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Abstract 

 
When Linton C. Freeman made his conceptual clarifications about centrality measures in 
social network analysis in 1979 he exclusively focused on unweighted, symmetric, and 
connected networks without the possibility of self-loops. Even though a lot of articles 
have been published in the last years discussing network measures for weighted, 
asymmetric or unconnected networks, the vast majority of researchers dealing with social 
network data simplify their networks based on Freeman’s 1979 definitions before they 
calculate centrality measures. When dealing with weighted and/or asymmetric networks 
which can have self links and consist of multiple components, researchers are confronted 
with a lack of standardization. Different tools for social network analysis treat specific 
cases differently. In this article we describe and discuss the ways the software ORA 
(developed by CASOS at Carnegie Mellon University) handles the most important 
network measures in case of weighted, asymmetric, self-looped, and disconnected 
networks. In the center of our attention are the following measures, degree centrality, 
closeness centrality, betweenness centrality, eigenvector centrality, and clustering 
coefficient. 
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1 Introduction 
To describe the structure of networks or the positions and importance of nodes, a large 
number of measures can be used. The most used measures are centrality measures which 
help researchers to identify important nodes. Different centrality measures (Wassermann 
& Faust, 1995) focus on different aspects of centrality. Freeman (1979) defined “three 
distinct intuitive conceptions of centrality”, degree centrality, closeness centrality, and 
betweenness centrality. In this article, Freeman describes these concepts with a very 
simple network structures (a star) and he uses just networks which are undirected, 
unweighted, connected and without self-loops.  
 
Researchers who work with networks based on real world data often have different data. 
Networks based on surveys data are, for example, normally directed. The interviewed 
persons report the contacts they have from their perceptions. Unless we also interview 
these alters, we do not know whether these connections are reciprocated and can 
therefore be interpreted as undirected links. Another area where researchers work with 
directed networks are communication networks. Every e-mail, phone call, or tweet has a 
direction from a sender to one or more receivers. These communication networks imply 
also that the weight of the links is an important issue. When we construct theses 
networks, we normally aggregate the communication flow of a specific time period (e.g. 
one day or one week). The results are weighted networks where the link weights 
represent the number of e-mails sent or the summed minutes of telephone conversation. If 
we want to look at communication networks at the group level, e.g., to analyze the 
relations between companies, departments, or squads, then self-loops arise because 
persons in a group (a node in our network) communicate with other people in the same 
group. And of course, if the networks are large enough then unconnected components, or 
unreachable nodes in connected but directed networks, occur. 
 
So, networks which are directed, weighted, unconnected, and which even contain self-
loops are not unusual in social network analysis. Nevertheless, more than 30 years after 
Freeman’s conceptual clarifications article, most of the articles nowadays discussing 
measures in social network analysis literature close their initial definition section with the 
following sentence: “For simplicity we focus in our work on unweighted, undirected, and 
connected networks.” In this article we do the opposite, we focus on weighted, 
asymmetric, self-looped, and disconnected networks. The following sections of this 
article discuss these characteristics for degree centrality, closeness centrality, 
betweenness centrality, eigenvector centrality, and the clustering coefficient.  
 
All these characteristics and options of how to handle these characteristics are 
implemented in the software ORA (Carley et al., 2010). ORA is a dynamic meta-network 
assessment and analysis tool developed by CASOS at Carnegie Mellon University. It 
contains hundreds of social network and dynamic network metrics and methods and has 
been proved to be a powerful analyzing tool in the network science area. Therefore, we 
use ORA to show the impact of including or excluding the interested characteristics into 
network measure calculations. In addition we compare the results with the results 



2 
 

calculated by UCINET (Borgatti et al., 2002), which is another powerful and widely-used 
analyzing tool in area of social network analysis. All the experiments are conduct based 
on ORA 2.3.5 and UCINET 6.346.  In the case studies section you can find the data for 
the networks we used for the experiments. At the end of the next section you will also 
find ways to manipulate the discussed characteristics on your networks using ORA. 

2 Definitions 
In this article we presume readers have a basic knowledge of social network analysis and 
therefore do not make detailed introductions into the field. If the reader is interested in 
basics and first steps in social network analysis, we refer to the book by Wasserman and 
Faust (1995) and by Scott (2000). For an introduction into dynamic meta-networks we 
refer to Carley (2002). 
 
Social networks can be described as graphs consisting of a set of nodes N and a set of 
edges E connecting the nodes. We use small letters when we discuss single nodes (e.g., u, 
v) or edges (e) and the large letters N and E to name the whole sets. The number of nodes 
in a given networks is denoted with |N| and the number of edges with |E|. Network data 
are represented in matrices. The matrix entry wuv describes the relation from node u to 
node v. We use the words edge, relation, and link interchangeably. The network 
characteristics which are discussed in this article describe attributes of the set of edges. In 
the following paragraphs we define these different characteristics. 

2.1  Binary Networks 
A binary network is constructed by binary values (either 1 or 0) in its network matrix and 
contains only the information whether a link between two entities in the network exists or 
not. In the network matrix, 0 in the cell wuv indicates that there is no links from node u to 
node v while 1 indicates that there is a link. Because the weights of all links are 1 and 
therefore equal these networks are also called unweighted networks.  

2.2  Weighted Networks 
If the weights of the links are different we use the term weighted network. In a weighted 
network every link is represented by a real number wuv (continuously from -∞ to +∞, but 
we ignore negative line weights in this article) in its network matrix and contains not only 
the information about whether there is a link between entities, but also numerical 
information about the links (e.g., how far two entities are distant geographically or how 
often agents interact with each other). In the network matrix, 0 indicates there is no link 
between two entities while any value other than 0 indicate there is a link between the 
entities.  

2.3   Self -Looped Networks 
Self-looks (also called self-links or loops) are links from a node to itself. A self-looped 
network has therefore non-zero diagonal elements in the network matrix. Depending on 
the weight representation of the network (either binary network or weighted network), 



3 
 

these diagonal elements can take the values 1 (in a binary network) or it can take any real 
number (in a weighted network). 

2.4  Symmetric/Asymmetric Networks 
In a symmetric network for every edge euv there is also an edge evu. All links are therefore 
reciprocal. In asymmetric networks this is not the case. In its matrix representation, a 
symmetric network has symmetric values about its diagonal. Asymmetric networks are 
also called directed networks, while undirected networks are synonymous with 
symmetric networks. In weighted networks the link values of all paired symmetric matrix 
elements have to have the same value in order to be symmetric.  

2.5  Disconnected Networks 
A path in a network is a subset of nodes and edges which connects two nodes without 
repeating a node or an edge. All nodes which can be reached from a specific node using 
paths are called reachable. If subsets of nodes are arranged in a way that all nodes of 
group A are unreachable from all nodes from group B and vice versa, the network is 
disconnected. Therefore, there is no link connecting any pair of nodes between the 
subsets of nodes. These subsets of nodes are named components. Every component can 
be interpreted as a single network, but researchers are often interested in treating 
disconnected networks as a single network. In addition, it is important to know that even 
if a network is connected, it is possible that there are unreachable nodes for a specific 
node in case of directed networks.  

2.6  Network Characterist ics  in  ORA 
The network characteristics described in the previous sub-sections change the way a 
network matrix is composed which has, e.g., implications to different network measures 
or statistics or the interpretation of the results of network measures (see next section). 
Therefore, in ORA you have the options to determine these characteristics for your 
network data. Normally, the person who creates a network knows whether a specific 
network is directed or undirected etc. Fig. 1 shows a screen shot of these settings in ORA. 
The options which are selected here are stored as meta-information of every network in 
the dynetml file. So, if you share your networks with other researchers the selected 
network characteristics are part of your data.  
 
