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Abstract

A great deal of work in recent years has been devoted to the topic of \complexity,' its measurement, and its

implications. Here, the notion of algorithmic complexity is applied to the analysis of social networks. Struc-

tural features of theoretical importance - such as structural equivalence classes - are shown to be strongly

related to the algorithmic complexity of graphs, and these results are explored using analytical and simula-

tion methods. Analysis of the complexity of a variety of empirically derived networks suggests that many

social networks are nearly as complex as their source entropy, and thus that their structure is roughly in

line with the conditional uniform graph distribution hypothesis. Implications of these �ndings for network

theory and methodology are also discussed.
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1 Introduction

At least since the development of information theory in the 1950s and 1960s (Shannon, 1948; R�enyi, 1961),

scientists and mathematicians working in a variety of areas have used notions of \complexity" in order to

describe the properties of objects and processes. In addition to this formal usage, complexity has been used

informally and semi-formally for decades in conjunction with the study of large, multidimensional systems in

many �elds (including biology, organization theory, and physics1). More recently, interdisciplinary work in

a number of areas2 has brought a renewed interest in complexity as a formal concept with wide applicability

to systems across domains. Despite (or perhaps because of) the diversity of scienti�c e�orts involved in this

recent work, little agreement has been reached on what, precisely, \complexity" entails, or how a general

notion of complexity may be systematically applied. Multiple de�nitions and measures of complexity {

derived from a variety of basic assumptions { have been proposed by researchers working in various �elds,

and it is suspected (at the very least) that there is no single conceptual dimension which captures the notion

of \complexity" in a general, useful fashion. In this paper, then, an attempt is made not to provide an

overarching statement regarding the complexity of social networks, but to examine how a particular type of

complexity { algorithmic complexity (Kolmogorov, 1965; Chaitin, 1975; Li and Vit�anyi, 1991) { is related

to a variety of structural features which are of substantive theoretical interest to network analysts, and to

consider the behavior of one such complexity measure on a range of network data sets. It is hoped that

this approach will highlight a potential (concrete) application of formal complexity theory to the substantive

concerns of network analysis, rather than to simply exhibit the use of complexity measures for their own

sake3 (in the spirit of Fararo (1978; 1984)).

1.1 Complexity and Its De�nitions

As has been noted, the natural language concept of \complexity" has been related to a variety of formal

notions4. A thorough going review of these notions (and their respective assumptions, histories, and applica-

tions) is beyond the scope of this paper; nevertheless, we shall briey note a few examples from the literature

in order to provide some context for what is to follow. It should be emphasized that the selection which

follows is neither exhaustive nor necessarily representative, but rather reect some of the more formally

developed notions of complexity which have been employed in the study of natural systems.

Perhaps the earliest (and simplest) notion of complexity is simply that of the cardinality and/or di�er-

entiation of an object's subcomponent sets. Intuitively, organisms, organizations, societies, or mechanical

1Although formal usage has occurred in these �elds as well.
2Examples include the study of self-organized criticality in sandpiles, earthquakes, etc., emergent computation and evolu-

tionary approaches to arti�cial intelligence, and spin-glass models of loosely coupled thermodynamic systems.
3Although the study of complexity per se is an interesting and worthy cause (in a mathematical or information theoretic

context), our use of the concept in a social scienti�c context must be predicated upon its value in addressing substantive

concerns.
4Some of which are inversely related; see Wolpert and Macready (1998).
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systems with many parts { or types of parts { are more \complex" than those with fewer components or

varieties thereof. Such a straightforward conception of complexity has been widely employed (particularly

on an informal or semi-formal basis) in organization theory, biology, and mental model theory, and shows

up in various guises in some of the earliest of sociological works (e.g., Durkheim 1933/1893; Spencer, 1874).

Size and di�erentiation have also served as some of the most common targets of structural theory (Blau,

1986; Mayhew et al., 1972), and continue to be of interest at the micro level to network analysts studying

personal networks (Burt, 1997; Valente and Foreman, 1998).

Complexity as cardinality is strongly related to another conception which is more closely tied to physics

(and to the study of dynamics in general systems); in particular, it is common in these �elds to speak

of systems of high dimensionality as being \complex", particularly when coupling between dimensions is

high5. Examinations of many families of such systems have revealed often surprising behaviors, such as

unexpected convergence to stable �xed points (e.g., the fairly stable slope angle of a sandpile (Christensen et

al., 1991)), systematic and robust relationships between event size and frequency (e.g., the \1/f" distributions

of earthquakes (Sornette and Sornette, 1989), �rm size (Simon, 1955), and word usage (Zipf, 1949)), and

emergent intelligent behavior (e.g., the ability of unintelligent simulated ants to collectively locate, transport,

and store food (Koza, 1992)). Indeed, it was largely the popularization of these �ndings in books like

those if Waldrop (1992) and Kau�man (1993) which fueled widespread interest in complexity in the larger

community6, and phenomena such as self-organized criticality (Christensen et al., 1991; Bhowal, 1997),

emergent computation (Crutch�eld and Young, 1990), and evolutionary dynamics (Kau�man and Johnsen,

1991; Wolfram, 1994) continue to have a strong association with complexity despite the sometimes tenuous

link between the concept and its applications.

In contrast with these relatively informal notions, complexity has been treated far more rigorously in

computer science, information theory, computational mechanics, and combinatorics. A wide range of formal

de�nitions of complexity have been formulated within these �elds to deal with particular problems, and some

have found widespread application in a number of areas. One such notion (or collection thereof) is that of

computational complexity which, in informal terms, is the number of basic operations required to execute

a particular algorithm (Cook et al., 1998; West, 1996). Computational complexity is of critical importance

in algorithm design and heuristic optimization (to name two areas), where it permits the comparison of the

computational \cost" of problem solving algorithms; computational complexity can also be used in a variety

of engineering contexts to help determine feasibility of information processing systems, to predict execution

time, and to assess possible gains due to parallelization (Cook et al., 1998). More theoretically, one notion of

5Or, more properly, when the dynamics along any given phase dimension are tightly coupled with the dynamics along other

phase dimensions, particularly when such coupling is highly nonlinear.
6It is also important to recall that these discoveries (and their popular treatments) followed the realization that \simple,"

low-dimensional systems could give rise to extremely complicated behaviors (e.g., chaos); the knowledge that the \simple" could

give rise to the \complex" may have given the �nding that the \complex" could also give rise to the \simple" more salience

than it might otherwise have had.
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computational complexity (known as logical depth) is based on the running time of the shortest algorithm7

which will reproduce a given sequence (Bennett, 1985; 1990). Logical depth is closely related to algorithmic

complexity, which we shall consider in more detail presently; simply put, algorithmic complexity is based

on the length of the shortest algorithm (for some machine type) which will reproduce a given sequence

(Kolmogorov, 1965; Chaitin, 1975; Li and Vity�ani, 1991). This notion of complexity is important in coding

theory and data compression, and has application in a number of proof techniques (Kircherr, 1992; Li and

Vity�ani, 1991). Numerous complexity measures exist which are based on information content8 (e.g., mutual

information (Li, 1991), Kullbach information (Cover and Thomas, 1991)), with the general presumption

that sequences or systems are more complex to the degree to which they contain more information or to

which information in various subcomponents/subsequences is not shared9 (Wolpert and Macready, 1998).

Closely related to the information theoretic measures are those such as thermodynamic depth which are

based on di�erences in entropy between macrostates and microstates of thermodynamic systems (Lloyd and

Pagels, 1988). In yet another twist, Feldman and Crutch�eld (1998a) measure complexity in terms of the

computational dynamics of automata called �-machines which contain both stochastic and deterministic

components; their aim is to provide a unifying framework for measuring complexity which separates out

\statistical" simplicity (i.e., randomness) and \deterministic" simplicity (i.e., repeated patterns) from a

presumed genuine10 complexity (Feldman and Crutch�eld, 1998a; 1998b; Crutch�eld and Young, 1989). As

with much of this literature, work on these more recent measures is ongoing, and consensus on the \proper"

complexity formalism for many scienti�c applications has not yet been reached (see Feldman and Crutch�eld,

1998b; Wolpert and Macready, 1998).

1.1.1 Complexity in Network Analysis

In network analysis, relatively little work has been done on complexity per se, though network analysis

\inherits" to an extent some of the large body of work on the subject in graph theory (Cook et al., 1998;

Kircherr, 1992; Li and Vity�ani, 1991)). Freeman (1983) discusses structural complexity of social networks

in terms of dimensions of classi�cation. Everett (1985), considering previous work by Mowshowitz (1968a;

1968b; 1968c), provides a speci�c measure of network complexity related to the number of positions spanned

by orbits of a graph; Everett, importantly, demonstrates the substantive meaningfulness of this notion in

terms of the total potential interchangeability of positions, arguing that such a measure is more interpretable

(and scienti�cally useful) than that of Mowshowitz (1968a; 1968b; 1968c) (Everett, 1985). Recent work by

Butts (2000) has attempted to deal with the interpretability issue by axiomatizing the notion of graph

7In the Kolmogorov-Chaitin sense; see below.
8Although, arguably, all algorithmic complexity measures are also informational; the division used here is admittedly an

informal one.
9Though there seems to be some disagreement on this issue; some have asserted that complex systems tend to be self-similar,

while others argue that self-dissimilarity is emblematic of complexity (Wolpert and Macready, 1998).
10In that the authors do not regard randomness per se as being complex, which is not in accordance with an algorithmic

notion of complexity (see below).

3



complexity. In this work, Butts shows that no single measure of graph complexity simultaneously satis�es

all of several intuitive requirements for a general notion of structural \complexity," and relates the measures

of Everett (1985), Mowshowitz (1968a; 1968b; 1968c), and others11 via a set of axioms which discriminates

between them. In the graph theoretic literature, proof techniques (primarily probabilistic methods) have been

developed which are based on the Kolmogorov-Chaitin complexity of graphs (Li and Vity�ani, 1991). Work in

this area has shown a relationship between complexity and graph-level indices (for instance, Kircherr (1992)

has shown that almost all trees do not possess a vertex of high degree (i.e., are not highly degree centralized)

by way of algorithmic complexity); Anderson et al. (1999) consider the information content of graph-level

index (GLI) distributions, though they do not explicitly link this to complexity theory. Mowshowitz (1968a;

1968b; 1968c) also discusses the information content of graphs at some length, and relates this to orbit

structure. Some aspects of the relationship between organizational network structure and complexity vis a

vis the theory of random graphs are also discussed by Morel and Ramanujan (1998).

1.1.2 Summary

In general, then, even a very cursory overview of the complexity literature identi�es a wide range of no-

tions, created for di�erent purposes under di�ering conceptions of what \complexity" might mean, and

employed in di�ering ways. While some have used \complexity" in a fairly intuitive fashion to describe

systems which seem complex, others have developed extremely speci�c formalisms capturing particular as-

pects of the natural language term. Like the aspects captured, the intended \targets" of these de�nitions

are not all alike: in some cases, complexity is framed in terms of processes or algorithms; in others, systems,

sequences, or static objects are assumed to be under evaluation. Some de�nitions of complexity are con-

structed around stochastic assumptions (e.g., thermodynamic depth), while others are deterministic (e.g.,

Kolmogorov-Chaitin complexity). Even in terms of operationalization, one �nds de�nitions of complexity

which are largely of theoretical interest (such as the above-mentioned Kolmogorov-Chaitin measure), and

others which are framed in measurable terms (such as that of Everett (1985)). Given the immense diversity

of de�nitions and measures of complexity which exist, how is the network analyst to proceed? Here, as has

been mentioned, the strategy which shall be followed is one which is motivated by substantive theoretical

concerns: as Fararo (1978; 1985) suggests, we shall seek to understand how a particular notion of complexity

{ algorithmic complexity { relates to standing problems in social network analysis, and shall then attempt

to use a particular measure to assess a number of empirical networks.

