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This paper presents the application of agent-based simulation as a modelling metaphor for investigating the relationship between
quality management (QM) and organizational productivity. The effects of QM on organizational productivity are traditionally
researched by inductive reasoning through statistical models. Adopting a macro (system) level, top-down approach, statistical
models fall short of providing an explanatory account of micro-level factors like individual’s problem-solving characteristics or
customer requirements complexity, because organizations are considered as black boxes in such models and hence constructs
of QM are defined at an organizational level. The question is how an explanatory, bottom-up account of QM effects can be pro-
vided. By virtue of the agent-based modelling paradigm, an innovative model, fundamentally different from the dominant statistical
models is presented to fill this gap. Regarding individuals’ characteristics, results show that a well-balanced organization comprised
of similar agents (in terms of agents’ problem-solving time and accuracy) outperforms other scenarios. Furthermore, from the results
for varying complexity of customer requirements, it can be argued that more intricacy does not always lead to less productivity.
Moreover, the usefulness of quality leadership represented as a reinforcement learning algorithm is reduced in comparison to a
random algorithm when the complexity of customer requirements increases. The results have been validated by face validation and
real data.
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1. Introduction

The interrelationship between quality management (QM) and
organizational productivity has long been of interest to academics
and practitioners. QM-productivity research is mainly conducted
by inductive reasoning based on linear statistical models. Some-
times referred to as Input–Output models, statistical models
generally are applied to model the relationship between outputs
and inputs of a system, because organizations are considered as
black boxes and hence constructs of a theoretical framework like
QM are defined at an organizational level. That is why they seem
to be inappropriate for explaining or understanding the behaviour
of a system by which the underlying mechanism of a system can
be explained. In the case of QM, statistical models do not clarify
the links between micro-level gradual improvements recom-
mended in quality models (ie, by Plan-Do-Check-Act (PDCA)
cycles, or training) with macro-level organizational productivity.
In other words, they do not provide the dynamic mechanisms
underlying the micro-macro level linkages in QM.

The objective of this research is to develop a computa-
tional model by means of agent-based modelling (ABM) to
provide an explanatory account for QM effects on producti-
vity. In particular, some frequently neglected aspects of QM
like individuals’ characteristics and customer requirement
complexity are examined. These are micro-level factors that

probably cannot be explained by statistical models because of
their embedded limitation. To describe the developed model
called Multi Agent Quality Model (MAQM), its theoretical
background is discussed first, followed by the computational
model and then the results.

2. Background

Agent-based models have been increasingly used over the past
two decades to support organizational analysis. These models
support reasoning about micro-level activity for heterogeneous
sets of actors (Gilbert, 2007) who may have constraints on their
behaviour, at the same time as supporting the consequent macro
results that emerge from micro-level preferences (Schelling,
1978). As such, ABM has been used to analyse a wide range
of behaviour. From an organizational perspective, applications
have included information diffusion (Carley et al, 2009), terrorist
groups (Moon and Carley, 2007), communication networks
(Schreiber and Carley, 2012) organizations under stress (Lin
et al, 2006), and many more.

ABM seems to be an appropriate modelling paradigm for
QM. The reasons Macal and North (2007) express for using
ABM are present in QM research. First, there are employees,
teams, and departments in an organization, naturally representing
agents at different levels. Second, the bottom-up approach
embedded in ABM is consistent with the practice of QM in
an organization, because management of quality is realized
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through a hierarchy of organizational processes in response to
a QM-related event such as a customer complaint. These organi-
zational processes at micro levels are summed as the organi-
zational productivity at the macro level. Third, if QM is construed
as a method for enabling organizational change (Varman and
Chakrabarti, 2004), improvement could be interpreted as an
outcome of multiple interacting people (Dooley, 1995; Dooley,
1997). In Complex Adaptive Systems (CAS) or complexity
theory parlance, organizational productivity is an ‘emergent’
behaviour (Lissack, 1999). To summarize, the practice of QM in
organizations does lend itself to ABM.

