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Abstract Substantial evidence indicates that our social networks are divided into
tiers in which people have a few very close social support group, a larger set
of friends, and a much larger number of relatively distant acquaintances. Because
homophily—the principle that like seeks like—has been suggested as a mechanism
by which people interact, it may also provide a mechanism that generates such fre-
quencies and distributions. However, our multi-agent simulation tool, Construct, sug-
gests that a slight supplement to a knowledge homophily model—the inclusion of
several highly salient personal facts that are infrequently shared—can more success-
fully lead to the tiering behavior often observed in human networks than a simplistic
homophily model. Our findings imply that homophily on both general and personal
facts is necessary in order to achieve realistic frequencies of interaction and distri-
butions of interaction partners. Implications of the model are discussed, and recom-
mendations are provided for simulation designers seeking to use homophily models
to explain human interaction patterns.
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1 Introduction

Homophily—the principle that like seeks like—has been suggested as a fundamen-
tal mechanism which can drive interaction (Lazarsfeld and Merton 1954; McPherson
et al. 2001). Homophily can lead to increased interaction between pairs or groups of
individuals and has been related to outcomes at the dyad, small group, and network
level. However, can a simplistic homophily model generate the overall macro pat-
terns observed in human ego networks? It is widely accepted that our social networks
are in some fashion tiered, containing both strong and weak ties (Granovetter 1973;
Marsden 1987). Can homophily be used as a mechanism that both generates the ob-
served human network distribution of strong and weak ties and predicts the relative
frequency with which an ego interacts with them?

Human social networks are not uniform in terms of tie strength, and indeed we
are known to have few very strong ties and many weak ties (Granovetter 1973;
Hill and Dunbar 2003; Zhou et al. 2005). While aggregations of these different ties
have been called many names in the literature, we choose to call such aggregations
‘tiers’ in homage to the ‘tiered grouping’ concept identified by Zhou et al. (2005). It
is widely accepted that a number of factors can lead to inequality in the frequency
and strengths of relationships. Factors such as geography (Butts 2002), family (Ag-
neessens et al. 2006), education (Marsden 1987), and employment (McPherson et al.
2001) have been shown to have important effects on the composition of human so-
cial networks. The role of a more general homophily mechanism, however, has often
been overlooked. Indeed, many empirical studies, in trying to stress the importance
of one or more particular factors, minimize the role of homophily in the formation of
such tiers. Thus, this paper asks a slightly different question than has commonly been
asked: is the principle of homophily a sufficient condition for generating the patterns
of tie strength that match the empirical literature? Is it possible to observe empirical
distribution of tiering patterns without explicitly modeling geographic and other fac-
tors? To the best of our knowledge, previous work has not attempted to address this
question.

The question of the whether homophily can lead to tiering behavior has impor-
tant practical considerations, especially for simulations. For instance, the accurate
modeling of networks and tiering behaviors may have profound effects on attempts
to model large-scale social processes such as models of disease spread (Mniszewski
et al. 2008), information diffusion (Cowan and Jonard 2004; Rogers 1995; Valente
1995), belief propagation (Friedkin and Johnsen 1999), web services (Leskovec and
Horvitz 2008), meme propagation (i.e. Dawkins 1976), and others. Such models,
in turn, can be critical for policy makers, system designers, managers, and execu-
tives seeking to understand how a network or system will evolve. Additionally, an
improved understanding of interaction mechanisms can be useful for designing and
applying successful interventions to modify dynamical social systems (Carley 2003).
Without accurate models of interaction frequency, and without an understanding of
why such interaction patterns occur, simulation models may suggest inaccurate or
ineffective interventions.

We use Construct (Carley 1991; Carley et al. 2009), a multi-agent dynamic-
network simulation, to understand whether and how homophily can lead to the forma-
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tion of tiers.1 Specifically, we simulate the emergence of social ties using Construct’s
implementation of homophily in order to understand whether it can lead to the tiering
behavior observed by anthropologists and sociologists. We then examine the strength
of these interactions by examining simulation results by tier. Our primary finding is
that a simple knowledge homophily model is insufficient to explain the tiering be-
havior frequently observed in human societies. We therefore introduce and verify a
plausible modification to the homophily model that produces networks and interac-
tion frequencies that align with well-documented social patterns.

The remainder of this paper is organized as follows. Section 2 describes past social
and computational work investigating the tiered nature of social systems. Section 3
presents our tool, Construct, while Sect. 4 describes the virtual experiment used in our
investigation and Sect. 5 presents our analysis methodology. Section 6 discusses our
results, and Sect. 7 presents the broader socio-cognitive and simulation implications
that can be drawn from our work.

2 Background

The tiered nature of human social networks is an area of considerable active research
with a rich history that can be traced back decades (Dunbar 1993, 1998; Granovetter
1973; Marsden 1987; Zhou et al. 2005). While active research in this area is still on-
going, and though culture and context are known to play important roles in shaping a
social network, several general trends have been observed. For instance, the majority
of members in most human societies tend to have a small group of close friends or
strong ties (Granovetter 1973) from whom they draw core support (Marsden 1987),
a larger group of friends whom they stay in touch with regularly, a collection of
weaker ties with whom they interact less often, and acquaintances with whom they
interact on an infrequent basis. This tiered structure can be described using a network
perspective by saying that each ego agent in the network is strongly connected to a
small number of others, less strongly connected to quite a few, and weakly connected
to many more (Dunbar and Spoors 1995). In other words, tie strength is inversely
proportional to the number of alter agents that have similar tie strength. In this con-
text a tier can be conceptualized as a bin of alters in a histogram of tie strength.
Distant ties or weak ties are important sources of information for people and can
serve as the underpinnings of a successful community (Granovetter 1973). Large so-
cial networks, however, are well known to be sparse (Leskovec et al. 2005) and full
of structural holes (Burt 1992). In both large and small networks these quantities
can be important for determining power, influence, and types of action (Wasserman
and Faust 1994). General social network structure, both at the local level as well
as global level, has been correlated with health, happiness, satisfaction, and many
other attributes of network members (Christakis and Fowler 2007; Freeman 1979;

1We use Construct 3.9, a completely refactored version of Construct that utilizes new agent technology and
is composed of more robust and validated mechanisms. Additional details and technical literature about
the tool can be found on the project website, http://www.casos.cs.cmu.edu/projects/construct/.

http://www.casos.cs.cmu.edu/projects/construct/
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Wellman and Wortley 1985). However, the number of tiers and the frequency of in-
teraction with members of each of these tiers is a matter of rich discussion (Zhou
et al. 2005).