1.2 Algorithmic Complexity and Social Networks: A Theoretical Motivation

Modern network analysis has devoted considerable e�ort towards identifying simplifying features of social

networks, and towards using these features to represent social structures in a succinct fashion. The notion

11Cardinality of node and arc sets, source entropy of the arc set, induced subgraph complexity, and Lempel-Ziv complexity

(used here) are also treated.
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of human social structures as being representable in terms of interactions among roles (each of which may

be composed of multiple positions, each of which may in turn be occupied by multiple actors) implies that a

reducibility exists within social structures; formally, these theoretically important reductions are represented

by the standard family of algebraic equivalences (structural (Lorrain andWhite, 1971), automorphic (Everett,

1985; Everett and Borgatti, 1988), regular (White and Reitz, 1983), and their variants) used throughout

network research, and by the blockmodels which are produced by applying these reductions to social networks.

As the term \reduction" implies, all of the above methods aim to (relatively losslessly) compress a large,

\complicated" social structure into a smaller, \simpler" one. Insofar as this is possible, then, it must be the

case that human social structures are compressible; this, in turn, implies that human social structures must

be of low algorithmic complexity12.

Turning to a somewhat di�erent theoretical tack, it is commonly held (and there exists some evidence

to argue; see (Krackhardt, 1987; Romney and Faust, 1982; Freeman, 1992)) that human cognitive represen-

tations of social structure conform to a number of biases which are shaped by inherent cognitive processing

limitations. E�ects of imposed balance, assumptions of reciprocity, assumed interaction due to mutual as-

sociation13, and the like can act to constrain actors' cognitive social structures, inhibiting the perception

of structural elements which do not �t the easily regenerated pattern. Insofar as this is the case, then,

it follows that cognitive social structures must also be of low algorithmic complexity { lower, even, than

behavioral social structures { due to the fact that actors' complexity-reducing cognitive mechanisms should

be expected to omit relations which violate simple, easily regenerated patterns and to confabulate relations

whose absence would likewise cause problems for cognitive representation14.

In addition to the above, numerous other arguments have been made regarding constraints on social

network structure. Social interaction is constrained by physical space (Latan�e et al., 1995; Wellman, 1996),

which in turn can imply the existence of spatially de�ned stochastic equivalence classes (Butts and Carley,

1999) among groups of actors. Group membership may heavily structure interaction (Blau, 1977), and even

in otherwise unconstrained settings shared practices, behaviors, and beliefs can severely constrain practical

possibilities for meaningful social interaction (Carley, 1990a, 1990b, 1991; Go�man, 1963). Insofar as these

factors are in operation, then, it would seem reasonable to presume that social networks are not highly

complex objects in the algorithmic sense: they are heavily constrained, simple structures which may be

summarized relatively easily by a smaller system of key variables.

Here, then, we have a clear motivation for considering the complexity of social structures, a motivation

which furthermore leads us to consider a particular notion of complexity: numerous theoretical arguments

12Relative to what, one should ask. We shall come to this presently.
13E.g., actors who are associated with the same \group" may be thought to interact more than they actually do.
14Indeed, cognitive social structures imply a very direct argument for considering algorithmic complexity: since human brains

are in fact information processors who must regenerate information from stored algorithms, it follows that their capacity to

accurately represent social structure must be constrained by the interaction of their storage capacity with the algorithmic

complexity of the structure to be stored.
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from the social network literature suggest that social networks in general (and cognitive social structures

in particular) should be algorithmically simple. Furthermore, to turn the point on its head, because many

of the network features of interest to theorists { non-trivial structural equivalence classes, balance, etc. {

necessarily imply algorithmic simplicity relative to graphs which lack these features, it likewise follows that a

general means of screening data for reductions consists of determining whether said data is too algorithmically

complex to contain them15. Given that substantial e�ort (human and computational) can be required to

manually screen data for the wide range of equivalences and the like which can occur, a technique such as this

which can provide a general sense of the most which one might �nd in a data set with a single computation

may prove quite useful. Furthermore, by comparing the observed complexity of a particular social network

with the distribution of complexity values produced by a random null model, one may (albeit crudely) gain

a sense of whether any reductions one happens to �nd in a given network are noteworthy, or whether one

would be expected to �nd similar levels of reducibility under a baseline model16 (Mayhew, 1984).

1.3 The Kolmogorov-Chaitin Complexity

Given that we are interested in algorithmic complexity, it then behooves us to consider the concept more

closely. The most widely known de�nition of algorithmic complexity is the Kolmogorov-Chaitin measure

(often referred to simply as the Kolmogorov complexity), and which may be de�ned as follows17:

De�nition 1 (Kolmogorov-Chaitin Complexity) LetW be the set of all words over some �nite alphabet

S, let the length of a word w = s1s2:::sn, w 2 W , si 2 S be given by l(w), and let A be an algorithm

transforming binary sequences into words for some �nite alphabet. The complexity of an element w with

respect to A is then the length of the shortest program which computes it, and is given by KA(w) = min
A(p)=w

l(p),

p 2 f0; 1g�. KA(w) for A asymptotically optimal is simply referred to as the complexity of w, where an

asymptotically optimal algorithm is any algorithm A such that, for any algorithm B, KA(w) � KB(w) + c

for some constant c which does not depend on w. (The existence of such an algorithm is guaranteed by the

theorem of Kolmogorov and Solomono� (1964).)

Put in more prosaic terms, the Kolmogorov-Chaitin (K-C) complexity of a sequence is the length of the

shortest self-terminating program which will produce that sequence. While this seems intuitive enough at

�rst blush, the details of the above de�nition (and the literature surrounding the measure) suggest that

much is hidden beneath the surface. For instance, it happens that an algorithm which would return the

K-C complexity would have to solve the halting problem, which is not possible; hence the K-C complexity

15Of course, the data in question might be simple in ways other than those of interest as well, but it is nevertheless true that

the data cannot be highly reducible if it is algorithmically complex.
16At present, few tools exist to enable researchers to determine whether blockmodels they identify are typical of baseline

models; given that an equivalence analysis may take the researcher through multiple algorithms, data treatments, relaxations,

etc., the potential for inadvertent self-deception is substantial (Dawes, 1988).
17The particular formulation used here follows Martin-L�of (1966), which is essentially that of Kolmogorov (1965) but slightly

clearer; numerous other, equivalent expressions are possible.
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cannot, in general, be computed with certainty18. Furthermore, questions exist regarding the possibility of

canonical minimum encoding in general, so the question of which asymptotically optimal A to use may not

be trivial even at a theoretical level. Nevertheless, for all its uncertainty the K-C complexity measure turns

out to be a very important one, with many useful properties. Despite the fact that it cannot be exactly

computed, it may be estimated under various constraints (or indexed), and it is often possible to make

theoretical arguments about the relative K-C complexities of various sequences without knowing the exact

values; this has proven to be of great importance in (for instance) the use of K-C complexity as a tool for

probabilistic proofs19 (Li and Vity�ani, 1991).

What, then, are the properties of the Kolmogorov-Chaitin complexity (other than its incomputabil-

ity)? First, and perhaps most obvious, the K-C complexity is minimal for pure repeated sequences such as

\00000000" or \11111111"; it is higher for sequences such as \1011010110", and higher still for sequences

with even fewer repetitions. Interestingly, it happens that sequences with maximum K-C complexity are,

for all intents and purposes, random20 (Martin-L�of, 1966). Of course, when �nite sequences are involved,

this clearly raises certain questions about what one means by a \random" sequence (see Lempel and Ziv

(1976)); after all, even a uniform draw on the thousand-digit binary integers can still produce a pure repeated

sequence, so the best that can be done in any case is to discriminate between sequences which are \typical"

of a certain random process and those which are not21. In any event, the connection between the K-C

complexity and randomness is an important one which has earned the measure some controversy in certain

circles. Some researchers (e.g., Lloyd and Pagels, 1988) have simply equated algorithmic complexity with

a \measurement of randomness" and, by reasoning (on intuitive grounds) that randomness should not be

complex, have argued that this is not properly a complexity measure. This line of reasoning, however, misses

the point: randomness is complex, in the sense that there is no \simple" deterministic representation of a

random sequence. Randomness is incompressible; it is, indeed, de�nable in this fashion22. Insofar, then, as

we are lead by our basic assumptions to a complexity measure such as the Kolmogorov-Chaitin complexity,

we must realize that these two notions are intimately interconnected.

2 The Lempel-Ziv Complexity Measure

As we have seen, there exists a strong theoretical rationale for examining the algorithmic complexity of

social networks. The most basic de�nition of algorithmic complexity { the Kolmogorov-Chaitin complexity

18Kolmogorov (1965) poses the incomputability argument in somewhat di�erent terms, but the implication is similar.
19For example, one may show that a given property of interest implies a K-C complexity below a certain bound, and then

show that the probability of any given sequence's having such a complexity is vanishingly small, thereby demonstrating that

almost no sequences possess the property of interest.
20As Martin-L�of (1966) puts it, they \possess all conceivable statistical properties of randomness."
21Which, of course, is exactly what a null hypothesis test does; the complexity literature does not generally frame the issue

in this fashion, however.
22This connection is also clearer if one notes that the Kolmogorov-Chaitin complexity can be related to information content

(Kolmogorov, 1965).
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{ has a strong axiomatic basis, but is also fundamentally uncomputable. What, then, are we to do as a

practical matter if we are to investigate the algorithmic complexity of empirical networks? One solution to

this dilemma is not to attempt to �nd the K-C complexity directly, but instead to �nd another measure

which acts as an index of the K-C complexity, in the general sense that it can be shown to behave as the

K-C complexity does over a range of inputs. Just such an approach has been taken by Lempel and Ziv

(1976), who introduced an algorithmic complexity measure based on a particular encoding scheme whose

properties could be shown to be very similar to those of the Kolmogorov-Chaitin complexity. Though not a

true measure of the K-C complexity, this index is readily computable (an O(n2) algorithm exists) on �nite

sequences, and, as we shall see, it can be shown to detect reductions which are of interest to social scientists.

2.1 Rationale

The basic approach taken by Lempel and Ziv (1976) to the problem of measuring algorithmic complexity of

�nite sequences consists of the formulation of a self-delimiting production process which is used to generate

the input sequence; the number of steps in this sequence (which corresponds to the number of unique elements

in the vocabulary of the process) is then used as a measure of sequence complexity23. Because the Lempel-

Ziv (L-Z) complexity is thus derived from a particular encoding of a sequence, it is not (nor is it intended

to be) an \absolute" measure of complexity; for our purposes, this is signi�cant in that it implies that there

may be features of graphs which imply algorithmic simplicity, but whose impact will not be assessed by

the L-Z measure (which may be unable to exploit such reductions). That said, it happens that the L-Z

complexity measure can be shown to detect certain features of interest (such as structural equivalence), and

its successful application in other areas suggest that its capacity for pattern recognition is reasonably robust

(Kaspar and Schuster, 1987). The L-Z measure as applied to graphs has also been shown to satisfy several of

the structural complexity axioms put forth in Butts (2000)24, including complementarity (the complexity of

a graph is the complexity of its complement) and sample monotonicity (the complexity of a graph is at least

as large as the complexity of its most complex induced subgraph); the variant developed in Section 2.5.1

below satis�es labeling invariance as well. Given, then, that the measure can be shown to satisfy the basic

requirements of a structural complexity measure, to be readily computable, to detect features of interest,

and to have other desirable properties (as shown by Lempel and Ziv (1976)), we here take it as a reasonable

starting point for an empirical investigation of network complexity.

23In some sense, then the Lempel-Ziv complexity is related simultaneously to computational complexity and to algorithmic

complexity; its properties of interest (to us), however, correspond to the latter interpretation.
24These axioms are argued to form a reasonable basis for the measurement of structural complexity in digraphs, and can be

used to discriminate between di�erent measures of structural complexity.
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2.2 Formal Derivation

Having considered something of the rationale behind the Lempel-Ziv complexity measure, then, let us proceed

to its formal de�nition25. First, let us de�ne A� to be the set of all �nite length sequences over a �nite

alphabet A with the null-sequence, �, in A
�. Let the length of a sequence S 2 A

� be given by l(S), and let

A
n = fS 2 A

�jl(S) = ng; n � 0.