Changing these options for existing networks can have huge impact to your data. 
Changing a network from “weighted” to “unweighted” will set all link weights wuv to 1.0. 
These options also have implications for the editor. If, e.g., the option is set to “directed 
network” then changing the value wuv in the matrix will automatically change the value 
wvu. 
 
Independently from these network settings ORA offers additional options for treating 
these characteristics when network measures are calculated. So, your data can have link 
weights but it is your decision to ignore these link weights when calculating network 
measures. You will learn more about these options in the following section. 
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Figure 1: Set network characteristics in ORA 

2.7  Manually Manipulate Networks in  ORA 
Beside the global characteristics which were introduced in the previous sub-section it is 
also possible to manually manipulate your networks. Fig. 2 shows the additional menu in 
the editor window of a network. The methods you will find there are very self-
explanatory. Here is a quick overview: 
 
Add/Remove Links. With these methods you can remove specific links, e.g., links with a 
line value lower or higher than a given value or self-loops. It is also possible to set the 
self-loops (diagonals) of a network to a designated value. In this menu you can also find 
ways to symmetrize your networks using different methods (maximum, minimum, sum, 
average).  
 
Convert Links: This menu item includes different ways to manipulate the line weights 
of your network. You are able to binarize all links or just links within a specific range 
(collapse). Negate changes the algebraic sign of the links in the network while absolute 
value turns all line weights to positive numbers. Row-normalize is a method to weight the 
importance of a single link with the number of links of a node. 
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Figure 2: Manually manipulate networks in ORA 

3 Network Measures in ORA 
Before we start to discuss the impact of the introduced characteristics to different 
measures, we give a short introduction into the topic of measures in ORA and the options 
to tell ORA how measures should treat your network data. ORA is designed to handle 
multi-mode meta-networks. In addition to agents, events, knowledge, locations, 
resources, and tasks (Carley, 2002) can be analyzed at the same time. This results in a 
broad variety of network measures. Currently, 152 measures are included in ORA, the 
standard social network analysis measures as well as measures to analyze different node 
classes of meta-networks. 

3.1  Reports  to  Generate Measures  
There are several different ways to get network measures in ORA. The normal way is by 
using reports. Reports are collections of measures based on different research questions. 
The Standard Network Analysis report includes all measures which are used in this 
article. To get access to all network measures implemented in ORA you can use ORA’s 
All Measures report. You can also use the All Measures report to just calculate a selection 
of measures. To do so, one needs to choose the measures that will be needed in the report 
before the All Measures report is selected. To choose the measure, simply 1) click 
Analysis in the menu 2) select measure manager. In the pop up window (see fig. 3) you 
can select or unselect the measures. To better assist finding measures, the measures are 
grouped in measure families. Different families have different last names. ORA also 
provides a search filter and drop down selection filters to find measures more easily. For 
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example, if we want to find degree and betweenness centrality, we can first select 
centrality in the last name field and then select degree centrality and betweenness 
centrality in the window. When you are finished with selecting the measure, close the 
window to save the options. When you now select the All Measures report just the 
measures you selected on the measures manager are calculated. 
 

 
Figure 3: ORA’s measure manager. 

3.2  Measures as  Attributes  of  Nodes 
When working with measures in ORA it is important to know that a report never makes 
any changes to the underlying data. But, sometime you want to calculate a measure for 
further analysis. In this case you can add the result of a measure as an attribute to the 
node class for which the measure is calculated (see fig. 4). 
 
It is also possible to create measures in the ORA Visualizer to map, for example, a 
centrality measure to the size of the nodes. But, we do not discuss this topic in this article. 
For further details of using ORA we refer to the ORA user manual (Carley et al., 2011).  

3.3  Primary Measure Parameters  
Several measures, for example those discussed in this article, need different 
considerations in case of weighted/unweighted, symmetric/asymmetric, 
connected/disconnected networks or networks allowing/ignoring self-loops. Most of 
these differences come into play in the context of normalization under the different 
network types which were introduced in section 2. Normalization is the process of 
making networks of different sizes comparable by dividing the results from the measures 
by a certain factor which can be very different for different measures. Normalized (also 
named scaled) values are within the range between 0 and 1. Degree centrality, for 
example, computed on a network with N nodes is normalized with the maximum number 
of nodes which could be connected to a single node in a given network, namely, N-1. But, 
this is different if we allow self-loops in a network. Then the number of possible links is 
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N because every node could also have a link to itself. This normalization factor changes 
again if we consider directed or weighted networks. We will discuss the different 
considerations in the context of different measures in the next sections. 

 

 
Figure 4: Create measures as node attributes 

 
For a better and more transparent communication between the user and ORA, the primary 
measure parameters are designed as part of every network in ORA. These primary 
measure parameters, which can be found in the lower part of the info window of a 
network (see fig. 5), tell ORA what to do with the network matrix before calculating 
measures. There are three primary measure parameters:  
 

• Treat as symmetric: Symmetrizes the network for the calculation, e.g., if the line 
weight wuv is larger than wvu than wvu ← wuv. 

• Ignore self-loops: All diagonal elements are set to 0. 
• Treat as binary: The link weights for all wuv with wuv ≠ 0 are set to 1. 

 
The default setting of these primary measures is to have ORA auto-detect these settings. 
For example, if the network is symmetric, then when computing measures the network is 
considered as symmetric. Similarly, if the network has only binary link weights, then 
when computing measures the network is considered binary. The user can also explicitly 
set to True or False whether the network should be treated as symmetric, without self-
loops, or binary. To change the settings, select the network and change one or more of the 
three controls in the info window of a network in the section “Select how to treat the 
links when computing measures”.  
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Whenever ORA calculates a measure (independent from which measure calculation you 
select) a network will be pre-prepared based on the settings of these primary measure 
parameters. These setting do not change the original data but the way ORA handles the 
data when calculating measures. To actually convert the data you can change the network 
parameters (see section 2) or use other procedures to have more detailed options (e.g. 
symmetrize by minimum value). You can find an introduction into these procedures in 
section 2.7. 
 

 
Figure 5: Change the primary measure parameters 

3.4  Scal ing Parameter  
The results of centrality and other measures in ORA are normally within the range of 0 
and 1. This is the result of a scaling procedure to make networks with different sizes 
comparable. We discuss the scaling of different measures in the following sections. At 
this place we just want to mention that there is an option in ORA to scale the results 
within the range of 0 and 100. This percentage scaling is preferred by some scientists. 
This option can be found in ORA under Preferences>Measures>Scale measures as 
percentage. 

3.5  Impact of  Network Characterist ics  to  Measures  
In the last sections we introduced different characteristics of network data and the options 
to determine ORA’s handling of your network data. Table 1 shows an overview of the 
impact of network characteristics on the network measures which are discussed in this 
article. The first three of these characteristics are identical with primary measure 
parameters from the previous sub-section, e.g. when you select the option “Ignore self-
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loops” this will affect the result of the calculation of degree and eigenvector centrality as 
well as of the clustering coefficient in case your network contains information on self-
looped edges. In the next section we discuss these characteristics with the different 
measures. In section 9 you can find some case studies where we show the impact of these 
characteristics to different networks. The case studies also include comparisons between 
the results of ORA and of UCINET and discusses any calculation differences. 
 

Table 1: Characteristics of networks and their impact on measures 

Measure Allow/Ignore 
Self-Loops 

Symmetric/ 
Asymmetric 

Binary/ 
Weighted 

Connected/ 
Disconnected 

Degree Centrality Yes Yes Yes No 
Betweenness Centrality  No Yes Yes No 
Closeness Centrality No Yes Yes Yes 
Eigenvector Centrality Yes (No) Yes Yes 
Clustering Coefficient Yes Yes No No 
 
If any option is set to True or False, then ORA will ensure by adding/removing links that 
the property holds in the network. Auto-detect sets the property to True or False based on 
the existing links; Auto-Detect never adds/removes links when preparing the networks 
for calculations. 

