls were successful. The other 6 did open the hover

for setClientId at least once, but they appeared to skim
the text or read randomly, and missed or misunderstood the
relevant directive. These results are significant (p = .007).

Third debugging task: All subjects eventually explored
the action handler of Fig. 7. However, all 12 eMoose users
but only 5 of 13 controls fixed the problem. These results
are significant (p = .001). We note that while browsing the
full program, eMoose users did not seem distracted by the
numerous decorated calls or compelled to read them. Only
one explored a method that was blatantly irrelevant, and a
few others explored component addition methods to see if
setup was correct.

First polymorphism task: All 13 eMoose users ex-
plored the decorated calls and were thus exposed to the
unique directives for Bag. However, only 4 were able to ac-
curately describe the exact scenario, and 5 others appeared
to have significant understanding of the situation. Of the 12
controls, only 3 explored Bag at all, and only one of them
described the correct scenario. These results are significant
for whether Bag was explored (p = .0001) but not for task
completion (p = .19).

Second polymorphism task: All 12 eMoose users
found both maps, typically after investigating the hover
for put, and even though it included directives for subtypes
that were not part of the example. Of the 13 controls all
utilized the HTML documentation, but only 7 found both
maps, 2 found just one, and 4 found none. The results for
whether both maps were found are significant (p = .01).

6.1 Questionnaire results

After completing all tasks, subjects were asked to
rank 27 statements on an integer Likert scale between −3
(strongly disagree) and +3 (strongly agree). The statements
covered working practices, experiences during the study,
experiences with eMoose, and opinions about potential fea-
tures. Table 1 summarizes the results for questions related
to the use of eMoose.

7 Discussion

eMoose users were significantly more successful than
controls in our debugging tasks. However, given the time
limitation, it seems likely that the tool mainly improved effi-
ciency rather than allowed users to solve problems that they
couldnt solve otherwise given unlimited time. Nevertheless,
these differences demonstrate that there is indeed a discon-
nect between a documentation’s authors and its consumers,
and that this disconnect is due not only to the content of
the text but also to when, how and where it is presented.
These differences also demonstrate that eMoose has a sig-
nificant impact on developers, but a detailed analysis of the
video records is necessary to identify the exact mechanisms
behind that impact.

328

Table 1. Questionnaire Results

Our general impression from observing subjects in the
control condition is that most of the successful ones fol-
lowed an exhaustive systematic process of thoroughly in-
vestigating every call. However, such processes are not
practical for larger programs [9]. Most of the unsuccessful
subjects, on the other hand, followed an unstructured pro-
cess that was goal- and hypothesis- driven. As a result, they
did not explore certain calls and sometimes missed details
that were visible in the documentation text.

In the experimental condition, some subjects followed a
systematic approach and eMoose contributed little to their
success. Many of those who followed unstructured ap-
proaches, however, were successful, unlike their counter-
parts in the control condition.

The intervention of augmenting the JavaDoc hover was
particularly effective and helped subjects find directives that
were missed by some controls who only read the text. This
suggests that any technique that helps focus attention on di-
rectives might be helpful, even if it is limited to structuring
and formatting the text. We also note that the organized pre-
sentation of directives seemed to help eMoose users elimi-
nate irrelevant calls faster than controls who investigated the
same methods.

An interesting question for further study is whether the
presence of a decoration on a particular call may lead users
to devote greater attention to its documentation, and thus
make them less likely to miss the directives even without
the lower pane.

The decorations clearly made a difference, as is evident
from the different portion of subjects who explored the fac-
tory method in the first task. However, this impact was more
subtle as subjects did not immediately (or even eventually)
explore every decorated call they encountered. Rather, it
seems that the decorations were an additional, but some-

times decisive, factor in exploration decisions. When other
options appeared less promising, the presence of a decora-
tion may have swayed the decision in favor of exploration.

While this behavior limits the positive impact of eMoose,
as it cannot guarantee that a directive would be consumed,
it also limits its negative impact due to distraction. If ev-
ery decorated call were explored, and especially as soon
as it were encountered, the time investment and distrac-
tion would likely outweigh the benefits. Indeed, in the long
source code of the third task where many calls were deco-
rated, subjects appeared to estimate the relevancy of a call
and the block that contained it, and decided to ignore many
of them. They therefore missed directives that might have
been important for understanding those blocks but which
had little relevancy to their tasks.

Turning to the first polymorphism task, we found it re-
markable that despite seeing examples of conformance vio-
lations in collections in the tutorial for the study, so few sub-
jects considered the possibility of a violation and explored
the Bag. The scenario itself was difficult but highlighted the
importance of good documentation in such delicate situa-
tions. The second task demonstrated that the organization of
methods by defining class in standard web-based JavaDocs
is not sufficiently usable.

Finally, the questionnaire results showed that our sub-
jects’ impressions are aligned with our experimental find-
ings. Subjects generally perceived benefits from us-
ing eMoose while not perceiving significant negative ef-
fects. They also agreed to the statement that they read doc-
umentation much more carefully than they normally would,
suggesting increased benefits in everyday use.

8 Threats to validity

The tasks used in our study were designed to focus on
the problems eMoose aims to solve and are naturally not
predictive of its impact in everyday development. Our goal
was merely to evaluate the severity of the problems that it
aims to address and whether its interventions have an effect.
Further study of real-world deployments is still necessary.