Human social networks are known to have very different network properties as
compared to other non-human networks such as neuronal networks or power grids
(Newman and Park 2003). While strict structuralists contend that social network be-
havior can be largely explained by social position, there is increasing evidence which
demonstrates that individual and cognitive properties also play an important role in
determining interaction patterns within networks. Analyses of tiered networks from
the small (Kilduff and Krackhardt 1994; Levine and Moreland 1998; Stiller and Dun-
bar 2007) to the very large (Bandura 2001; Leskovec and Horvitz 2008) increasingly
take into account the individual attributes of networked actors. To operationalize the
presence of these attributes one can take a meta-network perspective (Carley 2003;
Krackhardt and Carley 1998). The meta-network is an ontology that supplements a
standard social network with information about individual knowledge, beliefs, and at-
tributes. Such additional factors can help explain network change and evolution over
time (Carley 2003).

Cognitive limits also play an important role in determining the size and structure
social network tiers. Anthropologists such as Dunbar postulated a physiological ba-
sis for social group size in the early 1990s—Dunbar’s “social brain hypothesis” sug-
gested that humans’ social behavior was at least partially constrained by biological
factors (Dunbar 1993, 1998; Hill and Dunbar 2003). Specifically, Dunbar (1993) ran
a regression of neocortex and group sizes for different primates species and found
evidence that humans should have a mean social network size of 150 people with
a 95% confidence interval between 100 and 230. Initial support for this assertion
was found in tribal and military structures, but several other types of corroborating
evidence have subsequently been observed. Mathematicians and others have seized
upon these results in order to demonstrate the relationship between cognitive limita-
tions and general social structures. Zhou et al. (2005) extended Dunbar’s work to pro-
vide mathematical support for a concept that sociologists had long posited: subgroup
sizes among people were likely to be tiered by emotional distance. Their analysis
suggested that most humans had 3–5 alters in the “core discussion group” portion of
their network, 15–20 in the “sympathy group”, 30–50 in the “band”, and 150 in the
clan or regional group, and 500 and circa 2000 in increasing shells around the ego
like babushka dolls, though it is important to observe that each larger network is not
always identical in structure or organization to the smaller one (Dunbar and Spoors
1995). Members of the physics community have used such findings, in conjunction
with Milgram’s (1967) small world results, in order to build networks to investigate
diffusion social processes (e.g. Lopez and Sanjuan 2002). Researchers from multi-
ple disciplines have seized upon Dunbar’s result in order to generate plausible social
network structures. For instance, work with Dunbar’s cognitive limits has been used
to inform and support generators for building plausible communities such as those
found in large social and information networks like citation networks or peer-to-peer
file sharing networks (i.e. Leskovec et al. 2008).

The principle of homophily presents a way to relate cognitive abilities with
larger social patterns and thus can serve as the glue between micro behavior
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and macro structure. Homophily, as initially defined by Lazarsfeld and Merton
(1954), was specified as “a tendency for friendships to form between those who
are alike in some designated respect.” While this definition has been extended in
various ways by different authors, for instance to generalize the definition to en-
compass general interactions in addition to friendship, most authors continue to
note that homophily is often contextual and impacted by one or more salient di-
mensions (i.e. McPherson et al. 2001). This “designated respect” can be contex-
tualized in many ways and can be socio-demographic (Borgatti and Foster 2003;
Harrison et al. 1998; McPherson et al. 2001), geographic (Butts 2002; McPher-
son et al. 2001; Wellman 1996), due to shared interests (Carley 1986; McPherson
et al. 2001), related to common knowledge (Borgatti and Foster 2003; Carley 1986;
Rogers 1995), a function of shared beliefs (Harrison et al. 1998; Lazarsfeld and Mer-
ton 1954), and/or related to common behavioral patterns (McPherson et al. 2001).
Many of these factors are essential for building both close and distant relationships,
and the greater the overlap on multiple dimensions the better (McPherson et al. 2001).
However, homophily is neither monolithic nor static. For instance, the degree of sim-
ilarity on a single dimension can change, which can affect interaction between dif-
ferent individuals, or more salient dimensions may become applicable and lead indi-
viduals to interact with different alters. Nevertheless, if individuals can modify their
position on the salient dimension, frequent interaction may lead them to become even
more similar as they interact and exchange information. Such a process of increasing
similarity is at the heart of the constructuralism, a theory which suggests that social
networks and knowledge networks co-evolve and changes in the who-knows-what
network induce changes in who-knows-who network, and vice versa (Carley 1986,
1991).

If those who are similar to each other become increasingly so—via a preferential-
attachment-like mechanism where the similar become even more similar (e.g.
Barabási and Reka 1999)—then homophily may be one way of growing a society
where individuals have the pattern of friendships observed by anthropologists, soci-
ologists, and others studying the cognitive abilities of human beings. This would be
an example of generative social science (Axtell et al. 1996; Epstein and Axtell 1999;
Goldstein 1999). If a generative social mechanism based on homophily is unable to
generate realistic social networks, it would be an indication that omitted factors are
perhaps more important in determining the shape and structure of human behavior.
While homophily or even contextualized homophily may not be the dominant factor
actually driving human tiering behavior, a set of virtual experiments could demon-
strate whether or not such a mechanism could yield realistic results.

A computational model is ideal for examining this behavior since it would be
difficult to envision a set of laboratory or field experiments that could assess only
the effects of homophily on subject populations. Since human social networks are
quite large, it would be practically impossible to grow a realistic social network
with hundreds of people in a laboratory setting. More importantly, it can take a
substantial amount of time for a social network to grow to fruition and for indi-
viduals to begin to find the types of deep homophily that are needed for sustained
relationships (Harrison et al. 1998). Observational studies of real world behavior suf-
fer from other limitations. Accurate data collection would be challenging for very
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Table 1 Comparison of simulations

Type of model Cognitive model Social model Tiering Examples

Cognitive models often good often non-existent usually restricted
to a single agent
and particular
task

ACT-R (Anderson 1983)
SOAR (Laird and
Congdon 2006)

Small group or
social models

often adequate often good generally take
social space as
given and evolve
patterns there

Friedkin belief models
(Friedkin and Johnsen
1999)

Societal or swarm
intelligence models

often simplistic often simplistic little cognitive
representation,
often lack a
meta-network
approach

Sugarscape (Epstein and
Axtell 1999) Flocking
models (i.e.,
Olfati-Saber 2006)

large network for reasons including cost, privacy, and methodology. Since the col-
lection of data can limited by subject fatigue, and because observers cannot fol-
low a particular person everywhere to record all of their interactions, it would be
extremely difficult to track all of a person’s acquaintances; even if such problems
could be overcome, there is considerable debate as to what constitutes a link between
two people in a social network, how robust this link is to measurement, and how
individual differences in self-reporting can skew results (e.g. Borgatti et al. 2006;
Wasserman and Faust 1994). However, even with perfect data, it likely would be
impossible to demonstrate how homophily alone could produce the total pattern of
interactions of an individual. Not only would it would be necessary to understand the
dimensions on which the individual and partner were similar, but it would also be
necessary to rule out competing processes such as geographic proximity, economic
pressure, and other factors. In the face of such difficulties, we believe a generative
computer model is appropriate for addressing our research question.