Given the above, a sequence S 2 A
n may be speci�ed by S = s1s2:::sn; we denote the substring of S which

starts at position i and ends at position j by S(i; j) (S(i; j) = sisi+1:::sj for j � i, otherwise S(i; j) = �).

Two such sequences Q 2 A
m and R 2 A

n may be concatenated to form a new sequence S = QR, S 2 A
m+n,

in which case S(1;m) = Q and S(m + 1;m + n) = R. A sequence Q is more generally called a pre�x of a

sequence S if there exists an integer i such that Q = S(1; i); in this case, S is also referred to as an extension

of Q. Pre�xes of S may also be denoted via the operator �, which is de�ned such that S�i = S(1; l(S)� i)

for i = 0; 1; :::. (Note that S�0 = S, and S�
i = � for i � l(S).) The vocabulary of a sequence S (v(S)) is

the subset of A� formed by all substrings (\words") of S; hence, v(S) =
S
i;j

S(i; j).

Having established some basic notation, we may now proceed to consider the process upon which the

Lempel-Ziv complexity is based. Given a sequence S and a word W 2 v(S), let R = SW be the extension

formed by the concatenation of S and W . Obviously, R can be produced by a simple algorithm which sets

ri = si for 1 � i � l(S), and ri = si�l(S)+a for i > l(S) where a is that integer satisfying W = S(a; b) (the

starting position of W ). Similarly, the same procedure may be used to construct a much longer extension

R = SQ, for Q 2 v(SQ�). (This works because the �rst portion of Q must be in v(S), and the subsequent

portion may be \bootstrapped" after the �rst characters are copied; Q may itself be a concatenation of

several substrings of S.) For such an extension R, we say that R is reproducible from S (denoted S ! R). If,

on the other hand, we take non-null sequence S with pre�x Q = S(1; j) such that Q! S� and j < l(S), we

say that S is producible from Q (denoted Q) S). Note that these two concepts are distinct: reproduction

demands that the entire output sequence be the result of the recursive copying process, while production

permits some \innovation" at the end of the process.

This, then, forms the basis of the Lempel-Ziv production process. The algorithm in question begins with

the null sequence � = S(1; 0), and performs S(1; 0) ) S(1; 1) by adding the innovation s1. After this �rst

step, v(S1) = �; s1, which may in turn be used to generate a longer pre�x of S, and so on. More formally,

at each iteration the algorithm performs S(1; hi)) S(1; hi+1) (beginning with S(1; 0) = S(1; h0) = �) until

(after at most l(S) steps), S has been produced, at which point the algorithm terminates. If we consider the

pre�x S(1; hi) produced at iteration i to be the ith state of the m-step production process, then we may parse

S into H(S) = S(1; h1)S(1 + h1; h2):::S(1 + hm�1; hm), called the production history of S. S(1 + hi�1; hi),

denoted Hi(S), is referred to as the ith component of H(S); such a component is said to be exhaustive i�

Hi(S) 6! Hi+1(S)
26, and a history is said to be exhaustive i� each of its components is likewise exhaustive.

25This discussion follows Lempel and Ziv (1976, sections II and III), though some details have been omitted for brevity.
26Note that, by de�nition, Hi(S) ) Hi+1(S), but it does not follow that Hi(S) ! Hi+1(S). In essence, a component is
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Given this, the Lempel-Ziv complexity is as follows:

De�nition 2 (Lempel-Ziv Complexity) Given a sequence S with history H(S), let CH(S) denote the

number of components of H(S). The Lempel-Ziv complexity of S is then given by CL�Z(S) = min
H(S)

CH(S).

As it happens, it is possible to prove that CL�Z is equal to the number of components of the exhaustive

history of S, which both exists and is unique for all non-null sequences S; this proof will not be given here,

but may be found in Lempel and Ziv (1976). Thus, CL�Z exists and is unique for all sequences. Representing

the L-Z complexity in terms of the number of steps in the exhaustive production process also leads to the

deduction that (because all steps are productions in an exhaustive history) the representation of S in terms of

a parsing given by the exhaustive history must contain at least CL�Z symbols. A variety of other deductions

are also made by Lempel and Ziv (1976), which shall not be considered at length. It will, however, be noted

that an upper bound on the L-Z complexity is given by

CL�Z(S) <
n�

1� 2
1+log

�
log

�
(�n)

log
�
(n)

�
log�(n)

(1)

where S 2 A
n and � denotes the size of the alphabet A. A somewhat weaker (but more useful) constraint

is given by the observation that, for a random sequence S 2 A
n with jAj = � and source entropy h,

lim
n!1

CL�Z(S)!
hn

log�(n)
(2)

(Lempel and Ziv, 1976; Kaspar and Schuster, 1987).

2.3 Sample Application of the Lempel-Ziv Measure

To gain a stronger intuition for the Lempel-Ziv measure (and the production process upon which it is based),

it may be useful to consider a few simple examples. To begin with, let us consider the sequence

S = 0000000000000000

The exhaustive history of this sequence can be given by the following decomposition:

S = 0 � 000000000000000

and hence CL�Z(S) = 2. The somewhat more complex sequence given by

S = 0101010101010101

yields the decomposition

S = 0 � 1 � 01010101010101

exhaustive when there is no way in which it could be extended by a production.
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and hence here CL�Z(S) = 3. Finally, a yet more sophisticated sequence

S = 0001101001000101

produces the exhaustive history

S = 0 � 001 � 10 � 100 � 1000 � 101

for which CL�Z(S) = 6. Thus, as one can see, the L-Z complexity measure provides fairly intuitive outputs

for a range of binary sequences; more formal results demonstrating the CL�Z behaves as an algorithmic

complexity measure \should" are not treated here, but can be found in Lempel and Ziv (1976).

2.4 The Kaspar and Schuster Algorithm

As has been mentioned, the L-Z complexity measure has a variety of properties which make it especially

suitable for our purposes. Another advantage of the L-Z measure is that an (O(n2)) algorithm to calculate

the L-Z complexity of a given sequence has been demonstrated by Kaspar and Schuster (1987), who have also

explored some of the measure's behaviors in an applied setting. In particular, Kaspar and Schuster examine

the convergence of the L-Z measure to the theoretical expected value for random sequences27 and �nd that

errors generally fall within the �5% range for sequences of length 1000 and greater. (Given the encoding

used here (described below), this corresponds to networks of size � 32.) Smaller sequences were associated

with larger errors, although even a few hundred elements were suÆcient to bring errors to within �10%.

Kaspar and Schuster also utilize the L-Z complexity measure to analyze several speci�c systems (including

several cellular automata and the logistic map), and show that the L-Z measure can discriminate between

pattern formation and source entropy change, between chaotic and periodic behavior28, and between multiple

pattern types. The success of the Lempel-Ziv complexity measure in performing these tasks on a number

of systems with known properties lends credence to the robustness of the measure across a range of inputs,

though it obviously does not imply that the L-Z complexity is a perfect match for the Kolmogorov-Chaitin

measure.

2.5 Application to the Measurement of Graph Complexity

Having de�ned the Lempel-Ziv complexity (and having identi�ed an algorithm which will produce it), we

may now proceed to apply this measure to directed graphs. Given a labeled digraph G = (V;E), we may

de�ne an adjacency matrix A such that Aij = 1 if and only if (vi; vj) 2 E(G), and 0 otherwise. From A,

27Which are not, of course, fully random. The problem of pseudorandom number generation { always an issue in research which

depends heavily on the assumption of true stochasticity { is obviously ampli�ed when using measures which can presumably

tell the di�erence between \real" randomness and pseudorandomness for some sequence length. Kaspar and Schuster (1987)

employ sequences from the Numerical Algorithm Group, Ltd., but do not discuss any experiments with other methods.
28Within a limited periodic window, of course.
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we may in turn de�ne a unique bit string S such that Si = Abi=jVjc;i�bi=jVjc (that is, a concatenation of the

rows of A). This string is a direct representation of the labeled digraph G; it also happens to be suitable

for encoding using the algorithm of Kaspar and Schuster (1987). The Lempel-Ziv complexity of a labeled

digraph G, then, is simply CLZ(S) where CLZ is as given in Lempel and Ziv (1976) and described above.

It should be noted at this point that this encoding scheme can easily be extended to incorporate integer

valued digraphs, or even categorically valued digraphs29. Since the Lempel-Ziv production process assumes

a �nite but arbitrary alphabet, it is not required that sequences be binary (although more complex alphabets

may require more convergence time, and their complexity ceilings are obviously di�erent); �nding CLZ for

non-binary alphabets is thus fairly trivial. While many of the potential applications of this fact are fairly

obvious, one in particular bears mentioning: a non-binary alphabet may be employed to permit a dyadic

digraph encoding, in place of the arc encoding here employed. Although this will not be discussed in depth

here, the procedure is fairly straightforward; for each dyad of the labeled digraph, one assigns each possible

state (4 for simple digraphs) to a given element of the L-Z alphabet. The complexity of the resulting

sequence of dyad states may then be determined using standard methods, with the usual interpretation.

One advantage of the dyadic approach is that it is potentially much more sensitive to reciprocity e�ects than

the arc encoding30; on the other hand, because the number of dyads is only half the number of arcs (and

because the alphabet is larger), this encoding is only appropriate for relatively large networks31. For this

reason, only the arc encoding will be employed in the analyses which follow.

2.5.1 Complexity of Unlabeled Structures

The above procedure suÆces to give us an estimate of the complexity of a labeled digraph; in many circum-

stances, however, this is not a sensible quantity. To understand why this is so, let us consider the following

two sociomatrices:

(Insert Figure 1 Here)

Note that Structure A and Structure B are isomorphic: there exists a bijection from A to B or, to

put it another way, there exists a relabeling (or, here, reordering) of the vertices of A which produces B,

and vice versa32. In this sense, then, A and B are structurally identical; while they may be written a bit

di�erently (perhaps due to di�erent data collection procedures, naming conventions, etc.) there is no purely

29I.e., a digraph in which each tie belongs to a given category, but in which those categories may have neither ordinal nor

cardinal signi�cance (e.g., contacted by phone versus interacted in person).
30Preliminary experiments have suggested that reciprocity is a graph feature of theoretical interest which is not readily picked

up by the L-Z measure.
31Precisely how large is hard to say, because the Kaspar and Schuster (1987) convergence results apply only to binary

sequences; this is a potentially important question for future research. We also do not here attempt to investigate column-wise,

rather than row-wise, concatenation, though informal examination suggests that results using each are generally similar.
32This particular relabeling happens to be given by the vertex ordering (1,8,2,7,3,6,4,5).
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structural measure which would vary between these graphs. Unfortunately, however, the above application

of the Lempel-Ziv measure to these two matrices does not yield identical results. If one considers the binary

representations of these sociomatrices, one can see why:

Structure A: 0111000010110000110100001110000000000111000010110000110100001110

Structure B: 0010101000010101100010100100010110100010010100011010100001010100

Observe that Structure A has more \runs" of 0's and 1's than does Structure B. When we recall that

long strings of 1's and 0's can be very succinctly expressed using the Lempel-Ziv algorithm, we can clearly

see that Structure A can be expected to have a somewhat lower complexity than Structure B. Just as it is

easier for the human brain to quickly grasp this simple underlying pattern from matrix A above than from

matrix B, so too is it easier for the Lempel-Ziv algorithm to express the neatly blocked pattern of A than

the more periodic patterns of B; in the Lempel-Ziv sense, the second representation is more complex.

This fact is no fault of the method itself { the measure is indeed accurately characterizing complexity

{ but reveals a slight disjuncture between the structures whose complexity we would like to measure33

(the underlying structures associated with unlabeled graphs) and those we are actually measuring (labeled

graphs). What is needed, then, is a way to use the Lempel-Ziv measure to determine the complexity of

unlabeled graphs. The approach which shall be presented here is similar in spirit to that used by Butts and

Carley (1998) for comparison of unlabeled structures: we shall attempt to decompose observed complexity

values into a fundamental, structural component and a variable, labeling component, and shall attempt to

estimate the latter from the former. Although this procedure will not permit us to utilize some of the more

elegant results from Lempel and Ziv (1976), we shall endeavor to use computational techniques to compare

our �ndings with those of various null models.

