

Developing and Building CASOS’
Construct Simulation Development Environments

Michael J. Lanham, Kenneth Joseph,
Geoffrey P. Morgan, Kathleen M. Carley

December 2014
CMU-ISR-14-115

Institute for Software Research

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

 Center for the Computational Analysis of Social and Organizational Systems
CASOS technical report.

This work was supported in part by the IRS project in Computational Modeling, the Air Force Office of Sponsored
Research (MURI FA9550-09-1-001 mathematical methods for assisting agent-based computation), and the NSF
IGERT in CASOS (DGE 997276). In addition support for Construct was provided in part by Office of Naval
Research (N00014-06-1-0104 and MURI N000140-81-1-186 a structural approach to the incorporation of cultural
knowledge in adaptive adversary models), and the National Security Agency and Army Research Office
(W911NF1310154) . Additional support was provided by the Air Force Office of Sponsored Research (MURI
N00014-08-1-1186 cultural modeling of the adversary). Further support was provided by CASOS - the Center for
Computational Analysis of Social and Organizational Systems at Carnegie Mellon University. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Internal Revenue Service, the National Science Foundation, the
Office of Naval Research, the Air Force Office of Sponsored Research, or the U.S. Government.

ii

Keywords: Development Environment, Construct, Integrated Development
Environment, Git, Distributed Version Control

iii

Abstract

This technical report provides instructions and guidance to a developer and researcher on
how to the setup a development environment to compile, extend, and use Construct. The
report provides a complete listing of the tool chain needed in the Windows environment
to include Git™, CMake™, Boost, Microsft Visual Studio™. It’s primary audience is the
CASOS student population, the CASOS staff programmers, and the Carley Tech
programming staff. This documentation will reduce the on-ramp time for new developers
from several days of discovery learning to two (2) to (4) hours of structured learning.

iv

v

Table of Contents
1 System Environments ... 1

2 Preparatory Work .. 1

2.1 Access to CASOS Git Servers’ Projects .. 1

2.2 3rd Party Libraries and Tools .. 1

2.2.1 32-bit Boost ... 1

2.2.2 64-bit Boost and Boost Unit_Test... 3

2.2.3 Version Control and Source Code Management .. 4

2.2.4 Microsoft Visual Studio 10 ... 4

2.2.5 CMake ... 4

2.2.6 Doxygen .. 5

2.3 Build Development Directory Structure .. 5

2.4 Checkout Development Source Code .. 5

2.4.1 CASOS’ Basic Development and Source Code Revision Workflow 7

2.4.2 CASOS’ Feature Branch Workflow with Git ... 8

3 Build Construct Libraries and Executable .. 9

3.1 CMake and build directories .. 9

3.2 Use of CMake and 64-bit Windows compilation preparation.. 11

3.3 Use of CMake and 32-bit Windows compilation preparation.. 13

3.4 Use of Visual Studio to build and link Construct... 14

3.5 Use of CMake and 64-bit BSD compilation .. 15

3.6 Use of CMake and 32-bit BSD compilation .. 16

4 Unit Tests for Construct .. 16

4.1 CMake configured Unit Tests .. 16

4.2 Running Construct Unit Tests .. 16

4.3 Add new test case(s) to the test harness ... 17

4.4 MS Visual Studio Test Professional .. 18

5 Profiling Construct .. 18

5.1 “Very Sleepy” Profile Tool .. 18

5.2 Microsoft’s Profile Tool ... 18

6 Conditional Compilation & Pre-Processor Statements ... 18

vi

1

1 System Environments
CASOS students have validated this technical report’s contents for the following
environments:

• Quad-core Intel Xeon with Win 7 Enterprise 64-bit (using CMU’s SCS standard
image as far as I know), 12GB RAM

• MacBook Pro Core 2 Duo with OS X 10.6.8, Parallels 6 + Windows 7 Professional
32 bit, 4GB RAM

• Most frequently used development environment:

• Visual Studio 2010 Premium + CMake + Boost Library
• Visual Studio 2010 Professional + CMake + Boost Library
• In brief: CMake is a wrapper for make that allows a developer to more rapidly

create make files for various environments (e.g., Visual Studio, Cygwin,
Linux/Unix).