The process of growing artificial societies in order to evaluate social hypotheses is
not new and is becoming increasingly popular in a variety of disciplines (Carley 1995;
Epstein and Axtell 1999; Ilgen and Hulin 2000). Nevertheless, using generative so-
cial science to examine the tiered nature of agent interactions has not, to our knowl-
edge, been extensively explored. In framing our search for comparable models, we
divided the modeling literature into three general areas—the individual, as seen in
Table 1—that fall very close to the divisions that Alan Newell proposed in his hier-
archy of cognition (Newell 1994, Fig. 3-3). At all three of these levels, models that
grow realistic societies based on homophily have been underexplored. While pow-
erful cognitive architectures such as ACT-R or SOAR have the ability to represent
critical attributes and to model human behavior, such models have focused more on
the modeling of individuals and have only recently begun to explore the rich social
world. Though some cognitive models have attempted to examine social phenomena,
most research is limited to a handful of agents—a quantity insufficient to explore
tiering behavior in detail. Models that focus on small groups of individuals occa-
sionally use homophily to help determine who should interact with whom, as well
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as to determine the salience of particular factors. However, most of this work is usu-
ally domain-specific. Other models that focus on slightly broader societal phenomena
such as information or belief diffusion generally assume a lattice or other fixed struc-
ture on which agents interact; such structures prevent realistic tiering behavior from
emerging since agents are often confined in their choice of neighbors. Though the
most complex of such models examine more realistic structures such as small-world
or hierarchical networks, even these models tend to leave the network fixed through-
out the course of the simulation. Lastly, while population-level simulations tend to
explore very large phenomena such as flocking or polarization, the agents in these
models are usually assumed to interact with a fixed set of neighbors. More impor-
tantly, there are usually only a very small number of salient attributes that drive in-
teraction. This does not allow for a more complex study of general homophily. While
we recognize that our survey in Table 1 captures only a small fraction of the literature
on agent-based socio-technical simulation, our reading of the agent-based simulation
literature suggests that tiering has been underexplored and that simulations that tend
to employ homophily do so once the pattern of interactions has largely been defined.

It is worth mentioning, however, that a number of researchers have approached
the problem of generating or identifying realistic social networks. Techniques such
as the ERGM family of models have been used to test a variety of hypotheses about
empirical networks, including homophily based on one or more attributes (Anderson
et al. 1999b). Models such as SIENA can be used to evaluate the effects of homophily
over time and to attempt to determine whether homophily is a cause or an effect of
network structure (Steglich et al. 2006). The generation of plausible social networks
has also been undertaken from a statistical perspective using Bayes Nets and other
techniques (e.g. Thiriot and Kant 2008). Other models have used spatial locations
to generate realistic social networks (Wong et al. 2006). While the approach taken
in this paper is a generative one based on homophily, the question of building and
identifying realistic interaction patterns continues to be a rich and active research
area.

3 Construct

To examine the tiering effects of social ties, we employed version 3.9 of Construct.
Construct is a dynamic network simulator that combines sociological, organizational,
and cognitive theories to simulate the co-evolution of the social networks (who knows
whom), knowledge networks (who knows what), and belief networks (who believes
what). Construct was the first multi-agent simulation system that attempted to in-
clude realistic social networks at its core, and while the code has evolved and the sys-
tem redesigned, the social network realism remains of paramount importance (Car-
ley 1991). Construct is the embodiment of constructuralism, a mega-theory which
states that the socio-cultural environment is continually being constructed and recon-
structed through individual cycles of action, adaptation and motivation (Carley 1986).
Past simulation work with Construct simulations has investigated the formation and
changes to small groups (Carley 1991), the effect of non-human agents on organi-
zational performance (Carley 1999; Carley et al. 2009), the effect of cognitive and
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Fig. 1 The Construct
interaction cycle

information access restrictions on information diffusion patterns (Carley et al. 2009;
Hirshman and Carley 2008; Hirshman et al. 2008b; Hirshman and St. Charles 2009).

As Construct is an agent based model, it consists of multiple interacting yet inde-
pendent agents. At the beginning of the experiment, the simulation designer initial-
izes the agents, sets a number of important weights, and lets the simulation run for a
number of time periods. During each time period the following sub-processes occur:

(1) agents compute a probability of interaction with available agents
(2) agents use these probabilities to select an available agent with which to interact
(3) agents communicate with one of their interaction partners, sending a subset of

facts as a message
(4) agents learn new information from this communication
(5) agents update their knowledge to reflect what they have just communicated, and

the cycle repeats.

This process is diagrammed in Fig. 1.
It is worthwhile to describe this cycle in slightly more detail in order to understand

the operation of the simulation, though readers are also encouraged to examine the
technical literature for additional details.

At the beginning of each time period, agents first employ their transactive mem-
ory to rank their possible interaction partners. Transactive memory represents an
agent’s perception of who knows what and can potentially be incomplete or even
incorrect. As agents evaluate possible interaction partners, they use various crite-
ria to create a relative score which reflects their preference for interacting with
each other agent. Construct allows multiple factors to affect this probability of in-
teraction: relative similarity (knowledge homophily), which occurs when an ego
agent perceives that an alter knows a fact the ego already knows; knowledge ex-
pertise, which occurs when an ego perceives that the alter holds new information;
socio-demographic (or surface-level) similarity, which is operationalized as similarity
based on easily-observable properties (Harrison et al. 1998; Hirshman et al. 2008a;
McPherson et al. 2001), physical proximity, which is similarity due to similar po-
sitions in the physical environment (i.e. Barnlund and Harland 1963; Butts 2002;
Wellman 1996), and social proximity, a catch-all for other types of similarity not
explicitly modeled.

In this experiment, we employ only relative similarity and expertise in order to
drive agent interactions. Relative similarity and knowledge expertise, diagramed in
Fig. 2, are fundamental to Construct’s operation (Hirshman and Carley 2007a). The
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Fig. 2 Similarity and expertise
in Construct

Ego perceives that
alter does not know

Ego perceives that
alter knows

Ego does not know no effect increases expertise
Ego knows no effect increases similarity

relative similarity of i and j , from i’s perspective, is characterized as

relative similarityij =
∑

k<K(AKik ∗ TMijk ∗ Wik)
∑

j<1
∑

k<K(AKik ∗ TMijk ∗ Wik)

where individual i’s relative similarity to j , is determined in terms of similarity in the
agent-to-knowledge matrix AK. The more facts that agent i knows (AKik) and per-
ceives that j knows using its transactive memory about agent j (TMijk), the greater
the similarity, though this similarity is tempered by the weight that agent i places
on each fact k (Wik). Since relative similarity is calculated in contrast to the rest of
the agent population, it is necessary to normalize this similarity score using the score
calculated for the remainder of the population in order to calculate a relative value.

