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Abstract Motivated by the availability of continuous event sequences that trace the social
behavior in a population e.g. email, we believe that mutually exciting Hawkes processes
provide a realistic and informative model for these sequences. For complex mutually excit-
ing processes, the numerical optimization used for univariate self exciting processes may
not provide stable estimates. Furthermore, convergence can be exceedingly slow, making
estimation computationally expensive and multiple random restarts doubly so. We derive an
expectation maximization algorithm for maximum likelihood estimation mutually exciting
processes that is faster, more robust, and less biased than estimation based on numerical
optimization. For an exponentially decaying excitement function, each EM step can be com-
puted in a single O(N ) pass through the data, for N observations, without requiring the entire
dataset to be in memory. More generally, exact inference is �(N 2), but we identify some
simple �(N ) approximation strategies that seem to provide good estimates while reducing
the computational cost.

Keywords Self-exciting point processes · Estimation · Expectation-maximization

1 Introduction

The formation and evolution of human social relations has long been a topic of
research. Previously, such research has been based on a sequence of discrete observa-
tions of the entire social system, either through ethnographic observation or self-report
surveys. Such observations are difficult, however, and generally such studies would
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contain only a few, widely spaced time periods. The proliferation of so-called
“social-networking” websites and other means of electronic social interaction and
communication opens up a new range of possibilities for modeling social dynamics.
In particular, it becomes feasible to consider modeling the micro-dynamics of social
behavior. Rather than modeling the general change in relationships, we can seek to
model how specific social events are influenced by the actions of other participants in
the social system. Social activity data also pose several problems, chief among them
being the scalability of any useful analysis techniques. By considering not only the
existence of a social relation, but the event-based evidence of that social relation, we
shift the magnitude of the dataset from the total number of social relations to the total
amount of social activity. Any practical model must scale well in order to be useful for
the large and dynamic online social systems and even smaller populations of individu-
als may produce a large volume of social activity (e.g. email within a organization or
company).

Much effort has been expended in computational and statistical models of human social
behavior. However, many of these models (Snijders and Nowicki 1997; Airoldi et al. 2005;
Hoff et al. 2002; Hoff 2008; Krivitsky and Handcock 2008) pertain to complete observa-
tions of a social network and are therefore entirely appropriate for event-level modeling
of streams of social behavior. For example, specific events may have direct causal rela-
tions with other specific events, e.g. email replies, wiki edits, relationships that are not
captured through models of the macro-level latent structure. Furthermore,temporal exten-
sions of such models (Sarkar and Moore 2005; Guo et al. 2007; Kolar et al. 2009; Sni-
jders 1996) often require a Markov assumption to yield a computationally feasible model.
Although this may often be a useful simplifying assumption, it may not be sufficient to fully
capture the event-level dynamics of social behavior. Social activity may not always occur
in response to the events or the system state immediately prior. The information system
through which activity occurs, cognitive processing required to act and wandering atten-
tional may all conspire to yield non-trivial delays between related social events (e.g. an email
and it’s caused response). Therefore, we believe that there is a need for more flexible mod-
els capable of representing arbitrary distributions of response-times between causally linked
events.

Self-exciting point processes provide a statistical model for these kinds of dynamics that
can reproduce various qualitative and quantitative features of human social events. Vari-
ous formulations of Hawkes’ processes have been used to model crime (Egedsdal et al.
2010), stock markets (Large 2007), and Youtube movie (Crane and Sornette 2008) and
news website (Johansen and Sornette 2000) views and book sales (Deschatres and Sor-
nette 2005) for their ability to model burstiness and endogenous versus exogenous effects.
We believe that more widespread adoption of these Hawkes’ process models is limited
by current estimation techniques, which generally rely on numerical optimization. This
can lead to problems both in the robustness of the estimation as well as the computa-
tional cost and convergence properties. We derive an efficient expectation-maximization
algorithm for mutually exciting Hawkes process for use with any decay function. In
Sects. 2 and 3, we will review the relevant prior work on social dynamics and self-
exciting Hawkes point processes. Sections 4 and 5 will describe, respectively, exact and
approximate inference for the Hawkes using expectation-maximization and Sect. 6 will
describe some results on the robustness and accuracy of the EM estimation. Following a
brief discussion, we conclude in Sect. 8 by discussing limitations and implications of our
findings.
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2 Background