Despite their pervasiveness and without ignoring their pro-
found impacts, statistical models fall short of providing micro-
level explanation for QM effects. This is because they are based
on an equation-based, top-down modelling approach but micro
level explanation does not lend itself to top-down modelling.
That is why micro level factors like the way quality leadership
affects organizations, the impacts of information analysis and
customer focus are all missing in the current literature of
QM research. The possibility of developing a mechanism-based
model through ABM (Carley and Prietula, 1994) offers new
rooms for researching micro-level constructs of QM.

Information analysis is considered among the important con-
structs of QM in empirical models (for instance, see Beer,
2003; Singh, 2008). Within an information-processing view of
an organization, accurate information processing within each
department and sound information transfer between and within
departments are crucial for making correct decisions. They also
directly affect coordinating and controlling activities which
are ultimately reflected in organizational performance (Burton,
1995). In this regard, the role of open horizontal communication
and other formalized coordination mechanisms are stressed in
QM literature (Flynn, 1994; Powell, 1995). However, the
capabilities of employees like problem-solving time and accuracy
have not been seen in the QM literature. Rather, the emphasis is
put on training and motivation as crucial factors in improving
organization productivity.

Another important construct of QM is customer focus which
has been repeatedly considered in empirical models. It is defined
as the establishment of links between customer needs and
satisfaction and internal processes (Sousa, 2003). In the QM
literature, it is stressed that identifying customer requirements
is an important success factor of quality initiatives and any
failure in this activity can lead to solving a wrong question, no
matter how well it is done (Stahl, 1999). One critical factor
in achieving customer satisfaction is the complexity of custo-
mer requirements. However, there is an apparent dearth of
researches that address customer requirement complexity. Apart
from Benson et al’s (1991) study modelling product com-
plexity as a contextual variable, to the knowledge of the authors,
customer requirements complexity has not been considered as
an important element of QM, probably because of modelling
difficulties.

In summary, although there are plenty of research works in the
literature of QM adopting a top-down, equation-based approach (ie,

statistical models), it seems that there is a lack of bottom-up,
explanatory models to address the effects of micro-level factors like
individual’s characteristics on organizational productivity. This
research is an attempt to plug this gap by means of ABM. In the
next section, the theoretical foundations of MAQM are explained.

3. Theoretical foundations of MAQM

The development of MAQM is based on a fusion of learning
concepts from three areas: organization science, QM, and multi-
agent systems. The existence of analogies in these three areas
around the concept of learning makes it possible (and plausible) to
build a computational model for QM effects on productivity.
Explaining organizational learning theories is not within the scope
of this paper and thus is not covered here. However, the important
point is that QM can be interpreted within the framework of
organization learning (Dooley, 1995; Hackman and Wageman
1995; Lundberg, 1995; Dooley, 1997; Beer, 2003). Organizational
learning is a process of having an experience, making new obser-
vations and reflecting on that experience, forming generalizations
from experiences and testing them in new situations (Levitt and
March, 1996; Dodgson, 1993); it can be in the form of people’s
knowledge acquisition (Simon, 1991) or standardized routines
(Argyris, 1999). Among the recommended tools for QM imple-
mentation, PDCA is an outstanding example of this kind of
learning. Learning in QM happens within each person, depart-
ment, and working process (Hackman and Wageman, 1995).
It includes learning from past experiences of success or failure,
adaptation to and satisfying customer wants, learning from
customer complaints, and learning from continuous improvement
of internal processes or necessary corrective actions within an
organization. This conception of QM as a learning mechanism acts
as the bedrock of MAQM which is explained in the next section.

4. Computational model of MAQM

Contemplating its prescriptions about how to manage an organi-
zation from a quality standpoint, QM can be modelled as a set of
behaviours (Edwards et al, 1998). This is what MAQM is
founded upon in which an organization is conceived as a goal-
directed, routine-guided, experiential learning system. In
Figure 1, the structure of MAQM is shown.