Relative expertise is a search-based mechanism and derives from the idea that
individuals are more likely to interact if one has information that the other wants.
The relative expertise of agent j as judged by i is characterized as

relative expertiseij

∑
k<K(Xjk ∗ Wik)

∑
j<1

∑
k<K(Xjk ∗ Wik)

where Xjk =
{

TMijk, AKik = 0

0, otherwise

where individual i’s relative similarity to j is determined in terms of differences in
the agent-to-knowledge matrix AK (Schreiber et al. 2004). The more facts that agent
i lacks (AKik = 0) but perceives that agent j knows when checking its transactive
memory about agent j (TMjk), the greater the expertise, though agent i also weights
this expertise on a per-fact basis (Wik). Note that relative expertise, like relative sim-
ilarity, is also normalized per agent.

The relative interaction probability is then a weighted average of relative similarity
and relative expertise. Other factors, such as socio-demographic homophily, can be
included in the weighted term static factorsij .

relative probabilityij t = αt ∗ relative similarityij t + βt ∗ relative similarityij t

+ γt ∗ static factorsij

where weights α,β , and γ must sum to one and can vary from simulation time pe-
riod to simulation time period. In this set of simulations, however, no static factors
were modeled (γ = 0 for all time periods) and similarity was assumed to be the
driving force (α = 0.9, β = 0.1). Thus, while our simulation was largely driven by
homophily, we included a slight amount of information seeking behavior in order to
allow agents to consider interesting interaction partners who had slightly different
knowledge.
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Once each ego agent has evaluated its potential alters and has calculated all rela-
tive probabilities, it then selects an alter with which to interact. This selection is based
on the probabilities just computed. Alters that have higher relative probabilities of in-
teraction will have higher chances of being selected as interaction partners, but such
selections are not guaranteed. The order in which ego agents choose their alters is
randomized each time period, so agents may be first to choose (and thus have a large
pool of potential alters from which to select a partner) while others will choose later
and may not have as many options. If some alters are not available for interaction
because they are interacting with third parties, then the ego will only choose from
those available. Note that egos will always consider themselves as a possible alter
with whom to interact, a factor which will greatly decrease the selection of extremely
dissimilar interaction partners. While agents are likely to exhibit strong preferences
towards agents with which they are similar—since the relative probability of inter-
action with such agents will be high—the stochastic nature of Construct guarantees
that agents will have the potential for occasional interactions with those who are not
necessarily highly similar.

After all agents have chosen their appropriate interaction partners, each ego and
each alter prepares a message to send to the other. While Construct contains sev-
eral cognitive filters which may affect what agents choose to send in their messages
(Hirshman and Carley 2008), such filters were turned off for this experiment. The
prepared message usually consists of a subset of the agent’s knowledge, but it can
also contain transactive memory information about third parties—a factor that allows
agents to learn about other agents who may have new and interesting knowledge.
The exact nature of the message sent can be controlled by the simulation designer.
Certain facts may be weighted more heavily and thus are more likely to be chosen
in the message. Other facts may be weighted less heavily and thus will be less likely
to be shared. This weighting allows certain facts to be considered more salient when
agents are choosing interaction partners but less relevant when agents are choosing
information to communicate.

Once agents have sent their messages, they are able to learn new information sent
to them by others. Construct can apply several cognitive filters that affect how agents
learn this information (Hirshman and Carley 2008), but such filters were also disabled
in this experiment. All information sent by the alter agent is learned by the ego.
During this learning phase, each agent also updates its transactive memory to reflect
its new knowledge as well as its knowledge of its social environment. These changes
in both knowledge and transactive memory may lead to modifications when relative
similarity and relative expertise are recalculated in the next time period.

It should be noted, however, that new knowledge or transactive memory learned in
one period may not lead to increased similarity or expertise in the next. If an ego agent
learns a fact from an alter, the receiver will have increased similarity with the sender
on an absolute scale; however, the same fact may cause the ego agent to become
more similar to many other agents, thus leading to a decrease in relative similarity.
For this reason, the results of agent behavior in Construct are highly non-linear—just
like those of human behavior. Interaction between each pair of agents is as dependent
on the similarity of the dyad as it is on the differences between each agent in the
dyad and its other potential interaction partners. As Construct iterates over the course
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Table 2 Design of virtual experiment

Condition Values Number of categories

Number of experiment parameters 3

Experimental parameters

Number of agents 250, 500, 750, 1000, 1250 5

Number of personal facts per agent 0, 1, 5, 10 4

Transmission weight per general fact 0, 1, 5, 10, 50 5

Number of experimental conditions 5 × 4 × 5 100

Total replications per condition 10

Total number of simulation runs 1000

of the virtual experiment, such non-linearities may have important effects on final
outcomes, a feature that makes Construct a chaotic system.

During the update phase, the Construct simulation also records relevant outcome
measures. For this experiment, only one type of measurement was made: the number
of times each agent interacted with each particular alter. This data, recorded as an
agent-by-agent network, was printed at the end of the simulation. While Construct
can print a variety of other outputs, our focus on tiering behavior led us to use only
this one output feature. Additional details on Construct outputs, as well as further in-
formation on the operation of the simulation, can be found elsewhere (e.g. Hirshman
and Carley 2007a, 2007b).

4 Experiment design

In this experiment, we vary three simulation parameters: the size of the agent popu-
lation, the number of personal facts unique to each agent that no other agent initially
knows, and the likelihood that each agent will want to share general facts versus per-
sonal ones when communicating. Each of these parameters takes on multiple values,
as can be seen in Table 2. Each will be discussed in turn.

