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Abstract. The present work describes a utility-based, multi-agent, dy-
namic network model of phone call and SMS traffic in a population. The
simulation is novel in its ability to generate interactions from both an
asymmetric and a symmetric media simultaneously. Within the model,
we develop and test a simple extension to the theory of media multiplex-
ity, a well-known theory of how humans use the communication media
available to them with different alters (friends). Model output qualita-
tively matches patterns in real data at the network-level and with respect
to how humans use SMS and voice calls with different alters and thus
shows general support for our theoretical claim.

Keywords: agent-based modeling, dynamic networks, interpersonal
communication theory.

1 Introduction

Effects on how people use the repertoire of communication media (e.g. voice
calling, emails and SMS) available to them to interact with others exist within
a complex, nonlinear system across the individual, instantaneous, media, dyadic
and network levels of analysis (see, e.g., [1]). The dynamic, multi-level nature of
these effects has led to a variety of both competing and complementary theoret-
ical and empirical claims of how humans use different communication media.

Precisely because of its ability to control effects at different levels of analysis,
agent-based modeling presents a useful tool to develop and test theories of media
use. In the present work, we describe an agent and utility-based dynamic network
simulation model to analyze effects on media usage at three levels of analysis -
the node, the relation, and the affordances of different media1.

To show the practicality of such a model, we use it to test a new theoretical
proposition that extends Haythornthwaite’s argument for media multiplexity [2],
a theory of human media usage. Haythornthwaite argues that strong social ties
will interact on a variety of media, while weak ties will tend to stay on more “es-
tablished” media within their social context- for example, email is an established

1 Code for the model is available upon request to kjoseph@cs.cmu.edu
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media within many organizations2. As a corollary to this argument, Haythorn-
thwaite shows that an increase in tie strength promotes increased interaction on
all media.

While an important contribution to the field, Haythornthwaite’s work does
not give clear guidance for analysis when no obvious social context or established
media exist. This is often the case with datasets of call detail records (CDRs),
which are typically anonymized sets of data from a large and diverse popula-
tion. In the present work, we develop, implement and test a theory to extend
media multiplexity to such situations. We hypothesize that where no obvious
social context or establish media exist, people will increasingly rely on their
preferred medium as tie strength decreases- correspondingly, they will be more
open to using a variety of media when interacting with stronger ties. We title
this theoretical claim the weak-tie exaggerated choice theory (WT-ECT).

We implement our theory in a model where agents develop a preference for one
of two media, voice calling or SMS, based on what they have gained emotionally
from communicating on these media in previous interactions. While each media
has specific affordances in the model that present an obviously rational choice,
agents are boundedly rational [3], meaning they make the most rational decision
based on their view of the world, which may or may not be correct. Bounded
rationality, combined with our implementation of WT-ECT, suggests a means
by which people might prefer interacting on certain media even when it is not
entirely rational to do so, and will rely on their (possibly irrational) preferences
more heavily with weaker ties.

Our theory thus falls in line with recent thinking regarding the notion of the
“domestication” of communication technology [4] and presents a possible means
of connecting this theory with the concepts presented by Haythornthwaite. Addi-
tionally, it provides another perspective from which to interpret recent literature
suggesting a strong effect of tie strength on the usage of SMS, in particular its
use as a tool for communicating only with stronger ties [5,6].

Our main contributions in the present work are thus three-fold. First, we extend
a previous model to simulate asymmetric interactions within an evolving social
network. Second, our extensions allow us to simultaneously model interactions on
two different media with distinct properties. Third, we propose, test, and find evi-
dence for an extension of a well-known theory in the interpersonal communication
literature, with ties to other relevant research on mobile communication.

2 Simulation Model

The model we present is grounded in the work of Du et al. [7], who develop the
Pay-and-Call (PaC) Model, an agent and utility-based model of network creation
over time. In the original PaC model, each agent wants to maximize their supply
of “emotional capital”, which they can do via interaction with others. Each agent

2 When we refer to a social tie, we mean any connection between two people. The
strength of a tie can be modeled in various ways - for example, by the number of
interactions between them.
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is defined by a uniformly distributed friendliness value that gives their aptness
in social situations and a uniformly distributed lifetime value representing the
likelihood that they are replaced on each turn of the model, as described below.
For each interaction, agents receive a payoff, defined in Equation 1.