The organization, hereinafter called organization, is comprised
of five intelligent agents, interacting through two business pro-

Problems
Customer

Answers

Organization

CEO

Process A Process B

Role1 Role 2 Role 3 Role 4

Figure 1 Multi agent quality management model (MAQM).
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cesses. The director of organization, hereinafter called CEO, is
responsible for improving organization. The environment con-
sists of a customer agent, called customer hereinafter, challenging
the organization by generating random problems. These pro-
blems model the changing nature of customer requirements or
corrective actions or improvements needed for business pro-
cesses. They are comprised of seven binary variables X0, X1, X2,
X3, X4, X5 , X6; each can take one or two as their value with equal
probability. The size of problems can be selected more than seven
but it would increase simulation time. Tasks are classification
choice tasks in which the solution is one or two depending on
the applied decision rule. This type of symbolically model-
ling customer wants, called canonical tasks (Moss, 2000), is a
natural method of representing human knowledge and intelli-
gence (Newell and Simon, 1976; Newell, 1990). The solution
is a function of these variables henceforth called decision
rule. In pursuing customer satisfaction, organization should
promptly respond to these problems by finding the solution.
This calls for solving problems with highest effectiveness and
efficiency. The accuracy of answers is a measure of effec-
tiveness, while total processing time represents the efficiency
of organization.

Through solving different problems, CEO and the analyst
agents (one located at each role) improve their perfor-
mance by learning from the memory implemented as look-
up tables. CEO has another learning algorithm based on
reinforcement learning (RL) in order to improve organization
and perform the quality leadership duty, because within the
quality management framework one of the management
responsibilities is to review the quality management system
periodically and to align the organization towards customer
requirements. Therefore, customer feedback plays a key role
in deciding on required actions for improvement. This is
the role the RL algorithm is playing in MAQM with the
additional advantage of simultaneously optimizing efficiency
(ie, minimizing the total time). To fulfil this responsibility,
CEO tries to improve organization by modifying the business
processes and changing the agents’ roles within and between
processes. In reality, organizations have internal measure-
ment systems to evaluate their own business processes and
in the case of nonconformity or the need for improvement,
an action is necessary. The dynamics of the simulation is as
follows:

(1) Customer generates a random problem and sends it to
organization.

(2) CEO collects a problem and sends it to process A. The agent
at role one starts solving the problem.

(3) Each agent receives the problem and depending on its role
looks at certain bits to provide the solution from its memory
and sends the solution to its successor. The duration of
problem solving depends on the number of bits each agent
encounters as well as the agents’ characteristics.

(4) CEO provides the overall answer to the problem and passes it
to customer.

(5) CEO updates itself and the other agents according to the
feedback of customer; all agents update their memory based
on the feedback.

(6) According to a fixed frequency, CEO tries to make some
changes to organization (based on the RL algorithm) to
improve the performance.

To measure organization efficiency, associated with each pro-
blem are time fields, including problem generation time and
problem final time. The problem generation time is set at first and
then is accumulated after processing by agents or passing through
the network at each role. The transfer time of problems between
agents is fixed at two simulation time units, called ticks. The
difference between the generation time and the final time is a
measure of efficiency. By calculating the ratio of the number of
correct answers to total problem-solving time, organization
measures productivity. This value is multiplied by 100 for
normalization purposes. The performance measure defined here
seems to be an appropriate measure because ‘the ratio of results
achieved to resources consumed, is an appropriate and funda-
mental criterion for all of organizational decisions’ (Simon, 1997,
p 277). Not every agent has access to all bits of a problem due to
division of work in an organization. The assignment of problem
bits is shown at Table 1. This allocation scheme, representing the
process approach in QM, is completely arbitrary. Note, MAQM
is an intellective model, and as such is intended to capture the key
features of the system and not to provide exact descriptive
realism. As our goal is to ask a simple ‘what-if’ question, and
not to assess the specific processes in a specific organization, such
a high level and abstract model seems warranted.