4 Degree Centrality 
Technical name: Degree Centrality 
Commonsense name: In The Know 
Main reference: Freeman (1979) 
Maximum theoretical: scaled: 1.0 unscaled: see Table 1 
Minimal theoretical: scaled: 0.0 unscaled: 0.0 
Description: Degree centrality measures the number of other nodes that one 

node is connected to. Depending on the network, high degree 
centrality indicates a highly active agent or an agent known by 
a lot of other agents, etc. 

 
Table 1 showed us that degree centrality is affected by self-looped, directed, and 
weighted edges. In the case of a directed network, degree centrality can be separated into 
three sub measures: In-degree centrality (the number of nodes that point to the entity), 
out-degree centrality (the number of nodes that the entity points to) and total degree 
centrality (the number of nodes that both the entity points to and receives from). We 
therefore handle the characteristic of directed links by separating the considerations on 
degree centralities into these three groups. The characteristic of weighted links is treated 
with the following consideration. Instead of counting the number of neighbors for a node 
v we summarize the link weights wvu and/or wuv to and/or from these neighbors1. Finally, 

                                                 
1  Summing the line weights can be seen as a generalization of counting the lines in the unweighted case. If 

we define the line weights with 1 in the unweighted case, we are also able to calculate the degree by 
summing up the line weights. Therefore, no differentiation in the algorithmic implementation is needed 
for weighted/unweighted networks. 



10 
 

the possibility of a self-loop of a node increases the number of cells in the matrix to look 
for a value by 1. 

4.1  Unscaled Degree Central i ty  

The unscaled degree centrality 𝐶𝐷 counts the absolute number of neighbors in the 
unweighted case or sums up the line weights connected to every node. Eq. 1 shows the 
definition of the unscaled degree centrality in symmetric networks. Eq. 2 shows the 
formula for unscaled in-degree centrality for asymmetric networks, eq. 3 for out-degree 
centrality, and eq. 4 for the total degree centrality in asymmetric networks.  
 
 

𝐶𝐷(𝑢) = �
∑  𝑤v,u

|N|
v=1,v≥u  

∑  𝑤v,u
|N|
v=1,v>𝑢

�  
allow self-loops 

(1) 
ignore self-loops 

 
 

𝐶𝐷_𝑖𝑛(𝑢) = �
∑    𝑤v,u

|N|
v=1     

∑ 𝑤v,u
|N|
v=1,v≠u   

�  
allow self-loops 

(2) 
ignore self-loops 

 
 

𝐶𝐷_𝑜𝑢𝑡(𝑢) = �
∑ 𝑤u,v

|N|
v=1            

∑ 𝑤u,v
|N|
v=1,v≠u   

�  
allow self-loops 

(3) 
ignore self-loops 

 
 

𝐶𝐷_𝑡𝑜𝑡𝑎𝑙(𝑢) = �
�∑ 𝑤v,u

|N|
v=1,v≠u +  ∑ 𝑤u,v

|N|
v=1,v≠u � + 𝑤u,u

∑ 𝑤v,u
|N|
v=1,v≠u +  ∑ 𝑤u,v

|N|
v=1,v≠u                 

�  
allow self-loops 

(4) 
ignore self-loops 

 
The possibility of the self-loop results in the fact that in these networks the sum of the in-
degree and the out-degree is different from the total-degree because the self-loop is just 
counted one time. 

4.2  Scaled Degree Central i ty  
Unscaled degree centrality provides the information about the sum of the line weights for 
every node. This result is dependent on the number of nodes, e.g., in a network with 100 
nodes every node has an unscaled degree centrality within the range of 0 to 100 if the 
network is unweighted. On the other hand, in a smaller network consisting of just 10 
nodes, the unscaled degree centrality of the most important actor is constrained to that 
number. To make networks with different sizes comparable, we scale (or normalize) the 
results of the unscaled degree centrality resulting in the scaled degree centrality. 
The idea of scaling for the degree centrality is that the values of all nodes are divided by a 
scaling factor, which is the maximum possible value of these measures (see eq. 5). 
 
 

𝐶′𝐷(𝑢) =
𝐶𝐷(𝑢)
𝐶𝐷𝑚𝑎𝑥

 
 

(5) 
 

 
Looking at eq. 5, 𝐶𝐷(𝑢) could be the unscaled degree of the symmetric network or any 
unscaled version for asymmetric degree centrality, 𝐶𝐷_𝑖𝑛(𝑢) ,𝐶𝐷_𝑜𝑢𝑡(𝑢), or 𝐶𝐷_𝑡𝑜𝑡𝑎𝑙(𝑢). 
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𝐶𝐷𝑚𝑎𝑥 is the maximum possible value of the selected degree centrality measure for the 
given network. This value is different when considering the different network 
characteristics. Based on table 1 we have to define the scaling factor for networks having 
self-looped, directed, and weighted edges, or not. For different combinations of these 
characteristics the scaling factor is different. Once again, in case of asymmetric networks 
we separate the degree measure into in-degree, out-degree, and total degree. Table 2 
shows the scaling factor for the scaled degree centrality for the different combinations of 
the dependent characteristics. |N| stands for the number of nodes in the network, w* is the 
maximum value of all link values in the network. A node without any links (isolate)  has 
a degree centrality of 0. 
 

Table 2: Scaling factor for scaled degree centrality,  
identical to the maximum possible unscaled degree centrality 

 Symmetric/ 
Asymmetric 

Allow/Ignore 
Self-Loops Binary Weighted 

𝐶𝐷 symmetric ignore |N|-1 (|N|-1) · w* 
𝐶𝐷 symmetric allow |N| |N|· w* 
𝐶𝐷_𝑖𝑛 𝑜𝑟 𝐶𝐷_𝑜𝑢𝑡 asymmetric ignore |N|-1 (|N|-1) · w* 
CD_in or CD_out asymmetric allow |N| |N|· w* 
CD_total asymmetric ignore 2|N|-2 (2|N|-2) · w* 
CD_total asymmetric allow 2|N|-1 (2|N|-1) · w* 
 
The case for binary networks without self-loops is defined by Freeman (1979). Freeman 
(1979) describes the maximum possible value for degree centrality in binary unweighted 
network as the center of a star with one node in the middle which is connected to all other 
nodes. The central node therefore has an in- and out-degree centrality of |N|-1 because 
this is the number of other nodes in the network. Because we count every connection in 
an undirected network in both directions the scaling factor for the total degree is twice the 
scaling factor of in- and out-degree. If we allow self-loops the number of possible links 
increases by one – the self-loop. In case of weighted networks the scaling factor for the 
binary networks is multiplied with a factor w* which represents the maximum line value 
in the overall matrix. Doing so, we can guarantee results within the range of 0 and 1 even 
if the line weights are higher than 1. This is also important when dealing with very small 
line weights with values smaller than 1. In these cases the unscaled degree centrality 
results in very small numbers. 
 
For a better understanding of the scaling factors enumerated in table 2 the reader can re-
construct these factors with answering the following two questions: 
 

1. How many cells in the network matrix are affected by the calculation (described 
with the network size |N|)? 

2. What is the maximum value in the network matrix (w*)? 
 
In case of a binary networks question number two results in the value 1 and therefore w* 
is canceled in table 2 for the binary factors. 
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4.3  Network Level  Degree Central i ty  
Freeman (1979) also defines the centralization of a network. This value gives an 
impression about the distribution of the centrality values. If the centrality scores are very 
high for some nodes and very small for the vast majority of the nodes this value is much 
higher than in cases the centrality scores are almost equally distributed. The network 
level degree centrality is defined as the sum of differences between the most central node 
and all other nodes, divided by a possible maximum of this sum of differences (eq. 6). 
For calculating the network level degree centrality we use the unscaled scores of degree 
centrality. Using the scaled degree centrality scores would result in the same network 
level value, but additional scaling would be necessary. 
 