2.5.2 Formal Presentation of a Method for Estimating the Lempel-Ziv Complexity of an

Unlabeled Digraph

Given an unlabeled digraph G, let the labeling � represent a unique ordering (or labeling) of the vertex set

V(G). The labeling function L(�;G), then, returns a labeled digraph G� with vertex labels �. If C(L(�;G))

is the L-Z complexity of such a digraph, then we may de�ne a minimum value for C on a given unlabeled

digraph as follows:

C
S(G) =

min
� C(L(�;G)) (3)

C
S(G) shall henceforth be referred to as the structural complexity of the unlabeled digraph G. Note that

this function depends only on the unlabeled digraph; by minimizing over all possible labelings, we remove

any � e�ects. From the de�nition of CS above, we may furthermore de�ne a complementary quantity C�:
33In fact, there are circumstances in which we might very well care about the complexity of labeled structures. One obvious

case is illustrated by the matrices above: less complex representations of graphs appear to be easier to comprehend, and thus

the L-Z complexity may be applied to problems of graph visualization.
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C
�(L(�;G)) = C(L(�;G)) � C

S(G) (4)

C
�(L(�;G)) is the labeling complexity of the labeled digraph L(�;G), and represents that portion of the

observed Lempel-Ziv complexity of L(�;G) accounted for by the labeling � alone. This term, combined with

the structural complexity, permits us to re-express the L-Z complexity in the following decomposition:

C(L(�;G)) = C
�(L(�;G)) + C

S(G) (5)

Thus, we see that the observed L-Z complexity can be thought of as being a combination of some

fundamental structural complexity which depends solely on the unlabeled digraph being examined, and

some additional labeling complexity which is dependent on the way in which the digraph happens to be

presented. Furthermore, it is trivial to show that both the structural and labeling complexities are positive

integers, and that the labeling complexity is bounded below at 034. If one can �nd some labeling of a given

digraph for which C� = 0, then, the Lempel-Ziv of complexity of that labeled digraph will be the structural

complexity of its corresponding unlabeled digraph.

Unfortunately, computing C
S(G) is not a trivial task; in the worst case, it would require searching

over all jV (G)j! labelings of G for the minimum complexity! In the analyses which follow, then, we are

content to merely estimate CS(G) by taking the minimum observed value over a reasonable (1,000) uniform

sample from the set of all labelings. Clearly, alternative procedures are possible { specialized canonical

labeling algorithms somewhat like those of Butts and Carley (1998) or heuristic labeling search as is used

in Butts (1998) (applying genetic algorithms, simulated annealing, or other forms of heuristic optimization)

are obvious choices { and their investigation is left as a task for future research.

3 Complexity and Structural Equivalence

Structural equivalence, �rst de�ned formally by Lorrain and White (1971), is perhaps the best known of an

array of network analysis techniques which attempt to simplify graphs by means of identifying sets of nodes

with similar structural properties. Structural equivalence has, further, served as an important theoretical

tool for understanding the di�usion of innovations (Burt, 1987), competition between actors (Burt, 1992),

and the structure of scienti�c �elds (Breiger et al., 1975); it has also encouraged a long line of research into

similar methods of position, role, and class analysis (White and Reitz, 1983; Everett and Borgatti, 1988;

Everett, 1985). Interestingly, it also happens that (as we shall see) the presence of structural equivalence is

intimately related to graph complexity.

Members of a given structural equivalence class must, by de�nition, have precisely the same neighbor-

hoods. As a result, we can treat such nodes as \copies" of each other; if we select one copy from each class,

34This follows from the fact that the L-Z complexity is a positive integer, that CS is the L-Z complexity of some labeled

digraph (see Equation 4) and that CS is a minimum over all possible labelings of G.
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then, we can reduce the larger graph to a much smaller structure which, in an important sense, represents

the entire graph. Such reduced structures are commonly referred to as blockmodels35, and are important

tools for distilling large, diÆcult to comprehend structures into smaller, more easily inspected forms. More

salient for our purposes, however, is the fact that such blockmodels represent an encoding of the larger

graph: given a graph of relations between equivalence classes and a vector indicating how many members

are contained within each class, we can reproduce the original graph by \copying" the relevant nodes. This

suggests that graphs which contain nontrivial structural equivalence classes may be compressible, and thus

that their Kolmogorov complexity may be lower than graphs which do not contain these equivalences.

To see how this may be the case, let us consider a graph, A, with SE blockmodel36 B and multiplication

vector m consisting of the number of nodes in each respective equivalence class. Given this, it is obvious

that there exists some algorithm which can reproduce A by repeatedly copying the nodes of B as per the

vector m. An upper bound on the Kolmogorov complexity of A, then, must be given by

CK(A) � CK(B) + CK(m) + k (6)

where k is a constant associated with the complexity of the copying algorithm itself. Obviously, it is

always possible that a simpler algorithm exists; however, since one can always reconstruct any given graph

from the above, it clearly serves as an upper bound.

How much does this tell us? This depends on the complexity of the blockmodel B and the associated

multiplication vector. If these can themselves be reproduced with relatively minimal algorithms, then the

above could constitute a signi�cant improvement over consideringA in the absence of structural equivalence.

As we have already noted, however, we cannot easily �nd CK for an arbitrary structure; thus, while the

above result provides us with some insight into the connection between structural equivalence, blockmodels,

and algorithmic complexity, it is of little practical value. But what of our empirical complexity measure,

CLZ? Provided that CLZ is a reasonable index of algorithmic complexity, it is not unreasonable to assume

that the same logic used in equation 6 might be applied to the Lempel-Ziv measure as well. Given this, we

may hypothesize that

CLZ(A) � CLZ(B) + CLZ(m) + k (7)

�
jV (B)j

log2 (jV (B)j)
+

jV (B)j

logmax
8i jBij

(jV (B)j)
+ k (8)

which, for large Bi, gives us

35Blockmodels are used for a variety of purposes, and summarizing the relations between structural equivalence classes is

only one of these; for the moment, however, we shall restrict ourselves to this application.
36In the text which follows, the term \blockmodel" will often be used to refer to what is also called the \image matrix"

or \blockmodel reduction" of a graph. The simple assignment of nodes to blocks without reduction is here referred to as a

\blocking," as distinct from the model which a given blocking produces.
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lim
max

i Bi!1

CLZ(A)!
jV (B)j

log2 (jV (B)j)
+ k (9)

Clearly, this (if correct) is a powerful result: algorithmic complexity of the larger graph is, in the limit,

on the order of the complexity of its structural equivalence-induced blockmodel. Where jV (G)j � jV (B)j,

this may be di�er substantially from a random structure of equal size and density. Does this argument,

however, actually hold for the Lempel-Ziv measure? To �nd out, we consider the complexity of expanded

blockmodels.

3.1 Complexity of Expanded Blockmodels

To examine the degree of algorithmic simplicity found in graphs containing non-trivial structural equivalence

classes, it is �rst necessary to obtain a criterion; in particular, we must have graphs which are known to

contain the desired structural features. One method of generating such graphs, which will be employed here,

is that of blockmodel expansion. In a blockmodel expansion, one takes a (randomly generated) block image

matrix, and \expands" it by making multiple copies of each node. Here, we examine expanded images for a

variety of initial image sizes, maximum class sizes, and under additional constraints (random permutation

and noise). By evaluating the complexity of the resulting graphs, we can test the hypothesis that expanded

blockmodels are indeed of very low complexity under the Lempel-Ziv measure.

Our analysis will take the form of a virtual experiment. In this experiment we shall generate random

uniform blockmodels of �xed size, expand them via a class membership vector (uniform random with con-

trolled maximum), and in some cases add symmetric noise and/or randomly permute the resulting graph.

These last two steps should allow us to test the robustness of the measure: if the Lempel-Ziv measure is

extremely robust, it should continue to detect the underlying structural simplicity even when that structure

is permuted and randomly modi�ed37. As a further handicap, we shall not search the permutation space

of the graphs under consideration, instead examining only the complexity of the labeled graph. Here again,

the question is whether the Lempel-Ziv measure can still notice underlying structure under extremely harsh

conditions; if it can, in fact, do so, then we can be con�dent of its ability to identify structural equivalence

under more favorable conditions.

The conditions for our virtual experiment are as follows:

(Insert Table 1 Here)

Generating random matrices in each condition, we then apply the L-Z complexity measure to each result-

ing graph, and tabulate the results. Do the structures appear to be algorithmically simple? For an overall

37Of course, adding too much noise will truly reduce any equivalence present to random levels, defeating the purpose of the

test. For this reason, noise is here limited to 0, 5, and 10 percent of all arcs.
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result, we examine the histogram of observed complexity values across all conditions:

(Insert Figure 2 Here)

As �gure 2 demonstrates, even across all conditions (including noise and permutations, and using only the

labeled graph encoding) there is clearly a great deal of simplicity present. While many graphs are fairly close

to their asymptotic maxima, much of the weight of the distribution is sharply less, with the bulk well below

1.0 and many at 0.5 or less. Clearly, these structures are correctly identi�ed by the Lempel-Ziv measure as

being algorithmically simple, even under adverse conditions, thus proving the feasibility of the measure for

the identi�cation of structural features of interest. What, however, of the relationship between image size,

class size, and complexity? For this we turn to �gure 3, below.

(Insert Figure 3 Here)

Across all conditions, there is a clear curvilinear relationship between normalized complexity and max-

imum class size: as classes become larger, more reduction is possible, resulting in a lower normalized com-

plexity score. Block image size has a negligible e�ect on normalized complexity, which is as expected; image

size should dominate the raw complexity measure, but the normalized complexity should be a function only

of the degree of reduction (discounting noise and permutations). Here again, then, we �nd that the measure

is behaving as expected.

The above distributional analyses were taken across noise and permutation conditions; as noted, a great

deal of compressibility was identi�ed despite these factors. What, however, are the e�ects of noise and per-

mutation on normalized complexity? How robust is the Lempel-Ziv measure to these inuences? For this,

we examine the normalized complexity distribution by noise and permutation (�gure 4):

(Insert Figure 4 Here)

Clearly, the e�ect of both factors on complexity is dramatic. With no noise nor random permutation, the

normalized complexity values overwhelmingly fall around 25% of their asymptotic maximum. Permutation

increases this to near 40%, indicating that while the L-Z measure is a�ected by random labeling e�ects (when

permutation sampling is not used), these e�ects are not crippling. Noise, however, very quickly degrades

algorithmic performance: a 5% chance of change per tie raises median observed complexity above 50%, and

permutation combined with this places the distribution in the 75% range. While even 10% noise cannot

completely prevent the algorithm from exploiting SE reductions, it alone is able to raise observed complexity

to about three-fourths of the theoretical limit. In combination with permutations, this level of noise can

quite e�ectively mask structural equivalence.
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In general, then, the implication of this would seem to be that while the Lempel-Ziv measure is reasonably

robust, fairly noisy data is likely to mask any underlying order in the criterion structure38. Labeling e�ects

can compound this problem; hence, it is clearly advisable to utilize a technique such as that described above

to attempt to estimate the unlabeled graph complexity where possible, particularly when noise is involved.

Clearly, the L-Z complexity measure behaves as expected on marginally \clean" data, and can be employed

to identify structural equivalence (even approximate structural equivalence, to a degree) in social networks.

4 Complexity of Empirical Networks

We have, in the above sections, argued that the algorithmic complexity of social networks is a matter of

theoretical interest. Likewise, we have shown how one such complexity measure may be applied to digraphs,

and have demonstrated that at least one property of special interest { structural equivalence { is easily

detected by the complexity measure. What, however, of the actual complexity of empirical networks? To

gain some idea, we now proceed to apply the Lempel-Ziv complexity measure to a variety of social networks

taken from a wide range of empirical studies.

4.1 Data and Procedure

The networks which are here examined are taken from a collection of sample data sets included in Wasserman

and Faust (1994) and with the UCINET IV network analysis package (Borgatti, Everett, and Freeman, 1996).