The number of agents in the simulation was varied between 250 and 1250 to
examine the effect of network size on simulation results.2 The agent population
was closed, meaning that agents did not enter, leave, or otherwise turn over once
the simulation was started. Agents also could not exogenously learn new facts in
the simulation as performed; agents could only learn new information from other

2Note that each Construct had to keep track of transactive memory for each other agent in the simulation,
meaning that in the largest possible simulation all 1250 agents had to keep track of any knowledge known
by each of the 1250 agents in the simulation. While Construct uses sparse memory storage and other
optimizations, the nature of this experiment meant that each agent had to keep track of a very, very large
amount of knowledge about potential interaction partners. While an obvious memory-saving strategy might
be to exogenously prevent agents from storing information about some alters, such a modification would
go against the purpose of this simulation: to see whether tiered structures could arise from homophily
alone without any exogenous pruning. Construct is capable of using larger numbers of agents, but agents
in such simulations will not store transactive memory about all others.
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agents. The range of agents used was chosen for mathematical, social, and pragmatic
reasons. Simple combinatorics suggests that the greater the number of agents, the
greater the number of potential interaction partners among which each agent could
choose. Modifying the number of agents in the simulation would allow us to in-
vestigate whether interaction partner availability substantially affects tier sizes and
distributions. Increasing the number of agents in the population could also minimize
the effect of random chance: in the smaller simulations, there may be fewer agents
with which to interact and random chance interactions could have greater impacts on
outcomes. Additionally, social network analysis has suggested that important social
network properties are highly dependent on the size of the network and modifica-
tions to this parameter allow for examinations of such effects (Anderson et al. 1999a;
Wasserman and Faust 1994). If the group is too small, or the number of potential
alters not large enough, certain effects cannot be observed. However, such size con-
siderations had to be balanced against the space and running-time considerations of
Construct, which is O(agent2 × knowledge × time) when running under the con-
ditions of this experiment (Hirshman and Carley 2007a). This meant it could take
tens of hours to run a large simulation. The values chosen for this experiment were
selected to balance these competing pressures.

The number of personal facts served as a proxy for the importance of personal
information in the simulation. Personal factors such as core values, important experi-
ences, deep similarity, and close friendship are known to strongly influence individual
behavior in social settings, and homophily on such factors is known to be especially
strong (Harrison et al. 1998; Marsden 1987). As modeled in Construct, the personal
facts were distinct for each agent, meaning that the set of personal facts for agent 1
was completely separate from those for agent 2. At the beginning of the simulation,
only the owner of each personal fact would know it; during subsequent interactions,
however, the owner could choose to share the fact with others. These personal facts
had several properties that differentiated them from the general facts of the simula-
tion. First, agents would have a very low chance of transmitting these personal facts
in a given interaction, a factor which made them both more realistic as well as more
valuable to dyads that shared them. Second, the number of personal facts was varied
in the experiments while the number of general facts remained constant. While the
number of personal facts per agent varied between zero and ten as can be seen in
Table 2, the number of general facts remained at two thousand, as seen in Table 3.
Third, personal facts had a very high interaction weight relative to that of general
facts, meaning that egos were more likely to interact with alters with whom they had
shared personal facts, and alters were more likely to contact egos about whom they
had learned personal facts. Last, alters who learned personal facts about an ego could
not relay such facts to third parties. While agents would always have a small proba-
bility of sharing these personal facts with any interaction partner, the rarity of such
sharing meant that very few agents would learn any of an ego’s personal facts by the
end of the simulation.

In contrast to personal facts, which were rarely shared and would impact relatively
few pairs of agents, general facts usually dominated the relative similarity and relative
expertise calculations for most agent-agent pairs. While the number of general facts
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Table 3 Parameters held constant

Parameter Value

Number of time periods 2000

Max interactions per period 10 (5 initiations, 5 receptions)

Number of “general” simulation facts 2000

Transmission weight for one’s own personal fact 1

Transmission weight for another agent’s personal fact 0

Percent “general” simulation facts known per agent 1%

Percent transactive memory known per agent 50% (of 1%)

was kept constant during each simulation,3 a parameter sweep was performed over
the transmission weight on general facts. This had the effect of changing how often
agents were to communicate general facts with each other versus their likelihood of
communicating one’s own personal facts. Changes to the transmission weight served
as changes in the propensity to disclose personal information: lower transmission
weights for general facts meant that personal facts were more likely to be shared,
while higher transmission weights for general facts implied that individuals were
more reluctant to share information about a highly salient dimension. The transmis-
sion weight values that we used, specified in Table 2, were weights per fact. Thus,
the chance of sending any general fact was proportional to the number of general
facts that the agent knew (the transmission weight per one’s own personal fact, also
a weight per fact, was a constant value 1 as seen in Table 3, while the transmis-
sion weight for relaying the personal fact of another agent was set to 0). As agents
learned general facts via interaction with others, the chance of sending one of their
personal facts decreased since the number of personal facts unique to each agent
was established at the start of the simulation and did not change once the simula-
tion was underway. Note that the transmission weight only affected the composition
of messages communicated between agents and did not directly affect how agents
calculated relative similarity or expertise (Hirshman and Carley 2007b). However,
increasing the transmission weight of the general facts made it less likely that agents
would share their personal facts—both with those that they interact with frequently,
and with those that they do not—and thus could affect later similarity and expertise
calculations since fewer agents would know those facts in later time periods.

In addition to the parameters varied during the simulation, several factors were
held constant to facilitate analysis. These parameters are described in Table 3. A total
of two thousand time periods were simulated per experiment replication. This was

3A parameter sweep—not reported here—suggested that changing the number of facts did not greatly in-
fluence the qualitative pattern of results observed using the techniques described in Sect. 6. Increasing the
number of knowledge facts prevented analysis of larger societies. While transactive memory is stored in a
sparse format, each Construct agent still must have a transactive memory of all other potential alters. Dou-
bling the number of agents led to a quadrupling of the memory requirement for simulation, assuming that
agents keep track of a roughly equal amount of each alter’s knowledge. The number of general knowledge
facts used in this simulation (2000 facts) was about the largest possible number of bits that could be used
in the largest population size (1250 agents) without leading to to out-of-memory errors with Construct.
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found to be sufficient for agents to interact with others, exchange information, and
develop stronger preferences for some agents over others. Each agent was allowed
to initiate up to five interactions (Hirshman and Carley 2007a) and receive up to five
interactions from others (Hirshman and Carley 2007a) during each simulated time pe-
riod. This meant that an agent could potentially interact up to twenty thousand times
in the course of the simulation, though the total number of interaction partners was
found to be less than three thousand for the entire simulation, once self-interactions
and repeated interactions between agent-pairs per time period were dropped. By al-
lowing an agent to interact multiple times per time period, it was possible to re-use
the expensive-to-calculate similarity scores between agents in order to better simulate
human activity. For all experiments performed, the number of general facts was held
constant at two thousand, as this was a large enough value to ensure that agents did
not learn all the general facts (reach quiescence). At simulation start, each agent had
a 1% chance of knowing each of the general facts, meaning that each agent knew a
mean of twenty random facts. Furthermore, each agent had a 50% chance of knowing
whether or not every other alter agent had knowledge a particular fact, meaning that
agents had about ten transactive memory facts per alter at the start of the simulation.
A parameter sweep, whose results are not described in this paper, was performed to
examine the effects of some of these parameters; moderate changes to these parame-
ters did not greatly change the observed results.