2 Preparatory Work

2.1 Access to CASOS Git Servers’ Projects
Secure access to CASOS Git Servers for the following Projects with a userName

and password.
userName@hal1.casos.cs.cmu.edu:/usr/git/netstatplus.git
userName@hal1.casos.cs.cmu.edu:/usr/git/eigen.git
userName@hal1.casos.cs.cmu.edu:/usr/git/casos_utils.git
userName@hal1.casos.cs.cmu.edu:/usr/git/tinyxml.git
userName@hal1.casos.cs.cmu.edu:/usr/git/construct.git

2.2 3r d Party Libraries and Tools
2.2.1 32-bi t Boost

Get the 32-bit c++ boost from http://www.boost.org/. As of August 2014, the up-to-
date 32-bit version of the windows installer is 1.56.0 at
http://www.boost.org/users/history/version_1_56_0.html. Install Boost following
instructions in its Getting Started Guide.

Mike Lanham chose the MS Visual Studio 2010 version, all the libraries (as of 21
Mar 12) and accepted the defaults of the installer from this point forward. The default
installation directory was C:\Program Files (x86)\boost\boost_1_56

The use of CMake and CMakeFiles configuration files includes the boost libraries
(with headers of the format <boost/foo.h>) into the source so the steps below to add its
bin directory to your PATH should not be necessary. The steps are in the technical report
to facilitate a user doing so should they need to.

http://www.boost.org/
http://www.boost.org/users/history/version_1_56_0.html
http://www.boost.org/doc/libs/release/more/getting_started/index.html

2

1. Control Panel-->System
2. Select Advanced System Settings (on the left side of the screen)

Figure 1 Screen Shot of Windows 7 Control Panel with Advanced system settings displayed

3. Select Environment Variables as shown in Figure 2.
4. In the System variables portion of the window, select Path and Edit to add

the directory to the path as shown in Figure 3.

3

Figure 2 Screen Shot of System Properties

Window

Figure 3 Screen Shot of Environment

Variables Window

For other projects, you will likely need to add boost to your MS Visual Studio
Projects’ settings. The namespace for boost functions/capabilities is boost:: The steps to
add boost to your VS project are shown below:

1. Right-click your project in the Solution Explorer pane and select Properties from the
resulting pop-up menu

2. In Properties > C/C++ > General > Additional Include Directories, enter the path to
the Boost root directory, for example: C:\Program Files\boost\boost_1_56\boost

3. In Configuration Properties > C/C++ > Precompiled Headers, change Use
Precompiled Header (/Yu) to Not Using Precompiled Headers.

4. Be sure source code has #include <boost/regex.hpp> (or whatever other header you
want to use)

2.2.2 64-bi t Boost and Boost Uni t_Test
The download above of the 32-bit version includes the source code needed to build

64bit libs.

Open a command prompt as administrator and cd into the directory you just
unzipped (C:\Program Files (x86)\boost\boost_1_56_0\). At the command prompt type
the following commands:
.\bootstrap
.\b2 --build-type=complete --without-python --without-mpi
address-model=64 -j5 install

4

This should build the complete boost library, -j5 will use 4 CPUs (5 threads) to
compile, the address-model parameter ensures you build a 64-bit version (the lack of
th ’--’ in front of that parameter is intentional and critical). This will also install by
default into c:\boost. It also installs c:\boost\include\boost-1_56\boost
and c:\boost\lib. The build-type parameter specifies to build both static and
dynamic libraries.

If you install elsewhere, be sure to update the CMakeLists.txt file in the
experimental_branch to reflect the alternate location. Be Warned: Mike Lanham had zero
(0) success getting VS to find the 64-bit boost libraries when I tried to install into
c:\program files (x86)\boost\boost-1_56\lib64 (aka
c:\progra~2\boost\boost-1_56\lib64).

2.2.3 Version Control and Source Code Management
CASOS has moved to Git from SVN for managing its code. Git is a distributed

versioning system, unlike SVN which is a hub-and-spoke versioning system. CASOS had
previously been using SVN and encouraged users to install and use TortoiseSVN as their
primary client.

If the user/developer has Cygwin installed, it is likely that they also have git
installed. If git is not within the Cygwin environment, the developer can re-run the
Cygwin setup.exe application to add-to or update the Cygwin environment.

A Windows client for Git is available from http://msysgit.github.io/ (the download
page usually lists a number of versions and is located at
https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git). Install
this software accepting the provided defaults. This installer will install two (2) flavors of
clients, one for command line and one GUI.

Alternatively, or in addition to Git for Windows, you can install TortoiseGit from
https://code.google.com/p/tortoisegit/ (more accurately from
https://code.google.com/p/tortoisegit/wiki/Download). TortoiseGit will provide windows
explorer based capabilities to interact with Git.