3 Self-exciting point processes

The self-exciting Hawkes point process was introduced by Hawkes (1971a,b), who further
derived a useful interpretation that we use here (Hawkes and Oakes 1974). Intuitively, a
Hawkes process is composed of two stochastic mechanisms. First, some background process
continuously and uniformly generates events. Second, any generated event has the potential
to lead directly to some future event. Equivalently, there is a population that is altered by both
the steady immigration of new individuals and newly born (asexual) descendants of a single
individual in the existing population, and the appearance of new individuals corresponds to
events in the process. Hawkes (1971b) defines the process in terms of its intensity function:

�(t |Ht ) = μ+
t∫

−∞
g(t − u)d N (u) (1)

The background immigration intensity is represented by u and each individual in the pop-
ulation contributes some excitation g(t − u) ≥ 0 where u is arrival time of the exciting
individual and t is the (potential) arrival time of the excited individual. This process depends
only on historical data Ht before time t , not on future data. As with other point processes,
the Hawkes process is defined in terms of its counting process and the intensity function.

lim
δ→0

1

δ
P(N (t, t + δ) = 1|Ht ) = �(t |Ht ) (2)

We will refer to the counting process using both the number of events before time t , denoted
N (t), as well as the number of events between times s and t , denoted N (s, t), as in Eq.
(2). The Hawkes process defined in this way is conditionally orderly (at most one event at
any time) and stationary (has constant, finite expectation), only if Eq. (3) holds (Hawkes
1971b). We can interpret Eq. (3) as indicating that the expected number of first generation
descendants from any particular individual is strictly less than 1. Stationarity also requires
the expected number of all descendants (first and subsequent generations) be finite.

∞∫

−∞
g(v)dv < 1 (3)

Note that stationarity is defined in terms of the unconditional expectation E[�(t)] whereas
we have defined �(t |Ht ) conditioned on the historical data, Ht in Eq. (1).

The log likelihood for a point processes is defined in terms of this conditional intensity.

L(θ) =
∑

ti

log�(ti |Ht )−
T∫

0

�(t |Ht )dt (4)

=
∑

ti

log�(ti |Ht )−
⎛
⎝μT +

∑
ti

T∫

ti

g(v − ti )dv

⎞
⎠ (5)

Hawkes (1971b) also defines the mutually-exciting point process with K different streams,
each potentially influencing the other. Formally, Eq. (1) becomes
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�l(t |Ht ) = μl +
∑

j

t∫

−∞
g jl(t − u)d N j (u) (6)

In addition to defining these processes, Hawkes (1971b) also derive the spectra for the specific
case where the excitation function, g(v) is a sum of exponential functions.

g(v) =
K∑

k=1

αke−βkv (7)

We simplify the aforementioned model slightly, re-parameterizing to to separate the decay
function from the total expected excitement. Specifically, we define the intensity function as

�l(t |Ht ) = μl +
K∑

k=1

t∫

−∞
βkl fl(t − u)d N (u) (8)

and further require that

∞∫

0

f (v)dv = 1

and βkl < 1,∀l, k (9)

This, combined with requiring that f (v) > 0 implies that f (v) is a probability distribution
over v > 0, which is convenient both in that it allows us to refer to P(v) but also in that
any continuous distribution over v > 0 can be used as the excitement function. We can now
interpret the βkl parameters as the expected number of first generation descendant events in
stream k caused by an event in stream l.

Here we have defined βkl as dependent on the stream, k, containing the “parent” event
and the stream, l, containing the “child” event; whereas, the decay function is dependent
only on the stream containing the “child” event. Interpreting this in the context of socially
active people, we might say that certain people are more excited to act by specific others
but that each person has their own characteristic response function that governs the amount
of time they take to respond regardless of who they’re responding to. The proposed EM
inference is not, however, limited to this specific parameterization, rather, we chose this
as a simple model that illustrates the more important characteristics of Hawkes processes
without unnecessary complications. The model can also be parameterized; e.g., with multiple
excitation “processes”, depending on observed properties of the individual events rather than
this fixed set of “streams” and the interactions between them. That is, the k stream contains
the parent event and the l stream contains the child event.