 

𝐶𝐷 =
∑ 𝐶𝐷(𝑢∗) − 𝐶𝐷(𝑢)𝑢=|𝑁|
𝑢=1

𝑚𝑎𝑥(∑ 𝐶𝐷(𝑢∗) − 𝐶𝐷(𝑢)𝑢=|𝑁|
𝑢=1 )

 
 

(6) 
 

 
In eq. 6 𝐶𝐷(𝑢) could be the symmetric or one of the three asymmetric unscaled degree 
centrality measures. 𝐶𝐷(𝑢∗) denotes the maximum value of the specific degree centrality 
of all nodes in the network. Freeman (1979) showed that the maximum possible value 
can be achieved in a star like network (similar to the scaling factor for scaled degree 
centrality). In the binary case when self-loops are ignored, the center of a star has a 
degree of |N|-1 and every other node has a degree of 1 resulting in a maximum value for 
eq. 6 of (|N|-1) · (|N|-2).Table 3 shows this maximum possible value for all combinations 
of the affected network characteristics. Again, the weighted case is created by 
multiplying the binary factor with the maximum line weight w* in the given network 
matrix. 
 

Table 3: Maximum possible value for calculating network level degree centrality  
 Symmetric/ 

Asymmetric 
Allow/Ignore 
Self-Loops Binary Weighted 

𝐶𝐷 symmetric ignore (|N|-1) · (|N|-2) (|N|-1) · (|N|-2) · w* 
𝐶𝐷 symmetric allow (|N|-1) · (|N|-1) (|N|-1) · (|N|-1) · w* 
𝐶𝐷_𝑖𝑛 𝑜𝑟 𝐶𝐷_𝑜𝑢𝑡 asymmetric ignore  (|N|-1)2 (|N|-1)2 · w* 
CD_in or CD_out asymmetric allow (|N|-1) · |N| (|N|-1) · |N| · w* 
CD_total asymmetric ignore (|N|-1) · (2|N|-4) (|N|-1) · (2|N|-4) · w* 
CD_total asymmetric allow (|N|-1) · (2|N|-3) (|N|-1) · (2|N|-3) · w* 
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5 Betweenness Centrality 
Technical name: Betweenness Centrality 
Commonsense name: Broker, Connector 
Main reference: Freeman (1977, 1979) 
Maximum theoretical: scaled: 1.0 unscaled: see Table 4 
Minimal theoretical: scaled: 0.0 unscaled: 0.0 
Description: Betweenness centrality measures the amount an actor is in an 

intermediate position between other nodes. High between 
actors connect different groups and have control over the flow 
of information in a network. 

 
Anthonisse (1971) saw the rush in a graph as the amount an agent in a network has to 
intermediate between other agents. Freeman (1977, 1979) defined betweenness 
centrality as one of the “three distinct intuitive conceptions of centrality” (Freeman, 
1979: 215). Betweenness centrality is often connected with the notion of control over the 
flow of information. Betweenness centrality is calculated by a breath-first search 
algorithm which calculates the shortest paths from every node to all other nodes (Brandes 
2001). The nodes which lie on these shortest paths are favored in the betweenness 
centrality score. Based on table 1 we have to consider the network characteristics of 
directed and weighted edges for calculating betweenness centrality. So, even though 
betweenness centrality is more complex than degree centrality, less network 
characteristics influence the result of betweenness centrality. The weights in a network 
are treated as distances in ORA when calculating the shortest paths through the network. 
Therefore, a path a – b – c connected by two edges with line value of 1 is shorter than a 
path a – d if the line value of this single edge is, e.g., 3.  
 
Before we start to discuss the impact of symmetric/asymmetric networks to betweenness 
centrality, we want to point the reader to an implication of the handling of line weights in 
ORA. In social network analytical research projects line weights are used in two different 
ways. First, as distances to describe, e.g., physical distances, time which information 
takes from node a to node b, or dissimilarities of node attributes. Second, as similarities 
to describe, e.g., the amount of interaction between nodes, emotional nearness, or the 
similarities of nodes. As mentioned in the previous paragraph, ORA treats line weights as 
distances. If the line weights of your data represent similarity information, you could 
either ignore the line weights when calculating betweenness centrality or transform the 
line weights, e.g., by subtracting from (w*+1). Note, that subtracting from w* would 
result in 0 values which are interpreted as the absence of a line. Another way to transform 
your data is to take the inverse (1/w) of every line weight > 0. However, you should be 
careful of the implications of applying betweenness centrality calculations to weighted 
networks. 

5.1  Unscaled Betweenness  Central i ty  
Betweenness centrality counts the number of shortest paths through a specific node and 
weights that path with the number of alternative existing shortest paths. Eq. 7 shows the 
definition of betweenness centrality. The two summations describe that the shortest paths 
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are calculated from every node to every other node. 𝑔𝑢,𝑣 is the number of shortest paths 
between two nodes 𝑢 and 𝑣 while 𝑔𝑢,𝑣(𝑘) is the number of shortest paths including node 
k. For symmetric networks Freeman (1979) defined betweenness centrality by just 
looking at the shortest paths from one half of the matrix. In asymmetric networks the 
results for the second half are different from the first, therefore, 𝑔𝑢,𝑣(𝑘)

𝑔𝑢,𝑣
 and 𝑔𝑣,𝑢(𝑘)

𝑔𝑣,𝑢
 are not 

identically and have to be calculated separately. 
 
 

𝐶𝐵(𝑘) = �
∑ ∑ 𝑔𝑢,𝑣(𝑘)

𝑔𝑢,𝑣

|𝑉|
𝑣=𝑢+1

|𝑉|
𝑢=1

∑ ∑ 𝑔𝑢,𝑣(𝑘)
𝑔𝑢,𝑣

|𝑉|
𝑣≠𝑢

|𝑉|
𝑢=1     

�  
symmetric networks 

(7) 
asymmetric networks 

5.2  Scaled Betweenness  Central i ty  
The unscaled betweenness centrality scores are generated by counting the number of 
times a node lies on the shortest paths of other nodes. To scale these values into the range 
of 0 and 1 which makes the results independent from the network size, we have to divide 
𝐶𝐵(𝑘) by the maximum possible score 𝐶𝐵𝑚𝑎𝑥 (eq. 8). 𝐶′𝐵(𝑘) denotes the scaled 
betweenness centrality of node k. 

 
 

𝐶′𝐵(𝑘) =
𝐶𝐵(𝑘)
𝐶𝐵𝑚𝑎𝑥

 
 

(8) 
 

 
The formulas to calculate the maximum possible values for symmetric and asymmetric 
networks are listed in table 4 and describe the node in the center of a star network 
(Freeman, 1977, 1979). The maximum score is a function of the number of total nodes of 
the network |N| and can be calculated by looking at all possible combinations of two 
nodes excluding the center of the stars. 
 

Table 4: Scaling factor for scaled betweenness centrality, 
identical to the maximum possible unscaled betweenness centrality 

 Symmetric Asymmetric 

𝐶𝐵𝑚𝑎𝑥 |𝑉|2−3|𝑉|+2
2

  |𝑉|2 − 3|𝑉| + 2  

5.3  Network Level  Betweenness  Central i ty   
The network level betweenness centrality of a network is defined the same way as the 
network level degree centrality measure (see eq. 6). We calculate the network level 
measure using the unscaled betweenness centrality node level scores. In eq. 9 𝐶𝐵(𝑢 ∗) 
denote the maximum betweenness centrality score of all the nodes in the network. Table 
5 shows the formulas to calculate the divisor of eq. 9. 