The CEO tries to improve organization by modifying pro-
cesses A and B in every 500 ticks, where it changes the agent
roles within and between these processes. The list of its actions is
presented in Table 2. For instance, assume the layout of a
simulation run is DBCA, meaning agent D at role one; agent B
at role two; agent C at role three; and agent A at role four.

Table 1 Problem decomposition structure

Role 1 x0, x1, x2
Role 2 x5, output of role 1
Role 3 x3, x4, output of role 2
Role 4 x6, output of role 3
CEO output of role 2, output of role 4

Table 2 CEO actions used for RL

Action Description

1 Swap agents at roles 1 and 2
2 Swap agents at roles 3 and 4
3 Swap agents at roles 2 and 3
4 Swap agents at roles 1 and 4
5 Swap agents at roles 2 and 4
6 Swap agents at roles 1 and 3
7 Do nothing
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By taking action 3 for example, CEO changes the layout of
organization to DCBA. The consequence of such an action (the
reward) appears in the form of an increase or decrease of average
performance, incremented by the following equation:

rt + 1 ¼ rt + α½rt - rt� (1)

where α is step-size parameter; rt is the productivity level of the
current run; and rt is the average productivity level until time t.
Each action has a numeric preference level (pt(a)), incremented in
each decision making stage according to the following equation:

pt + 1 að Þ ¼ pt að Þ + β½rt - rt� (2)

where β is another step-size parameter. The preference of
selecting successful actions rises gradually, which in turn
increases the probability of their own selection according to the
Gibbs distribution:

Pr atf ¼ ag ¼ eptðaÞPn
b¼1 e

ptðbÞ (3)

Equation (1) indicates the way CEO senses customer satisfac-
tion over time, while Equations (2) and (3) represent how these
sensory data are translated into a cognitive schema for decision
making.

The default parameters of the simulation are shown in Table 3.
These show agent A processes data quickest but has a poor
‘memory’ for the consequences of past decisions, in contrast to
agent D who is slow at decision making but has a perfect
memory.

Cut-off values determine the correct answers of each problem.
They are set so that the probability of being ‘one’ or ‘two’ is
equal to 0.5. For example, with the linear decision rule for
there to be a majority, the number of ones should be at least
four or equivalently the number of twos should be no more
than three. The probability distribution of the linear decision
rule is:

PrðYLinear ¼ a + 7Þ ¼
7

a

 !
1
2

� �7

(4)

Where a is the number of twos. Therefore, the cut-off value
can be calculated as follows:

Pr a⩽ 3f g ¼Pr YLinear ⩽ cut - offf g
¼0:5 ! cut - offLinear ¼ 10 ð5Þ

The cut-off value for any other decision rule is calculated in the
same way depending on their probability function. Total time of
problem-solving can be calculated by taking into account agents’
processing time (including CEO) and the number of bits they
process (according to Table 1). As shown in Table 4 for a sample
problem, the total time is accumulated as organization solves
more problems in a simulation period.

The structure of the programme is presented in Table 5. This
structure was implemented in REPAST in which some JAVA
snippets have been added. Agents are updated every 500 ticks.

5. Virtual experiment

The characteristics of the experimental designs for each scenario
are shown in Table 6. Customer requirement complexity has been
modelled as the complexity of the decision rules. For the
individual’s characteristics, three different combinations of
agents’ processing time and forgetfulness are tested.

6. Results and discussions

In this section, hypothetical scenarios will be examined using
MAQM so as to provide insights into the QM-productivity
relationship. MAQM acts as a virtual laboratory to collect data
about organizational activity given the scenarios. The simulation
programme has been verified manually by checking the perfor-
mance of the programme with different parameters. One-way
analysis of variance is applied to analyse the results, where it is
assumed that there is a linear relationship between independent
and dependent variables.