In the case of exponential decay, this becomes

fexp(v) = αe−αv (10)

Exponentially decaying excitation has some convenient properties that make exact inference
computationally efficient. Distributions with longer range influences, such as the Pareto
and Log-Normal distributions pose problems for exact inference and motivate some of the
approximation strategies presented in Sect. 4; i.e.,
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fpareto(v) = ωcω

v1+ω (11)

flnorm(v) = 1

v
√

2πσ 2
exp

ln(v−ν)
2σ2 (12)

3.1 Simulating hawkes processes

There are many different techniques for simulating self-exciting point processes (Ogata 1981;
Møller and Rasmussen 2005). One of the more common techniques begins with a uniform
distribution of events and uses filtering to remove most of them. This strategy has been found
to introduce biases into the resulting point processes. Instead, we use the cluster process
representation, simulating events exactly according to the initial explanation of the self-
exciting processes. Events are sampled from a simple homogeneous Poisson process with a
rate equal to the background rate of the self-exciting process (μ). Next, each newly generated
event will cause some number of future events in the other streams. The number of events to
be created is a Poisson random variable with rate βkl if the original event was in stream k and
the future event(s) is in stream l. Next, our formulation of f (v)means that it is a probability
distribution over the time delay, t > 0, so we sample from that distribution to determine the
time(s) for the new event(s). We repeat this step for any new events.

4 Exact inference

Maximum likelihood estimation of Hawkes process parameters is widely performed via
numerical optimization (Ozaki 1979; Ogata 1998; Zhuang et al. 2002). Ozaki (1979) initially
identified the derivatives and Hessian for the exponential-decay process (see Eq. 7) which
were subsequently extended for more complex distributions (Ogata 1998). Unfortunately,
numerical optimization can lead to substantial computational costs as well as to poor solutions
depending on the specific shape of the likelihood function (Veen and Schoenberg 2006).

Although several different fields have seen recent work exploring Hawkes processes, the
seismological community has long been using such models in the form of the Epidemic-
type Aftershock Sequence (ETAS) (Ogata 1988, 1998). The ETAS model expands the model
proposed by Hawkes (1971b) to incorporate both spatial location and magnitude. As such,
closed form solutions for parameter estimates are generally not available and often numerical
optimization is used. In attempt to solve the inference problems related to numerical optimiza-
tion, Veen and Schoenberg (2006) proposed a partial information expectation-maximization
strategy for parameter estimation. They introduce hidden parameters based on the stochastic
deconstruction of the process (Zhuang et al. 2002). This means determining for each event in
the process whether it is an immigrant or a descendant and if it is a descendant, which prior
event is its immediate ancestor. We adopt this same strategy in developing efficient inference
for our simpler process but take advantage of two important recurrence relations to improve
the space and time efficiency.

4.1 Maximization

Following previous work (Veen and Schoenberg 2006), we introduce hidden variables u j

representing the immediate ancestor (cause) of the event at time t j as well as indicators ui j

which equals 1 if u j = i and 0 otherwise. Immigrants have no immediate ancestor and so
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for an immigrant, j , u j = 0 or equivalently u0 j = 1. We can now write the complete data
log likelihood:

LC D(θ) =
∑

t j

⎛
⎝u0 j logμ+

∑
ti<t j

ui j logβ f (t j − ti )

⎞
⎠

−
T∫

0

�(t |Ht )dt

=
∑

t j :u j =0

logμ+
∑

t j :u j �=0

(
logβ + log f (t j − tu j )

)

−
(
μT + β

∑
ti

F(ti )

)
(13)

where

F(ti ) =
T∫

ti

f (v − ti )dv (14)

Intuitively, the first group in Eq. (13) indicates how likely the actual sequence of events is,
while the other term,

∫ T
0 �(t |Ht )dt describes how unlikely it was to have not seen additional

events. More precisely, the first group sums over all observed events, the log of the conditional
intensity when the event happened, whereas the other, negative term integrates the conditional
intensity over the entire time interval. The somewhat simplified integral in Eq. (14) is similarly
over (ti , T ) to account for the fact that a specific interval in time was sampled.

The derivatives with respect to μ and β are

∂LC D(θ)

∂μ
=

∑
t j :u j =0

1

μ
− T (15)

∂LC D(θ)

∂β
=

∑
t j :u j �=0

1

β
−

∑
ti

F(ti ) (16)

In order to simplify the notation, we introduce m0 = ∑
t j :u j =0 1, the total number of events

generated by the background process, and m1 = ∑
t j :u j �=0 1. Conditional maximum likeli-

hood estimates for the μ, β parameters are then

μ̂E M = m0

T
(17)

β̂E M = m1∑
ti F(ti )

(18)

Although this maximization of the exact likelihood yields convenient conditional estimates
for the μ, β parameters, it is not quite so straightforward to estimate the parameters for
the excitation function. Even in the simple case of exponential decay, there is no analytical
solution for the rate parameter, α, and instead a root-finding algorithm is necessary
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Fexp(ti ) =
T∫

ti

fexp(v)dv

= 1 − e−α(T −ti ) (19)
∂LC D(θ)