 
 

𝐶𝐵 =
∑ 𝐶𝐵(𝑢∗) − 𝐶𝐵(𝑢)𝑢=|𝑁|
𝑢=1

𝑚𝑎𝑥�∑ 𝐶𝐵(𝑢∗) − 𝐶𝐵(𝑢)𝑢=|𝑁|
𝑢=1 �

 
 

(9) 
 



15 
 

 
Table 5: Maximum possible value for calculating network level betweenness centrality  

 Symmetric Asymmetric 

𝑚𝑎𝑥�∑ 𝐶𝐵(𝑢∗) − 𝐶𝐵(𝑢)𝑢=|𝑁|
𝑢=1 �  |𝑉|2−3|𝑉|+2

2
∙ (|𝑉| − 1)  (|𝑉|2 − 3|𝑉| + 2) ∙ (|𝑉| − 1)  

6 Closeness Centrality 
Technical name: Closeness Centrality 
Commonsense name: - 
Main reference: Freeman (1979) 
Maximum theoretical: scaled: 1.0 unscaled: see Table 7 
Minimal theoretical: scaled: 0.0 unscaled: 0.0 
Description: Closeness centrality measures the nearness (as opposite from 

the distance) from an agent to all other agents. Agents having a 
high closeness score have short distances to all other nodes. 
This is important for the availability of knowledge and 
resources. 

 
Sabidussi (1966) described the sum of the shortest path distances from one node to every 
other node as the node’s farness. Freeman (1979) used this idea to define closeness 
centrality of a node as the inverse of Sabidussi’s farness. Nodes having a high closeness 
centrality are nearby all other nodes and have advantages in accessing resources in a 
network or having a good overview of the agents in a network. Table 1 shows that 
closeness centrality is affected by directed and weighted edges as well as by the question 
if the network is connected or not. In case of directed networks the closeness centrality 
defined by Freeman (1979) can be interpreted as out-closeness centrality because the 
calculation of the shortest paths follows the links just in the outgoing direction. 
Consequently we defined in-closeness by following the links in the opposite direction. In-
closeness centrality is the closeness is the reachability of an actor from the perspective of 
all other nodes. The characteristic of line weights is handled similar than for betweenness 
centrality (as distances). The most interesting related characteristic in the context of 
closeness centrality is the question whether the network is connected, or not. Freeman 
states in the context of closeness centrality, that “it is, of course, only meaningful for a 
connected graph” (Freeman, 1979: 225) because the distance of unreachable nodes is 
infinitely. We handle this fact by introducing penalty scores for unreachable nodes. 

6.1  Unscaled Closeness  Central i ty  
As mentioned above the closeness centrality of a node k is the inverse of the sum of the 
shortest path distances dk,u to all other nodes (eq. 10). In case of directed networks, in-
closeness centrality sums the shortest distances from all other nodes du,k to node k. In-
closeness centrality is equivalent to out-closeness centrality from the transposed network 
matrix. 
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𝐶𝐶(𝑘) = 𝐶𝐶_𝑜𝑢𝑡(𝑘) =

1
∑ 𝑑𝑘,𝑢

|𝑉|
𝑢=1

  
(10) 

 
 

 
𝐶𝐶_𝑖𝑛(𝑘) =

1
∑ 𝑑𝑢,𝑘

|𝑉|
𝑢=1

  
(11) 

 
 
The shortest path distance is just defined for nodes which are actually somehow 
connected through paths because if a node u is unreachable for node k the distance is 
infinitely. To be able to calculate closeness centrality also in unconnected networks,  
we introduce a penalty value for unreachable nodes. The idea is to add a value which is 
higher than the maximum possible distance in the network. The maximum possible 
distance in a connected and binary network is |N|-1 in case all nodes are arranged on a 
line where every node is just connected with its neighbors. Therefore, we use |N| as the 
penalty value. In weighted networks we have to multiply the number of nodes with the 
maximum line value in the matrix to ensure that no single shortest path could exceed this 
value. These penalty values are listed in table 6. 
 

Table 6: Penalty values for unreachable nodes for closeness centrality  
 Binary Weighted 
Penalty |𝑁| |𝑁|  ∙  𝑤∗ 

6.2  Scaled Closeness  central i ty  
Like other centrality measures, closeness centrality is scaled by dividing with the 
maximum possible value of the centrality (eq. 12). 
 
 

𝐶′𝐶(𝑘) =
𝐶𝐶(𝑘)
𝐶𝐶𝑚𝑎𝑥

 
 

(12) 
 

 
In eq. 12 𝐶𝐶𝑚𝑎𝑥 denotes the maximum possible value of the closeness centrality 
calculation. This maximum possible value could be found, once again, in the center of a 
start like network. Table 7 shows the scaling factor for binary and weighted networks. 
𝑤− is a representation of the minimum line weight in the network (the smallest non 0 
value in the network matrix). So, in weighted networks the shortest possible paths could 
be constructed in case one node is connected directly to all other nodes with the 
minimum possible path distance. 
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Table 7: Scaling factor for scaled closeness centrality 
identical to the maximum possible unscaled closeness centrality 

 
 Binary Weighted 

𝐶𝐶𝑚𝑎𝑥  
1

|𝑉|−1
  1

(|𝑉|−1)∙𝑤−  

6.3  Network Level  Closeness  central i ty   
Freeman (1979) defines the networks level closeness centrality using the scaled values of 
closeness centrality. Therefore, we do it the same way, even though, the formulas could 
be transformed easily and the results are identical. The network level closeness centrality 
follows the same formula like in the degree and betweenness case (eq. 13).  

 
 

𝐶𝐶 =
∑ 𝐶′𝐶(𝑢∗) − 𝐶′𝐶(𝑢)𝑢=|𝑁|
𝑢=1

𝑚𝑎𝑥�∑ 𝐶′𝐶(𝑢∗) − 𝐶′𝐶(𝑢)𝑢=|𝑁|
𝑢=1 �

 
 

(13) 
 

 
The maximum possible value for the network level measure is defined in eq. 14. Because 
we use the scaled values for calculating the network level closeness centrality it is not 
necessary to have separate scaling factors for binary and weighted networks.  

 
 

𝑚𝑎𝑥�∑ 𝐶′𝐶(𝑢∗) − 𝐶′𝐶(𝑢)𝑢=|𝑁|
𝑢=1 � = |𝑉|2−3|𝑉|+2

2|𝑉|−3
  

 (14) 
 

7 Eigenvector Centrality 
Technical name: Eigenvector Centrality 
Commonsense name: - 
Main reference: Bonacich (1972) 
Maximum theoretical: scaled: 1.0 unscaled: �0.5 
Minimal theoretical: scaled: 0.0 unscaled: 0.0 
Description: Eigenvector centrality is based on eigenvector calculation in 

linear algebra. Agents have a high eigenvector score if they are 
important and connected to other important agents.  

 
Beside the three basic centrality measures which were introduced by Freeman (1979) an 
additional fourth one is widely used, eigenvector centrality. Bonacich (1972) offers a 
centrality measure based on the algebraic method of eigenvector calculation. Eigenvector 
centrality is often connected with the notion of power or the idea that a node is important 
if it is connected to other important nodes. While degree centrality rewards all links 
equally, eigenvector centrality makes differences by including also the links of the 
neighbors and of the neighbors of the neighbors etc.  
 
When looking at table 1, we can see that Eigenvector centrality is affected by almost all 
network characteristics. The “No” in brackets for symmetric/asymmetric networks results 
from the fact that eigenvector centrality should not be calculated with asymmetric 
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networks because of the possibility of complex eigenvalues. Therefore, ORA 
automatically symmetrizes every network for the calculation of eigenvector centrality to 
guarantee real number results independently from the options described in section 2 and 
3. Self-loops and line weights are automatically handled by the algorithm to calculate 
different results for networks with these characteristics. The remaining characteristic we 
have to deal with is the case of unconnected networks. 
 
