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: Abstract

‘Much, if not most, social network data is derived from informant self-
reports; past research, however, has indicated that such reports are in
fact highly inaccurate representations of social interaction. In this paper,
a family of hierarchical Bayesian models is developed which allows for the
simultaneous inference of informant accuracy and social structure in the
presence of measurement error. In addition to point estimation of poste-
rior quantities of interest (such as individual error rates, graph and node
level indecies, and the criterion graph), it is shown that the models here
considered provide a quantification of the posterior uncertainty associated
with said quantities. Implications of the Bayesian modeling framework for
improved data collection strategies and the va.hdlty of the criterion graph
are also discussed.

Keywords: informant a/ccutacy, measurement error, hierarchical Bayesian
models, network inference, data collection strategies

1 Introduction

1.1 Self-Report Data and,Informant' Accuracy

The ultimate foundation of any scientific endeavor is the data from which in-
ferences are to be drawn. In the field of social network analysis, the quality
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of this foundation has long been in question. A large literature on informant
accuracy in network analysis - most notably that written by and in response
to the work.of Bernard, Killworth, and Sailer (BKS) - has debated the ques-
tion of the extent to which the most common form of network data (informant
self-reports) -«can be considered to represent anything beyond the cognitions of
the informants in question' (see, for instance, Killworth and Bernard (1976;
1979/80), Bernard and Killworth (1977), Bernard et al. (1979/80; 1984), Free-
man et al. (1987), Hildum (1986), Romney and Faust (1982), and Romney et al.
(1986)). While the dust has not yet settled on this debate, the present state of
knowledge within the field of network analysis strongly favors the position that -
informant self-reports contain considerable noise at the dyadic level (Bernard et
al., 1984; Krackhardt and Kilduff, 1999). Whether the level of error? observed
is severe enough to warrant the assertion that self-report data is unusable for
inference of interaction patterns appears to depend on a number of factors (in-
cluding the time scale of the interaction, the application to which the data is
to be put, and (arguably) the degree of optimism on the part of the researcher
(Freeman et al., 1987; Freeman, 1992; Krackhardt and Kilduff, 1999; Bernard
et al., 1979/80)), but unquestionably there is a non-trivial level of uncertainty
inherent in self-report network data.

The recognition that self-reports of interaction are not in fact exact proxies
for observed behavior has lead to two general approaches to the interpretation
of self-report data. The. first approach, which we shall here call the “classical”
or “criterion/error” perspective, conceptualizes the data generation process in
terms of a hypothesized “real” (or criterion) structure which is imperfectly re-
ported by informants. This perspective is most clearly in line with the broader
literature on informant accuracy (the notion of “accuracy” itself requiring the
assumption of a criterion from which informant reports are assumed to deviate
in some fashion), and is followed both by BKS and by later work seeking to i-
dentify the determinants of (in)accurate perception by socially embedded actors
(see, for instance, Killworth and Bernard (1976), Krackhardt (1990), Calloway
et al. (1993)). The second approach, here referred to as the “cognitivist” per-
spective, has focused on identifying the determinants of actors’ perceptions of
social structure per se (e.g., Krackhardt (1987), Carley and Krackhardt (1996),
Freeman et al. (1987), Hammer (1985), Hildum (1986)). This perspective has
tended to de-emphasize the role of the criterion structure, and indeed has in
some cases questioned the relevance or even meaningfulness of such a construct
(e.g., Krackhardt (1987)). From a cognitivist point of view, the language of
“error” and “accuracy” reflects a clear bias towards third-party observability
(which may or may not be relevant to dyadic perceptions, particularly for pri-
vate or tacit interactions) and non-attributive relations (Hildum, 1986). From

!Bernard, Killworth and Sailer (1979) go so far as to posit that “We are now convinced
that cognitive data about communication can not be used as a proxy for behavioral data,” a
position which is rejected by researchers such as Romney et al. (1986) and Romney and Faust
(1982).

2In the sense of deviation from externally observable interaction patterns; we shall consider
this issue in more detail presently.



thie classical perspective, by contrast, these are critical considerations: inference
regarding the criterion structures which are the objects of traditionalist theo-
rizing depends on the accuracy of informant reports, and the minimization of
~ error is thus of central concern (Bernard et al., 1979/80).
It is beyond the scope of this paper to conduct a detailed consideration of
the assumptions, applicability, and justification of the classical and cognitivist
perspectives on self-report data. For our purposes, we shall adopt the language
and assumptions of the classical approach, including the notions of the criterion
graph, informant accuracy, and reporting error. Though the usefulness of that
which follows for any given application is dependent, upon the validity of these
assumptions, we do not take them to be universally unproblematlc, this issue is
revisited in the discussion section below.

1.2 The Enduring Problem of Error in Soc1al Network'
Analysis

While the informant accuracy question, then, has been considered from a variety
of perspectives, at least four basic problems confront us with respect to dealing
with error in social network analysis (from a classical point of view):

. Determining the extent of error in existing data
. Determining the mechanisms by which error is bproduced

. Fihding means of collecting higher quality data

W N e

. Minimizing and accounting for the uncertainty associated with existing
data in network analyses

All of these problems, of course, are of critical importance to social network
analysis. Without knowing the degree of uncertainty with which we should re-
gard present data, we have no way of evaluating the reliability (or even validity!)
of present or past work. Without knowing how or why errors are produced, we
are at a loss to predict which data will be most heavily compromised. With no
means of collecting clean data, we continue to be vulnerable to error and un-
certainty, and without techniques for minimizing and assessing that uncertainty
we are unable to draw appropriate inferences. This paper, then, will touch at
least briefly on all four issues, although the primary emphasis will be on the
fourth problem. '

1.3 A Bayesian Approach

Given that social network analysis is heavily dependent upon self-report data,
and that informants are known to err in their reporting of network ties, how
are we to proceed? As noted above, a number of approaches are possible; in
this paper, our primary interest is in the development of inferential techniques
which can address the informant accuracy problem. Such techniques, clearly,



must simultaneously accomplish two goals: first, they must infer the criterion
graph from informant reports; and second, they must infer the accuracy of each
informant. Though solving both such problems at once would seem a difficult
* task, it is inescapable; inferences regarding informant accuracy will necessarily
affect inferences regarding the criterion graph, and vice versa. This implies,
further, that whatever approach is employed must scale effectively to high-
dimensional inference problems, as the number of informants (whose accuracy
is in question) grows on order |V(G)| and the number of ties in the criterion
graph grows on order |V(G)|2. Given the high-dimensionality of the inference
problem, the data available is likely to be modest. In the best standard case - a
CSS - we have access to |V(G)| observations per arc and |V (G)|? observations
per actor; while the total number of data points thus grows on order |V (G)|?,

the small size of most CSSs provides us with relatively few observations per
parameter. Our technique, then, must not only scale well, but must also be
data-efficient. Methods which are justified only in the large-N limit are unlikely
to be of practical value for this particular problem.

All of the above factors suggest the efficacy of a hierarchical Bayesian model—
ing approach to the network inference/informant accuracy problem (Gelman et
al., 1995). Hierarchical Bayesian models can readily represent complex interre-
lated stochastic processes, scale well, and are not dependent on limit arguments
- for their justification. Furthermore, use of the Bayesian paradigm permits us
to draw direct inferences regarding posterior probabilities, and grounds our in-
ferential framework on an axiomatic basis3. Finally, the hierarchical Bayesian
modeling framework readily facilitates expansion and modification of existing
models to account for new information or to take advantage of the features of
particular situations. Given these advantages, we here employ the aforesaid ap-
proach in examining the network inference/informant accuracy problem; while
classical alternatives could be pursued as well, they are not considered here.

One further manner in which the present approach differs from some others
is that its emphasis is as much on accounting for uncertainty as on reducing
it. Given that we analyze imperfect data in an imperfect world, we generally
cannot claim to be completely certain of the quantities with which we work; a
realistic approach to data analysis, then, cannot afford to simply brush prob-
lems of uncertainty under the proverbial rug. Arguably, however, traditional
social network analysis has done exactly that: by failing to account for error
in network data, network analysts have put the quality of their inferences at
risk. Even where the models presented here do not provide substantial uncer-
tainty reduction, then, they may be of use in their ability to provide a concrete
treatment of uncertainty in network data.