∂α
=

∑
t j :u j �=0

(
1

α
− (t j − tu j )

)
−

∑
ti

β (T − ti ) e−α(T −ti )

= m1

α
−

∑
t j :u j �=0

(
t j − tu j

) −
∑

ti

β (T − ti ) e−α(T −ti ) (20)

The situation is similar in the case where the excitation function is specified by the Pareto
distribution (Eq. (11)). The intensity function and consequently, the log likelihood, increase
monotonically with c. Because the Pareto distribution assigns a probability of 0 to any value
of v less than c, the maximum likelihood estimate for c is min j (t j − tu j ), the minimum
elapsed time between a parent and child event, but since this is unknown we instead assign c
to be min j (t j − t j−1), the minimum elapsed time between any two events. It should be noted
that this is a heuristic approximation that could be replaced by an expectation conditional
maximization using the expectation information. By fixing c, we only need to consider
estimation of the shape parameter, ω

Fpareto(t) = 1 −
(c

t

)ω
∂LC D(θ)

∂ω
=

∑
t j :u j �=0

(
1

ω
+ log c − log(t j − tu j )

)

−Nβ
∑

ti

c/ (T − ti )ω

log (c/(T − ti ))

= m1

(
1

ω
+ log c

)
−

∑
t j :u j �=0

log
(
t j − tu j

)

−Nβ
∑

ti

c/ (T − ti )ω

log (c/(T − ti ))
(21)

As with exponential decay, there is no closed-form solution to the exact conditional maximum
likelihood estimates for the ω parameter of the Pareto distribution.

Because there is no closed-form solution for the cumulative density function of the Log-
Normal distribution, Flnorm(v), it is helpful to consider the partial derivatives of the two
excitation-related components of the complete data likelihood separately. In general, for a
parameter η,

∂LC D(θ)

∂η
=

∑
ti

∂

∂η
log f (ti )− β

∑
ti

∂

∂η
F(ti ) (22)

The partial derivatives of the first term, log f (t), are straightforward.

∂

∂ν
log f (t) = log(t j − tu j )− ν

σ 2

∂

∂σ
log f (t) = − 1

σ
+ (log(t j − tu j )− ν)2

σ 3 (23)
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The partial derivatives with respect to F(t) require a change of variables in order
to apply the fundamental theorem of calculus. Rather than starting from the definition,
F(ti ) = ∫ T

ti
f (ν−ti )dv, we use a definition of the cumulative distribution function of the Log-

Normal distribution in terms of the complementary error function, F(t) = er f c
(

log(t−ν)
σ
√

2

)
,

which offers a clearer derivation.

∂

∂ν
F(t) = ∂

∂ν

1

2
er f c

(
log(t − ν)

σ
√

2

)

= ∂

∂ν

1

2

(
1 − er f

(
log(x − ν)

σ
√

2

))

= ∂

∂ν

1

2

⎛
⎜⎜⎝ 2√

π

log(t−ν)
σ
√

2∫

0

exp−x2

⎞
⎟⎟⎠ dx

= ∂

∂ν

1√
π

log(t)∫

ν

exp
−( x−ν

σ
√

2
)2 1√

2σ
dx

=
⎧⎨
⎩

− ∫ ν
log(t)

1√
2πσ

exp
−( x−ν

σ
√

2
)2

dx log(t) < ν∫ log(t)
ν

1√
2πσ

exp
−( x−ν

σ
√

2
)2

dx log(t) > ν

= sign(log(t)− ν) f (t) (24)

Similarly, the partial derivatives with respect to σ can be derived

∂

∂σ
F(t) = ∂

∂σ

1

2
er f c

(
log(t − ν)

σ
√

2

)

= ∂

∂σ

1

2

⎛
⎜⎜⎝ 2√

π

log(t−ν)
σ
√

2∫

0

exp−x2

⎞
⎟⎟⎠ dx

= ∂

∂σ

1√
π

σ∫

0

exp
−(σ ( log(t−ν)

σ2√
2
))2 log(t − ν)

σ 2
√

2
dx

= 1√
2πσ

exp
−(x( log(t−ν)

σ2√
2
))2 log(t − ν)

σ

= t flnorm(t)
log(t − ν)

σ
(25)

The two components are then combined to compute the complete data partial derivatives.