6.1. Effects of individuals’ characteristics

To evaluate the effects of agent characteristics in MAQM, a set of
experiments is conducted in which individual’s characteristics,

Table 3 Default parameters of simulation runs

Problem-solving time (simulation
ticks/bit)

A= 1, B= 2, C= 3, D= 4,
CEO= 1

Ratio of memory forgetfulness
(between 0 and 1)

A= 0.3, B= 0.2, C= 0.1,
D= 0, CEO= 0.3

Transfer time of problems between
agents (simulation ticks)

2 (constant for all activities)

Simulation run time (simulation ticks) 8 000 000
Action preference step-size
parameter (β)

0.2

Reward step-size parameter (α) 0.1
Linear decision rule Y=Σi=0

6 Xi with cut-off
value= 10

Table 4 An example of problem solving

Role Sub-
problem

Processing time (number
of bits times the agent’s

procession time

Total time

1 ~B [1, 2, 1] 2 × 3= 6 6
2 ~C [1, 2]* 3 × 2= 6 6+ 6+2= 14
3 ~A [2, 2, 1] 1 × 3= 3 14+ 3+ 2= 19
4 ~D [2, 1] 4 × 2= 8 19+ 8+ 2= 29
CEO [1, 1] 1 × 2= 2 29+ 2+ 2= 33

Note: The problem is [1,2,1,1,2,2,2].
*Italic numbers are processed information from previous roles.
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called ‘agent type’ in the experimental setting, are varied. This
factor will be evaluated for several decision rules to determine if
there are any confounding effects among agent types and
customer requirement complexity.

Agent type represents hypothetical scenarios about agents’
characteristics in terms of information processing time and forget-
fulness (as a measure of accuracy). The first level is the default
scenario as outlined in Table 3 in which there exists one quick and
inaccurate agent A and one slow and accurate agent D and the
other agents, B and C, are in between these extremes. The second
level characterizes the scenario in which there is an excellent
agent, A, who is both quick and accurate along with a slow and
forgetful agent, D. It is called excellent-forgetful scenario. The
final scenario, average scenario, models the hypothetical situation
where agents are all the same and show average performance both
in time and forgetfulness. In this scenario, all problem-solving
times are set to two ticks and the forgetfulness factors are set to
0.15 which is the average of forgetfulness rates of all agents.

The results of the single-factor analysis of variance, presented
in Table 7, reveal that there is no evidence to accept the null
hypothesis of similar effects of agent types, because significance
level is less than selected type I error level (ie, α= 5%). There-
fore, the alternative hypothesis is accepted. The pair-wise
comparison tests suggest that average agents outperform other
scenarios as can be seen in Table 8 and Figure 2. That the average
agent scenario is the best arrangement of agents implies that the

performance level in MAQM is dependent on the smoothness of
flow of problems within the processes like a production line, even
with the performance measure being a function of accuracy and
efficiency. In other words, eliminating any ‘bottleneck’, be it in
the processing time or accuracy of agents, plays a key role in
performance improvement. This suggests an insight into organi-
zation policies related to staffing, training and organizing; that is,
a well-balanced set of working teams boosts performance.

The mean productivity of default agents is statistically less
than that of the excellent-forgetful scenario. Within the frame-
work of MAQM where agents do not have any cooperation
and coordination, agents cannot take advantage of each other’s
strength and that is why the average productivity for default
agents where there is no excellent agent in terms of both forget-
fulness and problem-solving time is the worst scenario. This can
be explained from another viewpoint. The CEO tries to make
some changes in the configuration and learns from them. In fact,
any change in the productivity is sensed and then converted into
some changes in the overall average productivity and the
usefulness of each action in each state (ie, preference levels).
The greater the changes in the productivity, the bigger their

Table 5 Class definitions in the programme

Class Name Super class Name Variables Methods

SimpleAgent — agentLoc, absoluteMemory, buffer,
currentMemory, isBusy, oldMemory,
solvedProblems, trainingMemory

genericUpdate(), genericUpdateForTraining(),
solve(byte), step(), train(byte), transfer
(Problem), LinkedList), update(),
updateAbsoluteMemory()