3For an examination of some of the foundational strengths of the Bayesian paradigm, see
Robert (1994).



2 Bayesian Models of the Network Inference /Informant
Accuracy Problem '

As we have argued, an integrated, formal approach is required to s1multaneously
address the problems of network inference and informant accuracy. In this
section, then, we develop a family of hierarchical Bayesian models which allow
for inference on these two problems, and demonstrate the use of these models
in determining posterior quantities of interest.

2.1 - Stochastic Network’ Formalism

In order to proceed with a formal model of the data generation process, we
must first develop a formalism for the criterion graph? itself. While a number of
" possibilities exist in this regard, we here treat the criterion graph as a random
loopless digraph of fixed order such that the existence of each arc, (4,7) is an
independent event which occurs with some probability p((¢,j) € E(G)). Such
a structure is referred to as a Bernoulli graph in the literature (Wasserman
and Faust, 1994), and may be convemently treated as a random variable via its
 adjacency matrix:

1 (i) € B@)
Aij {0 if (i,7) ¢ E(G) )

Obviously, the cells of the adjacency matrix A of digraph G serve as indica-
tor variables for the arcs.of G, and are thus independently Bernoulli distributed
with p(4i; = 1) = p((3,§) € E(G)). In general, we shall represent the distri-
bution of A (that is, the matrix of arc probabilities) by the Bernoulli parameter
matrix @, and observations pertaining to A by the data matrix Y. Note that,
while we assume that the realizations of arcs within the model are independent,
inferences regarding the distribution of A will usually assume only conditional
independence. Thus, it will generally be the case that information regarding
a particular set of arcs will affect inference regarding other arcs®; we require,
however, that this enter only through the parameter matrix @. This assump-
tion, while not especially ‘stringent, is subject to question: this is left as a topic
for future research.

2.1.1 General Informant Accuracy Model

As has been pointed out, one cannot address the problem of informant accuracy
without having some prior conception of the manner in which the hypothesized
criterion structure is related to the social structure which is, in fact, provided by
informant accounts. This is not an unproblematic question: the relationship in
question has been argued to be mediated by cognitive mechanisms, instrument

4Throughout this paper, we shall treat the criterion graph as a loopless digraph; the term
may be used generically to refer to any sort of graph, however (e.g., simple, signed, valued,
etc.) which acts as the criterion for informant reports.

5E.g., indirectly via the informant accuracy parameters.



design, -informant experience, and even the informant’s position in the social
structure itself (Freeman, 1992; Freeman et al., 1987; Carley and Krackhardt,
1996; Krackardt, 1990; Hildum, 1986; Krackhardt and Kilduff, 1999). Plainly,
one can propose models with varying degrees of sophistication, which take into
account a greater or lesser number of influences on accuracy, and which model
those influences in more or less sophisticated ways. In this paper, our primary
purpose is to introduce a reasonably simple family of models which are easily
utilized in network research; our secondary purpose is to formulate these models
in such a way as to make them as compatible as possible with the prior empir-
ical work on informant accuracy within the context of social network analysis.
For this reason, we shall utilize a general informant accuracy framework which
follows that implicitly utilized (we shall argue) by Bernard, Killworth, Sailer,
and others in their informant accuracy studies. Although this framework is
reasonably flexible, it is not asserted that this approach will be optimal in all
cases; as will be discussed, some applications may be better suited by alternative
formulations.

If we are to treat informant accuracy in such a way as to maintain compat-
ibility with prior work, it behooves us to consider the models which have been
(explicitly or implicitly) invoked in the past. Fortunately, the most common
approach has been described fairly clearly (albeit verbally) by BKS. With re-
spect to the basic structure of the problem, the version articulated here is quite
typical: “Social structure is assumed to be built up out of the interaction of the
members of the group. Then, the plausible leap is made whereby the answers
to [a] sociometric question reflect the pattern of interactions” (Bernard et al.,
1979/80). Thus, it is assumed that there exists a criterion network which is
formed from “actual” interactions between actors, and accuracy is measured
with respect to the degree that informant responses on sociometric instruments
match this network. More explicitly, BKS state, “At its simplest level, network
data are ‘accurate’ if, when i says he talked to j by some amount, then he did”
(Bernard et al., 1979/80). Though this statement may seem to be self-evident
at first blush, its implications are non-trivial. For instance, the BKS model
requires that the “actual” network be in some sense verifiable — and hence de-
fined — beyond the individual perceptions or testimonials of those involved in
the proposed relation®. This sets the scope of the accuracy question (from this
perspective) in such a way as to exclude purely ascriptive relations (e.g., indi-
vidual perceptions of influence, love, or power, reputation and prestige’, and

6BKS, indeed, repeatedly question the meaningfulness of any structure which does not have
this feature, even going so far as to argue that networks are “real” insofar as they “have some
external correlate like performance in problem solving” (Killworth and Bernard, 1979/80). It
is not our intention to make arguments for or against this position in this paper, but the issue is
obviously one of great relevance to the continued theoretical and methodological development
of network analysis.

"Note that unlike dominance and power, which can be fairly readily defined beyond their
ascriptions (though perceptions of such are always ascriptive), reputation and prestige are by
nature ascribed relations.



some notions of friendship®), at least on a first-order basis®. As the BKS state-
‘ment makes clear, the focus here is not on accounting for informant responses to
sociometric instruments, but rather on determining the degree to which these
responses are consistent with a pre-defined observable (but unobserved) rela-
tion. Although the former has been considered to be an interesting question
in its own right at least since Krackhardt’s introduction of the cognitive social
structure concept (Krackhardt, 1987), this is not our primary interest in this
case!®. o , ‘

The base assumption which is made, then, is that each observer is exposed
to the underlying “real” network and reports observed ties which are, with
some probability, erroneous!). As there are by assumption two states which
may be taken by each arc (present and absent), there are clearly two ways in
which observers can report incorrectly: an observer may report present ties.
as being absent (false negatives) or may report absent ties as being present
(false positives). We then model the data generation process via the following
Bernoulli mixture,

\ _ Yijet +(1-Yi;)(1—et) if Ay =0
A et —_ iJ ij ij
P (Yisldij €™ e )"{ Yii(l—e)+(1-Yy)e if Ajj=1 @

- where Y; is the informant report of the value of the arc indicator function,
Aj;j is the value of that indicator function for the criterion structure (i.e., the
ijth cell of the adjacency matrix), and et and e~ represent the probablhtles of
false positives and false negatives (respectively) for that arc.

The above provides the core likelihood for a single observer/arc/criterion net-
work combination. In general, of course, we are interested in reports concerning
multiple arcs, by multiple observers, on (and in) criterion networks about which
we are uncertain.

2.1.2 Assignment of Network Priors

As indicated, our network formalism is the Bernoulli graph, with distribution
given by the parameter matrix ©. In order to draw inferences regarding the
criterion graph, then, we must specify initial values for ® which reflect our prior
information regarding the network of interest. This must, of necessity, depend
on the particular problem at hand, the existing literature regarding said prob-
lem, etc. Nevertheless, it is useful to provide some basic strategies for assigning

8See, for instance, Carley and Krackhardt (1996).
9E.g., one can still ask whether a given actor’s account of the ascriptions of others matches

their actual ascriptions, but this is a second-order rather than a first-order question:
- 19Though, as we shall see, the models presented here can potentially shed some light on
this question as well.

1INote that we are unconcerned at present with whether the errors in question are the result
of inaccurate observation by the informant, errors in the cognitive coding of the relation, or
difficulties with retrieval of this information upon exposure to the appropriate instrument.
These error sources are folded together in the present model, and we are concerned only with
the aggregate result.




network priors, which may be utilized in a range of contexts. Two heuristics, _
then, are here presented which are expected to have wide applicability; each re-
“searcher, however, should be careful to select network priors which are accurate
depictions of his or her prior mformatmn, and should avoid ‘blind reliance on
pre-packaged choices.

The first, and perhaps most obvious, heuristic for assignment of network
priors is that of an uninformative dlstnbutxon on the arc set of G. Such a prior
distribution is given simply by

0 =0.5Y1i,j € V(G) (3)

and corresponds to a uniform distribution on the set of all loopless digraphs
of order |V(G@)}. This prior is obviously somewhat attractive in that it has
a clear interpretation, and that it does not depend on the knowledge of the
researcher. In general, however, an uninformative prior on the set of digraphs
is a poor reflection of one’s prior information, and better options are available;
researchers should question whether or not they are in fact completely ignorant
as to the structure of the criterion graph before selecting such a prior.