payoff =
√

Fri ∗ Frj ∗ 1− αintLen+1

1− α
− CPM ∗ intLen− initCost (1)

In Equation 1, Fri stands for the friendliness of agent i and intLen is the length
of the interaction (in minutes). The value α is a model parameter that represents
the ability of a medium to convey the true benefit of social interaction to the
agents. As time progresses, the effect of α increases, causing a limit in the amount
of capital gained by agents on an interaction. Our model differs from the one
presented in [7] by a factor of α - this is done in order to ensure that interactions
lasting only one minute are differentiated by unique αs, as explained below.
The benefit of an interaction is also mitigated by a linear cost defined by an
intercept initCost, the cost of initializing an interaction, and CPM , the cost
per minute of the interaction. In addition to the CPM mitigating the benefit
from an interaction, it is also subtracted from the sender’s capital each minute
the interaction continues. An interaction ends when the interaction sender has
no more capital to continue, or the payoff decreases from one minute to the next.

In our model, we differentiate the α values of voice calls and SMS- that is, we
differentiate between their ability to relay emotional benefits as an interaction
progresses. Early research in media choice suggested that the more “socially
present” a medium is, the better it is able to convey emotion between sender
and receiver [8]. Though these claims have since been questioned, it has also been
shown that Americans interact more using voice calls than SMS when talking to
core ties [9]. Thus, we would expect that agents in our model should be limited
in the amount they can benefit emotionally from an SMS as compared to a voice
call. From Equation 1, we see that by lowering the α value for SMS, we can
model this theoretical concept- the precise values of α for each media are set
after calibration, as discussed in the following section.

On each turn of the original PaC model, each agent, in succession, is tested
to see whether or not they should be replaced based on their lifetime. If not
replaced, an agent interacts with his alters in order of the payoff the agent
received from each alter the last time the pair interacted. An agent will continue
interacting with alters until his capital is exhausted or until the alter he will next
interact with has a remembered payoff lower than the agent’s expected payoff
from talking to a new tie. This expected payoff is calculated as the average of
the first payoff an agent received from his alters. At this point, the agent, i, will
then interact with one new agent, j, that had the maximum payoff of all of i’s
alter’s friends (i.e. friends of friends).

One vital difference between various communication media that cannot be
modeled by the generator in [7] is their level of “synchronicity” [1] - phone calls
are synchronous in that both agents must be present for a phone call to occur,
while other media, such as email, SMS and IM, are asynchronous in that sends
and replies need not occur concurrently. As shown in Algorithm 1, we modify
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Algorithm 1. Time-scale Based PaC Model

1 foreach Minute, m do
2 foreach Agent, ai in A (in random order) do
3 ai.doTurn()
4 if (m modulo MinutesInDay) == 0 then
5 foreach agent, aj , in A do
6 if RandomZeroToOne()<agent.lifetime then
7 replace aj with new agent

Algorithm 2. Agent.doTurn

1 if currInteraction != NULL then
2 Update currInteraction by one minute according to Equation 1 (only if sender)
3 if currInteraction is finished then
4 If asynchronous, only the sender obtains the payoff and then places the interaction

on the receiver’s queue. If synchronous, the recipient and sender both obtain the
payoff

5 currInteraction = NULL

6 return

7 if capital<needed then
8 capital+ = storedCapital
9 storedCapital = 0

10 return

11 if Interaction Queue is Empty then
12 currInteraction = InteractionFactory.getNewInteraction()
13 Start currInteraction
14 return

15 nextInt = InteractionQueue.pop()
16 storedCapital+ = nextInt.getReceiverPayoff()
17 if nextInt.conversation is not over then
18 currInteraction = Interaction.replyTo(nextInt)
19 Start currInteraction

the original model to allow each agent one chance to act in each minute of the
simulation. In making this straightforward modification, agents are now able to
carry interactions across multiple turns, and may wait an indiscriminate amount
of time before replying to an asynchronous interaction.

Algorithm 2 shows the process for each simulation turn for each agent. If the
agent is currently on an interaction, the interaction is simply “updated” by one
minute (the payoff equation is recomputed at the next minute). When an agent
is on an asynchronous interaction, he is said to be constructing the message. This
message construction, like in real life, occurs without the message receiver being
made aware that it is occurring. In contrast, synchronousmessages require two-way
interaction - both the sender and the receiver must actively be on the interaction
for it to commence. Consequently,when an agent begins a synchronous interaction,
it is either accepted by the receiver if he is not currently on another interaction, or
ignored otherwise. If the call is accepted, the receiver sets his current interaction
to that call, and can have no other interactions until the call is over.