These data sets span a range of relation types, collection contexts, and collection methods, and are often

used as a testbed for new methods (see, for instance, Breiger et al., Boorman and White). Although it

should be emphasized that this does represent a sample of convenience, rather than a representative sample

of all social networks, the total number of networks (n=112) is relatively evenly divisible into three categories

(observational/behavioral (n=36), simple self-report (n=34), and cognitive social structure (n=42)) which

represent the majority of data types used in the �eld. It is hoped, then, that the data set employed here

will be broad (and representative) enough to permit some preliminary conclusions regarding the complexity

of social networks, conclusions which may then be tested more extensively by future research.

The speci�c data sets included here are listed by a shortened coding system. The �rst element(s) of the

code identify the set (and in some cases the collector), along with some further identifying information where

necessary. These codes (and the corresponding sets) are as follows:

(Insert Table 2 Here)

Additional clarifying codes are as follows. For sociometric or valued behavioral data, the dichotomization

38Again, it is not clear to what extent this is a fault of the measure, and to what extent the introduction of random noise

truly obliterates structure in the data. This would seem to be an important question for future research.
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employed is indicated by a three letter code starting with the letter \d", followed either by \g" (if values

\greater than or equal to" were used) or \l" (for \less than or equal to"), and then by an \m" (if the

dichotomization was about the mean over all arcs) or a \d" (if about the median). Hence, a code of \dld"

indicates that the data was coded such that values less than or equal to the median arc strength were mapped

to 1, while those greater than the median were mapped to 0. When choosing dichotomizations, the direction

of strength which was theoretically appropriate given the data was used (e.g., greater than for number of

interactions, less than for rankings). Where possible, dichotomizations were performed using the median

arc strength; if (and only if) this resulted in a degenerate matrix, the mean was used instead. In addition

to these two codes (the set identi�er and dichotomization codes), each data set considered here bears a

\nos" code39 (a data format reference which has no e�ect on the analyses conducted here), and in some

cases a trailing number. The trailing number, where present, identi�es the speci�c matrix in a matrix stack;

hence, kracko�.fr.nos.8 refers to the 8th matrix in the Krackhardt oÆce CSS data stack, friendship relation.

Since each matrix is analyzed separately, the number of matrices in any given stack has no relation to the

complexity of the data set. However, being able to identify individual matrices with particular properties

may be useful in some cases40.

For each of these matrices, then, the following procedure was performed. First, each adjacency matrix

was transformed into its arc encoding, as per the method of Section 2.5. Second, the Lempel-Ziv complexity

of each such encoding was determined using the Kaspar and Schuster (1987) algorithm, and the asymptotic

complexity maximum was determined using the encoding length and source entropy41. Third, this process

was repeated on 10,000 random sequences which were constrained to have length and entropy identical

to the original graph encoding; these were used to obtain a 95% Monte Carlo con�dence interval for the

distribution of CLZ , and to obtain speci�c p-values for CLZ observed. Finally, after this was performed,

steps two and three were repeated with the following modi�cations: the number of Monte Carlo trials was

restricted to 100, and each matrix (original and random) was tested under 1,000 random permutations, with

the minimum complexity draw being used as an estimate of the unlabeled graph complexity42. The above

data { complexity values, theoretical maxima, p-values, and 95% Monte Carlo con�dence intervals { for

both the labeled and unlabeled cases were then divided by data type (observational, standard self-report, or

cognitive social structure) for subsequent analysis and presentation.

39For those who are interested, it refers to \N eo-OrgStat" format.
40For instance, to identify individuals with unusually complex or simple cognitive network representations.
41This is merely the �rst order Shannon entropy (h) of the sequence; in the binary case, it is simply

� (p log2 p+ (1� p) log2(1 � p)), where p is the graph density. Note that 0 � h � 1, and h is symmetric about its maxi-

mum (which is, in this case, at p = 0:5).
42The number of Monte Carlo trials was restrained for computational reasons: since the number of conditions to be run scales

by the product of the number of permutations and the number of random sequences, it was not feasible to consider the same

number of trials in the unlabeled graph analysis.

19



4.2 Preliminary Hypotheses

While we are, to some extent, simply interested here in discovering what patterns of complexity are found in

social networks, it is also the case that our prior theoretical motivation permits us to pose some preliminary

hypotheses regarding network complexity. Although the present study cannot be expected to yield �rm

con�rmations or denials of these hypotheses43, we may nevertheless use this initial, semi-exploratory test to

serve as the basis for future, more rigorous analyses. With this in mind, then, the following hypotheses are

suggested44:

Hypothesis 1 (The Simple Network Hypothesis) Social networks, in general, will be substantially al-

gorithmically simpler than random graphs of equivalent size and density.

Hypothesis 2 (The Cognitive Representation Hypothesis) Cognitive social structures, in general,

will be substantially algorithmically simpler than either random graphs or non-cognitive social networks of

equivalent size and density.

Hypothesis 3 (The Physical Constraint Hypothesis) Behavioral networks, in general, will be algo-

rithmically simpler than self-report networks of equivalent size and density.

While the basic rationale for each of these hypotheses was stated in the introduction, a brief reconsidera-

tion will be given here. H1 follows from the argument that social networks in general { whether of behavioral

or cognitive origin { are heavily constrained by numerous factors, contain non-trivial equivalences, and de-

viate in other ways which cause them to be algorithmically simple relative to random graphs with identical

sizes and densities. The motivation for H2 is similar: cognitive social structures should be especially con-

strained by associative thinking (which will tend to cause actors to link people who have otherwise similar

associations), pressures towards balance (which will promote the confabulation of ties between actors with

positive ties towards shared alters, among other things), framing of interaction in terms of groups rather than

relations (Freeman, 1992), etc., and hence should be much simpler than would be expected either from the

behavioral network or from comparison with a random graph. H3 is obviously a bit more presumptive, but

follows an ironically similar logic; the assumption of H3 is that (as per Bernard et al., 1980) each individual

within a self-report network will add his or her own biases to the total network, resulting in a structure

which obscures the actual constraints which structure behavior (Mayhew et al., 1972; Latan�e et al., 1995)

(but not always the memory of it)45.

43The primary reasons being that the methods employed are still \new" and require further testing, and that the data set

being examined may or may not be biased in some fashion.
44Hypotheses 1 and 2 were explicitly chosen (and 3 implicitly) prior to the data analysis; notably, they are also (largely)

incorrect.
45Contrast this with H2: in the latter case, one is eliciting a complete set of biased data, which should result in compression.

In the former, it is assumed that di�erences in individual circumstances will collectively result in random noise, despite the fact

that each such bias is part of an overall simpli�cation scheme at the intraindividual level.
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In general, then, prior theory (and practice) in network analysis suggests to us that the hallmark of social

networks will be their simplicity, rather than their complexity. With these three hypotheses in mind, then,

we now turn to the data.

4.3 Observed Behavioral Networks

The set of observed behavioral networks contains 36 separate matrices, running the gamut from anthropo-

logical observation (kapmine) to international trade (cntrytrade). What unites all data in this collection,

however, is that all sets are derived from some third-party observer (human or otherwise), and that all con-

cern observed behavior of some sort or other (rather than self-reports of a�ect, for instance). While many

of these networks are de�ned on physically proximate populations, this is not true of the entire set (freeei

and cntrytrade being two obvious examples); likewise, some but not all of the sets concern actors embedded

in a formal organizational context (e.g., krackhiman.rep and bko�). This set thus represents a fairly diverse

group of studies, which should (presumably) test the robustness of our hypotheses.

The speci�c observations on each data set in the observational data group follow. Note that Cmax here

refers to the asymptotic random sequence maximum, adjusted for sequence length and source entropy. All

p-values and con�dence intervals reported are derived from the Monte Carlo test procedure described above.

(Insert Table 3 Here)

As can be seen, the above groups vary in their theoretical maximum complexity; in general, however, one

�nds little support for hypotheses H1 or H3 here. Surprisingly, only around half of the networks considered

are below the 95% con�dence interval46, and in the labeled case approximately 86% of all graphs are within a

con�dence interval of the asymptotic random maximum47! To better understand the data's global behavior,

let us now examine a visualization of the observational data set:

(Insert Figure 5 Here)

In �gure 5 above, the plotted bars represent the 95% Monte Carlo con�dence intervals for the labeled

graph complexities. The asymptotic maximum complexity for each graph is represented by a left-pointing

triangle; note that this value may not always be contained within the con�dence interval, due to the previously

mentioned fact that entropy and graph size can a�ect convergence rates. The observed L-Z complexity of

each graph is given by a right-facing triangle. By comparing the distance between the right-facing point of

this triangle and the con�dence interval (or the asymptotic maximum), one can infer how much simpler the

4644% in the labeled case, versus 56% in the unlabeled case.
47The width of the con�dence interval is used here in place of the standard deviation, due to the nature of the distributions

in question. Additionally, the asymptotic maximum is only a very rough guideline in the unlabeled case, since it does not take

into account the complexity reduction due to permutation on random sequences.
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graph in question is than a typical random graph with similar properties. Looking across the irregular line

of intervals and complexity values, one can at a glance obtain a sense of their overall distribution; as noted

above, while many networks are simpler than would be expected, many are not, and those which display

unusual levels of simplicity are not generally drastic in the di�erences they evince.

Given the above results in the labeled case, let us now visualize the unlabeled data:

(Insert Figure 6 Here)

Figure 6, above, is much like �gure 5 in layout, and can be read in much the same fashion. The asymptotic

maximum, which is de�ned for labeled sequences, has been omitted here due to the fact that it does not

correct for the unlabeled case. (A numerical comparison is still available in the above data, however.) In

comparison with �gure 5, several di�erences are noticeable in �gure 6. First, and most obvious, far more

graphs are signi�cantly simple in the unlabeled case than in the labeled case; despite this, however, one �nds

that most absolute di�erences remain small (with the exception of sets such as cntrytrade, freeei, and bk*).

Second, one is also struck by the fact that the con�dence intervals appear to be far narrower in the unlabeled

case than in the labeled case. While this could in some cases be due to the smaller sample size used, it would

also seem that the range of common complexity values is far narrower for unlabeled structures than for their

labeled counterparts. While this partially accounts for the increased number of signi�cant di�erences in the

unlabeled case, it is noteworthy that none of the graphs examined show the substantial simplicity found in

the expanded SE blockmodels; a strong claim for H1, then, is substantially undermined by this data.

4.4 Self-Report Networks

Where the observational/behavioral data sets consist of data collected by third parties, the self-report net-

works considered here consist of structures created from a composition of individually reported ties. Gen-

erally, the relations sampled in this way focus on reported interaction, a�ect, or participation in a socially-

de�ned relationship (e.g., friendship, advice-giving). Also unlike the previous set, the self-report networks

considered here consist exclusively of relations among human subjects48; hence, this set is less broad than

the observational data set.

As before, we begin by examining the Lempel-Ziv complexity data for each matrix directly:

(Insert Table 4 Here)

Out of the total data set, 32% and 29% (labeled and unlabeled respectively) of all graphs had L-Z com-

plexity ratings below the 95% con�dence interval. While this would appear to be a substantial di�erence

48Note that this is not necessarily true of self-reports in general: self-reports of institutional ties are common in interorgani-

zational research.
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from the observational data, the asymptotic limit comparison tells a somewhat di�erent story: approximately

88% of the matrices considered here were within one con�dence interval of Cmax, which is nearly the same as

86% in the observational case. What is going on here? To get a better sense, let us turn to the visualizations:

(Insert Figure 7 Here)

Figure 7 shows the L-Z complexity scores (and associated measures) for the self-report data in the labeled

case. Clearly, some of the labeled structures { such as certain of the freeei.* sets { are much simpler than

would be expected, though most of the others are not. Further elaboration may be seen in the unlabeled case:

(Insert Figure 8 Here)

Here, it is evident that some sets (such as freeei) are relatively simple in general, while other sets (such

as newfrat) show no signs of simpli�cation even in the unlabeled case. Clearly, then, we do not see a ringing

endorsement for H1 or H3 here, although there is continued evidence of some consistent deviation from the

random limit.