One specific example of the weakness of an uninformative network prior is
the matter of network density. While the uniform distribution over digraphs
favors graphs of density approximately equal to 0.5'2, most social structures
(particularly large ones) are considerably. less dense. If a researcher has reason
to believe that the relation he or she is studying is of a particular density,

it behooves him or her to take this into account when selecting a prior for the
~ criterion graph®. One possibility, then, for somewhat more informative network
prior, is to choose a distribution of the form

0, =dVi,j e V(G) @

where d is the median density of a set of other, similar networks examined in
past research. While this is obviously only one of many possible density-based
priors, it is clearly more informative than the assumption of a uniform distri-
bution, and is nevertheless diffuse enough to avoid extreme sensitivity to initial
assumptions. In situations for which more information is available, however,
researchers should not hesitate to use it: priors including homophily or distance
effects, for instance, might be reasonable in many situations, as might the pos-
terior distribution of the same network at an earlier point in time. The topic of
network prior selection is complex enough to warrant a detailed treatment on:
its own, and it is hoped that future work in this area will develop more sophis-
ticated strategies for exploiting prior knowledge than can be discussed within
the bounds of this paper.

12For reasons of combinatorics: there are far more structures of moderate density than of
extreme density.

13For a discussion of the effects of size and density on network inference, see Anderson et
al. (1999).



2.2 A Simple Model for Fixed, Known Error Probabilities
Before we begin a consideration of the more complex cases of network inference
in the presence of unknown informant inaccuracies, it behooves us to begin with
a simpler model. As an introduction to our basic modeling framework, then,
we shall first develop a network inference model in which we assume that our
error probabilities are both fixed and known!4. Clearly, this does not reflect the
context of most network research: we do not, in general, know the probability of
error within our data to within an arbitrary degree of certainty. Nevertheless,
there may be special cases - such as, for instance, automated data collection
procedures whose error rates may be determined exogenously - for which the
simple model may be applicable. Our reason for introducing it, however, is as
much to elucidate the concepts involved as to provide a practical tool for social
research. ' ‘ '

2.2.1 Assignment of Priors

Within the simple network inference model, it is assumed that only the criterion
graph is uncertain; therefore, priors are assigned only to the network variable,
A. As indicated, the prior distribution of the criterion graph is performed via
the parameter matrix ®. The specific form, then, is as follows:

N

®y ~ B(b;) ) (5)

N N .
p©) = [[II»(®:) (6)
i=1 j=1

where N = |V(G)|. Choice of the values of 8;; is discussed in the above sec-
tion on network priors; as mentioned, these values should reflect the researcher’s
prior knowledge regarding the structure of the criterion graph. Note that the
joint prior on the criterion graph is obviously the product the priors of the in-
dividual arcs. This follows from the assumption of conditional independence of
ties within the Bernoulli graph.

2.2.2 Assumed Likelihood

As we are assuming in this case that our error probabilities are fixed and known,
the base likelihood for an observed arc follows straightforwardly from Equa-
tion 2:

p(Yij| Oi,etie™) = (1-6i) (Yyer +(1-Yy)(1-e))+ (7

0y (Yij (1—e7) + (1 -Yy)e7)
14This is arguably something of a redundancy: from a Bayesian point of view, the stochas-
ticity of the error probabilities is inherently a measure of uncertainty. The designation of

“fixed and known”, then, is employed only to make salient the assumption of determinism for
non-Bayesian readers.




‘Observe that this is just the mixture from Equation 2, factoring in our
prior uncertainty regarding the criterion graph. To find the joint likelihood
of the data, then, we invoke the previously stated assumption of conditional
independence of observations; this-implies that the joint likelihood is the product
of the individual arc hkehhoods Formally, the joint likelihood of the simple
model is then given by ' '

N N
p(Yl ®,e+,e") =HHP(Y1,1I (“)ij,e+,e_) (8)
i=1 j=‘1
(where Y is the observed data matrix and p(Y;;| ©ij,et,e™) is the arc
likelihood of Equation 7).

2.2.3 Computation of the Posterior

Generally, we would identify the posterior to within a normalizing constant by
using the standard result that p(8]y) «x p(6)p(y|@) for random variables y and 4.
In this case, however, we can straightforwardly apply Bayes’ Rule to each arc in
order to find the exact posterior!®. The posterior probability for the existence
of a given arc, then, is

O (1—e")

©;je”

p(@ijlyij’e-'-’e_) =¥ij@ij (1-e")+(1-0y)e* +( Y”) Oie~ + (1 ‘((-;”) e

and the joint posterior of the criterion graph is hence

N N
p(©|Y,et,e7) =HHP(91'J'|Y§;',6+,€_) (10)

i=1 j=1
The above, of course, provides the criterion posterior for a single group
of observations. Additional observations can be added straightforwardly in the
usual fashion (i.e., by repeating the above computation with the initial posterior
as prior and with the new observations as Y). It is, in fact, not even necessary
given the assumptions made here for the error probabilities et and e~ to be
identical for all observations, or for one to consider an entire observation matrix,
Y, at once; though convenient, these assumptions can be relaxed so long as e;’; "
and e;;, are known for each arc (i,5) and observation k, and ©; is updated

only once per observation'®. In this case, then, the arc posterior is given by

+ o= ) =

p (@ij l Yij’eij’eﬁ) =
15This is, in essence, possible because we do not allow inference on any given arc to effect
our inference regarding any other arc; no information is shared across observations, and hence

we can subdivide the problem into a number of simple Bernoulli mixtures.
18This assumes that the pattern of data collection is ignorable with respect to ©.
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ﬁ . 04 (1 - €5)

7
k=1 O;; (1 - e;'jk) +(1-6y) e;;.k

0;; €k

Oije5 + (1 - 035) (1 - e?}k) ‘

+(1 - Yijx)

and the joint posterior of the criterion graph is thus simply the product of
Equation 11 over all arcs.

It should be noted that, for most practical applications, the joint posterior
of the criterion graph is not needed (though its computation is obviously quite
straightforward where required). To draw from the posterior of the criterion
graph in this case, one need only draw each (4, j) independently with probabil-
ities as given by Equation 9 above. This makes estimation of posterior graph
properties (see Section 2.5 below) particularly easy for the simple error model;
this ease, however, comes at the expense of any inference regarding error prob-
abilities (which are presumed known on an a priori basis) and of any shared
information across arcs. The simple error model, then, is generally useful only
when the accuracy of observers can be established ez ante, a condition which is
rarely encountered in a typical social network analysis setting. It nevertheless
serves as a reasonable prelude to the more sophisticated models which follow.

2.3 Pooled Error Probabilities (Single Observer Model)

Having considered a simple model of network inference in the special case for
which error probabilities are fixed and known, we can now proceed to a more so-
phisticated - and useful - model. In particular, one reasonable elaboration of the
fixed error probability model is to consider the case in which error probabilities
are uncertain, but assumed to be constant across observations*?. Such a pooled
error probability model readily represents a situation in which a single observer
or informant (e.g., an ethnographer) provides reports on all ties within a given
network (e.g., the observers in the data sets of (Bernard et al., 1979/80)); we
may be willing to presume that his or her accuracy is more or less constant
across cases, but we are uncertain regarding the degree of accuracy itself.