A, B, C, D SimpleAgent negligence, problem_Solving_Time step(), update()
CEO SimpleAgent correctAnswers, correctTime, count, currentAction,

currentState, negligence, oldAction, oldState,
preferenceValue, problem_Solving_Time,
step_Size_preference, step_Size_Reward,
totalTime, uchangedBits, agentList,
averageReward, mapOfActions, preferenceMatrix,
probabilityMatrix

act(), collect(), findRow(short), improve(),
step(), update()

Customer SimpleAgent problemsGenerated generateProblem(), update()
Problem — problem, time ini()
ModelInitializer — agentList, agentLoc initializeModel()

Table 6 The experimental designs of the scenarios

Scenario Dependent
variable

Independent
variables

Number
of levels

Runs
per cell

Individuals’
characteristics

productivity Agent type 3 10

Customer
requirement
complexity

productivity Decision
rule

4 10

Table 7 Tests of between-subjects effects for agent type scenario

Source Type III sum
of squares

df Mean
square

F Significance†

Corrected
Model

0.215* 2 0.107 20.474 0.000

Intercept 278.701 1 278.701 53187.014 0.000
Agent
type

0.215 2 0.107 20.474 0.000

Error 0.692 132 0.005
Total 279.607 135
Corrected
total

0.906 134

*R2 0.237 (Adjusted R2= 0.225).
†Computed using α= 0.05.
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effects on the CEO’s cognitive map. It is expected that in the
excellent-forgetful scenario, where agent A is quick and accurate
and agent D is slow and inaccurate, more extreme changes in the
productivity are seen when changing agents between roles and
consequently the CEO can detect the best configuration quickly.
In contrast, the changes in the productivity are less perceptible in
the default scenario and thus the CEO requires more time to
converge towards the best actions.

In the average agent scenario, the CEO needs fewer tests to
learn the best configuration than in the other two scenarios,
because there is only one arrangement of agents (ie, state). From
the CEO’s viewpoint, its cognitive map takes less time to con-
verge to a special arrangement of agents in the average scenario
where the exploitation is complete. In the average scenario, the
CEO need not engage in exploration, as there is only one state.

6.2. Effects of customer requirements complexity

The architecture of MAQMoffers the possibility of modelling the
complexity of customer requirements through the complexity of
decision rules. The complexity within MAQM originates from
the problem bits sample space that could be binary, ternary or
some other form, their associated probabilities, and decision
rules’ functions. In MAQM, the problem space is binary and
fixed in which each bit is a Bernoulli random variable with
the parameter of 0.5. Consequently, to examine the effects of
customer requirement complexity, organization is exposed to

more complexity by applying new decision rules. The specifica-
tions of these rules including their associated information entropy
and cut-off values are summarized in Table 9. Since information
entropy is a measure of complexity of search space and a function
of range of possibilities and their associated probabilities (Ross,
2002) and organiztion’s task is to discover decision rules, it has
been selected as measure of complexity of decision rules. It is
calculated by:

H Xð Þ ¼ -
Xn
i¼1

pi log pi (6)

where pi is the probability of taking value i for random variable X
(Shannon, 2001).

As seen in Figure 3, organization’s productivity is better with
the linear decision rule in comparison to the others. Furthermore,
weighted linear and third degree rules, despite having higher
entropy, outperform the mixed third degree decision rule. This is
contrary to the expectation that more complexity leads to less
performance. Consequently, it seems that drawing a general rule
out of these results based on the entropy values is difficult.

The knowledge level gained by MAQM is bounded by agents’
capabilities and the RL algorithm and consequently MAQM
has limited capabilities in targeting correct answers. In fact, since
learning in MAQM is incomplete, there is always a degree of
error when CEO provides answers to customer problems and as
a result CEO lacks prediction accuracy. However, the relative
performance of MAQM under various decision rules depicted in
Figure 3 reveals that complexity is not the only important
parameter affecting performance and there may be some more
confounding parameters related to decision rules such as their

Figure 2 Performance of agent types.