The full factorial design of ten thousand replications, as described in Table 2, was
performed on a heterogeneous cluster of computers, containing eighty processors
distributed among fifteen machines. About half the cluster consisted of 8-processor,
64-bit, 2.6-GHz machines with 64 GB of RAM; the other half consisted primarily
of 32-bit workstations with about 2 GHz processors and less than 2-GB of memory.
Each simulation took between 3 hours and 96 hours to complete, depending on the
machine type and the number of agents in the simulation. The entire suite of sim-
ulations took three weeks running in parallel to perform. The resulting interaction
matrices required 16 GB of storage space.

5 Analysis

In analyzing the data, we had two primary goals: first, to understand whether any
tiering behavior occurred, and second, to explore how changes to a naïve homophily
model could affect such results.

In our analysis, we focused our search for four tiers, as inspired by the work
of Zhou et al. (2005) described earlier. Due to the computational limitations dis-
cussed in Sect. 4, we were not able to thoroughly investigate the larger groups of
the hierarchy—for instance, the groups with five hundred or more agents. Thus,
our analysis focuses primarily on the four sections of Zhou’s hierarchy closest
to the ego: the tiers containing 3–5 agents, 15–20 agents, 30–50 agents, and 150
agents. These correspond to the “core discussion network” (Dunbar and Spoors 1995;
Marsden 1987; Zhou et al. 2005), the “sympathy group” (Dunbar and Spoors 1995;
Stiller and Dunbar 2007; Zhou et al. 2005), the “band” (Dunbar and Spoors 1995;
Zhou et al. 2005), and the “clan” containing most general acquaintances (Dunbar
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1993; Dunbar and Spoors 1995; Zhou et al. 2005) in Zhou’s taxonomy. For simplic-
ity, we will refer to these tiers as T1 (the tier that is closest to the ego and therefore
interacts most frequently with it), T2, T3, and T4 (the tier that is most distant, and
therefore interacts least frequently).

Our approach was to take the interaction counts for each agent-agent dyad as our
baseline unit of analysis. Our Construct simulation output was an agent-by-agent
matrix of interaction counts; we removed any self-interactions in order to better un-
derstand how frequently agents interacted with others. Because we cared about how
frequently agents communicated and were not primarily concerned with which agent
initiated the interaction, we marked a one for both agents if either agent contacted
the other. We analyzed the data by simulation time period, so agents who interacted
with each other multiple times during one time period were marked as having inter-
acted only once. Thus, our variable of interest was a count that varied from zero (if a
pair agents never interacted) to two thousand (if a pair agents interacted during each
simulated time period).

As agents could have different numbers of total interactions but similar trends
in behavior, it was necessary to normalize the raw interaction counts before further
examining the data. We did so by taking the network of interaction counts network
and treating it as a collection of vectors, one vector per agent. Each element in each
row vector corresponded to an alter who interacted with a particular ego agent. Thus,
we normalized each vector relative to its largest component so all values in the vec-
tor were in the range [0,1]. We expressed these values as the percent of interaction
that ego had with each alter relative to the time spent with the ego’s most frequent
interaction partner.

Once this normalization had been performed, we compared agents. We reordered
the vectors so that agents ranked their normalized interaction frequency from largest
to smallest. This of course destroyed the meaning of the indices in each vector, but
as we were most concerned with the distribution of interaction frequencies for each
agent, this transformation helped us better address our research question. This sorting
procedure gave a slightly revised meaning to each index: that of agent position in
terms of interaction frequency. This allowed us to rank alters by the time spent with
the ego; for the agent at position zero, this value would have a normalized value of
1 since that agent had the maximum number of interaction, while the agent at a high
position, the value would be close to 0. We could then compare different agents in the
same simulation, as well as compare agents across different simulations by looking
at trends in these normalized and resorted vectors of agent position.

After some initial investigation, it became clear that our data was taking on a long-
tailed distribution as seen in Fig. 3, which plots agent position versus mean percent
frequency of interaction. While Fig. 3 illustrates the case with five hundred agents and
a general fact transmission weight of one, a similar drop-off was observed for other
experimental conditions. Results confirmed that agents tended to communicate with
a handful of alters many times more frequently than they communicated with the
majority of others, a result that is consistent with literature values (Wellman 1996;
Zhou et al. 2005). While this was in accordance with the general power-law be-
havior found by Zhou et al. (2005), the drop-off was much too steep to show con-
clusive evidence of tiering behavior. Thus, to better analyze the resulting frequen-
cies of interaction, we decided to take the log2 transform of the original interaction
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Fig. 3 Distribution of interaction frequency

count matrix prior to normalization. This transformation provided further differen-
tiation between the tiers: alters in successively higher tiers would have significantly
more frequent interaction with the ego, and the increase in interaction would be non-
linear.

Also in this preliminary analysis, we noticed that a nontrivial proportion of
all interactions were interactions which occurred only once or twice out of two
thousand possible time periods. Such interactions contributed to an extremely long
tail. Exploring this trend, we became concerned about what a single interaction
meant—a measurement question that has been extensively discussed in the socio-
logical literature but not often tackled in the modeling community (Marsden 1990;
Wasserman and Faust 1994). Clearly, hundreds of interactions suggest an elevated
relationship. However, since one agent’s probability of interactions with another will
be non-zero if it has transactive memory about another agent (see Fig. 2), some in-
teractions may be due more to chance than to legitimate manifestations of substantial
homophily. Upon further consideration, we decided that interaction frequencies that
fell beneath a threshold of three interactions per two thousand time periods were not
significant enough to merit consideration in the analysis that we were performing.
One interaction could be due to chance, a second interaction coincidence, but three
or more contacts between ego and alter should indicate an elevated relationship. For
this reason, we then eliminated any agent-agent pairs with less than three interactions
also prior to normalization.

As noted previously, we were searching for the presence of four tiers. We thus
divided the normalized log frequency of interaction into four groups, corresponding
to 1.00–0.75 (T1), 0.75–0.50 (T2), 0.5–0.25 (T3), and 0.25 to 0.00 (T4). For each
agent in each simulation, we then counted the number of interaction partners within
each range to calculate the number of agents in each tier. We then computed the
average size of T1, T2, T3, and T4 by averaging each tier over the total number of
agents in each experimental condition. Figure 4 provides a representative example
of one of these experimental conditions—the 500 agent, general fact transmission
weight 1 condition—after the truncation, transformation, and reordering have been
performed.
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Fig. 4 Frequency of interaction by agent position

It is worthwhile to mention variance measurements that were taken in both the
preliminary and final simulation results. Within each simulation instance, the variance
on agent position was relatively low. After the interaction partner counts for each
agent were truncated, transformed, and reordered, the standard deviation around the
mean log frequency of interaction (the coefficient of variance) was less than 5%. This
suggested that there was not substantial variation between the ratio of interactions
between ego’s most common interaction partner and nth most common partner across
multiple agents in the same simulation—though noting that the nth most frequently
contacted agent would very likely differ when the ego changed. However, when tiers
were created from the agent position vectors, the variance in the size of the tiers was
consistently found to be about 20–40% of the mean for each tier size (coefficient of
variance was 0.2–0.4). Variation of a similar magnitude was found when results for
multiple agents was collapsed to get an overall measure of variation per simulation
replication, and when multiple replications were collapsed to achieve an overall result
for the experimental condition. Such ranges in tier size were not unexpected—even
Dunbar’s number and Zhou’s tiers have very wide confidence intervals (Dunbar 1993;
Zhou et al. 2005). For purposes of presentation clarity, however, we have omitted
these variances from our tables and figures.