2.3.1 Assignment of Priors

Unlike the simple error model, the single observer model treats error probabil-
ities as uncertain; hence, we must assign priors to them. While a wide range
of distributions are possible here, we have elected to represent the error prob-
abilities e* and e~ as being drawn independently from two Beta distributions.
Specifically:

et ~ Beta(a™,pt) (12)
e~ ~ Beta(a™,87) : (13)

17Recall that this last was initially assumed for the fixed error probability model, but that
we were able to relax this requirement due to our ability to decompose the problem into a
series of arc inferences.
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The choice of the Beta for-the form of the error prior requires some justi-
fication; indeed, it may not be appropriate in all cases. In general, the Beta
_distribution is the conjugate prior for the Binomial likelihood, with the unin-
formative prior distribution on [0,1] being a special case!®. As a result, the
outcome of any set of success/failure Bernoulli experiments which begins with
an uninformative prior distribution will be Beta distributed, and the Beta is thus
a logical choice when one’s prior information can be summarized in this form.
In general, prior knowledge regarding informant accuracy is likely to come from
error rates derived from earlier studies (e.g., BKS), and hence it is not unrea-
sonable to suppose that, for many researchers, the Beta will be an appropriate
representation by this argument. Those drawing prior knowledge from other
sources may need to consider alternative forms; these are not pursued within
this paper. o ,

- Given the choice of Beta distributions for e* and e, there remains the
question of selecting the four hyperparameters a*, *, a~, and §~. While
these could, in principle, be themselves drawn from a hyperprior distribution,
we here treat them as known from prior data. As noted, the choicea=8=1
provides an uninformative prior for the Beta distribution; however, it is strongly
recommended that researchers avoid this choice of prior. The reason for this is
simple: the assumption of a uniform distribution of error parameters is highly
unreasonable for most applications (given previous research in this area) and
leads to highly counterintuitive (and improbable) inferences. Note, for instance,
that (by Bayes Rule) the condition e* + e~ > 1 leads to a condition of perverse
inferences, in which informant testimony causes one to update one’s belief in the
opposite direction of the report. Clearly, this is an unlikely event: even at their
worst, it is hard to imagine that most informants’ reports would be negatively
informative!®! Under a uniform prior, however, the a priori probability of such
an occurrence is 0.5 — unacceptably high for most applications. In general, then
o and B parameters should be chosen so as to cause the distribution of exror
probabilities to remain sensible, and to prevent the perverse inference condition
from being highly probable. In examining a number of stylized facts from the
BKS studies (i.e., apparent tendencies in error rates across relations), a prior of
Beta(3,5) for both false negative and false positive error parameters has thus-
far seemed reasonable for communication-like relations; individual researchers,
however, should base their choices of hyperparameters on the particular data
available.

Given the choice of priors for the two error parameters, the form of the
network prior is as for the simple error model, specifically:

181n fact, there are no less than three uninformative priors for this particular problem: the
uniform distribution (@ = 8 = 1), the Jeffrey’s prior (o = 8 = 1/2), and the improper prior
which is uniform in the natural parameter of the exponential family (o = 8 = 0) (Gelman
et al., 1995). We assume the uniform distribution as an uninformative prior unless otherwise
indicated. .

19This has other implications as well: for instance, the posterior construction of two basic
scenarios such that in one scenario informant reports are nearly all reversed in implication.
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- . Whlle our model has been changed by the 1ntroduct1on of uncertamty regarding -

~ our error parameters, the likelihood of the data is una.'ltered from our prevxous
: formulatlon Thus, our arc likelihood i is glven by ' ‘

p(Yi|0ij,ete7) = Oy ( ,3‘(1~e’“)+(1‘ "1’;;)&)} ()
- (1-0y) (Yijet +(1~1’,,)(1~6 )

and the Jomt likelihood for the entire data set is, as before, the product of '

“.thearc hkehhoods

(Y[@e ,€ )—-an Yi; I@,J,e ,€ ) k(17)

=1 j=1
- Note that while the a.ssumptlon of uncertainty in error parameters does not

alter our likelihood, it will nevertheless affect posterior inference (as we shall

see presently). Intuitively, the reason for the former is that the likelihood of the
- observed data already conditions on the error parameters, and hence treats them
“as “fixed”. The role of stochasticity in errors, then, is seen in the ‘computation
- of the posterior. :

2.3’.3“ Computation of the Posterior

In the simple error model, we were able to express the posterior of the criterion
graph in very simple terms; in the single observer model, this is complicated
by the stochasticity of the error parameters, et and e~. To derive the joint
posterior, then, we invoke the more common (proportlonahty) form of Bayes
law; as follows

P(O,¢,e7I¥) ccp(©@)p (") p () p (Y [, ")

= (HHp(@.,)) p(e+)p(e‘ (IIH:» Yy @y, et e ))

i=1j=1 i=1j=1

i=1 j=1 i=1j=1
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Now, the impact of uncertainty in the error parameters becomes clear: we
cannot consider the probability of the criterion graph without considering the
probability of the error parameters which give rise to that inference, and neither
can we consider the probability of a particular pair of error parameters without
taking into account the probability of the structural inference such a choice
would induce. As asserted, the two problems are inseparable; this intuition is
laid bare in the form of the joint posterior.

Given, then, that Equation 18 does not lend itself to direct computation, how
may we employ it in practice? One approach, which is facilitated by the form
of the posterior, is to simulate posterior draws from the joint posterior using a
Gibbs sampler, and to in turn use these draws to estimate posterior quantities of
interest. The Gibbs sampler - a Markov Chain Monte Carlo (MCMC) method
- works by taking a series of draws from the full conditionals of the posterior,
constructing a Markov chain whose equilibrium distribution converges to that
of the joint posterior. Details concerning the use of MCMC techniques can be
found in Gelman et al. (1995); our discussion here will focus exclusively on the
conditional distributions which are necessary for its implementation.

The first of the conditional distributions we require is that of the criterion
graph, conditional on the realizations of the two error parameters and of the
data matrix. This conditional probability reduces to the simple product of the
arc posteriors, which we derived in Equation 9 for the simple error model. The
joint conditional of the criterion graph, then, is given by

- T 6i; (Yis (1—e7) +(1-Yy)eT)
P(®leTe”Y) ~ I;I”I___Il 0 Wy (L= ) T (1~ V) ) + (1= ) (Vyer + (1= Vi) (1= &%)
(21)

which lends itself quite readily to simulation by drawing each arc as an in-
dependent Bernoulli random variable with the probabilities given by the factors
of Equation 21.

For the conditional probability of e*, we can follow a similar strategy; in
particular, we can use the conjugate property of the Beta distribution to find the
form of the conditional posterior directly. Note that the parameters of the con-
ditional posterior are simple counts of successful and unsuccessful identifications
of the nonexistence of ties, combined with the prior parameters. Specifically:

N N N N
P (e"' l@,e"’,Y) ~ Beta a"' + ZZ (1 b @ij) Y,fj,ﬂ+ + ZZ (1 - Gij) (1 - Y,])
i=1 j=1 i=1 j=1 -
(22)
The computation of the above is quite straightforward. e, similarly, has a
direct interpretation in terms of inference on the existence of ties; the conditional
posterior is given by

14



N N N N
ple” I@,ef,Y) ~ Beta | a~ +z E@ij (1-Y3),6~ + EZ 0,;Y;;
) i=1 j=1 i=1 j=1
‘ (23)
In both cases, one would simulate draws from the posterior by taking inde-
pendent Beta draws with the parameters given by Equations 22 and 23; this is
readily accomplished using most statistical computing packages, either directly

or by drawing from ;31_%;; (where the two 2a-degree x? variables reflect the

same draw and the a and 8 draws are independent). By iteratively drawing
from the conditional posteriors of the criterion graph, e*, and €™, one can then
simulate draws from the joint posterior distribution. (For a detailed description
of the algorithm involved, see the reference above.)

2.4 Multiple Error Probabilities (Multiple Observer Mod-
el)

Having seen models for both fixed and pooled error probabilities, we are now
ready to proceed to the more general case in which our network data is generated
by a process involving multiple uncertain error probabilities. The canonical
example of such a situation is that of a cognitive social structure, in which
each -actor within the structure reports the full set of relations among actors
(presumably with uncertain error probabilities which vary by informant). Such
a data set provides us with multiple observations across both arcs and actors;
thus, we have a fair amount of leverage in drawing inferences regarding both
informant accuracy and the criterion graph. Within the text that follows, then,
we shall assume that our data takes the form of a CSS except as indicated -
otherwise. While the model considered can be applied to other data structures,
this provides the example which is most likely to be of use to researchers in the
field.