4.5 Cognitive Social Structures

Our �nal data set is, in many ways, the most unusual of the three. Unlike the other two collections, all of

the matrices in this set come from a single study, on a single population of human actors. The ties which are

reported are relatively subjective ones, and the data is \self-report" in the sense that network participants

are used, but here each network consists of an individual's full elicited representation of connections among

all actors in the set; this is thus quite di�erent from self-report data, in which subjective perceptions of many

actors may be joined to form a single network49. As with the other sets, this one contains a fair number

of matrices (n=42) of multiple types, though the multiple in this case is only two (ascribed friendship and

advice-giving). Examining this CSS stack, then, gives us a chance to look more deeply into a particular data

set, at the expense of a broader view.

Let us now proceed to examine the complexity data for the cognitive social structure set. Note that all of

the data presented here comes from the kracko� study, on two relations. Each matrix number corresponds

to a single subject from the study; hence, one may compare across relations to seek individual di�erences in

representational complexity50. The data is as follows:

49Though this has more to do with our use of the data (in \slices," to use the CSS term) than with the data itself. Krackhardt

(1987) rightly regards CSS stacks as being more than simply a collection of independent networks, and has demonstrated how

elements of the CSS may be pooled to gain new observations. For our purposes, however, we shall be interested in the

complexities of the individually perceived networks.
50Though, with an n of 2, this is ill-advised....
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(Insert Table 5 Here)

Far from what H2 would predict, in general we do not �nd strong evidence for substantial structural

simplicity within the CSS stack. Every graph examined was within one con�dence interval of the asymptotic

maximum in the labeled case, and only 19% of the labeled graphs were signi�cantly di�erent from the Monte

Carlo sample at the 0.05 level. The unlabeled case, however, is a bit more interesting: 57% of all CSS

slices were below the 95% con�dence interval here, a higher ratio than either of the other groups. For more

information, we look to the visualizations:

(Insert Figure 9 Here)

In �gure 9, we can clearly see that, while most of the graphs have complexity values near the bottom of

their respective con�dence intervals, they are still within acceptable bounds. One can also see in �gure 9 a

clear demarcation between the friendship networks (which are both low-entropy and low complexity) and the

advice networks (which are higher on both counts). Substantial variance within relations exists as well, for

instance, indicating high variability in network density by respondent. How does this change so drastically

in the unlabeled case? To see this, we must turn to �gure 10:

(Insert Figure 10 Here)

Here, in the unlabeled case, we can see that matrix complexity values are still close to their con�dence

intervals; the intervals, however, have diminished in magnitude (a common �nding across all three sets) and

graph complexities have also fallen slightly. The uniform result of this across the stack is a large number

of graphs which are slightly less complex than the random samples, but not greatly so. The basic pattern

of di�erences across relations persists in the unlabeled case, as does the pattern of individual di�erences;

given that sequence length is �xed, the fact that L-Z complexity scores can vary from under 5 to over 50

indicates the dramatic e�ect of entropy in constraining possibilities for complexity. Indeed, this variability

makes clear the important fact that most of the algorithmic simplicity which is present in these graphs is

not due to \deep" factors, but simply to low entropy. In a sense, then, some of our initial intuitions seem

to be correct: social networks are indeed simple, compared to unconditional random graphs. Once density

is controlled for, however, the picture changes sharply.

4.6 General Comparison

Having examined each of our three empirical subsets in turn, what can we now say regarding their relations?

While we hypothesized in H1 that all three of the groups would be substantially simpler than a conditional

uniform random sample, this does not seem to be borne out in practice. While it is true that a fair number
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of our structures are signi�cantly simple at the 0.05 level (31% in the labeled case, and 48% in the unlabeled

case), the di�erences are rarely drastic51. In the labeled case, it is useful to examine the distribution of

normalized complexity values:

(Insert Figure 11 Here)

Figure 11, above, shows us these normalized values (values less than 1 signify complexity levels below

the asymptotic maximum) for the labeled case. Despite some tail weight towards the bottom of the graph

in the observational case, none of the three data groups appear to have most of their distributions below

the 1.0 level. More importantly, few values indeed range below 0.7, and none broaches half of the asymp-

totic maximum value. On the other hand, we have already seen that the asymptotic maximum { while a

useful benchmark { does not always reect accurately the actual complexity of relatively small, entropy-

constrained graphs. As another means of comparison, then, we can examine the distribution of an index

given by (CLZ � CIL)=(CIU � CIL), where CIU and CIL are the upper and lower bounds (respectively)

of the 95% Monte Carlo con�dence interval. This index provides us with a sense of how many intervals be-

low (or above) the lower bound of the con�dence interval the typical observation lies, and is given in �gure 12:

(Insert Figure 12 Here)

Here again, we are examining labeled graphs, and here again we �nd that much of the distributional

weight is above the 0 mark (i.e., at or above the minimum of the interval). Long, fat negative tails are

present, however, particularly within the observational data set52, indicating that a few networks are some

intervals below the Monte Carlo lower bound. (To get a sense of what this means in absolute terms, it is

helpful to note that the mean con�dence interval in the labeled case was 4.9 units wide, with a standard

deviation of 1.13 units.)

What about the unlabeled case? After all, if graphs are unimpressively simple when labeled, it may

simply be that the structures are \scrambled" in a way which adversely a�ects the Lempel-Ziv measure. To

examine this possibility, we turn in �gure 13 to the distribution of the same index as �gure 12 above, but

for unlabeled graphs:

(Insert Figure 13 Here)

Clearly, it would seem that there is more downside weight in the unlabeled case (though a few outliers,

such as the freeei.acq2.dgm data set, make the e�ect appear more substantial than it is). At the same time,

51In the labeled case, 80% of the total sample was within one con�dence interval of the asymptotic maximum.
52While the self-report data does not have a fat lower tail, it does have a number of highly negative outliers.
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however, the distributional medians remain very close to the 0.0 mark, indicating continued weight at the

top of the scale53. Also, the fact that the mean con�dence interval has a width of only 1.77 (stddev 0.70)

in the unlabeled case suggests that larger tail multipliers may actually mean less for unlabeled graphs (in

absolute terms), since the total variability of the random samples decreases in this case54.

What of di�erences between distributions? Statistical comparison under these circumstances is somewhat

problematic, but non-parametric tests (Kruskal-Wallace and medians test) indicated generally signi�cant

di�erences55 on both indicator variables across the three samples. H3, which argues that observational

networks should be simpler than self-report networks, has some support; however, this result clearly rests on

lower tail weight within the observational complexity distribution, and does not reect substantial di�erences.

The cognitive social structures, far from being the simplest graphs (as per H2) are if anything more complex

relative to random structures than the self-report and observational networks! (Here again, however, the

total di�erences are not large.) In terms of general comparison, then, it would seem that these three types

of social network data are more alike than they are di�erent (though some di�erences exist), and likewise it

would seem that at least two of our three hypotheses are either contradicted or only weakly supported by

the empirical evidence.

5 Discussion and General Implications

What have we learned thusfar regarding the complexity of social networks, and what are the implications of

these �ndings for social scienti�c research? To begin with, it would seem that the assumption that cognitive

and other limitations will cause certain networks { especially cognitive social structures { to be extremely

simple beyond what would be expected from density alone is not supported by the data. Whatever di�erences

exist between data types appear to be subtle, and there is no evidence here to suggest that these network

types will vary greatly in their possession of unusual features (although which ones each possesses is not

addressed by this work). What, however, of network complexity in general? In H1 it was argued that social

networks would (by virtue of their containing non-trivial equivalences, unusual GLI distributions, etc.) be

extremely simple relative to random graphs. By any reasonable measure, this seems not to be the case.

Clearly, some social networks do seem to be less complex than random structures, but not vastly so56.

If this is true, however, what does it mean? While this study is only a preliminary, one possibility is that

53And, it should be noted, it is diÆcult to have long tails on the high end, due to the relative improbability of being more

complex than a sample of random graphs.
54The mean reduction in graph complexity due to permutation was 5.1 units (sd=2.4); CI lower bounds decreased by 3.38

(sd=1.01) units on average, but CI upper bounds fell by an average of 6.52 (sd=1.51), more than making up for the di�erence.
55In the unlabeled case, C

Cmax
p values were p < 0:001 and p < 0:014 for KS and medians tests, respectively; for the con�dence

interval index, respective p values were p < 0:052 and p < 0:012.
56Or, at least, this is true of our observations of these networks. If errors in network data are primarily random rather than

simplifying, then the present result could argue that our data contains so much noise that we cannot perceive the underlying

structural simplicity. Such an alternative hypothesis is interesting (albeit distressing), but will not be treated further here.
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a competing hypothesis is actually a better depiction of social network structure than one might think at

�rst blush. Speci�cally, we must consider the following:

Hypothesis 4 (Conditional Uniform Graph Distribution Hypothesis) The conditional uniform graph

distribution hypothesis is that hypothesis which states that the aggregate distribution of empirically realized

social networks is isomorphic with a uniform distribution over the space of all graphs, conditional on graph

size and density.

This hypothesis has been used in the past as a baseline model of network formation (Mayhew et al., 1972;

Mayhew, 1983), and work by Anderson et al. (1999) have found that many networks do not vary signi�cantly

from this hypothesis on a range of graph-level indices. Insofar as this hypothesis is correct, then, what are

the implications? First, insofar as graphs obey the CUGDH, network analysts should be extremely cautious

when using tools such as approximate equivalence class detection algorithms. By searching across de�nitions

of equivalence, detection algorithms, and relaxation levels, researchers are nearly certain to \�nd" some

blockmodel which �ts with their intuitions; however, it may be the case that many approximate blockmodels

identi�ed in this fashion are simply random artifacts. Without a solid null-hypothesis testing apparatus, it

is diÆcult to be certain that one has not simply found \phantom" blockmodels. Use of complexity measures

as a preliminary screening technique may alleviate this problem somewhat, but a more specialized set of

tools for discerning between unusual and random equivalences is still required.

Of course, if the CUGDH is valid, it also follows that much of what will be found { or not found {

in any given graph will be driven heavily by density and graph size. Anderson et al. have already shown

that GLI distributions are both extremely poorly behaved and heavily inuenced by size and density; given

the substantial constraints on possible values imposed by combinatoric considerations, it seems likely that

these inuences are active on social networks as well. Considerations of algorithmic complexity and source

entropy suggest, likewise, that graphs of extreme density will be simple relative to unconditional uniform

graphs, and that certain graph properties may be more common in these structures due to these factors

alone. Of course, this is quite consistent with a long line of sociological theory (Spencer, 1874; Durkheim,

1893; Mayhew, 1983) which has argued that social density is a key determinant of social life. If so, it would

seem critical that social scientists ensure that their measurement of these two structural variables is correct,

lest they be lead astray by apparent e�ects which are in fact the result of density (or size) misestimation.

Given the evidence seen here for the e�ects of changing dichotomization levels on algorithmic complexity,

better dichotomization procedures might be a good place to start.

All of this said, to what extent can we say that the CUGDH is representative of social networks? This

study, to be sure, cannot resolve this issue. Clearly, many actual social networks do appear to have levels of

complexity which are not entirely consistent with the CUGDH, but neither do the networks examined here

display the level of simplicity required for H1. A researcher who attempted to model the data presented

here using the CUGDH would have a reasonably low magnitude of error (in terms of L-Z complexity), but
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that error would be both persistent and in one direction. One suspects, then, that CUGDH is a baseline

model rather than a \�nish-line model57;" the question of how far o� that �nish-line may yet be is obviously

a question for subsequent research.

6 Conclusions

In this paper, an approach to the use of algorithmic complexity in the analysis of social networks has been

introduced, based on a theoretical motivation regarding constraints on graph structure. A speci�c measure

of algorithmic complexity developed by Lempel and Ziv (1976) was introduced, and its application to the

measurement of complexity in directed graphs was discussed. Examination of the algorithmic complexity of

expanded structural equivalence blockmodels demonstrated the ability of the Lempel-Ziv measure to detect

features of structural interest, and it was shown that graphs constructed from random SE blockmodels

are highly algorithmically simple. Application of the Lempel-Ziv complexity measure to a large set of social

networks revealed (contrary to expectations) that most networks are nearly as complex as would be expected

from their size and source entropy; some persistent deviation from a random baseline was detected, however.