Table 9 Characteristics of decision rules for binary tasks

Solution Entropy Cut-
off

Linear: Y=Σi= 0
6 Xi 2.4466 10

Third Degree: Y=X0 +X1X2X3 +X4X5X6 3.4135 7
Mixed Third Degree: Y=X0 +X1 +X2X3 +X4X5X6 3.2171 8
Weighted Linear:
Y=X0 + 2X1 + 2X2 + 2X3 + 4X4 + 3X5 + 2X6

3.8038 25

Table 8 Pair-wise comparison for the agent type scenario

(I) Agent type (J) Agent type Mean difference (I–J) Standard error Significance

Default Excellent-stupid − 0.03606724* 0.013091052 0.022
Average agents − 0.09662524* 0.017196380 0.000

Excellent-stupid Default 0.03606724* 0.013091052 0.022
Average agents − 0.06055800* 0.015217663 0.001

Average agents Default 0.09662524* 0.017196380 0.000
Excellent-stupid 0.06055800* 0.015217663 0.001

Source: Based on observed means.
Note: The error term is Mean Square(Error)= 0.005.
*The mean difference is significant at the 0.05 level.
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functional form or the problem decomposition scheme (the way
problem bits are distributed among various roles) that can be
investigated in future research projects.

The incompleteness of learning is more critical when decision
rules are more complex, resulting in loss of performance.
Figure 4 depicts an example where the linear and the third degree
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decision rules are compared. The difference between RL and
Random-Action algorithms by which CEO randomly selects an
action is less with the third degree decision rule in comparison to
that of the linear decision rule. Thus, with more complex
problems, the difference between RL and Random-Action algo-
rithms decreases. As another example, the case of the semi-linear
and the mixed third-degree decision rules is presented in Figure 5,
reflecting a similar trend.

From the results presented in this section, it can be inferred that
CEO’s quality leadership represented by RL algorithm can be
more fruitful than Random-Action when customer requirements
are less complex. As regards the RL algorithm, although in
most cases complexity is detrimental to performance, there may
be some confounding effects by the form of decision rules or the
problem decomposition structure. These aspects need more
investigation.

7. Validation and verification of the results

Substantiating that a model as a representation of a system is
accurate requires validation and verification (Balci, 1994). Vali-
dation contrasts with verification in that verification reveals how
appropriately the assumptions and model constructs are translated
into the computational model while validation deals with how
outputs of a model correspond to the target system (Casti, 1997).

In other words, verification is an indicator of internal consistency
while validation is a yardstick of external consistency. As regards
MAQM, the behaviour of MAQM has been verified by several
tests such as consistency checking and data flow analysis (see
Balci, 1994 for more details); therefore, the issue of validation
comes to the fore.

Different questions of validity have been raised against agent-
based models depending on the objective of modelling and the
subject of simulation (Burton and Obel, 1995; Casti, 1997).
Building models, in general, can be aimed at describing a
phenomenon (explanatory) or predicting the future behaviour of
a system (predictive) (Casti, 1997). Whether validation is more
related to descriptiveness or predictive power is arguable (Moss
and Davidsson, 2001).

Depending on the objective of modelling, the validation
method differs. In explanatory models, the exact prediction of
the target system is not of interest either because of the nature of
explanatory research questions or difficulty in considering the
details of the target system (Bankes, 1993). Rather, the emphasis
is put on discovering the underlying mechanism of a phenom-
enon and how the macro-level outcomes can be explained by
micro-level mechanisms.

The subject of simulation has its own implications as well.
Since a simulation model should be validated against its referent
(Balci, 1994; Casti, 1997), when the phenomenon under study is
real and concrete, consistency with the reality is the main

Figure 5 Comparison of RL and Random-Action for the mixed third degree and weighted linear decision rules.
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criterion for model validation. However, when the subject of
simulation is abstract (ie, a model), defining any quantitative
measure seems to be impossible. Instead, this requires validation
based on expert judgment, which is called face validation (Balci,
1994; Zacharias et al, 2008).