2.4.1 Assignment of Priors

The priors required for the multiple observer model are, as one would expect, a
simple generalization of those employed in the single observer model. Whereas
before we had only two sets of hyperparameters, here we have twice as many
sets as the number of actors; the et priors, for instance, under the assumptions
of conjugacy and conditional independence, are given by

ef ~ Beta(of,5),i€{1,2,..,N} (24)
N

pet) = JI»(ef) (25)
i=1
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Note that the hyperparameters are not required to be identical for all actors.
Indeed, if individuating information (e.g., from past observation of a particular
informant) is available, it should clearly be employed. Again with the same
assumptions, we take the form of the e~ priors to be identical:

e; ~ DBeta(a;,f;),i€{1,2,..,N} (26)
N

ple”) = J]r(e) (27)
i=1

It is worth pointing out, with respect to the above, that implicit in our as-
sumptions is the requirement that inferences individual error parameters affect
each other only indirectly via the estimation of the criterion graph. A reasonable
extension of this model might relax this assumption by taking the hyperparam-
eters for the individual actors as being drawn from a hyperprior distribution;
one candidate for such a distribution would be a Gamma, which has a number
of desirable properties in such a role. An extension of this type, of course, would
add yet another layer to the hierarchical model, and will not be pursued here.
Nevertheless, it is a promising direction for future research.

In addition to the choice of prior distributions for the error parameters,
of course, we are still left with the usual problem of defining priors for the
criterion graph. The form for the criterion prior is unchanged from its previous
incarnations:

©y ~ B(6i;) (28)
N N

p©) = [[I]»©4) (29)
i=1j=1

It is perhaps worth emphasizing that, though our data array contains NV
separate graphs, we are still interested in inferring a single criterion structure;
hence the form of the criterion prior, above. While one could also attempt
to utilize a very different notion of the criterion, drawing a different graph for
each observer (and thereby reinterpreting the “error” parameters as reflecting
propensity to misreport one’s cognitive beliefs, rather than to misreport an
externally observable interaction pattern), this would simply reduce to the single
observer model already considered. As stated in the introduction, we here follow
the classical interpretation of self-report data, in which even cognitive social
structures are seen as emerging from observation of a single criterion graph.
Cognitivist uses of the present model are of potential interest, but are beyond
the scope of this paper.

2.4.2 Assumed Likelihood

The assumed likelihood for the multiple observer model is a straightforward
extension of the likelihood for the single observer model. Each observation is,
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as usual, a Bernoulli mixture, with the distinction in this case being the use of
separate error probabilities for each observer. Following Equatlon 7, then, the
" arc 11kehhood is given by

p(Yijr |Oi,ef,ep) = Oy (Yir (1—e) +(1-Yir)ep) +  (30)
(1-0yj) (Yijref + (1 = Yij) (1 —¢f))

Assuming that our data set takes the form of a CSS (in which each actor
acts as an observer), the joint likelihood of the data is simply the product of
the individual arc likelihoods under our standard assumption of conditional
independence. Formally, this is given by

N N N
r(Y|®,ete”) =11 Hp(Yijk |©is, € €5 ) (31)
i=1 j=1 k=1

which can be seen quite readily to be a simple generalization of Equation 17
to the multiple observer case.

As noted, the above likelihood assumes that the data being analyzed takes
the form of a CSS. In general, however, this is not required; any number of ob-
servers may be utilized, provided that the index & in the above equations counts
over the number of observers. Thus, one could readily use the above model (with

the given modification) to take into account reports of both participants and

external observers in a given network. A caveat is in order here, however: the
model presented above assumes that the data collection mechanism - including
the selection of observers - is ignorable with respect to inferences on @, e*, and
e~. In the case of non-ignorable designs, the data generation model should be
" modified to reflect the consequences of the data collection procedure; for a more
general discussion of the problems of ignorability, see Gelman et al. (1995).

2.4.3 Computation of the Posterior

Having determined the joint likelihood of the data, we are now in a position to
write down the posterior. Using Equation 31 and Bayes’ law:

p(©,et, e |[Y) xp(®)p(et)p(e”)p(Y|O,et,e™)

i=1j=1 i=1 i=1 i=1j=1 k=1

N N N N N N N
= (IIHB%)) (H Beta(eﬂaz‘,ﬂ;*)) (H Beta(e:la:,ﬂ;)) (H I[IIIe(y
i=1j=1 i=1 g==1 i=1 j=1 k=1

Analytically, the joint posterior given by Equation 32 is somewhat difficult to
work with. However, as in the case of the single observer model, we can exploit
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the form of the posterior to easily derive the full conditionals of the model,
which in turn happen to be appropriate for the straightforward implementation
of a Gibbs sampler. In the case of the criterion graph, for instance, the joint
conditional probability of the posterior is given by :

p(©et,e”,Y) ~

(35)

ﬁﬁ 855 [Ty (Yige (1—e5) + (1 = Yije) €5)

it ji 03 Ty (Yig (1 — ) + (1= Yija) €5) + (1 — 6i5) TTaey (Yisued + (1 — Yis) (1 - €f))

Note that this can be seen simply as a straightforward application of Bayes’
law to each arc, given the arc likelihood of Equation 30. Computationally, we
exploit this structure by drawing each arc separately using the probabilities
given by Equation 35. A similar exploitation is possible for the probability of
false positives,

N N N N N
p(e+|®,e',Y)~HBeta a;:+ZZ(1—eij)}’ijk,ﬂ;:+ZZ(1—eij)(1"y’ijk)

k=1 i=1 j=1 i=1 j=1
(36)
and of false negatives,

N N N N N
p(e' |®,e+,Y) ~ HBeta o +ZZ@¢,' (1-Yijk),B; +ZZ®;,'K,';,

k=1 i=1 j=1 i=1 j=1
@37)

as each is conditionally distributed Beta with parameters given by counts of
tie outcomes.

To implement the Gibbs sampler, then, we alternately take draws from the
conditional posteriors of @, e*, and e~ given some set of initial conditions.
This can be readily accomplished using standard statistical computing tools;
see Gelman et al. (1995) for more details. Using the Gibbs sampler, we then
simulate taking draws from the joint posterior. These draws can be used to
estimate posterior quantities of interest in the usual fashion.

2.5 Estimating Network Variables from Posterior Distri-
butions

We have now developed three different Bayesian models of the network infer-
ence/informant accuracy problem, and have shown in each case how we may
simulate draws from the relevant posterior distribution. For certain applica-
tions (e.g., estimating the accuracy of particular actors) this may be sufficient;
in general, however, our primary interest will be in various quantities which
are derived from the criterion graph itself. Given that we are uncertain about
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the criterion graph, these quantities will necessarily be random variables, with
distributions which depend upon the posterior of the criterion. In the following
section, then, we shall demonstrate the application of the network posterior to
three standard inference problems: identification of the maximally probable cri-
terion graph; estimation of graph and node level indecies for the criterion graph;
and metric inference between criterion graphs.

To illustrate these procedures, we will utilize posterior draws from a CSS of
Krackhardt (1987) under the multiple observer model. The data set in ques-
tion contains reported advice seeking relations among 21 management personnel
within a high-tech firm, and is a “classic” CSS study. For purposes of illustra-
tion, the network prior for this analysis was chosen such that @;; = 0.3 for all
arcs, and all individual error parameters were given Beta(3,5) priors. Posterior
draws were taken using a Gibbs sampler, with three Markov chains being em-
ployed, each having a burn-in of 500 iterations. After burn-in, 500 draws were
taken from each chain, and the resulting data points were randomly reshuffled
to remove any dependence between adjacent observations2®. The 1500 posterior
draws derived from this process were then used in the analyses below.