A Macintosh OS X Git client available in the Apple ™ App store is called
SourceTree and is free to download and install.

2.2.4 Microsof t Visual Studio 10
Download and install Microsoft Visual Studio 10 or newer from whatever source is

legitimately available to the reader.

2.2.5 CMake
Download and install CMake from http://cmake.org/cmake/resources/software.html.

Mike Lanham used the following directory for installation of C:\Program Files
(x86)\CMake_3.01.

http://msysgit.github.io/
https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git
https://code.google.com/p/tortoisegit/
https://code.google.com/p/tortoisegit/wiki/Download
http://cmake.org/cmake/resources/software.html

5

2.2.6 Doxygen
Get and download Doxygen from

http://www.stack.nl/~dimitri/doxygen/download.html. Mike Lanham accepted the default
directory, and by default, that dir is added to the PATH environment variable.

As of August 2014, the current version is 1.8.7.

2.3 Build Development Directory Structure

1. Within your Visual Studio 2010\Projects directory, create a directory
called CASOS_code. Within this directory you will create four (4) sub-directories.

2. Create a sub-directory named casos_utils.
3. Create a sub-directory named construct.
4. Create a sub-directory named eigen.
5. Create a sub-directory named netstatplus.
6. Create a sub-directory named tinyxml.

Figure 4 below is a screen shot of the directory structure you should have built.

Figure 4 Screen Shot of Development Directory Structure

2 .4 Checkout Development Source Code

For each directory in CASOS_Code, clone the four (4) repositories listed in Section
2.1. The easiest way to do this is to use the Windows command line. As of August 2014,
Git GUI for Windows ver. 0.19.GITGUI does not appear to support specifying which
branch to check out.

As a duplicable example, to check out the experimental branch of the tinyxml
source code, open a Windows Command prompt from the Windows Start menu (for Win
7 and below), open the Git Bash command prompt. See also Figure 5.

Change directories using the cd command to the directory structure you created in
section 2.3.

http://www.stack.nl/~dimitri/doxygen/download.html

6

cd “documents\Visual Studio 2010\Projects\CASOS_code”

Still using the command line version of git, clone from the CASOS master
repository to a local repository and specify the CMU branch for each cloned repository as
shown in the example below. After prompting for a password, and assuming entry of a
valid password for the valid user identity, git will download the specified branch to the
specified directory.
git clone ––progress –v
mlanham@hal1.casos.cs.cmu.edu:/usr/git/casos_utils.git -b
CMU .\casos_utils

The –b switch specifies the branch to clone. See also Figure 6. As of August 2014,
the password the git server expects is the your School of Computer Science (SCS)
Kerberos password. Do not use your Windows™ Active Directory™ (AD) SCS
password.

Figure 5 Start Git Bash command prompt

Figure 6 Git clone command line of specified branch to specified directory

It is now feasible for the user to shift to the Git GUI for Windows if the user desires
a GUI instead of a CLI. To do so, select the “Git GUI” icon from the windows start menu
(Win 7 and earlier).

7

Figure 7 Select Git GUI from Windows Start Menu

Figure 8 Select Open Existing Repository from Git GUI

Figure 9 Browse to the cloned repository directory

Figure 10 Open Selected Repository

Figure 11 Git for Windows GUI view of
Construct repository

2.4.1 CASOS’ Basic Development and Source Code Revis ion Workf low
CASOS is using the Git Feature Branch Workflow for Construct described at the

following URL: https://www.atlassian.com/git/workflows. For users familiar with the
centralized version control methods of SVN, this is very similar process.

The most basic code authoring process follows the Centralized Workflow process
using the list of steps below. When developing new features for the Construct code base,
researchers should use the Feature Branch discussed in Section 2.4.2.

1. Clone repository (akin to SVN checkout)
2. Commit local changes to local repository as development proceeds
3. Decide development changes need to return to the central server and the master

development line (in this exemplar, the central server is hal1.casos.cs.cmu.edu).
Now follow the sub-process below:

https://www.atlassian.com/git/workflows

8

1. Rebase the local copy using the following command to pull changes from the master
server to the local repository. This command and process is akin to a SVN Update where
a developer pulls changes from the repository before committing their own changes. This
increases the likelihood that the developer will notice and resolve conflicts before
attempting to commit their own changes.

git pull -–rebase origin master

2. Resolve any existing conflicts between the master line on the central server and the
local master development line.

3. Send the local changes to the central repository using the following command.

git push origin master

A set of diagrams that depicts this centralized workflow is at the
following URL: https://www.atlassian.com/git/workflows#!workflow-
centralized.

