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Computational Approaches to Sociological Theorizing

Introduction

Sociologists are concerned with explaining and predicting social behavior.  Theorists are not
concerned with providing a description of society at a particular point in time.  Rather, they are
in the business of providing insight into how societies change, into the dynamics underlying
behavior, into the processes that result in the observed correlations, and into the way in which
multiple factors come together to create specific social situation.  In other words, the sociological
theorizing involves explaining how multiple factors interact in complex, often non-linear, ways
to effect social behaviors and in explaining the dynamics by which social agents, groups, teams,
organizations, societies, cultures evolve and co-evolve.  The focus of theory on complex non-
linear and dynamic systems makes computational analysis a natural methodological choice for
theorizing.

The use of formal techniques1 in general, and computational analysis in particular, is playing
an ever increasingly important role in the development of sociological theory.  Computational
analysis has been used to theorize about a large number of social behaviors: organizational
exploration and exploitation (March, 1996), cooperation (Macy, 1991a; 1991b), coordination
(Carley and Prietula, 1994), diffusion and social evolution (Carley, 1991; Kaufer and Carley,
1993), organizational adaptation (Carley and Svoboda, 1996 Levinthal, 1997; Sastry, 1997),
change in social networks (Markovsky, 1987) and exchange networks (Yamagishi et al. 1988,
Markovsky et al. 1993), collective action (Feinberg and Johnson, 1988; 1990; McPhail and
Tucker, 1990), and the fundamental nature of the social agent (Carley and Newell, 1994). One
reason for this movement to computational social theory is the growing recognition that social
processes are complex, dynamic, adaptive, and non-linear, that social behavior emerges from
interactions within and between ecologies of entities (people, groups, technologies, agents, etc.),
and that the relationships among these entities are critical constraints on and enablers of
individual and social action.  Another reason for the movement to formal approaches is the
recognition that societies and the groups and institutions within them are inherently
computational since they have a need to, and the ability to, scan and observe their environment,
store facts and programs, communicate among members, and transform information by human or
automated decision making.  In general, the goal of this formal research is to build new concepts,
theories, and knowledge about complex systems such as groups, organizations, institutions and
societies. Using formal techniques, theorists search for fundamental social objects, processes and
the mathematical formalism with which to describe their behavior and interactions. Another goal
of this research is to discover the most reasonable basis from which, at least in principle, theories
of all other processes and behaviors can be derived.

Computational analysis is an ideal way to meet this goal. Indeed, the literature is replete with
claims about the value and use of simulation. Fundamentally, these claims rest on the fact that
computational analysis enables the theorist to think systematically and thoroughly about systems

                                                  
1 Formal techniques include logic modeling (e.g., Skvoretz, and  Fararo, 1989; 1994), mathematical modeling (Lave
and March), and simulation (Bainbridge et al, 1994; Carley and Prietula, 1994; McKelvey, 1997).  In this paper the
focus is on simulation; however, the reader should recognize that these other formal techniques play complementary
roles in sociological theorizing.
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that are larger, more complex, have more interactions, have more underlying dynamics, than can
be thought through without the aid of such automated accounting devices. For example,
Markovsky (1992) showed that even very simple models of social interaction across networks
were sufficiently complex that researchers are unable to predict their behavior.  In a complex
process there are typically many interacting objects (e.g. people or procedures in the society or
institution) and it is rarely possible to proceed to a complete mathematical solution. Systems in
which there are complex processes often exhibit non-linear behavior, phase changes in behavior,
and often reach dramatically different end states given only minor changes in initial conditions.
Such underlying non-linearities make it non-trivial to think through the implications of the
dynamic processes and multi-actor situations. There is a general recognition that the non-linear
dynamics that characterize social systems are not mathematically tractable; hence, simulation is
needed.  Computational analysis can be used to track and analyze the detailed behavior within
and among people, groups, teams, organizations, institutions, and societies. Computational
models enable the analysis of groups far larger in size and over longer time periods than can be
analyzed in a field or laboratory setting. Computational analysis enables the theorist to address
issues of scalability – that is, do behaviors remain the same, do our theories hold, as we move
from groups of 2 or 3 to thousands?  Through simulation, we can gain some insight into whether
scale matters to the non-linear dynamics that underlie fundamental sociological processes such as
reciprocity. This is particularly important as we move into a world where technology is making
organizations of unprecedented size and distribution possible and giving people unprecedented
access to larger numbers of others, ideas, technologies, and resources.