2.5.1 Maximum Probability Networks

Possibly the most obvious question to ask, given a set of draws from the pos-
terior of the criterion graph, is that of the maximum probability network: that
is, the particular criterion graph which is most probable given the posterior
distribution. This is derived fairly trivially from the posterior, as follows:

S _J 1 04 2>05
Aij - { 0 if eij < 0.5 (38)

Note that we are able to convert the problem of finding the maximum prob-
ability graph into the problem of finding the maximally probable state for each
arc due to the assumption of independence between arcs. For our illustrative
data set, then, our estimated posterior for the criterion graph is given by

208 code (written for the R statistical computing system) to fit this model is available from
the author.
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al a2 a3 ad ab a6 |- a7 a8 a9 all all al2 al3 ald ald alé | al7 al8 al9 a20 a2l
al 0.00 0.54 0.00 0.00 0.00 1.00 0.66 0.35 0.00 | 0.96 0.76 0.98 0.99 0.00 0.96 1.00 1.00°] 0.94 | 0.91 1.00 | 0.64
a2 0.34 0.00 | 0.00 0.17 0.00 1.00 0.00 1.00 0.00 0.28 0.52 0.99 1.00 1.00 0.01 1.00 1.00 | 0.00 | 0.97 1.00 | 0.14
a3 0.68 0.98 0.00 0.99 Q.00 1.00 { 0.96 0.78 0.15 0.93 1.00 0.99 0.99 0.07 0.95 1.00 1.00 | 0.26 0.99 0.99 0.19
ad 0.10 0.71 0.99 0.00 0.94 1.00 0.99 0.80 0.99 0.94 0.97 0.99 1.00 0.99: | 0.99 1.00 1.00 | 0.53 0.99 1.00 0.92
ab | 0.00 | 0.47 | 0.83 | 0.02 | 0.00 | 1.00 | 0.94 | 0.00 | 0.90 | 0.01 | 0.94 [ 0.71 | 1.00 | 0.00 | 0.03 | 1.00 | 1.00 | 0.99 | 0.24 | 0.99 ; 0.98
ab 0.00 0.99 0.90 0.92 0.99 0.00 0.99 0.99 0.96 0.99 1.00 0.99 1.00 0.99 0.06 1.00 1.00 1.00 | 0.99 1.00 | 0.99
a7 0.00 | 0.99 | 0.02 0.91 0.99 1.00 0.00 0.99 0.00 | 0.99 1.00 0.00 1.00 0.99 | 0.99 1.00 1.00 | 0.82 | 0.95 0.99 | 0.64
a8 | 0.08 | 0.08 | 0.50 | 0.11 | 0.60 | 1.00 | 0.96 | 0.00 | 0.99 | 0.88 | 1.00 | 0.82 | 1.00 | 0.05 | 1.00 | 1.00 | 1.00 | 0.90 | 0.99 | 1.00 | 0.03
a0 | 0.00 | 0.92 | 0.07 | 0.01 | 0.00 | 1.00 | 0.93 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 1.00 | 0.00 [ 0.99 | 0.76 | 1.00 | 0.99 | 0.06 | 1.00 | 0.00
al0 | 0.00 | 0.98 | 0.00 | 0.08 | 0.81 | 1.00 | 0.99 | 0.86 | 0.00 | 0.00 | 1.00 | 0.44 | 1.00 | 0.9 ] 1.00 | 1.00 | 1.00 | 0.84 | 0.99 | 1.00 | 0.96
all | 000 | 0.08 | 0,00 | 0.01 | 0.00 | 1.00 | 0.09 | 0.95 | 0.00 | 0.79 | 0.00 | 1.00 | 1.00 | 0.99 | 0.02 | 1.00 | 1.00 [ 0.94 | 0.99 | 0.99 | 0.52
al2 | 0.02 0.99 0.93 0.99 0.98 1.00 | 0.99 1.00 0.99 | 0.99 1.00 0.00 1.00 | 0.99 1.00 1.00 1.00 0.99 0.99 1.00 | 0.99
213 | 0.00 | 0,00 | 0.04 | 0.00 | 0.00 | 0.73 | 0.97 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.03 | 0.19 | 1.00 [ 0.00 | 0.00 | 0.99 | 0.00
ald 0.00 | 0.99 [ 0.00 0.00 0.99 1.00 | 0.00 0.00 0.10 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 | 0.00 :| 0.92 0.00 0.00
ald 0.00 0.01 0.99 0.00 0.07 1.00- { 0.97 0.01 0.40 0.04 1.00 0.99 1.00 0.54 0.00 1.00 1.00 | 0.61 0.30 0.99 0.00
al6 | 039 | 0.87 | 0.98 | 0.30 | 0.87 | 1.00 | 0.50 | 0.63 | 0.99 | 0.96 | 1.00 | 0.99 | 1.00 { 0.96 | 0.99 | 0.00 | 1.00 | 0.98 | 0.99 | 1.00 [ 0.00
al7 | 0.00 | 0.99 | 0.00 | 0.59 | 0.00 | 1.00 | 0.99 | 0.09 | 0.01 | 0.9 | 1.00 | 0.99 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.99 | 0.42 | 0.98
al8 0.00 | 0.90 | 0.00 0.00 1.00 | 0.99 0.00 0.98 0.71 0.00 0.99 0.99 1.00 0.94 0.95 1.00 1.00 0.00 | 0.43 0.54 0.00
al9 | 0.00 | 0.98 0.05 0.00 0.00 | 0.99 0.93 0.01 0.67 | 0.00 0.91 0.01 1.00 0.99 0.89 | 0.97 1.00 { 0.00 | 0.00 | 0.97 | 0.00
a20 | 0.00 | 0.56 0.00 0.00 | 0.00 1.00 0.99 0.01 0.00 | 0.93 0.94 0.00 1.00 0.00 0.99 0.96 1.00 0.00 | 0.93 0.00 | 0.00
a2l 0.89 0.99 0.53 0.41 0.88 1.00 | 0.97 1.00 0.96 | 0.97 1.00 0.99 1.00 0.98 0.99 1.00 1.00 |} 0.99 | 0.99 | 0.94 0.00
and thus the maximum probability graph is

al | a2 | a3 | ad | ab | a6 | a7 | aB | a9 | al0 | all | al2 | al3 | ald | alb | al6 | al7 | al8 | al9 | a20 | a2l

al 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1

a2 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0

a3 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0

a4 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ab 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1] 1 1

aé 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

a7 0 1 0 1 1 1 1] 1 0 1 1 0 1 1 1 1 o1 1 1 1 1

a8 0 1 0 0 1 1 1 [1] 1 1 1 1 1 0 1 1 1 1 1 1 0

a9 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0

al0 0 1 0 ] 1 1 1 1 0 1] 1 0 1 1 1 1 1 1 1 1 1

all [1] 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1

al2 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

al3 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

ald 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0

alb 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0

al6 0 1 1 0 1 1 1 1 13 1 1 1 1 1 1 0 1 1 1 1 0

al7 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1

al8 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0

al9 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0

a20 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 ] 1 0 0

a2l 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

It should be noted that the maximum probability graph is a point estimate,
and as such necessarily discards much of the full information of the posteri-
or distribution. For many applications, then, it may be more prudent to use
the posterior distribution, rather than the maximum probability graph. Nev-
ertheless, when it is commonly desirable to have some particular estimate of
the criterion structure, the maximum probability graph will often be the logical

choice

217p fact, selection of point estimates should be performed via a formal decision procedure;

this is, however, beyond the scope of this paper.
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2.5.2 Graph and Node Level Indecies

The vast majority of classical network analysis is founded on the substantlve-
ly important secondary indecies such as degree, betweenness, and closeness (at
the nodal level) and centralization, hierarchy, and connectedness (at the graph
level). Many of these indecies are highly sensitive to minor changes in network
structure; yet, traditional network analysis has generally examined these in-
decies under the assumption of error-free data. One useful application of the
network posterior, then, is to permit estimation of graph and node-level inde-
cies in the presence of measurement error. The quantification of uncertainty,
in particular, is useful here: even where the posterior is diffuse, knowledge of
this fact may illuminate subsequent analysis. This last is particularly true of
comparisons of network indecies, in which changes in the uncertainty assoc1ated
with point estimates may lead to substantively distinct conclusions.

By way of illustration, then, we here provide summaries of posterior intervals
for Freeman degree centralization and nodal degree for the Krackhardt advice
network. Note how, even for a simple measure such as degree, quantification of
the uncertainty associated with the criterion graph can clearly affect posterior
inference. In addition to the simple summaries shown here, it is fairly trivial to
compute quantities such as, for instance, the posterior probability that actor 4
has a higher Freeman degree than actor 5 (in this case, the probability in ques-
tion is approximately 0.798). Such an approach is clearly more powerful than
classical methods (which can only examine relative likelihoods), and is obvious-
ly more robust than traditional network techniques which treat the data under
examination as error-free. The Bayesian modeling approach then, is useful not
only because of the ease with which it allows us to construct theoretically mo-
tivated models, but also because of the inferential uses to which the output of

- those models can be put.