6 Results

We calculate the number of agents in each tier by following the procedure outlined in
Sect. 5. The results, presented in Table 4, have been averaged over all ten replications
performed for each experimental condition. Several trends are observable from this
data.

First, the models of interaction that are based on a simplistic version of
homophily—i.e., those models that include just general facts without personal facts—
do not fit the Zhou distribution. These models, found in the left-hand block of Table 4,
tend to have very large first, second, and (generally) third tiers relative to those Zhou
found for human social networks. The sharp decrease in the fourth tier was partially
an artifact of the analysis technique, since agents must have at least three interactions
with the ego in order to be placed in that tier. This effect was also partially due to a
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Table 4 Counts of agents in each tier of % frequency of interaction (log transformed)
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Fig. 5 Number of interaction partners by tier

saturation effect since such a large percentage of the society occupied the first three
tiers that there were few agents left to fill the remaining tier. Regardless of the cause
of the smaller last tier, it is clear that the simplistic homophily model does not lead
to the expected interaction pattern.

This suggested that some sort of correction to the simplistic mechanism would
be needed in order to generate realistic tiering behavior using homophily. Our correc-
tion, the inclusion of highly-valued personal facts, helped to generate realistic results.
But how many of such facts are necessary? When there are too few personal facts, the
model fit is generally poor as seen in the leftmost and left-center blocks of Table 4
while the fits of the rightmost blocks are much better. However, the transmission of
personal facts, if included, becomes important. If personal facts are used, and the
general facts are given a low transmission weight and thus not transmitted, unreal-
istic results are obtained. On the first row of every block of tables are the results
occurring when the general knowledge transmission weight is zero, or what happens
when agents only are able to send personal facts when communicating. In this setting,
agents only (infrequently) share personal facts when communicating and otherwise
do not share information. In this situation, a more or less uniform pattern is achieved
across the tiers, a result which also does not match the literature. Increasing the gen-
eral fact transmission weight is necessary.

The fact that extreme cases lead to implausible results suggests that personal facts
and a non-trivial transmission weights are needed for homophily to lead to accurate
tiering behavior. When a moderate number of personal facts and a moderate general
fact weight are used, the ensuing pattern appears much more consistent with the liter-
ature values. The shaded cases in Table 4 represent distributions which have the same
general shape as observed in the real data, though the numbers of agents in each tier
do not always correspond to Zhou et al. (2005) results. The majority of these cases
contain a first tier that is much smaller than the second, a second which is smaller
than the third, and a third that is in turn smaller than the fourth. Such distributions
occur under the same simulation conditions regardless of the simulation sample size.

The tiered nature of the data in Table 4 can be clearer if illustrated graphically. For
instance, Fig. 5 displays the number of interaction partners in each tier when there are
1250 agents and a general fact transmission weight of one. This is the case occurring
in the fourth-from-bottom row of Table 4. A simple homophily model using only the
general facts leads to a normal distribution of tier sizes while gradually increasing
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Fig. 6 Percent of interaction
partners by tier

the number of personal facts generates the more expected skew in the distribution.
With ten personal facts, the number of communication partners in the first tier is
close to a third of the number in the second tier, which in turn is about a third of the
results in the third tier, which in turn is about a third of the number in the fourth tier—
results which have the exponential coefficient remarkably similar to that of Zhou et al.
(2005). While the raw counts in each tier are slightly inflated from the values found
by most anthropologists and sociologists, the Zhou results are not outside standard
confidence intervals for some of our simulation conditions. More importantly, though,
the results of Table 4 indicates that such a pattern of interactions was consistently
found regardless of simulation size, though the size of the tier increased slightly with
greater numbers of agents.

The relative number of agents in each tier can be seen most clearly in Fig. 6,
which plots the raw values of Fig. 5 as percentages of the total number of interaction
partners in all four tiers. The distribution of partners imputed from the Zhou data is
plotted on the right-hand side for comparison. The simplistic homophily model fits
the data poorly, as the first, second, and third tiers are slightly larger and the fourth
tier dramatically smaller than the human data. Including even a few personal facts
will lead to a substantial improvement, though the fourth tier remains small relative
to what would be expected for human social networks. Increasing the number of
personal facts further will modify the simulation by increasing both the frequency
of personal fact transmission as well as increase the maximum relative homophily of
agents sharing multiple personal facts. Such changes lead to more frequent interaction
with an agent’s most common interaction partners and ultimately generate the more
skewed (and realistic) interaction frequencies.

7 Discussion

Our findings suggest that homophily can be used to make simulated agents follow
patterns of interaction that are analogous to those observed for humans. While there
is no firm agreement on what constitutes a sociological tier, a nomenclature has been
developed to separate small numbers of close friends from large numbers of relatively
distant acquaintances (e.g. Dunbar and Spoors 1995; Zhou et al. 2005). We find that
when we augment the homophily mechanism with highly valued personal facts, we
are better able to generate tiering behavior than when a simple homophily model is
used in which all facts are equal.
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While the most realistic results of the simulation are perhaps the most useful, it
is of interest to examine the cases that did not produce results that follow the so-
cial and anthropological literature for general human societies. For instance, when no
general facts were present (the leftmost block of results in Table 4), the results were
clearly skewed towards the middle tiers. This suggests that at least some personal
facts are necessary in order to achieve the results observed in human behavior. When
only the two thousand general facts were present, agents would have insufficient rea-
son to prefer one agent to another. Agents tended to interact with others frequently,
and would not build up close relationships with favorite agents. Though systematic
preferences did arise in these simulations, the degree of preference was insufficient
to mimic real-world models. Such results provide strong support for some critiques
of simple homophily or social categorization theories: homophily is an idea that
works, except when it does not (Levine and Moreland 1998; McPherson et al. 2001;
Turner et al. 1994). By including salient dimensions (McPherson et al. 2001) on
which agents should be homopholous in order to interact—in our approach, the per-
sonal facts—we both strengthen and address this criticism. When we include such
personal facts, we see that they contribute greatly to homophily between a few agent-
agent pairs and so contribute to realistic social structures. Those seeking to use ho-
mophily to drive interaction in similar simulations might consider such results when
building their own models. Those seeking to use homophily as an explanatory mech-
anism for phenomena in the real world may wish to consider the importance of di-
mension salience and to acknowledge that some forms of homophily may be more
important than others.