2.4.2 CASOS’ Feature Branch Workf low with Git
When developing new features for the Construct code base, researchers and

developers should use the Feature Branch discussed at the following URL:
https://www.atlassian.com/git/workflows#!workflow-feature-branch. This workflow
takes advantages of a few of Git’s strengths. The intent is to have researchers and
developers author new features of construct within their new-feature branches on
personal systems. This isolation of developmental code from the main development line
reduces the probability of an author pushing their incomplete code into the master
development line on the primary server.

The steps below presume that a developer has already cloned the master
development line from the central repository.

1. Create an isolated development branch using the command below

git checkout –b my-feature-branch master

2. Commit local changes to local repository as development proceeds
3. Decide development changes need to return to the central server (in this exemplar, it remains

hal1.casos.cs.cmu.edu), though not yet to the master development line. This step
facilitates the sharing of the specialty code with other developers that are collaborating on the
feature development. Use the command below the first time a developmental branch returns
to the central server.

git push –u origin my-feature-branch

https://www.atlassian.com/git/workflows#!workflow-centralized
https://www.atlassian.com/git/workflows#!workflow-centralized
https://www.atlassian.com/git/workflows#!workflow-feature-branch

9

4. Subsequent pushes of my-feature-branch use a shorter version of the command as shown
below.

git push

5. CASOS does not operate an automated mechanism to have one developer send a pull-
request to other developers. However, when a contributing developer is satisfied that the
functionality within the my-feature-branch is ready for incorporating back into the ‘master’
development line, they can send an email to the person(s) CASOS designates as the quality
assurance/quality control (QA/QC) point of contact (POC). The email can answer the 5 W’s
(i.e., who, what, why, when, where) and can form the basis of the commit log in the master
development line.

6. The QA/QC POC will follow the four (4) step sequence of steps below to integrate the
master development line and the my-feature-branch.

git checkout master
git pull
git pull origin my-feature-branch
git push

This process will cause the QA/QC POC’s git client to shift to the master
development line. Then retrieve any updates to that line from the central repository. Then
pull the changes in my-feature-branch into the origin development line. And
finally to push those changes from the local environment back to the central repository
server.

A set of diagrams that depicts this centralized workflow is at the
following URL: https://www.atlassian.com/git/workflows#!workflow-
feature-branch.

3 Build Construct Libraries and Executable

3.1 CMake and bui ld directories

Within each src directory, there is a CMakeList.txt configuration file. The
developer can run cmake from the command line, or allow Visual Studio to automatically
recognize the file has changed and re-run cmake from within Visual Studio. As
configured, CMake is intended to create compiled make files for libraries and executables
out-of-source (in directories segregated from source files, and in Construct and its
supporting libraries, at the top of the directory tree for each project/library).

https://www.atlassian.com/git/workflows#!workflow-feature-branch
https://www.atlassian.com/git/workflows#!workflow-feature-branch

10

3.1.1 CMake conf igurat ion f i les

As stated above, within each src directory, there is a CMakeList.txt. That
configuration file may also include or references other configuration files. This is
especially true for the construct repository.

Within the construct/src directory there are, as of August 2014, five (5) CMake files.
Each file name and description is in Table 1. It is very important that the
CMakeLists.file_list.txt file be a complete and up-to-date list of header (.h), source (.cpp)
and other files necessary for the project. CMake has no other way of being aware of
which files are part of the project!

Table 1: CMake files for construct repository

File Name Purpose

CMakeLists.txt Primary configuration file that CMake.exe expects to
find. Invoking this file, triggers the entire tool chain to
start, process file lists for changes and possible
recompilation, generate compiler options etc.

CMakeLists.file_list.txt The file that contains the lists of header and cpp files to
include into the Visual Studio or other development
environment’s list of applicable project files. Critical:
CMake has no way of knowing about any other files in a
project except through this file. Users must add file
names to this file as hey author them!

CMakeLists.bsd.txt Used by cmake when the researcher is using a BSD
development environment or compiling for the BSD
runtime environment.

Important: any BSD-specific headers(.h) or source
(.cpp) should be included in this file by appending them
to the lines that concatenate to the variable created in the
file_lists.txt file.