Index Min 1st Q | Median | Mean | 3rd Q Max
Degree Cent | 0.2171 | 0.2882 0.3053 0.3042 | 0.3211 | 0.3908
Degree, al 9 14 15 15.23 16.25 21
Degree, a2 21 . 25 26 26.40 28.00 32
Degree, a3 17 22 23 22.59 24.00 27
Degree, ad 17 22 23 23.37 . 25.00 29
Degree, ab 15 20 21 21.20 22.00 25
Degree, a6 34 37 38 37.51 38.00 39
Degree, a7 26 30 31 31.04 32.00 34
Degree, a8 21 25 26 26.36 27.00 31
Degree, a9 14 18 19 18.47 19.00 22
Degree, al0 32 26 27 26.72 28.00 30
Degree, all 27 30 31 31.24 32.00 35
Degree, al2 29 32 33 32.82 33.00 35
Degree, al3 22 24 25 24.92 25.00 28
Degree, al4 18 20 21 20.52 21.00 23
Degree, ald 21 24 25 24.80 26.00 30
Degree, al6 30 34 35 35.37 36.00 39
Degree, al7 .32 33 34 33.96 34.00 36
Degree, al8 19 24 25 25.24 26.00 29
Degree, al9 19 25 26 26.05 27.00 30
Degree, a20 24 26 27 27.11 28.00 30
Degree, a21 21 25 27 26.50 28.00 31
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2.5.3 Metnc Dlstances Between Graphs

- An emerging a.itematwe to the use of summary 1ndec1es to compare soc1al struc- -
tures is comparison using metric distances (Banks and Carley, 1994; Butts and -

Carley, 1998; Butts, 1998), generally either the Hamming distance or a gener-
alization such as the structural distance (Butts and Carley, 1998; Butts, 1998).
Such distances may be employed directly as a measure of difference (Banks and
Carley, 1994) or indirectly to facilitate procedures such as cluster analysis of
graphs (Butts, 1998). While past work in this area has often assumed that the
social structures to be compared are perfectly known, it is possible to generalize
* the approach to the case in which the structures to be compared are Bernoul-
li graphs. In such a case, it is fairly trivial to derive posterior estimates for
the moments of the Hamming distance between the structures in question. In
particular, the expectation of the Ha.mmmg distance is given by

N N
E(H(G1,G2)) =) Y (01 (1= i) + (1 - 0155) ©2i5) ~ (39)

=1 j=1

and its variance is simply

Var (H (Gl,Gz)) =

Z Z 91%3 + 9221 491u®2u 61:; 921; + 491q®2n + 491”9211

i=1 j=1

Note that both of the above make use of the independence property of
Bernoulli graphs in a very straightforward fashion. In the event that one wishes
to examine the entire distribution of distances, one can simply estimate the dis-
tribution from the distribution of observed Hamming distances among posterior
~ draws. The procedure is equivalent to that employed above for index distribu-
tions, and is fairly trivial to implement. For our illustrative advice network and
the friendship network collected on the same popula,tlon22 for instance, we find
the following distance distribution:

{ Min | 1st Q | Median | Mean ] 3rd Q T Max |
[185.0 [ 215.0 | 233.0 | 220.4 | 242.0 | 273.0 |

As the maximum Hamming distance in this case is 441, we can see that
only about half of the arcs are shared between these two structures; clearly
they are quite distinct. Subsequent analysis might compare this distribution to
-distributions from null models, or might use the estimated Hamming distance
as an input to a procedure such as cluster analysis. A number of possibilities
exist, depending on the theoretical uses to which the data is to be put.

22The same procedure was used to take posterior draws in this case as for the advice network

22
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2.5.4  Estimated Informant Accuracy
While we may often be interested solely in the criterion graph (in which case we
estimate individual accuracy parameters only because such are necessary for the
- previous problem), this is not always the case; in some cases, it is the accuracy
of individuals which is of interest (e.g., Krackhardt, 1990). Given a series of
draws from the posterior distribution, it is quite trivial to examine the posterior
distribution of individual error parameters, and thereby to gain a sense of actors’
ability to perceive their social surroundings. These distributions may in turn be
used to create point estimates which may be employed in subsequent analyses,
though as always it is preferable to use direct posterior draws for this purpose
where possible so as to avoid losing the distributional information contained
therein. )
For our advice network, then, we find the following estimated posterior quan-
tiles for each parameter: '

Probability of False Positives (e¥)

Min 1stQ Median | Mean .3rdQ Max
al | 0.3556 | 0.4571 | 0.4844 | 0.4846 | 0.5118 | 0.6076 |
a2 | 0.6491 | 0.7421 | 0.7666 | 0.7642 | 0.7684 | 0.8600 |

“a3 | 0.3800 | 0.4806 | 0.5184 | 0.5178 | 0.5454 | 0.6824
ad | 0.1833 | 0.2794 | 0.3040° | 0.3042 | 0.3208 | 0.4567
ab | 0.4419 | 0.5636 | 0.5089 | 0.5038 | 0.6233 | 0.7377
a6 | 0.1877 | 0.3063 | 0.3310 .| 0.3311 | 0.3562 | 0.4533
a7 | 0.4669 | 0.5575 | 0.5852 | 0.5858 | 0.6137 | 0.7007
a8 | 0.2043 | 0.3806 | 0.4070 | 0.4077 | 0.4348 | 0.5526
al | 0.2358 | 0.3163 | 0.3421 | 0.3433 | 0.3688 | 0.4799 |
al0 | 0.27563 | 0.3643 | 0.3923 | 0.3013 | 0.4165 | 0.5878 |
all | 0.4120 | 0.5293 | 0.5570 | 0.5562 | 0.5841 | 0.6799
al2 | 0.1503 | 0.2283 | 0.2519 | 0.2535 | 0.2766 | 0.3863 |
ald | 0.2554 | 0.3404 | 0.3772 | 0.9767 | 0.4015 | 0.5080 |
ald | 0.5806 | 0.6080 | 0.7219 | 0.7222 | 0.7489 | 0.8375
alb | 0.2384 | 0.3181 | 0.3444 | 0.3458 | 0.3725 | 0.4846

216 | 0.2569 | 0.3592 | 0.3855 | 0.3869 | 0.4i34 | 0.5108
al? |- 0.20756 | 0.2828 | 0.3060 | 0.3087 | 0.3320 | 0.447%

al8 | 0.6872 | 0.7824 | 0.8044 | 0.8035 | 0.8241 | 0.8919

al9 | 0.4124 | 0.5485 | 0.5790 | 0.5789 | 0.6089 | 0.7151

| a20.| 0.2774 | 0.4068 | 0.4326 | 0.4330 | 0.4608 | 0.5685

a2l | 0.3633 | 0.4617 | 0.4884 | 0.4886 | 0.5150 | 0.6636
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Probability of False Negatives (™) ]

‘ Min 1stQ | Median | Mean | 3rdQ ] Max
al 0.7489 | 0.8265 0.8440 | 0.8431 0.8605 | 0.9134
a2 0.3107 0.3879 | 0.4082 0.4088 0.4286 0.5268
ad 0.8759 | 0.9251 [ 0.9360 0.9348 | 0.9465 | 0.9741
ad 0.7445 | 0.8165 0.8334 0.8322 | 0.8491 0.9028
ab 0.9120 | 0.9511 0.9593 0.9583 | 0.9668 | 0.9866
a6 0.6909 0.7579 0.7755 0.7745 0.7931 0.8564
a7 0.4038 0.4943 0.5145 0.5143 0.5361 0.6065
a8 0.75647 | 0.8242 0.8403 0.8395 | 0:.8564 | 0.9181
a9 0.9281 0.9634 0.9709 0.9698 | 0.9771 0.9958
alQ | 0.8007 | 0.8708 0.8856 0.8846 | 0.8988 | 0.9453
all { 0.6780 | 0.7517 0.7714 0.7695 | 0.7877 | 0.8485
al2 | 0.7826 | 0.8494 0.8639 0.8635 | 0.8778 | 0.9251
al3 | 0.9400 | 0.9775 | 0.9831 0.9820 | 0.9876 | 0.9974
ald 0.4349 0.5095 0.5301 0.5299 0.55611 0.6332
alb 0.9130 0.9504 0.9591 0.9578 0.9666 0.9878
al6 | 0.8577 | 0.9112 0.9236 0.9227 | 0.9355 | 0.9721
al7 0.7733 0.8316 0.8477 0.8467 | 0.8626 0.9238
al8 0.4131 0.5001 0.5202 0.5203 0.5413 0.6185
al9 | 0.9083 | 0.9553 0.9647 0.9633 | 0.9728 | 0.9959
a20 | 0.8207 | 0.8808 0.8947 0.8938 | 0.9078 | 0.9470
a2l 0.4860 0.5786 0.5964 0.59656 | 0.6159 0.6977

3 Discussion

We have, in previous sections of this paper, outlined a Bayesian modeling ap-
proach to (some aspects of) the problem of informant accuracy in social network
analysis. In the course of this development, a number of deeper issues have arisen
which, while important to the progress of our research, are somewhat tangential
to the specific focus of the present work. Despite this, it behooves us to give at
least some consideration to two particularly important issues: the concept valid-
ity of the criterion graph (on which the present enterprise obviously depends);
and the problem of improving data collection for informant self-reports in so-
cial network research. This section, then, will initiate a discussion of these two
matters which, if insufficient to resolve them, will hopefully serve to highlight
them for subsequent research.