When the transmission weight for general facts was very large or very small,
the distribution of interactions was also different from that observed in the soci-
ological data. When the general fact transmission weight was zero, agents were
bound by the expertise and similarity knowledge present at simulation initializa-
tion. When interacting with other agents, egos would always attempt to share per-
sonal facts with every alter, a behavior which greatly increased the likelihood of
continued contact between ego and alter. Without the exchange of general facts,
exploration and the search for agents with similar general facts did not occur. As
can be seen in Table 4, this resulted in a smaller number of overall interaction
partners than that found in human societies, as well as a distribution which con-
tained first and second tiers that were much larger than expected. Nevertheless,
such interaction patterns are not entirely unrealistic and may be present in some
venues, such as among students arriving at college (e.g. Hays and Oxley 1986;
Newcomb 1961). However, such relationships are likely not as stable as our simu-
lation would suggest; inevitably, as other processes affect the individuals and change
what is salient, new interaction patterns begin to emerge and the initial friendship
patterns may dissolve.

On the other hand, an excessive emphasis on general fact transmission also gen-
erated skewed results. If agents were insufficiently willing to share personal facts,
they would share these facts with very few others. Such a behavior would lead to
the formation of only a small number of close relationships. Such close ties with
personal information would also be heavily-used relative to the vast majority of
other ties. If these ties become excessively strong, a scenario which occurred to
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some extent in Granovetter’s Boston neighborhoods, information may diffuse slowly
and small clusters of agents will be isolated from each other (Granovetter 1973;
Marsden 1987). Such societies may be vulnerable to changes in conditions or health
of the members and may be more likely to fall apart.

While the most realistic results presented in Table 4—the shaded values—follow a
pattern that may be classified as an exponential distribution, we are reluctant to fit an
exact model to the data. First, we are not fully convinced that all real-world networks
share the binning properties that Zhou et al. (2005) summarized. Secondly, given the
fact that Dunbar’s number (Dunbar 1993) has a very wide confidence interval and
that other ranges on Zhou’s scale can vary greatly, we feel that trying to fit a set of
our values to Zhou’s exact values would run the risk of overfitting the simulation
model. More importantly, though, our primary goal in this paper has been to present
our simulation technique an exploratory study of a mechanism and parameter space,
and not as an optimally tuned model. While we find that certain parameters have
important effects on the overall distribution of simulation results, our primary focus
has been on the trends observed with the modified homophily mechanism. From the
trends that we have observed, simulations with larger numbers of personal facts and
relatively small general fact transmission weights are best for generating the types of
distributions that Zhou observed.

Even without an exact fit to the Zhou data, the results that we present in Table 4
lead to an interesting and perhaps startling conclusion. We have posited a society in
which agents are likely to interact with those who are similar to them. Under cer-
tain circumstances, such a mechanism is sufficient to generate tiering behavior. If all
facts are treated equally, we tend to see that agents have no real preference for other
interaction partners: their maximum frequencies of interaction are small and tiering
behavior does not occur. However, if we allow agents to have increasing numbers
of highly-valued personal facts, agents will become more selective in their choice of
interaction partners and will begin to form structures that resemble those seen in hu-
man networks. If the transmission weight for general facts falls in a relatively broad
band—the boundaries of which we explore but do not fully define—then agents will
naturally assume a frequency of interaction which is found in the general anthropol-
ogy, sociology, and groups literature. Using only transactive memory to guide their
preferences, as well as a principle of seeking out others who are either similar or who
are known to have interesting knowledge, agents settle into interaction patterns that
resemble those observed in human populations.

We recognize there are a number of limitations to this work. First, we have delib-
erately fixed a number of simulation parameters, such as the number of facts, in order
to explore other effects which we feel to be valuable and informative. This is good
simulation practice, but may lead to questions regarding the roles that such parame-
ters play in producing our results (Epstein and Axtell 1999). Though some of these
factors were indirectly analyzed—for instance, we partially examined the effect of
changing the number of facts by changing the transmission weight for the general
facts—it was felt that such factors would be of secondary interest in understanding
patterns of interaction. Second, we have deliberately omitted factors such as socio-
demographic attributes (McPherson et al. 2001), geospatial location (Butts 2002), and
affect (Lawler 1999), which have been known to play important roles in determin-
ing who interacts with whom and for how long. While these attributes are known to
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have an important impact on the development of human social networks, our research
sought to demonstrate that minor tweaks to the homophily and transactive memory
assumptions are strong enough to lead to the development of a plausible social net-
work structure. Lastly, we acknowledge the effect of timescale. We recognize that
human social networks are built up over the course of a lifetime and are the result of a
number of complex social, psychological, and even environmental processes that can-
not be easily modeled. Here, we have used an arbitrary representation of time, even
as we acknowledge that past research has documented that social networks are highly
dependent on time-dependent factors such as age and location (Hill and Dunbar 2003;
Marsden 1987). Additional research may be needed to understand how homophily—
and personal information—may affect the growth, maintenance, and decay of social
networks and social tiers over time.

In our work, we wish to suggest that Construct is a plausible model for human
interactions, not the definitive one. The homophily assumption in Construct, in con-
junction with agent-specific yet shareable facts, represents a plausible way by which
human networks may adopt a tiered structure. Other models may use slightly different
core assumptions to explain human interaction; as previously mentioned, the empiri-
cal literature has suggested that geography, family, schooling, and work environment
play important roles. Nevertheless, our results suggest it is possible to simulate the
emergence of multi-tiered social ties using a homophily model and that these tiers do
correspond with patterns observed in real-world human networks. Specifically, we
believe our results demonstrate that if one wishes to use a homophily model to sim-
ulate realistic processes on human social networks, then one could include personal
facts (or analogous attributes) in order to ensure that agents have both the proper
number of interaction partners and correct frequency of interactions with them.

Thus, our findings suggest important considerations for other simulation design-
ers, especially those seeking to model realistic patterns of human interaction. Simu-
lations that use homophily to drive interaction can include highly salient or personal
facts in their model to help ensure that interactions with alter agents follow literature-
supported distributions of interaction frequencies. The power of these facts is both in
their high salience and in their relatively low probability of being transmitted to a fa-
vored other. If this probability of transmission is either too low or too high results will
be unrealistic. A homophily model that incorporates such personal facts, and tempers
their transmission appropriately, will lead to results which will more closely match
those observed in the real world. Such models can then be used more pragmatically
to address questions of information diffusion, disease transmission, or a wide vari-
ety of other areas in which human agents must interact with realistic and meaningful
frequencies.
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