Ignored calls and completed asynchronous interactions are placed on the re-
ceiver’s interaction queue. This interaction queue, akin to a “social to-do list”,
represents all interactions that the agent might respond to. The queue is sorted
by a uniform probability associated with each interaction (as is done in [10]).
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If an agent is not currently on an interaction, he will immediately attempt to
begin a new one. In order to do so, however, he must have enough capital- if that
is not the case, the agent will refresh his capital with the supply he has obtained
from previous interactions. This delay between obtaining capital and being able
to use it is done in order to ensure consistency with the original PaC model.
Thus, agents act in “cycles”, where a cycle is defined as the period between
when an agent refills his capital from payoffs earned from previous interactions
and when he does so again. In order to keep the distributional properties of the
original PaC model with respect to the network, an agent can only interact with
each alter once per cycle.

If the agent is not on a current interaction and has enough capital to begin a
new one, he can do so in one of two ways. If the agent’s interaction queue is not
empty, he will obtain the first interaction off the queue, collect the payoff from
the message, and determine whether or not to reply. The decision of whether or
not to reply is based on the work of Wu et al. [11], who find that SMS conversa-
tion durations can be approximated by a power-lawwith respect to their temporal
distributions. We therefore model the likelihood of agents responding to an inter-
action off of their queue as a power-law (with exponent 1) based on the number
of times the interaction has been “bounced” back and forth between agents, using
this as a proxy for conversation length. Thus, the likelihood of Agent b replying
to an initial interaction from Agent a is 1. When a sends a reply message to b, b
responds with probability .5, and so forth. If an agent obtains an interaction from
his queue and chooses to reply, he will begin a reply using the samemedia on which
the interaction was initially sent. Note that two agents may (and often do) end one
conversation and begin a new one later in the simulation.

If the agent’s interaction queue is empty, he will begin a new interaction. The
agent will first select a new alter, using themechanism described in themodel from
[7] (as described above). Once a partner has been selected, the agent will then de-
termine whether or not to begin a phone call or text message with that alter. This
decision is based on Equations 2 and 3, which model this decision as a function of
both node (agent) and edge-level preferences. The agent, i, first calculates his aver-
age payoff from phone calls and SMS and uses these values to determine pi(Call),
his base probability of making a phone call, as shown in Equation 2.

pi(Call) =
avgPayoffCalli

avgPayoffCalli + avgPayoffSMSi
(2)

According to the WT-ECT theory we propose, agent media preferences are exac-
erbated as the tie strength between two interacting agents decreases.Wemodel tie
strength here as the inverse of the “rank” of an alter in the agent’s remembered
payoffs. That is, the higher an alter’s tieRank, the lower the strength of the tie.
Each alter, j, of agent i has a dynamic tieRankij which indicates j’s place in i’s
list of remembered payoffs. For example, if i had alters j with last payoff .3 and k
with last payoff .2, tieRankij would be 1, and tieRankik would be 2. The rank of
a new tie is computed based on the agent’s expected payoff froma new tie - thus, for
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example, if i’s expected payoff from a new tie was .25, then a new alter, n would
have a tieRankin of 2 (and tieRankik would actually be 3).

pi,j(Call) =

⎧
⎨

⎩

pi(Call)
√

tieRankij pi(Call)<.5

pi(Call)

1√
tieRankij otherwise

(3)

Given this definition of tie strength, Equation 3 models the effect of tie strength
on media preference to obtain a final likelihood of i calling (as opposed to text
messaging) j, pi,j(Call). The equation, in accordance with our WT-ECT, in-
creases an agent’s likelihood to use their preferred media as tie strength decreases
(or correspondingly, as tieRank increases). If i’s preference for (equivalently, like-
lihood to make a) phone call is less than .5, his preference for SMS moves towards
1 as tieRank increases. Similarly, the likelihood of i making a phone call moves
towards 1 if pi(Call) ≥ .5. For brevity, edge cases are omitted, however, they
behave in the model as one would expect.