4.2 Expectation

Naive computation of the hidden variables introduced above would require O(N 2) space
requirements for each of the ui j hidden variables. However, the update equations above can
be restated in terms of the expectations, E[m0l ], E[mkl ] and

∑
E[t j − tu j ], which can all be

computed in O(K ) space. Because we require the process to be conditionally orderly, we can
alternatively state the hidden values in terms of� j = t j −tu j because� j uniquely determines
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u j and vice versa. Although it is more intuitive to describe the hidden values in terms of the
causal relationship using the u j , estimation is more straightforward for E[� j ] = E[t j − tu j ].
We will continue to refer the hidden values u j even though the values we are estimating are
the� j . We also introduce variables, zi , indicating the stream containing the event at time ti .

μ̂l = E[m0l ]
T

(26)

β̂kl = E[mk1]
Nk

(27)

α̂l =
∑

k

E[mkl ]
⎛
⎝ ∑

t j :z j =l,u j =i �=0

E[t j − tu j ]
⎞
⎠

−1

(28)

The expectations E[m0l ], E[mkl ] are simple sums of the indicators, ui j .

E[ui j ] = P(i produced j)

=
{
μ/�(t |Ht ) i = 0

βzi z jαz j e
−αz j (t j −ti )/�(t |Ht ) i > 0

(29)

E[mkl ] =
∑
z j =l

∑
ti<t j ,zi =k

βklαz j e
−αz j (t j −ti )/�(t |Ht )

=
∑
z j =l

βkl

∑
ti<t j ,zi =k

αz j e
−αz j (t j −ti )/�(t |Ht ) (30)

Define Ak(t j ) as follows and a simple recurrence allows calculate the updated Ak(t j+1)

Ak(t j ) =
∑

ti<t j ,zi =k

αke−αk (t j −ti ) (31)

Ak(t j+1) = Ak(t j )e
−αk (t j+1−t j ) + αke−αk (t j+1−t j ) (32)

Now E[mkl ] becomes

∀k > 0 E[mkl ] =
∑
z j =l

βkl Ak(t j )

μl + ∑
κ βκl Aκ (t j )

(33)

E[m0l ] =
∑
z j =l

μl

μl + ∑
κ βκl Aκ (t j )

(34)

If we now define Bk(ti ), we can also compute
∑

E[t j − tui ] in a single pass through the data
with O(K ) memory

Bk(t j ) =
∑

ti<t j ,zi =k

(t j − ti )αke−αk (t j −ti ) (35)

Bk(t j+1) = Bk(t j )e
−αk (t j+1−t j ) + Ak(t j )(t j − ti )e

−αk (t j+1−t j )

+ (t j − ti )αke−αk (t j+1−t j ) (36)

E[t j − tui ] =
∑
z j =l

βkl Bk(t j )

μl + ∑
κ βκl Aκ (t j )

(37)

These expectations can thus be calculated in a single pass, requiring only O(K ) memory to
keep track of the current set of A(t j ) and B(t j ).
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Temporal decay functions other than the simple exponential decay will not have such
efficient exact expectation calculations. The quantities, Ak(t j ), Bk(t j ) can be more generally
stated as

Ak(t j ) =
∑

ti<t j ,zi =k

f (t j − ti ) (38)

Bk(t j ) =
∑

ti<t j ,zi =k

(t j − ti ) f (t j − ti ) (39)

Using the Pareto distribution for the temporal decay function, these do not seem to have any
useful recurrence relation that would allow us to simplify these quantities.

Ak(t j ) =
∑

ti<t j ,zi =k

ωcω

(t j − ti )1+ω (40)

Bk(t j ) =
∑

ti<t j ,zi =k

(t j − ti )
ωcω

(t j − ti )1+ω (41)

Direct calculation from these formulas is possible, but for each observation, i , this requires
iterating over all i − 1 previous observations, leading to a computational cost O(N 2) for
N observations, for each step of the EM algorithm. This also requires the ability to hold
the entire sequence in memory as the final observation will require iterating over all N − 1
previous observations to compute the quantities Ak(tN ), Bk(tN ). While this is reasonable for
small or moderate sized datasets, it is impractical for very large collections of many different
streams.

5 Approximate inference

In the case of an exponentially decaying excitation function, we derived an efficient E-step
that requires only a single pass through the data and can be computed in O(N ) time for N
events. For the Pareto distribution and in general, the exact E-step requires O(N 2) time to
calculate. Furthermore, the exact conditional maximum likelihood estimates in the M-step
require potentially many passes through the data, depending on the convergence of the root-
finding algorithm. We seek now to improve upon these results by using several approximation
strategies.