The primary limitation of our study was that the tasks
and errors were artificial, though we introduced plausible
mistakes into official example code. This decision allowed
us to measure each of the three effects of eMoose in situa-
tions where they were the most likely to have the greatest
impact. Since both positive effects were significant while
the negative effect was not, we argue that the tool could be
applicable to real problems where all three are in play.

A related problem is that task scopes and fragment sizes
were smaller to ensure that code and documentation exam-
ination was the primary activity. In everyday use, where
there are other competing activities, the tool will only be
applicable during a smaller portion of the time. At those
times, however, it may potentially be more effective than in

329

the study, because developers would likely be reading doc-
umentation less carefully.

Another limitation of our study was that many subjects
had limited industrial experience. However, while more ex-
perienced subjects generally performed better, many still
failed tasks as controls. A related limitation was that sub-
jects were not previously familiar with the APIS and the
code base. However, such situations are quite common and
many developers learn to use APIS from code examples. In
addition, few developers are versed in all the intricacies of
familiar APIS, such as Swing.

9 Conclusions and future work

In this paper we presented the motivation and implemen-
tation for pushing and highlighting directives in documenta-
tion. Our user study demonstrated a real problem with cur-
rent practices even on tiny code fragments, and a positive
impact with limited distractions for our tool. We are work-
ing on a detailed analysis of video records from the study to
better understand the mechanisms behind difficulties among
controls and the improved performance with eMoose.

The question remains, however, as to whether these re-
sults scale up to real-world situations. A field deployment is
planned to try to answer these questions, first using our cor-
pus of KIs for popular APIS, and then with KIs generated
by our users.

Since our approach is based on the premise that API au-
thors or user communities can manually tag directives, an-
other important question is whether they can do so effec-
tively and in a similar and consistent manner. To address
it, we are currently conducting a study in which multiple
developers are tasked with tagging directives in printouts
of JavaDocs for the APIS used in our study. In the future,
it is possible that natural language processing techniques
could be used to identify at least some directives [13].

The major research question that we plan to address in
the future is whether it is possible to take the context of the
call into account when deciding when and how to present
directives. For example, if a method has an associated direc-
tive concerned with synchronization, is it possible to avoid
decorating calls to it from single-threaded code?

A longer-term goal is to explore the creation of a het-
erogenous information space that spans a variety of devel-
opment phases, artifact types, and knowledge elements. We
believe that our knowledge pushing technique may be use-
ful in this space since information needs often cross phase-
and artifact- boundaries. In particular, there may be a bene-
fit to “pushing” knowledge that is not part of the documen-
tation, such as the existence of remaining action items [11]
or indications that a resource is highly volatile or currently
being modified [8].

In a separate research direction, we are exploring the util-
ity of the episodic features of eMoose, which creates a de-

tailed recollection of each developer’s activity for immedi-
ate orientation and long-term traceability purposes.

Acknowledgements

We gratefully acknowledge support by the National Science
Foundation under Grants No. IIS-0414698 and IIS-0534656, by
an Accenture graduate fellowship, and by the Software Industry
Center at Carnegie Mellon University and its sponsors, especially
the Alfred P. Sloan Foundation.

References

[1] K. Bierhoff and J. Aldrich. Modular typestate checking of
aliased objects. In OOPSLA ’07, pages 301–320, New York,
NY, USA, 2007. ACM.

[2] U. Dekel. eMoose project page. http://emoose.cs.
cmu.edu

[3] U. Dekel and J. D. Herbsleb. Notation and representation in
collaborative object-oriented design: an observational study.
In OOPSLA ’07, pages 261–280, New York, NY, USA, 2007.
ACM.

[4] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design re-
quirements for maintenance-oriented ides: a detailed study
of corrective and perfective maintenance tasks. In ICSE ’05,
pages 126–135, 2005.

[5] D. Kramer. Api documentation from source code comments:
a case study of javadoc. In SIGDOC ’99: Proceedings of
the 17th annual international conference on Computer doc-
umentation, pages 147–153, New York, NY, USA, 1999.
ACM.

[6] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: a behavioral interface specification language
for java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[7] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 2000.

[8] A. Sarma, D. Redmiles, and A. van der Hoek. Empirical
evidence of the benefits of workspace awareness in software
configuration management. In FSE-16, pages 113–123, New
York, NY, USA, 2008. ACM.

[9] E. Soloway, R. Lampert, S. Letovsky, D. Littman, and
J. Pinto. Designing documentation to compensate for de-
localized plans. Commun. ACM, 31(11):1259–1267, 1988.

[10] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared
waypoints and social tagging to support collaboration in soft-
ware development. In CSCW ’06, pages 195–198, New York,
NY, USA, 2006. ACM.

[11] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer.
Todo or to bug: exploring how task annotations play a role
in the work practices of software developers. In ICSE ’08,
pages 251–260, New York, NY, USA, 2008. ACM.

[12] Sun. Requirements for writing java api specifications.
[13] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs

or bad comments?*/. In SOSP ’07: Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems princi-
ples, pages 145–158, New York, NY, USA, 2007. ACM.

330