3 Results

In order to calibrate and test our model’s relevance to real-world data, we utilize
a dataset of approximately 110 million phone and SMS interactions from approx-
imately 430,000 people spanning three months in early 2008 in an Asian nation.
In the present work, we consider only moderately heavy users, which we define as
those users having between 5 and 200 alters and having sent at least 30 text mes-
sages and 30 phone calls. Though this means we cannot extrapolate our findings
to the entire population of study, we find that it is difficult to understand usage
patterns for those people with less than 5 alters and 30 interactions per media, and
that those having greater that 200 ties were relatively unlikely to be a single hu-
man. After pruning, we are left with approximately 65,000 users, which we split
evenly into a training set for calibration and a testing set for evaluation.

Calibration was completed with a chief focus on αsms and αphone, as they
are, in the present work, the only theoretically relevant parameters. However,
we note that, with one exception, the model was reasonably robust to changes in
the other parameters. The exception is sensitivity to moderately large changes
in the CPM - though the reasons why are clear from Equation 1, modifications
in future work are necessary to lower sensitivity to this parameter. During the
calibration process, we also experimented with a variety of functional forms
for Equation 3- we found that the square root function, our initial hypothesis,
actually gave the best fit to our training data. Calibration resulted in parameter
settings of αsms = .6 and αphone = .8. The CPM and initCostparameters were
kept at the values used by Du et al. [7]. We use a model with these settings and
simulate interactions between 100,000 agents over 30 simulation “days” when
contrasting results with the held-out (test) data.

Comparisons to the held-out data were made to understand the extent to
which our simulation could generate a realistic social network and a realistic
distribution of media preferences and the model’s ability to capture evidence of
the WT-ECT existent in the testing data. We here consider only one measure of
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(a) (b) (c)

Fig. 1. a)The CCDF, in log-log scale, of the degree distributions of the real and simu-
lated data; b) Number of phone calls (y-axis) versus SMS messages (x-axis) per person
(agent). Each dot is a single node, and the red is a 2D density estimator; c) A random
sample of all edges from 7,000 nodes in each dataset, where the y-axis is proportion
of a node’s total text messages sent that alter, and the x-axis is the proportion of a
node’s total phone calls made to that alter. In a),b) and c), the gray bar at the top
indicates the dataset.

our model’s ability to generate realistic social networks across both phone and
SMS, and do so by plotting the degree distribution of the aggregate networks
from the real and simulated data. As we see in Figure 1a, degree distributions are
qualitatively quite similar. However, the graph belies one important difference
that may exist between model output and the real data- due to our parsing
mechanisms, it is unclear whether or not the simulated data correctly captures
the head of the distribution or whether it generates too many low-degree nodes.

Regardless of the head of the distribution, our model captures the heavy-tailed
nature of degree distributions well-known to exist in aggregate social networks
from CDRs (e.g. [7]). We now consider aspects of our model (and the real-world
data) that have received less attention in the literature. First, we consider how
well the model represents media preferences at the node level. In order to do so,
we consider the distribution of the number of phone calls agents (in the model)
and people (in the real data) make in comparison to the number of text messages
they send. As we see in Figure 1b, which plots a point for each node (agent or per-
son) as well as a density estimator for the entire dataset, the vast majority of nodes
preferred voice calling to SMS. As we know, a range of effects at various levels of
analysismay have caused this in the real data, and though the point spread is quite
similar, these two plots clearly show that our model does not capture significant
effects. However, it is interesting to note that even when modeling node-level me-
dia choice as the resultant of only the technological affordances of the media and
bounded rationality, the model suggests a qualitatively similar conclusion.

Our final comparison between the simulated and real data considers how well
the two datasets conform to Haythornthwaite’s theory of media multiplexity, and
to theWT-ECT extension. The first claim of media multiplexity is that strong ties
will tend to interact more on all media than weak ties - to this end, Figure 1c shows
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Fig. 2. Seven sample users from the real (top row) and simulated (bottom row) data,
and their interactions via phone and SMS with alters of different tie ranks

that in both the real data and the simulated data, there exists an approximately
linear correlation between the (log) proportion of a node’s total SMSmessages and
the (log) proportion of their phone calls that go to a specific alter. Though the plot
only show a small sub-sample of the data to avoid over-plotting, we find that the
log proportion of a node’s total calls to an alter explain 34.6% and 57.4% of the
variance in the log proportion of text messages sent to that same alter in a simple
linear model in the real and simulated data, respectively.