5.1 Maximization

Recall that even in the case of exponentially decaying excitation, there is no closed form
M-step for estimating the parameters of the excitation function:

Fexp(ti ) =
T∫

ti

fexp(v)dv (42)

= 1 − e−α(T −ti ) (43)
d LC D(θ)

dα
=

∑
t j :u j �=0

(
1

α
− (t j − tu j )

)
−

∑
ti

β (T − ti ) e−α(T −ti ) (44)
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= m1

α
−

∑
t j :u j �=0

(
t j − tu j

) −
∑

ti

β (T − ti ) e−α(T −ti ) (45)

This function is well-behaved and in many situations this may not be problematic. For very
large sequences of observations it may become quite computationally expensive to compute
d LC D(θ)

dα because it requires access to each element ti in the stream. If the integral in F(ti ) is
taken from (ti ,∞), ignoring any effect of the time interval sampled, this quantity is by Eq. (3)
equal to 1. If we assume a rapidly decaying excitation function, e.g. exponential decay, then
we are already assuming that long-range influences are few. As such, the only observations for
which this censoring might impact are the final few and far large sequences, these censoring
factors, F(ti ), are almost always close to 1. For decay functions f (v) that assign higher
likelihood to long-range influences, this assumption may need to be reconsidered, but should
be reasonable for large datasets. Veen and Schoenberg (2006) used this simplification with a
power law decay in the excitation function without issue.

LC D(θ) ≈
∑

t j :u j =0

logμ+
∑

t j :u j �=0

(
logβ + logα − α(t j − tu j )

)

−μT − β
∑

ti

1 (46)

Using this simplification, the derivative and estimate for β are now

d LC D(θ)

dβ
=

∑
t j :u j �=0

1

β
−

∑
t j

1 (47)

β̂E M = m1

N
(48)

There are now a closed-form estimates for both exponentially decaying excitation

d Lexp
C D(θ)

dα
=

∑
t j :u j �=0

(
1

α
− (t j − tu j )

)
(49)

α̂E M = m1

⎛
⎝ ∑

t j :u j �=0

t j − tu j

⎞
⎠

−1

(50)

As well as Pareto excitation

d Lpareto
C D (θ)

dω
=

∑
t j :u j �=0

(
1

ω
+ log c − log(t j − tu j )

)
(51)

ω̂E M = m1

log(t j − tu j )− log c
(52)

Both the exact and approximate estimates change only slightly for mutually-exciting point
processes. With zi indicating the process containing the event ti and an intensity function
defined as

�l(t |Ht ) = μl +
∑
t j<t

βz j l

t∫

0

αke−αk (t−t j ) (53)
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The update equations become

m0l =
∑

t j :z j =l,u j =0

1 (54)

mkl =
∑

t j :z j =l,u j =i �=0,zi =k

1 (55)

μ̂l = m0l

T
(56)

β̂kl = mkl

Nk
(57)

α̂l =
∑

k

mk1

⎛
⎝ ∑

t j :z j =l,u j =i �=0

t j − tu j

⎞
⎠

−1

(58)

5.2 Expectation

Although the exact E-step for the exponentially decaying Hawkes process can be com-
puted efficiently, in general the exact E-step has a computational cost of O(N ). This exact
E-step considers the potential effect that each event might have on any and all future events.
For contexts where each event has only a small number of likely ancestor events, it may
be sufficient to allow for “forgetting” of the more distant past. For example, if a sequence
covers more than a year of observations, it may be reasonable to consider only the most
recent 6 months in computing the quantities Ak(tN ), Bk(tN ). This is similar to truncating the
temporal decay distribution at some chosen point1. Because we are making strong parametric
assumptions, we can choose a probabilistic threshold based on the most recent estimates for
the parameters. The Pareto distribution has cumulative distribution function

P(x > t) = 1 −
(c

t

)ω
(59)

so for a cutoff probability of p we can forget, at time t , any historical information, at time
ti with a probability less than p of causing an event at time t . To be clear, we are only
considering the probability that a parent at time ti produces a child at time t and not the
probability that the event at time t is a child of time ti given the event t and the rest of the
history.

P(x > t − ti ) ≤ p (60)

⇒ t − ti ≥ c/p1/ω (61)

This means that we can forget any event that occured more than c/p1/ω units of time in the
past. Intuitively, this means disregarding causal effects that are predicted by the model to
have extremely low probabilities of occurring. This will likely improve performance but it
somewhat defeats the purpose in choosing a temporal decay function that allows long-range
influences if we choose to ignore some of the possible long-range influences. The extent to
which this will improve performance will depend largely on the characteristics of the data
being modeled. For very large numbers of streams (K ) with extremely bursty behavior, it may
still be necessary to consider a large number of observations as potential causal ancestors.