Computational analysis enables the theorist to think through the possible ramifications of
complex systems and to develop a series of consistent predictions. Computational models,
because they can track and emulate learning, adaptive and evolutionary behavior are ideally
suited to the examination of dynamic systems, to examining emergent behavior, and to
suggesting the long term impacts of new technologies and policies. Consequently, computational
models can be, and have been, used in a normative fashion to generate a series of hypotheses by
running virtual experiments.  The resultant hypotheses can then be tested in other empirical
settings. Other reasons for using computational analysis to do social theorizing include the facts
that the resultant analysis can provide sufficiency explanations, can be used to demonstrate gaps
in extant verbal theories, and computational analysis can be used to check the consistency of the
predictions made using verbal theories.

In other words, computational models are most useful when there are a large number of
variables, substantial non-linearities, multiple interactions, complex interactions (such as three
way or higher interactions, dynamics, and cases where there are more than a small number of
actors.  As such, simulations are tools for doing theory development.  This is not to say that other
methods cannot also enable the theorist to reason about complex dynamic systems, but that
computational analysis is an important tool in the theorist’s toolkit. Computational models are
not, however, a panacea. A disadvantage is that such models cannot be used to conclusively
demonstrate what people do in novel situations. There are limitations to their usefulness and
there are areas where they are more useful than others.

Computational theorizing has led to a new way of thinking about theory and theory building,
Four elements of this approach will be described:  the model as theory, virtual worlds,
empirically grounded theory, and hypotheses generation.  After this, some of the major



3

theoretical breakthroughs will be described, then the relation of computational reasoning about
social systems to complexity theory.

The Computer Model as Theory
One of the first insights of the novice computational social theorist is that the verbal theory is

incomplete compared to the level of detail needed in a computer model.  Generally, moving from
the verbalization to a formal representation, either mathematical or computational, requires the
theorist to think through a series of relations among the component processes and entities lying
at the core of the theory.  This “filling in the detail” is part of the process of by which theories
are developed.  Another part, is determining which of these details are irrelevant and which are
critical relative to the outcomes of interest.    In other words, the computational model becomes
the theory.

This same argument underlies the Turing Test, a method for testing and validating
computational models. Computational models do the task they seek to explain.  Consequently,
the model itself is substitutable for the entity that is being modeled.  For example, if the model is
of a human agent, then in principle, in an experiment the computational model can be substitute
for a human or a machine.  In this case if recognizable behavior emerges and if the observe
cannot discern a relevant difference, then the model passes the Turing Test. Turing tests vary in
the degree of rigor, use of quantitative data, and use of statistics.  Turing tests have typically
been employed in simulations of machines or of single humans.  Since the computational model
does the task it seeks to explain the model itself is the theory.

From a social perspective, however, the Turing Test is insufficient.  Carley and Newell
(1994) suggest that when the computational model is meant to act as a social agent or a group of
social agents it is more appropriate to use a revised version of the Turing Test which they refer to
as the Social Turing Test.  Unlike the classic Turing Test, the Social Turing Test takes the group
context into account and expects social not just behavioral responses. To do a social Turing test
the researcher follows these three steps.

First, a collection of social agents is constructed according to the hypotheses and placed in a
social situation, as defined by the hypotheses.  Recognizably social behavior should emerge from
the computational model.  Second, there will be many aspects of the computational model that
are not specified by the hypotheses.  That is, to create a working computational model one often
has to develop the model at a level of detail well beyond that of verbal theorizing.  In general,
such aspects should be set based on known human data or handled using Monte Carlo
techniques.

Third, the behaviors that emerge from the computational model can vary widely with such
specification, but he behavior should remain recognizably social.  The behavior of a
computational model is recognizably social if it meets the following criteria.  The group’s
behavior (two or more agents) should take into account social knowledge and the actions and
interactions among the agents.  Group behavior cannot be generated from the behavior of a
single agent.  Finally, the behavior of the computational model must match, within some pre-
defined level of fit, the behavior of a human group in terms of qualitatively or quantitatively
fitting known data on a human group or fitting a subject matter expert’s description of the human
group’s behavior. When these criteria are met the Social Turing Test is met.
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The Computer Model as Virtual World
Virtual worlds are computer simulated worlds of particular environs, social or physical.

Within a virtual world there is a particular set of physical, temporal, social or cultural laws that
must be obeyed. These laws need not match those of earth.  For example, in a virtual world
agents could have para-normal capabilities, no-emotions, or be able to breathe under water. The
worlds are populated by artificial agents.   Examples range from game systems such as SimCity
to research worlds for understanding the complexities of biological and social life.  Virtual
worlds become testbeds in which researchers can grow artificial life and communities, develop
new procedures and hypotheses, and reason about the impacts of interaction among agents.
Virtual worlds can also be used as a learning environment in which the student can engage in
solving the problems within the scope of the world described.

One of the earliest examples of a virtual world in sociology is Bainbridge’s (1987)
sociological laboratory.  Bainbridge created worlds in which the student could explore classic
theories of social behavior.  Within these worlds, the student could run virtual experiments to see
the impact of changing norms of social behavior.