Comparison of multiple data types { observational/behavioral, self-report, and cognitive social structures {

failed to identify strong di�erences in complexity between types, also contrary to a priori expectations (though

some di�erences were detected). Some implications of the apparent complexity of graphs for network theory

(and the conditional uniform graph distribution hypothesis in particular) were discussed, and evidence for the

importance of density as a determinant of social structure was presented. It is hoped that this preliminary

work will lead to further development in the application of algorithmic complexity to social network analysis,

and that it will encourage the development and use of new tools for the identi�cation of social structure.
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Table 1: Conditions for the Structural Equivalence Experiment

Experimental Conditions

Permuted? Yes, No

Block Image Size 4, 8, 12

Maximum Class Size 5, 8, 11, 14

Noise Level 0.0, 0.05, 0.1

Replications per Condition 5

Total Runs 360
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Table 2: Empirical Data Sets, with Identi�cation Codes

Set Code Description

krackhiman.ad.* Krackhardt's Hi-Tech Managers, Advice (Krackhardt, 1987)

krackhiman.fr.* Krackhardt's Hi-Tech Managers, Friendship (Krackhardt, 1987)

krackhiman.rep.* Krackhardt's Hi-Tech Managers, A Reports to B (Krackhardt, 1987)

pad�am.bus.* Padgett's Florentine Families, Business Relations (Padgett, 1987)

pad�am.mar.* Padgett's Florentine Families, Marriage Relations (Padgett, 1987)

freeei.acq1.* Freeman's EIES Data, Acquaintanceship (T1) (Freeman and Freeman, 1979)

freeei.acq2.* Freeman's EIES Data, Acquaintanceship (T2) (Freeman and Freeman, 1979)

freeei.mes.* Freeman's EIES Data, Messages (2 Mats) (Freeman and Freeman, 1979)

cntrytrade.bmg.* Country Trade Data, Basic Manufactured Goods (Wasserman and Faust, 1994)

cntrytrade.a.* Country Trade Data, Food and Live Animals (Wasserman and Faust, 1994)

cntrytrade.cm.* Country Trade Data, Crude Materials (Wasserman and Faust, 1994)

cntrytrade.mfe.* Country Trade Data, Mineral Fuels, Etc. (Wasserman and Faust, 1994)

cntrytrade.ed.* Country Trade Data, Exchange of Diplomats (Wasserman and Faust, 1994)

galaceocl.com.* Galaskiewicz's CEOs and Clubs, CEOs and Clubs (Galaskiewicz, 1985)

bkfrat.beh.* Bernard and Killworth's Fraternity Data, # Obs Interactions (Bernard et al., 1980)

bkfrat.cog.* Bernard and Killworth's Fraternity Data, Cog Rankings of Interaction (Bernard et al., 1980)

bkham.beh.* Bernard and Killworth's Ham Radio Data, # Obs Interactions (Killworth and Bernard, 1976)

bkham.cog.* Bernard and Killworth's Ham Radio Data, Cog Rankings of Interaction (Killworth and Bernard, 1976)

bko�.beh.* Bernard and Killworth's OÆce Data, # Obs Interactions (Killworth and Bernard, 1976)

bko�.cog.* Bernard and Killworth's OÆce Data, Cog Rankings of Interaction (Killworth and Bernard, 1976)

bktec.beh.* Bernard and Killworth's Technical Data, # Obs Interactions (Bernard et al., 1980)

bktec.cog.* Bernard and Killworth's Technical Data, Cog Rankings of Interaction (Bernard et al., 1980)

gama.pos.* Read's Highland Tribes Data, Positive Relations (Read, 1954)

gama.neg.* Read's Highland Tribes Data, Negative Relations (Read, 1954)

kapmine.uni.* Kapferer's Mine Data, Uniplex (Kapferer, 1969)

kapmine.mul.* Kapferer's Mine Data, Multiplex (Kapferer, 1969)

kaptail.soc.* Kapferer's Tailor Shop, Social Relations (2 Mats) (Kapferer, 1972)

kaptail.ins.* Kapferer's Tailor Shop, Instrumental Relations (2 Mats) (Kapferer, 1972)

kracko�.ad.* Krackhardt's OÆce CSS Data, Advice Relation (21 Mats) (Krackhardt, 1987)

kracko�.fr.* Krackhardt's OÆce CSS Data, Friendship Relation (21 Mats) (Krackhardt, 1987)

newfrat.* Newcomb's Fraternity Data (15 Mats) (Newcomb, 1961)

prison.* Gagnon and Macrae's Prison Data (MacRae, 1960)

sampson.lk.* Sampson's Monestary Data, Liking (3 Mats) (Sampson, 1969)

sampson.dk.* Sampson's Monestary Data, Disliking (Sampson, 1969)

sampson.es.* Sampson's Monestary Data, Esteem (Sampson, 1969)

sampson.des.* Sampson's Monestary Data, Disesteem (Sampson, 1969)

sampson.in.* Sampson's Monestary Data, Positive Inuence (Sampson, 1969)

sampson.nin.* Sampson's Monestary Data, Negative Inuence (Sampson, 1969)

sampson.pr.* Sampson's Monestary Data, Praise (Sampson, 1969)

sampson.bl.* Sampson's Monestary Data, Blame (Sampson, 1969)

szcid.* Stokman-Ziegler's Corporate Interlock Data, Netherlands (Stokman et al., 1985)

szcig.* Stokman-Ziegler's Corporate Interlock Data, West Germany (Stokman et al., 1985)

taro.* Schwimmer's Taro Exchange Data (Schwimmer, 1973)

thuro�.org.* Thurman's OÆce Data, Organizational Structure (Thurman, 1979)

thuro�.inf.* Thurman's OÆce Data, Informal Relations (Thurman, 1979)

wiring.gam.* Roethlisberger and Dickson's Bank Wiring Room Data, Horseplay (Roethlisberger and Dickson, 1939)

wiring.arg.* Roethlisberger and Dickson's Bank Wiring Room Data, Arguments (Roethlisberger and Dickson, 1939)

wiring.fr.* Roethlisberger and Dickson's Bank Wiring Room Data, Friendship (Roethlisberger and Dickson, 1939)

wiring.neg.* Roethlisberger and Dickson's Bank Wiring Room Data, Negative Behavior (Roethlisberger and Dickson, 1939)

wiring.hlp.* Roethlisberger and Dickson's Bank Wiring Room Data, Helping Others (Roethlisberger and Dickson, 1939)

wiring.job.* Roethlisberger and Dickson's Bank Wiring Room Data, # Times Traded Job Assignments (Roethlisberger and Dickson, 1939)

wolfe.kin.* Wolfe's Primate Data, Kinship (Borgatti et al., 1996)

wolfe.int.* Wolfe's Primate Data, # Interactions (Borgatti et al., 1996)

37



Table 3: Observational Data

Observational Data Labeled Unlabeled

Set Name Cmax C C

Cmax
p < C p > C

95%

LB

95%

UB
C C

Cmax
p < C p > C

95%

LB

95%

UB

bkfrat.beh.dgd.nos 282.463 276 0.977119 0 1 289 298 264 0.934636 0 1 282 286

bkham.beh.dgm.nos 111.6406 104 0.93156 0 1 110 117 91 0.815115 0 1 105 107

bko�.beh.dgm.nos 132.0143 130 0.984742 0.0008 0.9992 134 141 127 0.962017 0 1 129 132

bktec.beh.dgm.nos 100.5072 101 1.004903 0.015 0.985 102 109 96 0.955155 0 1 97 100

cntrytrade.bmg.nos 62.54938 51 0.815356 0 1 65 70 42 0.67147 0 1 61 63

cntrytrade.cm.nos 62.61669 64 1.022092 0.0234 0.9766 65 70 54 0.86239 0 1 61 63

cntrytrade.ed.nos 59.18107 59 0.99694 0.0042 0.9958 61 66 51 0.861762 0 1 57 59

cntrytrade.a.nos 62.61669 59 0.942241 0 1 65 70 54 0.86239 0 1 61 63

cntrytrade.mfe.nos 49.34421 48 0.972758 0.0056 0.9944 50 55 39 0.790366 0 1 46 48

freeei.mes.dgm.nos.1 63.04508 43 0.682052 0 1 62 68 39 0.618605 0 1 58 60

freeei.mes.dgm.nos.2 59.7317 45 0.753369 0 1 59 65 41 0.686403 0 1 55 57

galaceocl.com.nos 42.93704 45 1.048046 0.56 0.44 42 48 39 0.908307 0.27 0.73 39 41

gama.neg.nos 24.70306 27 1.092982 0.4616 0.5384 25 30 23 0.931059 0.71 0.29 22 24

gama.pos.nos 24.70306 26 1.052501 0.2096 0.7904 25 30 23 0.931059 0.79 0.21 22 24

kapmine.mul.nos 22.00548 26 1.181524 0.912 0.088 23 27 19 0.863421 0.03 0.97 20 21

kapmine.uni.nos 18.86542 23 1.219162 0.9528 0.0472 19 23 17 0.90112 0.64 0.36 16 18

kaptail.ins.nos.1 53.5404 53 0.989907 0.3996 0.6004 51 57 46 0.859164 0.01 0.99 47 49

kaptail.ins.nos.2 65.93985 65 0.985747 0.279 0.721 63 70 58 0.87959 0.01 0.99 59 61

kaptail.soc.nos.1 106.0699 101 0.952203 0.0006 0.9994 106 113 99 0.933347 0 1 101 104

kaptail.soc.nos.2 125.5924 124 0.987321 0.001 0.999 127 134 121 0.963434 0.02 0.98 122 125

krackhiman.rep.nos 13.36921 14 1.047182 0.3438 0.6562 13 17 10 0.747987 0.01 0.99 11 12

pad�am.bus.nos 16.67911 19 1.13915 0.6826 0.3174 17 21 15 0.899329 0.92 0.08 14 16

pad�am.mar.nos 20.0084 22 1.099538 0.5292 0.4708 20 25 19 0.949601 1 0 17 19

szcid.dgm.nos 31.90977 34 1.065504 0.1722 0.8278 34 38 30 0.940151 0.12 0.88 30 32

szcig.dgm.nos 25.75599 31 1.203603 0.98 0.02 27 31 24 0.931822 0.35 0.65 24 25

taro.nos 34.5719 37 1.070233 0.6052 0.3948 35 40 32 0.925607 0.77 0.23 31 33

thuro�.inf.nos 25.13794 28 1.113854 0.619 0.381 26 30 23 0.914952 0.25 0.75 23 25

thuro�.org.nos 17.64039 11 0.623569 0 1 18 22 8 0.453505 0 1 15 17

wiring.arg.nos 18.26262 15 0.82135 0 1 19 23 14 0.766593 0 1 16 17

wiring.fr.nos 14.5344 16 1.100837 0.4016 0.5984 15 19 12 0.825627 0.13 0.87 12 14

wiring.gam.nos 22.21643 22 0.990258 0.018 0.982 23 27 18 0.810211 0 1 20 22

wiring.hlp.nos 13.80571 15 1.086507 0.3408 0.6592 14 18 12 0.869205 0.73 0.27 12 13

wiring.job.dgm.nos 5.721535 7 1.223448 0.4056 0.5944 6 10 5 0.873891 0.89 0.11 5 6

wiring.neg.nos 18.26262 21 1.14989 0.695 0.305 19 23 16 0.876107 0.2 0.8 16 17

wolfe.int.dgd.nos 44.16705 46 1.0415 0.1074 0.8926 46 51 42 0.950935 0.1 0.9 42 44

wolfe.kin.nos 10.67625 12 1.12399 0.5152 0.4848 11 15 9 0.842993 0.98 0.02 9 9
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Table 4: Self-Report Data