CMakeLists.win.txt Used by cmake when the researcher is using a Windows
development environment (in this TR, the environment is
Microsoft’s Visual Studio 2010).

CmakeLists.SharedLibs.txt Facilitates the compilation into .dll libraries instead of
compiling static libraries.

3.1.2 CMake’s bui ld direc tories
There should be four (4) build directories for each project that are permanently part

of the repository you cloned. A list of the four build directories is below:
1. buildWin32

11

2. buildWin64
3. buildBSD32
4. buildBSD64

A full path for the tinyxml compiled libraries for Windows 64-bit libraries for user
mlanham is shown below.
C:\Users\mlanham\Documents\Visual Studio
2010\Projects\CASOS_code\tinyxml\buildWin64

Each of these build directories should have an explanatory README.TXT, to
remind the user how to invoke cmake within that build directory.

CMake does not support (as of August 2014) the ability to have a single
build directory and invocation to support both 32-bit and 64-bit target
platforms in the same .sln file.

3.2 Use of CMake and 64-bit Windows compilation preparat ion

1. Open a command prompt and navigate to the CASOS_code directory.
2. Now navigate further to the casos_utils\buildWin64 directory. This is

CMake’s sandbox directory...the CMakeLists.txt file, when executed as
specified below, creates Visual Studio project and solution files here, an intermediate
directory for object files. The directory also becomes the home for 64-bit
compilations (e.g., debug, release) you select from within Visual Studio’s IDE.

Do not execute the steps in a cygwin window the first time
CMake is invoked during any particular boot-cycle Doing so can
lead to a set of errors from Visual Studio’s MSBuild that will end
with something similar to the one below.

1>C:\Program Files
(x86)\MSBuild\Microsoft.Cpp\v4.0\Platforms\Win
32\Microsoft.Cpp.Win32.Targets(147,5): error
MSB6001: Invalid command line switch for
"CL.exe". Item has already been added. Key in
dictionary: 'TMP' Key being added: 'tmp'

This is due to Cygwin’s environment variables being case
sensitive (e.g. tmp != TMP) whereas Windows environment
variables are not case sensitive (e.g. tmp==TMP). If you get this

12

error, delete the x64 directory, reboot, make a new x64 directory,
and run CMake from a CMD prompt instead. This error is
persistent until the computer is rebooted!

After reboot, a user could also unset TMP in a Cygwin
environment before running cmake within Cygwin. This will
prevent MSBuild from seeing two versions of the tmp
environment variable.

3. Type the CMD shell commands below. This style of invoking cmake without
prepending its path information is why we added CMake’s bin directory to the
system’s PATH environment variable. If you choose to not modify the PATH
environment variable, prepend the necessary path information in the invocation to the
example below.

cmake -D USE_X64=true -G “Visual Studio 10 Win64” ..\src

7. After cmake completes, without errors, double click the .sln file to open it with
Visual Studio.

8. Using the menu bar, select Build-->Build Solution
9. Repeat this process for the listed repositories that are part of the Construct application

(i.e. casos_utils, netstatplus, tinyxml). There is nothing to ‘make’
with Eigen so there is no need to run cmake on it, despite netstatplus’ extensive use of
Eigen.

If you get errors about not finding boost when compiling
construct....open and edit the
construct\src\CMakeList.txt to ensure the path you
installed boost in is the path reflected in the CMakeList.txt.

The steps above should have compiled each of three compilable libraries. If there
was a failure or error, building one library at a time will reduce the space within which
troubleshooting must occur

10. It is now time to compile the construct library and link it with the libraries we verified
compiled in the steps above. Now navigate further to the casos\buildWin64
directory.

11. Type the CMD shell commands below.

cmake -D USE_X64=true -G “Visual Studio 10 Win64” ..\src

13

These last two steps should, in sequence, re-create a Visual Studio project for each of
the libraries construct depends on. It should also create a Visual Studio project for the
Construct project.

From this point, skip to Section 3.4 for instructions on building and linking each
supporting library and linking those libraries to form an executable.

3.3 Use of CMake and 32-bit Windows compilation preparat ion

1. Open a command prompt and navigate to each library’s buildWin32 directory.
2. Type the following

cmake -G “Visual Studio 10” ..\src

Note the lack of the ‘Win64’ inside the quotes for the command above,
telling cmake to configure the Visual Studio to use the 32bit compiler
instead of the 64 bit compiler. Also, note the lack of the –D USE_X64
option. That command-line variable helped control internal-to-
CMakeFile control logic and compiler switches passed to the Visual
Studio Compiler.