The case of unconnected networks is very tricky for eigenvector centrality because the 
results are all but intuitive in unconnected networks. Often the node scores in one or more 
components are all zero without the guarantee that nodes in the largest component 
actually get non-zero scores. Another oddity when looking at the results of eigenvector 
centrality without being a mathematician is that the highest score is given to a dyad (2-
node component), whereas one is usually interested in finding nodes embedded in larger 
components – which most likely have scores lower than those of the dyadic component. 
 
Because of these considerations, ORA offers two different eigenvector centrality 
calculations in case of unconnected networks. First, the standard eigenvector centrality 
with all the implications discussed in the previous paragraph. Second, eigenvector 
centrality per component which runs eigenvector centrality on each component 
independently; this means, extract each component one at a time and make it its own 
network, call eigenvector centrality and place the scores into a single result vector. To 
take the different component sizes into account the result value for every node is 
normalized (in addition to the normalization described in sub-section 7.2) with the 
component size by |Ni|/|N| where |Ni| is the size of the component including node i. In 
both cases the networks are symmetrized with the union/maximum method for the 
calculation. Both eigenvector measures are part of the key entity and the SNA report. 

7.1  Unscaled Eigenvector Central i ty  

The Eigenvector centrality of a node 𝑢, 𝐶𝐸  (𝑢) is defined as the linear combination of the 
eigenvector centrality of its neighbors: 
 
 𝐶𝐸  (𝑢) = 1

𝜆
∑ 𝑤𝑢,𝑣𝐶𝐸(𝑈)|𝑉|
𝑣=1    (15)  

 
where 𝜆 is a constant. We can rewrite the equation as: 
 
 𝜆𝐶𝐸 = 𝑊 ∙ 𝐶𝐸  (16)  
In eq. 16, 𝐶𝐸 is an eigenvector and W is the network matrix. For calculating eigenvector 
centrality 𝜆 is the largest eigenvalue of the adjacency matrix W and  𝐶𝐸 is the 
corresponding eigenvector. Note that W is always symmetrized before computing the 
measure which guarantees real (rather than complex) valued eigenvalues. 

7.2  Scaled Eigenvector  Central i ty  
Scaling eigenvector centrality follows the same logic as we discussed in the previous 
sections for the other centrality measures. But, instead of the star like network with the 
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highest possible score, the maximum possible value of eigenvector centrality occurs 
when the network consists of a single dyad.  
 

𝐶′𝐸(𝑘) = 𝐶𝐸(𝑘)
𝐶𝐸𝑚𝑎𝑥       with 𝐶𝐸𝑚𝑎𝑥 =  √0.5 

 
(17) 

 

Independently from the network size, the maximum value is always �0.5. Consequently, 
we use this value to scale the unscaled values of eigenvector centrality.  

7.3  Network Level  Eigenvector Central i ty  
For the network level of eigenvector centrality, once again, we have to take into 
considerations the maximum possible differences between the node with the highest 
score and all other nodes. 
 
 

𝐶𝐸 =
∑ 𝐶𝐸(𝑢∗) − 𝐶𝐸(𝑢)𝑢=|𝑁|
𝑢=1

𝑚𝑎𝑥�∑ 𝐶𝐸(𝑢∗) − 𝐶𝐸(𝑢)𝑢=|𝑁|
𝑢=1 �

 
 

(18) 
 

 
This maximum difference can be achieved in a network with a single dyad and no other 
links which leads to eq. 19: 
 
 

𝑚𝑎𝑥�∑ 𝐶𝐸(𝑢∗) − 𝐶𝐸(𝑢)𝑢=|𝑁|
𝑢=1 � =  √0.5 ∙ (|𝑁| − 2)   

 
(19)  

8 Clustering Coefficient 
Technical name: Clustering Coefficient 
Commonsense name: - 
Main reference: Watts and Strogatz (1998) 
Maximum theoretical: 1.0  
Minimal theoretical: 0.0  
Description: The Clustering coefficient measures the local density of every 

agent. Agents with a high clustering coefficient are connected 
to neighbors which are more likely connected to each other. 

 
In the previous sections we discussed how to handle the four most important centrality 
measures in case of weighted, asymmetric, self-looped, and disconnected networks. The 
last measure we want to discuss in this report is the clustering coefficient. The clustering 
coefficient is not a centrality measure. It describes the density of the ego-network for 
every node. Watts and Strogatz (1998) used this measure to discuss a very important 
characteristic of real world social networks consisting of humans, the tendency that there 
is a higher probability that the nodes which have the same neighbors are connected with 
each other. The local density of social networks is also connected to the idea of weak and 
strong ties (Granovetter, 1973). While strong ties are more likely strongly embedded in 
the social network of a person, weak ties often reach into different areas of the network. 
The fraction of these strong and weak ties of a node influences the clustering coefficient 
of a node. 
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Because the clustering coefficient can be described as a local density measure, table 1 
tells us that it is affected by two network characteristics, self-loops, and 
symmetric/asymmetric links. 

8.1  Node Level  Clustering Coefficient 
The density of a network (Wasserman & Fast, 1995) is defined as the number of actual 
links in a network divided by the number of possible links. As the clustering coefficient 
for a node is the density of the ego-network of this node (without the node itself). Watts 
and Strogatz (1998) defined the clustering coefficient CC(v) of a node p in simple 
networks as follows. For a vertex v with kv neighbors, these neighbors can have at most 
kv*(kv - 1)/2 edges. The clustering coefficient for the node v is the number of actual links 
between the kv neighbors divided by the maximum possible number. To expand this 
concept to directed networks which can have self-loops we generalize the equation from 
Watts and Strogatz to 
 
 

𝐶𝐶 (𝑢) = �𝐸𝑣,𝑤�
�𝐸𝑣,𝑤�

∗     𝑤𝑖𝑡ℎ 𝑒𝑢,𝑣 , 𝑒𝑢,𝑤 ∈ 𝐸.  
 (20) 
 

 
|Ev,w| is the number of actual links between the neighbors of u. |Ev,w|* is the number of 
maximal possible links between these neighbors which is a function of the number of 
neighbors |Nu| of the node u and the characteristics of the network. Table 8 shows the 
calculation of |Ev,w|* for the combinations of symmetric/asymmetric and allow/ignore 
self-loops. In asymmetric networks the whole sub-matrix is part of the calculation while 
in the symmetric case just one half is considered. The right column of table 8 is the left 
column increased by the diagonal elements of the matrix. 
 

Table 8: The maximum possible links to calculate the clustering coefficient 
 Ignore Self-Loops Allow Self-Loops 

Symmetric |𝑁𝑢|∙(|𝑁𝑢|−1)
2

  |𝑁𝑢|∙(|𝑁𝑢|−1)
2

+ |𝑁𝑢|  

Asymmetric |Nu|² - |Nu| |Nu|² 

 
Table 8 describes also which cells of the sub-matrix are included in the calculation of 
|Ev,w|. In case of networks with self-loops the results of the clustering coefficient 
calculation can be all but obvious at first sight (see case studies in section 9). 