1 This implies a temporal decay proportional to the truncated distribution, but as it no longer integrates to 1
it is not a valid probability distribution. This could be remedied by rescaling the delay function and updating
the corresponding conditional maximum likelihood estimates.
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Table 1 True values for the
parameters of the excitation
function

Parameter Value

μ 0.01

αexp 0.10

ωpow 10/(10–0.1)

cpow 0.10

ψlnorm log 10

σlnorm 1

This will also bias the estimation procedure to some degree, although it may be possible to
derive a modification to the update equations to correct for any bias introduced.

6 Results

We used simulated data to examine the bias and robustness of the proposed EM
estimation, using three prototypical scenarios to assess the inference in between them. The
specific scenarios of interest are symmetric excitation, asymmetric excitation, and no cross-
process excitation. We selected excitation parameters in an attempt to produce parent →
child inter-arrival times distinctly different from immigrant → immigrant, such that the
expected time between a parent and child is one tenth of the expected time between immi-
grants(see Table 1). Next, we assume the self-excitement parameter, βi i = 0.5, such that
each event in a process can be always expected to cause 0.5 future events in that process, and
where cross-process excitation exists, it is half as strong as self-excitation, βi[ j �=i] = 0.25.
In the symmetric scenario, both processes excite each other(β12 = β21 = 0.25), whereas in
the asymmetric case only one process excites the other(β12 = 0.25, β21 = 0.0) and in
the no excitement case neither excites the other(β12 = β21 = 0.0), although both excite
themselves(β11 = β22 = 0.5). For each scenario, 100 instances of the two processes are
sampled such that when combined they contain 100 events. Each inference strategy is applied
on each sampled instance, running either to convergence2 or 500 iterations.

The results for these simulations are shown in terms of relative error in Figs. 1, 2 and 3
displaying results for exponentially decaying excitement, Pareto excitement and Log-Normal
excitement, respectively. Only graphics for the exact M-step are shown as in each case
the approximate M-step produced estimates nearly identical to the exact M-step. We show
relative error ([absolute error] / [true value]) here for ease of comparison across parameters,
as several parameters have quite different absolute values. Although numerical optimization
fails to converge in almost every scenario (see Table 2), it performs fairly well in certain
cases, e.g. exponential symmetric and asymmetric excitation. However, it has has a severe
lack of robustness in several of the scenarios tested. In particular, its estimates when no
cross-stream excitation exists are extremely inconsistent to the point that they would seem to
be of little practical utility. Although it may be possible to improve the performance in these
specific scenarios using an l1-regularization, this is unlikely to be sufficient in general, as the
numerical optimization performed nearly as poorly in the Log-Normal symmetric excitation
and Pareto asymmetric excitation scenarios.

2 Convergence was defined for the EM estimation as no change in the first three significant digits of any of
the parameters. In the case of numerical optimization it was defined as an increase in the likelihood function
of less than 1e − 6.
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Fig. 1 Comparison of inference strategies for exponentially decaying excitation

Fig. 2 Comparison of inference strategies for Pareto excitation

We also performed nonparametric hypothesis tests using the Wilcoxon rank sum. Paired
two-sample comparisons indicate that across the range of parameters sampled, the EM esti-
mates had significantly smaller error than the numerical optimization estimates(p < 0.001)
for the background rate,μ, and for the expected self/mutual excitation, β. The sole exception
to this pattern was for estimation of the β parameter under log-normal distributed excita-
tion. This is consistent with a visual inspection of Fig. 3, where the EM estimation appears
to be consistently worse than Nelder–Mead numerical optimization. Although the EM esti-
mates were significantly better than the numerical optimization estimates, they were still
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Fig. 3 Comparison of inference strategies for log-normal excitation

significantly biased. The only situations where we failed to reject the null hypothesis that
the estimates are unbiased(mean error equals 0) are for the simple exponentially decaying
excitation. Among the EM estimation algorithms, there were no significant differences either
in the exact versus approximate M-step or the exact versus truncated E-step.

Table 2 shows the average running times and rates of convergence after 500 iterations
for the different excitation functions and estimation procedures. The numerical optimization
failed to converge in almost every instance it was tested with. Although it may seem that
this alone is sufficient to explain the poor performance of the numerical optimization, the
convergence rates across the different excitation functions are nearly identical despite wide
variations in the accuracy of the estimates after 500 iterations. In addition to failing to con-
verge or to provide a robust parameter estimate, numerical optimization was also extremely
computationally demanding. Although both the numerical optimization and the EM estima-
tion are iterative algorithms, the EM estimation terminated 10–100 times faster, likely due
to its superior convergence rate.