12. After cmake completes, without errors, double click the .sln file to open it with
Visual Studio.

13. Using the menu bar, select Build-->Build Solution
14. Repeat this process for the listed repositories that are part of the Construct application

(i.e. casos_utils, netstatplus, tinyxml). There is nothing to ‘make’
with Eigen so there is no need to run cmake on it, despite netstatplus’ extensive use of
Eigen.

If you get errors about not finding boost when compiling
construct....open and edit the
construct\src\CMakeList.txt to ensure the path you
installed boost in is the path reflected in the CMakeList.txt.

The steps above should have compiled each of three compilable libraries. If there
was a failure or error, building one library at a time will reduce the space within which
troubleshooting must occur

14

15. It is now time to compile the construct library and link it with the libraries we verified
compiled in the steps above. Now navigate further to the casos\buildWin32
directory.

16. Type the CMD shell commands below.

cmake -G “Visual Studio 10” ..\src

These last two steps should, in sequence, re-create a Visual Studio project for each of
the libraries construct depends on. It should also create a Visual Studio project for the
Construct project.

The project will allow the user to use Visual Studio to do the following:

• See each library’s headers and source files
• Compile all the libraries, link the link the libraries into the dynet executable
• Compiled the project’s unit tests and linked those with boost’s unit test

framework
• Run the project’s unit tests.

17. Now open the construct Visual Studio project file by double clicking on
construct.sln within the buildWin32 directory.

3.4 Use of Visual Studio to bui ld and l ink Construct
The Visual Studio project file and Integrated Development Environment (IDE)will

allow the user to use Visual Studio to do the following:

• See each library’s headers and source files
• Compile all the libraries, link the link the libraries into the dynet executable
• Compiled the project’s unit tests and linked those with boost’s unit test

framework
• Run the project’s unit tests.

1. Open the construct Visual Studio project file by double clicking on
construct.sln within either the buildWin32 or the buildWin64 directory.

18. We must now set the startup project, the project that has the main(), for this solution
file. Unfortunately, this cannot be automated using CMakeLists.txt as Visual Studio
stores the setting in a binary file that CMake cannot access (as of July 2013). Right
click on Solution ‘construct’ at the top of the Solution explorer as depicted in Figure
12. Then select the Properties menu item to have Visual Studio open the
properties window as shown in Figure 12.

15

Figure 12 Results of right clicking "Solution 'construct'
(13 projects)"

Figure 13 Screen Shot of Construct Project
Properties Window

If you want ONLY the dynet.debug (the debuggable Construct) to run, then Select
Single Startup project and change the startup project to dynet.debug.

If you want ONLY the dynet.test (Unit test framework executable) to run, then
Select Single Startup project and change the startup project to dynet.test.

If you want two or more projects to start when pressing F5 (Debug), then Select
“Multiple startup projects:” and change dynet.debug and dynet.test ‘Action’ from “none”
to “start.” Figure 13 illustrates this setting.

19. Now compile the entire solution by using the BuildCompile Solution menu item.
There should be no fatal errors. There will likely be a number of warnings and other
messages in the console output screen during compilation.

After the steps listed in Section 4.2, post compilation should also show in the
console output the execution of the unit tests as a post-build event.

3.5 Use of CMake and 64-bit BSD compilation

The scripts supporting the creation of makefiles for BSD are in need of
refinement and testing to ensure as-expected performance as of July
2013!

1. Open a command prompt and navigate to each library’s buildBSDxx directory.
2. Type the following

cmake –D USE_X64=true –D BSD=true -G “Unix Makefiles”
..\src

16

3. Type make all

3.6 Use of CMake and 32-bit BSD compilation

1. Open a command prompt and navigate to each library’s buildBSDxx directory.
2. Type the following

cmake –D BSD=true -G “Unix Makefiles” ..\src

3. Type make all

4 Unit Tests for Construct

4.1 CMake conf igured Unit Tests

Using the construct/src /CMakeLists.txt and CMake from the
command prompt will pre-configure unit tests and their execution after each build of
dynet.debug.test.

Boost automatically creates a main() method so you will NOT find such a
method in the tests directory. Boost does this during pre-compilation
resolution of conditional statements and macros. Specifically the
BOOST_TEST_MAIN macro creates the main() function.

Unit tests are in the construct/tests directory. As of July 2013, there are
very few classes with any tests in place.