8.2  Graph Level  Clustering Coeff icient:  
The network level measure for the clustering coefficient is easily defined as the average 
clustering coefficient of all node level scores in the network: 
 
 

𝐶𝐶 = 1
|𝑁|
∑ 𝐶𝐶(𝑢)𝑢=|𝑁|
𝑢=1    

(21)  
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9 Case Studies 

9.1 Example Network 
In the following pages we show the results of measure calculations discussed in this 
article. We therefore construct a small network consisting of 6 nodes which covers the 
different network characteristics. Figure A1 shows a visualization of this case study 
network. In table A1 the matrix representation of this network can be found. The network 
is weighted, directed, contains self-loops, and consists of two unconnected components. 
For every measure, we first calculate the centrality measure considering all these network 
characteristics by setting the primary measure parameters to “Auto-detect” (see section 
3.3). Second, we tell ORA to ignore the characteristics one after the other by setting the 
specific parameter to “True”; we also calculate the measure for the case of ignoring all 
characteristics at once (the simple network). Columns which are drawn with a gray 
background are those which affect the measure calculation (see table 1). The 
characteristic “multiple components” is not a primary measure parameter, but it 
influences the results of two measures. Third, we calculate the measures with UCINET to 
compare the results with the ORA results and discuss possible difference. All calculations 
are accomplished with ORA 2.3.5 and UCINET 6.346. The results in UCINET are in the 
range [0-100]; the ORA scale range is [0-1]. To change the scale range of ORA see 
section 3.4. 

 
Figure A1: Network for the case studies 

 
Table A1: Matrix form of the network for the case studies 

 Agent_1 Agent_2 Agent_3 Agent_4 Agent_5 Agent_6 
Agent_1 0.0 1.0 5.0 0.0 0.0 0.0 
Agent_2 0.0 1.0 3.0 0.0 0.0 0.0 
Agent_3 0.0 0.0 0.0 1.0 0.0 0.0 
Agent_4 0.0 0.0 3.0 1.0 0.0 0.0 
Agent_5 0.0 0.0 0.0 0.0 0.0 1.0 
Agent_6 0.0 0.0 0.0 0.0 1.0 0.0 

9.2  Degree Central i ty   
The characteristics which affect degree centrality are allow/ignore self-loops, 
symmetric/asymmetric, and binary/weighted. In the case study network agent 2 and agent 
4 have self-loops with a link value of 1. The links are directed, therefore, every node has 
an in-degree (links pointing to a node) and an out-degree (links pointing from a node). 
The line weights change the degree centrality calculations from counting the links to 
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summing up the link weighs. For this case study, we select out-degree centrality. Of 
course, the column “Treat as Symmetric” and “Treat as Simple” represents the symmetric 
degree centrality. 
 
Differences ORA/UCINET 

• Degree centrality calculation in UCINET offers the following options. 1) Treat 
data as symmetric. 2) Include Diagonal Values.  

• The “treat as binay” is not available in UCINET as an option when calculating 
degree centrality. 

• The results considering all characteristics are identical. Using the two UCINET 
option similar than the ORA primary measure settings also provides identical 
results. 

• UCINET does not offer total degree centrality 
 

Table A2: Case study out-degree centrality 
 Consider All 

Characteristics 
Treat as 

Symmetric 
Treat as 
Binary 

Ignore 
Self-Loops 

Treat as 
Simple UCINET 

Agent1 0.200 0.200 0.333 0.240 0.400 20.0 
Agent2 0.133 0.167 0.333 0.120 0.400 13.3 
Agent3 0.033 0.367 0.167 0.040 0.600 3.3 
Agent4 0.133 0.133 0.333 0.120 0.200 13.3 
Agent5 0.033 0.033 0.167 0.040 0.200 3.3 
Agent6 0.033 0.033 0.167 0.040 0.200 3.3 
Network 0.127 0.304 0.100 0.168 0.400 12.7% 

9.3  Betweenness  Central i ty  
Betweenness centrality is affected by symmetric/asymmetric and binary/weighted. The 
importance of both characteristics is covered by the left component of the case study 
network. Asymmetric links limit the numbers of the possible shortest paths, e.g. agent 4 
is reachable from agent 2, but not the vice versa. The link weights (which are interpreted 
in ORA as distances, see section 5) change the shortest path between agent 1 and agent 3. 
These two nodes are directly connected which is, of course, the shortest path in the binary 
case. In the weighted case the shortest path from agent 1 to agent 3 is the path via agent 
2. Therefore, agent 2 gets a non-zero betweenness centrality score. 
 
Differences ORA/UCINET 

• UCINET automatically binarizes the network. Therefore, the “treat as binary” 
column of the ORA results is identical with the UCINET result. 

 
Table A3: Case study betweenness centrality 

 Consider All 
Characteristics 

Treat as 
Symmetric 

Treat as 
Binary 

Ignore 
Self-Loops 

Treat as 
Simple UCINET 

Agent1 0.000 0.000 0.000 0.000 0.000 0.0 
Agent2 0.100 0.200 0.000 0.100 0.000 0.0 
Agent3 0.100 0.200 0.100 0.100 0.200 10.0 
Agent4 0.000 0.000 0.000 0.000 0.000 0.0 
Agent5 0.000 0.000 0.000 0.000 0.000 0.0 
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Agent6 0.000 0.000 0.000 0.000 0.000 0.0 
Network 0.080 0.160 0.100 0.080 0.200 10.0% 
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9.4  Closeness  Central i ty  
The characteristics symmetric/asymmetric, binary/weighted, and connected/disconnected 
affect closeness centrality calculation. The first two characteristics are covered identically 
for betweenness centrality calculation in the case study network. Connected/disconnected 
is covered by two artifacts - by the two components and by unreachable nodes (e.g. agent 
2 cannot reach agent 1). For the case study of closeness centrality we calculate out-
closeness centrality. 
 
Differences ORA/UCINET 

• Both tools offer in-closeness and out-closeness centrality in case of directed 
networks. 

• UCINET automatically binarizes the network. Therefore, the UCINET result 
fits the ORA result when the network is treated as binary. 

• UCINET does not compute network level closeness centrality for unconnected 
graphs. 

• The penalties for unreachable nodes are treated identically in UCINET and in 
ORA (see section 6). 

 
Table A4: Case study out-closeness centrality 

 Consider All 
Characteristics 

Treat as 
Symmetric 

Treat as 
Binary 

Ignore 
Self-Loops 

Treat as 
Simple UCINET 

Agent1 0.071 0.069 0.313 0.071 0.313 31.3 
Agent2 0.052 0.071 0.238 0.052 0.313 23.8 
Agent3 0.041 0.071 0.200 0.041 0.333 20.0 
Agent4 0.041 0.066 0.200 0.041 0.294 20.0 
Agent5 0.041 0.041 0.200 0.041 0.200 20.0 
Agent6 0.041 0.041 0.200 0.041 0.200 20.0 
Network 0.063 0.031 0.236 0.063 0.156 - 

9.5  Eigenvector Central i ty  
The calculation of eigenvector centrality is influenced by the characteristics allow/ignore 
self-loops, binary/weighted, and connected/disconnected. In section 7 we discussed why 
eigenvector centrality automatically treats every network as symmetric. Allow/ignore 
self-loops and binary/weighted are covered by the algorithm itself. For disconnected 
networks we offer the calculation of eigenvector centrality per component.  
 
Differences ORA/UCINET 

• Eigenvector centrality is always calculated with symmetric networks in both 
tools. ORA as well as UCINET symmetrize the network for the calculations 
automatically.  

• UCINET offers the option “Force majority of scores to be positive”. ORA does 
this automatically because we think that there is no useful case for deselecting this 
option. 

• The node level results in ORA and UCINET are identical. 
• UCINET tells you that the network level measure is “uninterpretable for 

disconnected graphs”. The score >100 % results in a different (and not optimal) 
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equation than we described in section 7 of this article. The calculations of ORA 
guarantees node and network level results in the range of [0-1]. 

• Eigenvector centrality per component avoids components with zero-values for all 
nodes. 

• We discussed in section 7 that a network consisting of a single dyad results in the 
maximum possible eigenvector score. This makes agent 5 and 6 more important 
that agent 4. We selected this network to show the drawback of calculating 
eigenvector per component. If the other component(s) were larger the additional 
scaling would compensate for this artifact. Nevertheless, if your network consists 
of a couple of smaller components, we suggest removing all components with the 
size 1 or 2 before using the eigenvector centrality per component. 