Artificial life, or A-Life, studies are done within virtual worlds.  One example of such a
world is Sugarscape (Epstein and Axtell, 1997).  In Sugarscape, multiple simple agents engage in
social interaction in the process of consuming sugar, moving across planes, giving birth and
dying.  Sugarscape is a virtual world where agents can live, eat, die, engage in social interactions
etc.  In its simplist form the sugarscape world is a torus made by wrapping a grid of 50 by 50
squares such that sugar grows in some of the squares and not others.  This world is populated by
a number of agents each of whom can move one square on the von Neuman grid (NSEW) each
time period as long as they do not occupy a square occupied by another agent or they can
consume sugar. Consumed sugar translates into energy.  Agents can eat or store sugar.  Energy is
needed to move, reproduce, and so forth.  Without energy the agents die.  Agents placed
randomly on the grid will over time develop a collective intelligence that moves them toward the
fields of sugar. Additional rules, such as inheritance produce more social like behavior.  Indeed,
the more factors and rules that are added the more social behaviors can be explored.  For
example, introducing a second resource, spice, leads to the emergence of trading and an
economic market.

Epstein and Axtell (1997) argue that they are using computers to do "bottom-up" social
science.  Given a collection of very simple agents with very simple rules they try and grow
complex social behavior.  One of the key insights is that complex social outcomes need not have
complex causes.  Simple behaviors on the part of individual agents can have major social
consequences.

The value of virtual worlds is that they enable the researcher and student to reason about
social behavior in a controlled setting like a human experiment.  However, unlike a human
experiment, these worlds can be quite large.  Thus issues of scale, emergence, and time varying
behavior can be addressed.

The Computer Model as Empirically Grounded Theory
Computer models can be empirically grounded.  A key example here is Heise’s Affect

Control Theory Heise (1986, 1987, Smith-Lovin 1987).  Charles Osgood used semantic
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differential techniques to identify three dimensions of word meaning - Evaluation, Potency, and
Activity.  These dimensions became known as the EPA model. Heise, in developing affect
control theory asserts that individuals construct social events to confirm the meanings of social
classifications.  This is done through a cognitive emotional process in which actors respond to
each other at both a socio-physical and affective level.  On going interactions lead to alterations
both in what the actors know about each other and in how they feel about themselves, the
situation, and others.  This affective response in turn affects the actors choice of possible actions.

Heise and his co-workers have derived a number of mathematical functions to predict how
people would rate various combinations of words describing social identities, attributes, actions
and situations and how these ratings would affect the actors choice of words, situations, and
actions.  These formula have embodied the formulas in the affect control computer model.  In
addition, Heise and his colleagues have gathered substantial EPA data from men and women in
various walks of life and in various cultures. Research subjects have provided mean EPA ratings
of hundreds of words describing social          identities, attributes, actions and situations.  This
data is also embedded in the computational model.  This empirically grounds the theory, and
moves the EPA ratings from being theoretical abstractions to concrete and measurable
predictions..

Affect Control Theory, although conceptually straight forward, is sufficiently complex and
non-linear that humans have difficulty determining the full range of implications of the theory.
Researchers and students can use the model to reason about the impact of  emotions on social
outcomes and the effect of actions, situations, and roles on emotions in dynamic situations.
Using this model, the researcher can derive hypotheses from the theory to test in the field or
laboratory, or can emulate an observed interaction to see if the behavior observed matches that
predicted by the model.

In general, many computational modelers have the desire to develop empirically grounded
theory.  In many cases, the appropriate data is not amenable to being placed in a large scale
quantitative data base.  Rather, the type of data needed for empirically grounding the model is
ethnographic.  In building a model of social and organizational processes, the computational
theorist often has a large number of questions of the form – “if this happens then what?” or
“what are the space of possible human actions?”.  Often experimental and survey data has too
little detail to answer questions at the depth posed by the modeler.  Whereas, a single protocol or
an ethnographic study typically provides the kind of rich detail necessary for addressing the
modelers concerns.  Although it is ironic to those who view computational theorizing as the most
quantitative of the formal theorizing techniques, in actuality the ethnographer is the
computational theorists best friend.

The Computer Model as Hypothesis Generator
The process of designing, building and analyzing a computational model is a process of

theory building.  An important component of this process is hypothesis generation.  Computer
models can in fact be viewed as hypothesis generation machines.  To generate hypotheses the
researcher first uses the model to conduct a virtual experiment.  A virtual experiment is an
experiment in which the data for each cell in the experimental design is generated by running a
computer simulation model.  In designing this virtual experiment, standard principles of
experimental design should be followed.
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There are several key ways in which virtual experiments differ from traditional human
laboratory experiments.  The first of these is scale.  That is, it is possible in the simulated
environment to run experiments with more subjects (agents), for longer periods of time, without
subject fees, and to have the subjects engage in more activities, in larger groups, and so forth.
The computer basically mitigates the physical, temporal, coordinating, and monetary constraints.
The result is that it is very easy to design too extensive of a virtual experiment.  That is, it is
relatively easy to generate more data than any current statistics package can handle.  The
constraints on the scale of the virtual experiment are computer storage space, processing speed,
and the size constraints of the statistical analysis package.