3.1 Concept Validity of the Criterion Graph

“If a group of 10 persons were all asleep and each person were dream-
ing of talking to at least one other person in the group, then is
there a group structure to be uncovered?” (Killworth and Bernard,
1979/80)

As we have noted, the modeling approach utilized here depends critically
upon the assumption that there exists some structure which accounts for the
commonalities in informant responses. Rather than enmeshing ourselves in a
larger debate about what it means to speak of “real” social structures (and
whether some might be more “real” than others), we have taken the more re-
strained position of asserting the notion of the criterion graph purely as a useful
construct which is hypothesized to account for shared variance. Even this, how-
ever, does not entirely extricate us from the dilemma raised by the Killworth
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and Bernard comment above. If we find that we are dealing with relations which
are purely ascriptive - which are defined purely in terms of actor reports - can
we say that we are dealing with social networks at all? From the cognitivist
perspective, the answer to this question is clearly yes: if the perceptions (or,
from a slightly more behavioristic stance, reports) of individuals are of potential
interest to us, then the question of whether an independently verifiable criterion
structure can be said to exist is irrelevant. This raises some difficult epistemo-
logical (and hence methodological) questions, however. When is it sensible to
speak of the existence (in at least a hypothetical sense) of the criterion graph?
The question is not an idle one. If we, for instance, apply models which presume
informant reports to be related to a central structure in situations for which such
an assumption is invalid, then the inferences drawn from such an application
will be highly misleading at best. On the other hand, ignoring the possibility of
a criterion structure where one may be reasonable asserted may substantially
limit our ability to draw predictive inferences regarding the social world. As
BKS (1979/80) note, many processes of interest (e.g., diffusion of information)
depend on behavioral, not cognitive, networks. Despite the gloomy prognosis
of BKS, work by Romney et al. (1986), Romney and Faust (1982), and Free-
man (1992) (among others) suggests that it should be possible to extract at
least some useful information about such networks from informant reports. The
present work is in this tradition, but recommends caution: we do not consider
the existence of the criterion graph to be a trivial assumption, and recognize
that the applicability of our approach depends upon the validity of the criterion
concept. Further theoretical and empirical development of the foundations of
network analysis per se - and, most importantly, of the conceptual foundations
of our proposed subject matter - will be necessary if fruitful methodological
work in this area is to continue.

3.2 Suggestions for Improved Data Collection

In the introduction to this paper, four general problems relating to the infor-
mant accuracy in network research were mentioned. As indicated, we have
focused primarily on the last, namely the development of inferential techniques
for quantifying (and hopefully reducing) the uncertainty inherent in this form
of data. This endeavor, however, is strongly related to another: the develop-
ment and deployment of data collection strategies which facilitate the reduction
of uncertainty regarding quantities of interest. While a variety of issues are
involved in this pursuit, we shall here constrain ourselves to a single matter,
namely sampling strategies employed in eliciting network data from informants.

The standard procedure for eliciting informant reports regarding social struc-
ture is generally to provide each member of the social network with a survey
instrument which elicits his or her ties to others. In some cases, this is extended
by inquiring into the existence of incoming ties, or (as in ego net research) asking
for ties among adjacent alters; nevertheless, these approaches are less uniformly
deployed than the first. The sub-optimality of this standard procedure from the
point of view of network inference can easily be appreciated by counting the
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number of repeated observations accorded each arc: plainly, the standard proce-
dure counts each arc but once, and even extending this to incoming ties provides
only two observations. With so few observations, it is hardly surprising that our
ability to infer social structure is so problematic! Given even minor deviations
from perfect reporting, procedures which supply only one to two replications
per arc are unlikely to provide sufficient data for reasonable inference on the
criterion graph.

One alternative to this procedure is the elicitation of cognitive social struc-
tures. Though developed explicitly as a cognitivist tool, the CSS instrument
is highly desirable from a classical perspective due to the fact that it provides
a large number of repeated observations - |V(G)|, to be precise - on each arc.
Further, the fact that the CSS elicits observations from all network members
means that it can be considered to be an ignorable design so long as the com-
plete data set is defined in terms of all participant observations. CSS data, then,
is of much greater potential value to the network analyst than traditional data,
particularly when employed in conjunction with inferential tools which allow for
inference across arcs and across actors.

For all its benefits, there is a clear drawback to the CSS design: due to the
fact that each informant is asked to report on all arcs, the number of item-
s on a CSS instrument increases on the order of |V(G)|?. This polynomial
growth stands in sharp contrast to the linear growth of instrument complexity
for traditional approaches, and severely limits the size of networks which can
be examined in this fashion. A 50 node network, for instance, requires each
subject to consider 2500 items for every relation examined; plainly this stretch-
es the limits of informant endurance. Unfortunately, we are often interested in
networks which are of even larger sizes, which all but eliminates the CSS from
use in a wide range of settings.

Given the above problems, it may be sensible to consider an alternative to
both the traditional and CSS data collection strategies, particularly for large
networks. Such an alternative should be ignorable, should provide multiple
observations on each arc, and should provide multiple observations on each
informant, while maintaining linear complexity in network size. One data. col-
lection strategy which fulfills these requirements is what we shall here call an
M -replication balanced arc sampling design; while we will not consider all of its
properties in detail, we shall outline the basic procedure by which it may be
employed.

The core intuition of the M-replication balanced arc sampling design is that
if one desires to have M observations on each arc in a directed graph, one need
only ask each informant to supply M(|V(G)|) observations. (This follows from
the fact that |V (G)| subjects reporting M(|]V(G)|) arcs results in M(|V(G)|?)
observations, enough to allow M per arc.) The challenge, then, is to allocate
the arcs sampled in such a way as to maintain ignorability. One simple means
of doing so is to randomly allocate arcs to instruments such that A) each infor-
mant is given exactly M(|V(G)|) arcs on which to report, and B) each arc is
reported on exactly M times. Such a design is then ignorable, as observations
not included are missing at random (see Gelman et al. (1995)), and balanced
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(as each informant and arc contribute equally to the joint likelihood). With the
M-replication balanced arc sampling design, then, one can gain many of the
advantages of a CSS design (albeit on a more limited basis) without incurring
the same complexity penalty. Inferential methods such as those discussed here
can then be employed to estimate the criterion graph, which can then be used
for classical network analysis purposes.

4 Conclusion

The dual problems of network inference and informant accuracy pose central
methodological challenges for network analysis. While the particular approach
employed in dealing with these problems depends on underlying epistemological
assumptions, models which assume that informant reports stem from a single
criterion graph may be useful in a wide range of circumstances. Given the di-
mensionality and data efficiency challenges posed by simultaneous estimation of
the criterion graph and individual accuracy parameters, a hierarchical Bayesian
approach has much to recommend it. Here, we have developed a family of such
models, and have shown how they may be applied to the analysis of network
data, both for the purposes of direct estimation and for the quantification of
uncertainty in derived quantities such as network indecies. We have discussed
the assumptions implicit in the use of these or other models, and have suggested
data collection strategies which will facilitate estimation of network variables.
Clearly, the network inference/informant accuracy problem is a serious one,
which will require a combination of theoretical, methodological, and empiri-
cal research to address. It is hoped that the present work will contribute to
this development by providing a suite of theoretically motivated methods with
clear applicability to basic problems of empirical research in the field of network
analysis.
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