Boost’s Unit Test Framework (UTF) is not overly complex, and potentially not
compatible other development environments.

4.2 Running Construct Unit Tests
There are two ways of invoking the unit tests within Visual Studio.

1. Select Dynet.debug.test and press F5, which should start an instance of
dynet.debug.test

2. Right click dynet.test and select properties (should already be done by
CMakeLists.txt). Then select Linker --> System --> SubSystem choose from the list
option Console (/SUBSYSTEM:CONSOLE). Also select Build Events --> Post-
Build Event (should already be done by tests\CMakeLists.txt). For
Command Line enter the value below

17

"$(TargetDir)\$(TargetName).exe" --result_code=no --
report_level=short

Build Events > Post-Build Event > Description

==== Run unit tests ====

To run tests in a Unix environment (according to CTest web pages) type
make test

4.3 Add new test case(s) to the test harness
Update your SVN repository...you should pull a new sub-directory called tests under

the experimental branch we have been working on

The DynetTest.cpp is the main program in this testing harness. For each class (the
plan as of 4 April 2012), there will be a ClassToBeTestedTest.cpp file and
possibly a ClassToBeTestedTest.h

Create the empty files in the file system!

Add the file names to CMakeLists.txt!

You now have a choice

Re-run CMake from a cmd prompt (aka DOS Command Window). For 64 bit testing,
within the experimental_branch/x64 directory, type

cmake -D USE_X64=true -G “Visual Studio 10 Win64” ..

Press Build in Visual Studio to invoke make. You will then get a series of windows
and messages that files have changed outside the environment. That is normal, and you
will want to re-open the files in Visual Studio as prompted by the window alerts.

Without this re-build, you will not see your new file (and header) in the Visual
Studio environment. Once you see the file in the IDE, you can begin adding test cases as
your test design specifies.

Each .cpp file will need the setup and teardown ‘fixture.’ You can read more about
CMake fixtures in CMake’s documentation.

Each .cpp file will also have the various test suite(s) [a logical container for test
cases] for the class under test, as well as the test cases [a logical container for test
assertions].

To incorporate the newly written tests, you must rebuild Dynet.debug.test.
Build the test files in the usual way (Build Menu-->Build Solution or F7)

Run the tests via gui (Debug Menu-->Start without Debugging) or via command
line.

18

4.4 MS Visual Studio Test Professional
Don’t bother with Construct. Visual Studio’s ability to help developers with unit

tests is constrained by Microsoft (and the nature of the C Language) to using “managed
code” [Code that uses the common language runtime (CLR) (i.e., .NET) framework.
Since CASOS develops and uses Construct in Linux and Windows environments, a
“managed code” set of unit tests would not be feasible. The sections above with installing
and configuring VS 2010 for use with Boost’s unit_test framework should, ultimately,
work on both development platforms and in both execution environments.

5 Profiling Construct

5.1 “Very Sleepy” Prof i le Tool
Download the profiler http://www.codersnotes.com/files/verysleepy_0_82.exe.

Though at least one student developer, Mike Lanham, installed and began initial
exploration of this product, this portion of the technical report remains a task-to-be-done.

A quick note about the difference between inclusive and exclusive columns in tool:
inclusive means the total amount of time spent in function while exclusive means the
amount of time spent in function minus any time spent calling other functions.

More information needed!

5.2 Microsoft’s Prof i le Tool
Since we are not installing MS Visual Studio Team or Professional editions, VS

does not come equipped to profile applications. MS has made available a standalone
profiler available at the link below to install.
http://www.microsoft.com/download/en/details.aspx?id=23205

Though at least one student developer, Mike Lanham, installed and began initial
exploration of this product, this portion of the technical report remains a task-to-be-done.

More information needed!

6 Conditional Compilation & Pre-Processor Statements
There is a README.h file in the source file folder that captures, as of July 2013, all

the conditional compilation statements in use by Construct. Included below is the content
of that file. Where there is a series of three question marks (???) it reflects the authors
current ignorance of the exact function of the conditional compilation.

#define Purpose Where Used

__GNUC__ Supports tinyXML’s efforts
to be cross-compiler usable

Tinyxml.h (tinyxml)

_CORES_DEBUG ???