For validating MAQM, the above-mentioned issues should be
addressed, namely the objective of simulation and its referent
system. The objective of developing MAQM is to investigate
the effects of QM on organizations. From this viewpoint, MAQM
is an explanatory model, because it is not intended to predict
future behaviours of its referent system. Therefore, to validate
MAQM as a good explanatory model, perfect match between
its characteristics and the referent system is not necessary;
rather ‘a certain level of accuracy is needed in order to take the
simulation seriously’ (Casti, 1997, p 75) which is mostly con-
ducted by face validation. Face validation of MAQM by means
of expert judgment reveals that it represents simply the practice
of QM in organizations; therefore it is a ‘good’ explanatory
model for its purposes.

Validation of MAQM results involves assessing their credibi-
lity against the subject of simulation. The target system of
MAQM is not a real organization but rather an abstraction of
reality of an organization from the viewpoint of QM. The outputs
of MAQM are results about hypothetical scenarios abstractly
imitating QM implementation in an organization. Therefore, the
validity of the results is checked with a real organization of
people, where a group of problem solvers are cooperating to
solve a problem.

To validate the results, the case of teamwork activity for two
postgraduate subjects has been considered. In these subjects,
research projects are assigned to groups of 4 students. The task is
to conduct these projects based on some assignment briefs.
Basically, the structure is the same as MAQM’s: a team of four
agents trying to solve a problem. The complexity of projects is
defined in three levels: low, medium, and high. Table 10 shows
the grades each team received after final assessment. Owing
to low sample size and lack of information in some scenarios
(eg, low project complexity with Default team composition), it is
not possible to conduct a thorough analysis of variance. How-
ever, the comparison among team composition scenarios reveals
that ‘Average’ teams are performing better than others, followed
by Excellent-Stupid teams. These validate the MAQM simulation

results and suggest that there may be some psychological grounds
for such consistency in the results that need more empirical data
to be examined.

Regarding project complexities that mimic the complexity of
problems in MAQM, results are not convincingly consistent, as it
was the case in MAQM simulation results. On average, students
attain better grades with less complex projects but surprisingly
teams with very complex projects outperform medium level
projects.

8. Future research

Reviewing the results of different decision rules reveals that the
entropy of decision rules is not the only factor affecting
productivity and the functional form of the decision rules may
play a role. To explore this factor further, more tests with some
advanced analysis of variance techniques, for example, random
effects analysis of variance models, are needed in which MAQM
is exposed to some randomly-selected decision rules with various
functional forms.

Extension of MAQM fundamentals for a network of organiza-
tions (a supply chain) is another area for research. Within the
current version, there is only one organization, but to represent
interactions between a number of organizations, another model
could be developed for a supply chain. However, it is noteworthy
that the interaction rules among agents may be quite different
to those used in this paper and may be based on a market
mechanism. This may take the model away from considering
quality management principles in isolation.

9. Conclusions

In this paper, an agent-based model has been developed to
investigate the effects of individuals’ characteristics, and custo-
mer requirement complexity as the micro-level factors of
QM. To examine the effects of these factors, first, the theo-
retical foundations of MAQM is explained. It is argued that
learning is the running thread linking QM with organization
science and an ABM paradigm. Second, the structure of
MAQM as an intellective, process model of QM is presented.
The results of testing the individuals’ characteristics scenarios
suggest that well-balanced business processes (in terms of
problem-solving time and forgetfulness) result in better perfor-
mance than do other processes. Eliminating bottlenecks in
both problem solving time and agent accuracy can improve
the balance and so improve performance. We further find that
as the complexity of customer requirements increases, perfor-
mance does not automatically decrease. Rather, the perfor-
mance impact depends on customer requirement complexity.
The simulation results of this research have been validated with
real data. The bottom-up approach embedded in MAQM seems
to be a credible alternative to the dominant top-down statistical
modelling, applied in QM.

Table 10 Students grades summary for different scenarios

Team composition Average
grade

Project
Complexity

Default Average Excellent-
stupid

Low NA NA 88,78 83
Medium 90, 69, 58, 79, 65, 62 54 NA 68.1
High NA 82,70,87,75 65,65,70,65 72.4
Average
Grade

70.5 73.6 71.8
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