 
Table A5: Case study eigenvector centrality 

 Consider All 
Characteristics 

Treat as 
Symmetric 

Treat as 
Binary 

Ignore 
Self-Loops 

Treat as 
Simple 

Per 
Component UCINET 

Agent1 0.741 0.741 0.635 0.775 0.739 0.349 74.1 
Agent2 0.580 0.580 0.880 0.531 0.739 0.273 58.0 
Agent3 0.950 0.950 0.769 0.970 0.865 0.448 95.0 
Agent4 0.460 0.460 0.482 0.419 0.399 0.217 46.0 
Agent5 0.000 0.000 0.000 0.000 0.000 0.236 0.0 
Agent6 0.000 0.000 0.000 0.000 0.000 0.236 0.0 
Network 0.742 0.742 0.628 0.781 0.612 0.232 107.4% 

9.6  Clustering Coeff icient 
We treat the clustering coefficient in a way that its results are affected by two 
characteristics, allow/ignore self-loops and symmetric/asymmetric. The obvious local 
clustering is covered in the left component (the triangle created by agents 1, 2, and 3). 
But also self-loops influence the results of the clustering coefficient (see section 8).  
 
Differences ORA/UCINET 

• When calculating the clustering coefficient UCINET takes other 
characteristics into consideration than ORA. Self-loops are always ignored, 
but on the other hand the characteristic binary/weighted changes the UCINET 
result. The characteristic symmetric/asymmetric is coverted by both tools. To 
generate the same outcome in ORA self-loops have to be ignored and in 
UCINET the network has to be binarized. 

• UCINET does not scale the results for clustering coefficient into the range [0-
1] or the range [0-100]. 

• UCINET offers the information that the transitivity measure in UCINET can 
be a weighted network level measure for the clustering coefficient. 
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Table A6: Case study clustering coefficient 

 Consider All 
Characteristics 

Treat as 
Symmetric 

Treat as 
Binary 

Ignore 
Self-Loops 

Treat as 
Simple UCINET 

Agent1 0.500 0.667 0.500 0.500 1.000 1.500 
Agent2 0.250 0.333 0.250 0.500 1.000 2.500 
Agent3 0.333 0.500 0.333 0.167 0.333 0.167 
Agent4 0.000 0.000 0.000 0.000 0.000 0.000 
Agent5 0.000 0.000 0.000 0.000 0.000 0.000 
Agent6 0.000 0.000 0.000 0.000 0.000 0.000 
Network 0.181 0.250 0.181 0.194 0.389 1.389 

10 Conclusions 
In this article we discussed the handling of weighted, asymmetric, self-looped, and 
disconnected networks in ORA. We enumerated the impact of these characteristics on the 
five widely used measures in the field of social network analysis. The considerations in 
the context of the different measures resulted in different formulas for different 
combinations of the network characteristics. In the case studies we calculated the 
measures in ORA with different settings and compared the results with measure 
calculated by UCINET.  
 
The causes for different results in ORA when applying different settings for the primary 
measure parameters but also the possible differences between results in ORA and results 
of other tools for social network analysis (e.g. UCINET) can be summarized to three 
underlying reasons. These three reasons can change the scores of measures on the node 
level and subsequently on the network level, but the first one (different scaling) does not 
influence the ranking of the nodes and is therefore a minor issue. 
 

1. Different scaling results in different scaled scores. E.g., including the self-loops 
when calculating scaled degree centrality changes the scaling factor (see section 
4.2). 

2. Different interpretation of a measure consequences altered algorithms. E.g., self-
loops are treated in ORA as one line which is counted for in-degree and for out-
degree, but just one time for total degree. In contrast, it would be also possible to 
create total degree by summation of in- and out-degree. This would count self-
loops twice which influence the scaling factor. 
 

3. Different handling of data artifacts changes the results of measure calculations. 
The vast majority of formulas for non-simple networks which are enumerated in 
this article are not discussed in the original papers. Therefore, different groups of 
researchers can interpret the handling of network characteristics differently, e.g., 
unreachable nodes in closeness centrality. Often, there is no “right” and “wrong”, 
but the user has to know what is going on in different tools. 

 
Table A7 shows the differences of handling weighted, asymmetric, self-looped, and 
disconnected networks in ORA and UCINET. When calculating measures there is one 
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major difference based in the logic of the tools. UCINET offers handling of some 
network characteristics for different measures individually. In ORA the primary measure 
parameters are global settings which affect every single measure the same way. This 
should result in a more stable and consistent handling of the network characteristics. 
Looking at the results of calculations of the discussed measures using ORA and 
UCINET, we can summarize the following differences. About half of the different results 
for degree centrality can be reproduced identically in both tools. UCINET does not offer 
a “treat as binay” option or the calculation of the total degree centrality. When looking at 
betweenness and closeness centrality, the handling of weighted data in ORA is a very 
important and distinctive feature which changes the way shortest paths are calculated. 
The handling of unreachable nodes when calculating closeness centrality is treated 
identically as well as the scaling of eigenvector centrality on node level. The clustering 
coefficient is interpreted differently in ORA and in UCINET; ORA’s local density 
interpretation is un-weighted but includes self-loops, while UCINET considers weights 
but no self-loops.  
 

Table A7: Differences ORA/UCINET 
 ORA UCINET 
Handling of network 
characteristics 

global parameters  
for all measures 

individual handling in context of 
some measures 

Scaling of network options 0 – 1 
0 – 100 0 – 100 

Measures scaled  
in 0-1 or 0-100 range 

degree centrality 
betweenness centrality 

closeness centrality 
eigenvector centrality 
clustering coefficient 

degree centrality 
betweenness centrality 

closeness centrality 

Degree centrality  
options 

allow/ignore self-loops 
symmetric/asymmetric 

binary/weighted 

allow/ignore self-loops 
symmetric/asymmetric 

Degree centrality  
variations 

degree centrality 
in-degree centrality 

out-degree centrality 
total degree centrality 

degree centrality 
in-degree centrality 

out-degree centrality 

Betweenness centrality  
options 

symmetric/asymmetric 
binary/weighted symmetric/asymmetric 

Closeness centrality  
options 

symmetric/asymmetric 
binary/weighted symmetric/asymmetric 

Closeness centrality  
variations 

closeness centrality 
in-closeness centrality 

out-closeness centrality 

closeness centrality 
in-closeness centrality 

out-closeness centrality 
Closeness centrality 
Penalty for unreachable nodes |𝑁|  ∙  𝑤∗ |𝑁|  ∙  𝑤∗ 

Eigenvector centrality  
options 

allow/ignore self-loops 
binary/weighted 

connected/disconnected 

allow/ignore self-loops 
binary/weighted 

Eigenvector centrality 
handling negative scores avoid automatically avoid optionally 

Clustering coefficient  
options 

allow/ignore self-loops 
symmetric/asymmetric 

symmetric/asymmetric 
binary/weighted 
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Almost all differences between UCINET and ORA can be aligned with the primary 
measure settings in ORA or the parameters of some UCINET measures. When looking at 
these differences, one can state that ORA gives you more options to handle your non-
simple networks more precisely the way you want to handle them. On the other hand, 
having more option also gives you more responsibility. Complex networks and different 
options of handling these networks require a deeper understanding of the applied network 
measures. This article should help you to better understand the different characteristics of 
network data and the implications of these characteristics to network measures, but it also 
should increase your awareness of your weighted, asymmetric, self-looped, and 
disconnected networks. Consequently, our final words with which to send you on your 
way to your network analytical projects are: Know your data, know your measures. 
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