Although the EM estimation performed uniformly superior to the numerical optimization,
there are subtle variations among the various exact and approximate EM estimates. The exact
E-step and the truncated E-step provide essentially equally good estimates, however infer-
ence using the truncated E-step converged faster in every case, sometimes beating the exact
E-step by over a factor of 6. Differences between the exact and approximate M-steps were
less substantial with similar accuracy and run-times except in the case of Pareto distributed
excitation, where the approximate M-step ran 25–40 % faster.

7 Discussion

We compared the performance of the Expectation-Maximization(EM) strategies proposed to
numerical optimization using the Nelder–Mead algorithm and found that our EM algorithms
consistently provided significantly better estimates than numerical optimization. However,
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Table 2 Average timing and
convergence performance of
the various inference strategies

Time (s) Convergence rate (%)

Exponential
EM-exact 16.80 1.00

EM-truncated 3.16 1.00

Nelder–Mead 276.24 0.04
Exponential-approx
EM-exact 17.69 1.00

EM-truncated 3.25 1.00

Nelder–Mead 277.44 0.04
Pareto
EM-exact 65.10 0.40

EM-truncated 50.28 0.32

Nelder–Mead 1113.37 0.00
Pareto-approx
EM-exact 49.57 1.00

EM-truncated 29.86 1.00

Nelder–Mead 1114.83 0.00
Log-normal
EM-exact 30.13 1.00

EM-truncated 4.80 0.95

Nelder–Mead 274.57 0.00
Log-normal-approx
EM-exact 30.82 1.00

EM-truncated 4.53 0.94

Nelder–Mead 274.25 0.00

our selection of 500 iterations as the cutoff for both the Nelder–Mead and EM algorithms
may have unduly handicapped the Nelder–Mead numerical optimization. Increasing this
cutoff may not be practical, though, as the Nelder–Mead algorithm still required as much as
20 min to complete its 500 iterations. The computational requirements of the Nelder–Mead
algorithm are unlikely to decrease in moving from the single stream of 100 events to larger
real-world datasets.

Although our results generally seem to recommend the use of the EM estimation strategies,
they also highlighted an important weakness. Both the statistical bias and robustness, as well
as the computational demands of the EM estimation vary quite dramatically with the specific
excitation function. Although the EM estimates for both exponentially decaying and Pareto
distributed excitation were quite good, estimates of the log-normal excitation systematically
underestimated both self and cross-stream excitation (the β parameters). Similarly, while
the truncated Expectation step provided large computational benefits in estimating either
exponentially decaying or log-normal excitation, it provided almost no benefit under Pareto
distributed excitation. This, at least, makes intuitive sense. Although the log-normal distribu-
tion decays more slowly than the exponential distribution, it does not permit nearly as many
large time delays between parent and child events. These long-range influences are directly
related to the amount of truncation and so it would seem that the more frequent long-range
influences under the Pareto excitation limit the ability to rapidly truncate the recent history
and “forget” the previous events.

The accuracy and efficiency of the EM estimation depend substantially on the specific
excitation function, suggesting that before applying the proposed strategies, they should
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first be tested with the specific excitation function chosen for the application. However,
the computational efficiency of EM estimation makes it the only real option for modeling
large-scale phenomena with mutually exciting Hawkes processes.

8 Conclusions

Self and mutually-exciting Hawkes processes hold great potential for modeling a wide vari-
ety of phenomena, especially in human social systems. We generalize previous work on the
ETAS model and propose a variety of exact and approximate estimation algorithms based
on Expectation-Maximization. The exact inference is straightforward but may be computa-
tionally demanding for large datasets. However, simple approximations can be made both in
the Expectation-step and the Maximization-step to reduce the computational burden. We use
simulated data with known parameters to assess the statistical accuracy and computational
efficiency of the EM estimates and find both to be superior to maximum likelihood estimates
through numerical optimization. In particular, the truncated approximate E-step provides
minimally biased estimates in addition to offering a tremendous reduction in computational
cost even for the small datasets we simulated. The proposed EM algorithm is not limited to
the specific model we use here but can be applied to a wide variety of excitation functions and
parameterizations. Our maximum-likelihood EM estimation is accurate, robust and efficient,
providing a practical way for using mutually-exciting Hawkes processes for continuous-time
modeling of interacting streams of activity.
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