_MSC_VER disables certain warnings
when developer is using MS

Tinyxml.h (tinyxml)

http://www.codersnotes.com/files/verysleepy_0_82.exe

19

Visual Studio IDE when
USING_DB is defined
links mysql's 64bit ODBC
library (in dbClient.h)

BOOST_THREAD ??? construct.c
pp

DEBUG
Denables code segments
dedicated to debugging

many places

DEBUG_PROBABILI
TY_OF_INTERACTI
ONS

prints to stdout additional
information on how construct
calculates probability of
interaction as well as who is
interacting with whom on a
per interaction basis

Interaction
Manager.cpp

DEBUG_INTERACTI
ONS

prints to stdout additional
information about who is
interacting with whom

Interaction
Manager.
cpp

DEBUG_TM prints to stdout additional
information on how construct
is caculating knowledge
transactive memory updates
to agents as well as ego's core
activations scores for alters,
alters' groups, and ego's
groups

Agent_TM.cp
p

???

DEBUG_PARSER supports debugging of
TinyXML's parser

tinyxmlpars
er.cpp
(TinyXML)

DEFAULT_HEADER

EIGEN_INITIALIZ
E_MATRICES_BY_Z
ERO

 Matrix_core
.h
(netstatplu
s_

GPTL ??? ConstructNe
twork.cpp

IRS ??? for use in supporting
IRS-specific-project

macintosh ???

NO_AP_ASSERT ??? netstatplus
 ap.h

NOMINMAX Suppresses other definitions
of MIN and MAX

Cu_mutex.h
(casos_utils)

NONONO allows developer to compile
construct in GUI mode (see
also main.cpp for linker
instructions)

20

THR ??? cu_mutex.cp
p

TIXML_SAFE Supports tinyXML’s efforts
to be cross-compiler usable

Tinyxml.h
(tinyxml)

TIXML_SNPRINTF Supports tinyXML’s efforts
to be cross-compiler usable

Tinyxml.h
(tinyxml)

TIXML_SSCANF Supports tinyXML’s efforts
to be cross-compiler usable

Tinyxml.h
(tinyxml)

TIXML_USE_STL support's TinyXML's use of
STL

TinyXML.h
(tinyxml)

TypeDefExceptio
n

UNIX incorporates unix operating
system specific code to take
advantage of] windows
specific capabilities (or
sometimes to prevent
breaking the cross-
compilation for other
operating systems)

Multiple
files
(casos_util
s,

USE_ATLAS ??? netstatplus
 matrix.
h

UseExceptions

USE_NSP incorporates netstatplus code
which is the core of CASOS'
ORA network analytic
software. This code is
essential for the printing of
DynetML formatted output

Construct module

USE_THREADS supports multi-threading of
construct initialization of
interaction probability matrix

Interaction
Manager.cpp

USING_DB incorporates code required for
construct to accept inputs and
outputs to/from ODBC
databases. Code primarily
written for MySQL
connectivity as of Aug 2012

WIN32 incorporates windows
operating system specific
code to take advantage of]
windows specific capabilities
(or sometimes to prevent
breaking the cross-
compilation for other

Multiple
files
(casos_util
s,)

21

operating systems)

	1 System Environments
	2 Preparatory Work
	2.1 Access to CASOS Git Servers’ Projects
	2.2 3rd Party Libraries and Tools
	2.2.1 32-bit Boost
	2.2.2 64-bit Boost and Boost Unit_Test
	2.2.3 Version Control and Source Code Management
	2.2.4 Microsoft Visual Studio 10
	2.2.5 CMake
	2.2.6 Doxygen

	2.3 Build Development Directory Structure
	2.4 Checkout Development Source Code
	2.4.1 CASOS’ Basic Development and Source Code Revision Workflow
	2.4.2 CASOS’ Feature Branch Workflow with Git

	3 Build Construct Libraries and Executable
	3.1 CMake and build directories
	3.1.1 CMake configuration files
	3.1.2 CMake’s build directories

	3.2 Use of CMake and 64-bit Windows compilation preparation
	3.3 Use of CMake and 32-bit Windows compilation preparation
	3.4 Use of Visual Studio to build and link Construct
	3.5 Use of CMake and 64-bit BSD compilation
	3.6 Use of CMake and 32-bit BSD compilation

	4 Unit Tests for Construct
	4.1 CMake configured Unit Tests
	4.2 Running Construct Unit Tests
	4.3 Add new test case(s) to the test harness
	4.4 MS Visual Studio Test Professional

	5 Profiling Construct
	5.1 “Very Sleepy” Profile Tool
	5.2 Microsoft’s Profile Tool

	6 Conditional Compilation & Pre-Processor Statements