Self-Report Data Labeled Unlabeled

Set Name Cmax C C

Cmax
p < C p > C

95%

LB

95%

UB
C C

Cmax
p < C p > C

95%

LB

95%

UB

bkfrat.cog.dgd.nos 275.8342 265 0.960722 0 1 282 290 262 0.949846 0 1 276 279

bkham.cog.dgm.nos 130.3134 118 0.905509 0 1 130 138 110 0.844119 0 1 125 128

bko�.cog.dgd.nos 150.2971 153 1.017984 0.0164 0.9836 155 162 145 0.964756 0 1 150 152

bktec.cog.dgd.nos 113.5881 118 1.038841 0.1544 0.8456 117 123 111 0.977215 0 1 113 115

freeei.acq1.dgm.nos 182.1962 144 0.790357 0 1 185 193 133 0.729982 0 1 179 182

freeei.acq2.dgm.nos 194.4871 137 0.704417 0 1 199 206 127 0.653 0 1 193 196

krackhiman.ad.nos 49.50621 51 1.030174 0.052 0.948 51 56 43 0.868578 0 1 48 50

krackhiman.fr.nos 39.16994 39 0.995661 0.0338 0.9662 40 45 33 0.842483 0 1 36 38

newfrat.dld.nos.1 35.26371 39 1.105953 0.5736 0.4264 37 41 34 0.964164 0.22 0.78 34 36

newfrat.dld.nos.2 35.26371 38 1.077595 0.2772 0.7228 37 41 35 0.992522 0.96 0.04 34 35

newfrat.dld.nos.3 35.26371 40 1.13431 0.8336 0.1664 37 41 35 0.992522 0.95 0.05 34 35

newfrat.dld.nos.4 35.26371 40 1.13431 0.8252 0.1748 37 41 34 0.964164 0.27 0.73 34 36

newfrat.dld.nos.5 35.26371 36 1.020879 0.0246 0.9754 37 41 35 0.992522 0.92 0.08 34 36

newfrat.dld.nos.6 35.26371 37 1.049237 0.0914 0.9086 37 41 34 0.964164 0.25 0.75 34 35

newfrat.dld.nos.7 35.26371 36 1.020879 0.0208 0.9792 37 41 33 0.935806 0.01 0.99 34 35

newfrat.dld.nos.8 35.26371 39 1.105953 0.569 0.431 37 41 35 0.992522 0.94 0.06 33 36

newfrat.dld.nos.9 35.26371 37 1.049237 0.0948 0.9052 37 41 34 0.964164 0.27 0.73 33 36

newfrat.dld.nos.10 35.26371 39 1.105953 0.5734 0.4266 37 41 35 0.992522 0.96 0.04 34 35

newfrat.dld.nos.11 35.26371 39 1.105953 0.5756 0.4244 37 41 34 0.964164 0.26 0.74 34 36

newfrat.dld.nos.12 35.26371 37 1.049237 0.0874 0.9126 37 41 34 0.964164 0.32 0.68 34 35

newfrat.dld.nos.13 35.26371 37 1.049237 0.094 0.906 37 41 34 0.964164 0.24 0.76 34 35

newfrat.dld.nos.14 35.26371 38 1.077595 0.2926 0.7074 37 41 35 0.992522 0.97 0.03 34 35

newfrat.dld.nos.15 35.26371 39 1.105953 0.5804 0.4196 37 41 34 0.964164 0.34 0.66 34 35

prison.nos 90.57006 86 0.949541 0.336 0.664 84 91 80 0.883294 0.51 0.49 79 81

sampson.bl.dg1.nos 21.281 21 0.986612 0.0778 0.9222 21 26 18 0.845667 0.09 0.91 18 20

sampson.des.dg1.nos 26.33661 26 0.987219 0.0482 0.9518 27 31 23 0.873309 0.06 0.94 23 25

sampson.dk.dg1.nos 23.20655 22 0.948008 0.0168 0.9832 23 28 21 0.904917 0.81 0.19 20 22

sampson.es.dg1.nos 25.25312 24 0.950377 0.0102 0.9898 25 30 22 0.871179 0.1 0.9 22 24

sampson.in.dg1.nos 24.97278 26 1.041134 0.2494 0.7506 25 30 23 0.921003 0.92 0.08 22 24

sampson.lk.dg1.nos.1 25.53 29 1.35935 0.8306 0.1694 26 30 24 0.940084 1 0 22 24

sampson.lk.dg1.nos.2 26.07132 29 1.112334 0.7204 0.2796 26 31 24 0.920552 0.79 0.21 23 25

sampson.lk.dg1.nos.3 25.80234 28 1.085173 0.537 0.463 26 31 24 0.930148 0.92 0.08 23 25

sampson.nin.dg1.nos 24.10808 24 0.995517 0.0746 0.9254 24 29 20 0.829597 0 1 21 23

sampson.pr.dg1.nos 20.60679 23 1.116137 0.707 0.293 20 25 19 0.922026 1 0 17 19
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Table 5: Cognitive Social Structure Data

CSS Data Labeled Unlabeled

Set Name Cmax C C

Cmax
p < C p > C

95%

LB

95%

UB
C C

Cmax
p < C p > C

95%

LB

95%

UB

kracko�.ad.nos.1 47.79696 50 1.046092 0.1372 0.8628 50 54 45 0.941482 0.04 0.96 46 48

kracko�.ad.nos.2 40.68204 44 1.081558 0.649 0.351 41 46 37 0.909492 0.03 0.97 38 40

kracko�.ad.nos.3 49.55118 52 1.04942 0.1426 0.8574 52 56 47 0.948514 0.01 0.99 48 50

kracko�.ad.nos.4 49.85646 53 1.063052 0.2584 0.7416 52 57 48 0.962764 0.02 0.98 49 50

kracko�.ad.nos.5 49.50621 55 1.110972 0.841 0.159 52 56 48 0.969575 0.21 0.79 48 50

kracko�.ad.nos.6 26.27206 22 0.837392 0 1 26 31 21 0.799328 0 1 23 24

kracko�.ad.nos.7 47.1551 47 0.996711 0.0058 0.9942 49 54 40 0.848265 0 1 45 47

kracko�.ad.nos.8 44.47594 46 1.034267 0.1148 0.8852 46 51 40 0.899363 0 1 42 44

kracko�.ad.nos.9 46.85574 52 1.109789 0.8446 0.1554 48 53 45 0.960395 0.25 0.75 45 47

kracko�.ad.nos.10 46.43363 48 1.033734 0.0942 0.9058 48 53 43 0.926053 0 1 44 46

kracko�.ad.nos.11 33.54085 38 1.132947 0.9336 0.0664 34 39 29 0.864617 0 1 30 32

kracko�.ad.nos.12 44.05954 45 1.021345 0.067 0.933 45 50 40 0.907862 0.02 0.98 42 43

kracko�.ad.nos.13 25.26422 26 1.029124 0.295 0.705 25 30 21 0.831215 0.01 0.99 22 23

kracko�.ad.nos.14 45.00652 46 1.022074 0.0564 0.9436 46 51 36 0.799884 0 1 42 45

kracko�.ad.nos.15 38.97165 37 0.949408 0.0022 0.9978 40 45 32 0.82111 0 1 36 38

kracko�.ad.nos.16 25.26422 27 1.068705 0.5378 0.4622 25 30 21 0.831215 0.03 0.97 22 23

kracko�.ad.nos.17 23.14473 26 1.123366 0.8286 0.1714 23 28 20 0.864128 0.45 0.55 20 21

kracko�.ad.nos.18 45.75056 46 1.005452 0.0214 0.9786 47 52 42 0.918021 0 1 43 45

kracko�.ad.nos.19 39.75231 44 1.106854 0.8376 0.1624 40 45 36 0.905608 0.04 0.96 37 39

kracko�.ad.nos.20 35.73518 34 0.951443 0.0048 0.9952 36 41 31 0.867493 0 1 32 34

kracko�.ad.nos.21 49.82358 48 0.963399 0 1 52 57 47 0.943329 0 1 48 50

kracko�.fr.nos.1 28.80609 33 1.145591 0.9686 0.0314 28 33 25 0.867872 0.12 0.88 25 27

kracko�.fr.nos.2 13.86537 18 1.298199 0.983 0.017 13 18 12 0.865466 0.99 0.01 11 12

kracko�.fr.nos.3 5.903404 8 1.35515 0.8922 0.1078 6 9 5 0.846969 1 0 5 5

kracko�.fr.nos.4 20.47741 25 1.220858 0.9846 0.0154 20 25 17 0.830183 0.1 0.9 17 19

kracko�.fr.nos.5 31.41493 30 0.95496 0.014 0.986 31 36 27 0.859464 0 1 28 30

kracko�.fr.nos.6 17.56525 22 1.252473 0.9876 0.0124 17 22 14 0.797028 0.03 0.97 15 16

kracko�.fr.nos.7 33.79467 34 1.006076 0.1036 0.8964 34 39 29 0.858123 0 1 31 32

kracko�.fr.nos.8 4.494889 10 2.224749 1 0 5 8 4 0.8899 0.61 0.39 4 5

kracko�.fr.nos.9 5.213085 7 1.342775 0.6078 0.3922 6 9 5 0.959125 1 0 5 5

kracko�.fr.nos.10 23.86728 25 1.047459 0.3942 0.6058 24 28 20 0.837967 0.04 0.96 21 22

kracko�.fr.nos.11 31.96272 33 1.032453 0.2648 0.7352 32 37 28 0.876021 0.04 0.96 29 30

kracko�.fr.nos.12 16.68122 21 1.258901 0.9828 0.0172 16 21 14 0.839267 0.63 0.37 14 15

kracko�.fr.nos.13 19.26198 20 1.038315 0.34 0.66 19 24 18 0.934484 1 0 16 17

kracko�.fr.nos.14 24.92082 26 1.043305 0.3822 0.6178 24 29 22 0.882796 0.59 0.41 21 23

kracko�.fr.nos.15 19.67231 21 1.06749 0.499 0.501 19 24 16 0.813326 0.05 0.95 16 18

kracko�.fr.nos.16 15.77125 19 1.204724 0.9652 0.0348 15 19 13 0.824285 0.78 0.22 12 14

kracko�.fr.nos.17 22.40524 21 0.937281 0.024 0.976 22 27 16 0.714119 0 1 19 21

kracko�.fr.nos.18 13.86537 18 1.298199 0.9846 0.0154 14 18 12 0.865466 1 0 11 12

kracko�.fr.nos.19 32.76379 33 1.00721 0.1228 0.8772 33 38 29 0.885124 0.1 0.9 29 31

kracko�.fr.nos.20 7.84201 8 1.020147 0.1464 0.8536 8 12 7 0.892628 1 0 6 7

kracko�.fr.nos.21 25.60385 29 1.132642 0.9288 0.0712 25 30 22 0.859246 0.36 0.64 22 23
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Figure 1: Two Isomorphic Structures
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Figure 2: Histogram of Normalized Complexity for the Structural Equivalence Experiment
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Figure 3: Boxplots of Normalized Complexity for the Structural Equivalence Experiment, by Block and

Class Size
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Figure 4: Boxplots of Normalized Complexity for the Structural Equivalence Experiment, by Block and

Class Size
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Figure 5: Lempel-Ziv Complexity of Labeled Structures { Observational Data
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Figure 6: Lempel-Ziv Complexity of Unlabeled Structures { Observational Data
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Figure 7: Lempel-Ziv Complexity of Labeled Structures { Self-Report Data
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Figure 8: Lempel-Ziv Complexity of Unlabeled Structures { Self-Report Data
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Figure 9: Lempel-Ziv Complexity of Labeled Structures { Cognitive Social Structure Data
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Figure 10: Lempel-Ziv Complexity of Unlabeled Structures { Cognitive Social Structure Data
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Figure 11: Lempel-Ziv Complexity of Labeled Structures, Normalized by Asymptotic Maximum Complexity
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Figure 12: Lempel-Ziv Complexity of Labeled Structures, Relation to 95% Con�dence Interval
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Figure 13: Lempel-Ziv Complexity of Unlabeled Structures, Relation to 95% Con�dence Interval
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