The fact that this simple linear model has such a clear predictive power lends
significant support to Haythornthwaite’s theory, and as is clear, our model defini-
tively captures this aspect of interaction across multiple media. It is important
to note, however, that the linear model only predicts 57.4% of the variance in
our simulated data. Thus, our model contains a reasonable and desirable amount
of stochasticity in agent interactions with different partners on different media.
This variability can be seen in Figure 2, which shows sample users from the real
(top) and simulated (bottom) datasets and the number of interactions they had
via phone and SMS with alters of different “tie ranks” (discussed below).

The second claim of media multiplexity is that weaker ties will tend to stick
to more established media. WT-ECT, however, suggests that with weaker ties,
people will more heavily rely on the media they have a stronger preference for. If
this were to be the case, then we would expect that with weaker ties, preferences
would be more obvious- that is, we would see people use one media more heavily
than they would under normal circumstances.

We use a three step process to obtain a set of statistics that can be used to
understand the extent to which WT-ECT is supported. We first compute, for
each edge <i, j> in the network, the log odds of i calling (as opposed to texting)

j as log(
NumCallsi,j
NumSMSi,j

) and subtract i’s log odds of making a phone call to any

of his alters. Thus, a positive value for an edge means that i used voice calling
more heavily with j than he would on average, and a negative value the opposite.
We then bin edges by their strength. To differentiate between ties of different
strengths, we bin using the notion of tie “ranks”, as above. Because there is no
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Fig. 3. The DLO statistic (y-axis) as tie rank increases (tie strength decreases) for the
real and simulated data for agents (people) preferring both SMS and phone calling.
All 95% confidence intervals shown are determined using the bootstrap method with
1,000 iterations.

notion of payoff in the real data, we compute rank here based on the number
of interactions sent to each alter. Thus, the alter an agent communicated with
most (on both SMS and phone combined) would have a tie rank of one, and so
on (edges with the same strength are place into the same bin).

Finally, we compute the mean of this value (for convenience, the DLO, or
difference of log odds, statistic) for all edges in each tie bin. As is clear, if
the WT-ECT theory were to be supported, we would expect that as tie rank
increases, the log-odds of an agent using their “preferred” media increases as
well. Figure 3 plots our DLO statistic for the first 35 tie bins for the real and
simulated data for agents preferring SMS (the triangles) and those preferring
voice calling (the circles). We consider only the first 35 tie bins both because
model estimates were highly varied outside this range and because we feel it
is difficult to estimate differences in preference for the real data outside of this
general range (the number of communications was, on average, around two).

The figure shows that our simulated data obtains pattern (and at some tie
ranks, statistical) validity- this lends credence to our model of human communi-
cation, regardless of the underlying phenomenon. More importantly, though, the
plot largely shows qualitative support for our WT-ECT- as tie rank increases
(tie strength decreases), the likelihood of an agent using their preferred media
increases to some extent before finally appearing to level out, as our square root
function in Equation 3 predicts. In further analysis, we find that this “level-
ing out” extends to larger tie ranks, though as mentioned, such estimates are
somewhat unreliable.

The one exception to support for the WT-ECT appears to be with agents
who prefer phone calls and their ties to alters ranking from 10 to 20- in this
range, the DLO statistic actually regresses back towards the node-level pref-
erence. Interestingly, there is also evidence of this regression in the simulated
data, in which the WT-ECT is an explicit functional piece of the model. This
observation can be accounted for by the fact that SMS is asymmetric, and thus
will, by its nature, tend to have more interactions per conversation than phone
calls. However, it also goes lengths to indicate the complexities and intricacies
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of human communication across media and, to this end, suggests the power of
agent-based modeling in theory development.

4 Conclusion

The current work has several limitations- we provide mostly qualitative evidence
of fits with real data and only a cursory model calibration. In addition, we model
tie strength as a dynamic element- though it is true that the strength of human so-
cial ties with those around us are constantly fluctuating, our model may allow for
too much fluctuation of tie strength in the described time span. Limitations aside,
however, the model we develop shows promise, as it is the first we are aware of to
attempt to model communication on different media simultaneously over time in
an evolving network. Our results show that the WT-ETC deserves further atten-
tion, particularly because a derivative of the theory suggests that depending on the
perceptions (preferences) of a person, (s)he may irrationally choose an affectively
weak communicationmedia (like SMS)when interactingwithnewer and/orweaker
ties, leading to difficulties in forming strong social ties for emotional support.
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