Another way in which the virtual experiment differs from the traditional human laboratory
experiment is in the role of statistical significance.  For the human laboratory experiments,
access to subjects, monetary and statistical power concerns determine the number of repetitions
per cell.  In this case, for an outcome variable of interest, such as organizational performance,
statistically significant differences in this variable across two or more conditions may signal
support for a hypothesis.  The lack of a statistically significant difference signals the lack of
support.  In this case, the fact that there are observable differences is not interesting; whereas, the
fact that a difference is statistically significant is theoretically interesting and suggests that a real
difference has been found.  Many virtual experiment have at their core a Monte Carlo
experiment; i.e., an experiment in which samples are generated randomly across some parameter
space.  For virtual experiments, the number of repetitions per cell are influenced by
computational processing speed, storage space, and the number of repetitions per cell needed to
determine whether an observed difference is statistically significant.  When computational
storage space and time are not at a premium, the computational theorist will simply run sufficient
repetitions to guarantee that observed differences are significant.    In this case, the fact that there
are observable differences is theoretically interesting, the fact that they are statistically
significant differences simply means the theorist had lots of computing power.

This does not mean that statistics does not have a role in analyzing the results of a virtual
experiment.  Rather, it means that the way in which the statistics are used is different than the
way they are used in analyzing the data from a human laboratory experiment.  Indeed, a critical
step in generating hypotheses from a virtual experiment is to statistically analyze the results.  The
results of that analysis are the hypotheses that can be examined using data from human
laboratory experiments, live simulations, games, field studies, or archival sources.  In conducting
a virtual experiment and generating a series of hypotheses the followings stages are gone
through.  First, identify key inputs.  Second, explore the input parameter space to determine the
values of the key variables that you want to explore. Third, the non-key inputs – such as control
and secondary variables should be set.  These may be set to predefined values or chosen
randomly in a Monte Carlo fashion.  Fourth, the virtual experiment is conducted; i.e., a number
of simulations are to be run.  Fifth, to analyze the output a series of statistical analysis should be
run. Sixth a number of hypotheses should be generated.  This is done by taking the statistical
findings and converting them into statements. For example, imagine that when a regression is run
related to uncover the relation between two inputs, such as group size and level of turnover, on
some outcome such as performance you find that the beta coefficient for size is .2 and for
turnover is .4.  Then that finding about the relative strength of the regression beta coefficients of
two input variables could be converted into a statement of the form turnover has twice the impact
of size on performance.  These hypotheses can then be tested in other venues.



7

Theoretical Breakthroughs:  The Nature of the Social Agent
Computational models can be used in a number of ways. Several of these have been

discussed:  model as theory, model as virtual world and model as hypothesis generator.
Theorists using computational models have used them in these ways and several other ways (e.g.
to fine tune a human experiment).  Computational models have a long history in the development
of social theory and methodology (Federico & Figliozzi 1981, Garson 1987).  Results derived
from computational models have led to a number of important theoretical breakthroughs that
collectively generate a more complete understanding of the social agent.

One of the key uses of computational models is to demonstrate how fundamental behavior
can arise from principles other than those taken for granted and to call into question various
paradigms.  One of the earliest and most profound uses of computational models was to develop
the theory of bounded rationality.   Prior to the 1960’s most formal theories of social and
organizational behavior assumed rational actors with complete information and total insight.
Arising out of the Carnegie School the Herb Simon, and others, argued that humans were
boundedly rational; i.e., social structure limits their access to data and human cognition limits
their ability to process that information. As a result, decisions are made by satisficing and not by
trying to locate the optimal decision..  In “A Behavioral Theory of the Firm” (Cyert and March,
1963) and in the Garbage Can Model of Organizational choice (Cohen, March and Olsen, 1972)
the authors demonstrate, through computational based theorizing, that human limitations effect
what choices are made when and how. Further, by taking such bounds into a account theoretical
propositions better match actual observations.  This work was instrumental in revolutionizing
theoretical and empirical work on group and organizational behavior.  The resulting information
processing view is now an integral part of many social theories.

Computer tournaments such as the, now classic, "prisoner's dilemma" computer  tournament
organized by Robert Axelrod (1984) have served to focus the attentions of many researchers on a
particular area of behavior leading to rapid theoretical advancement. The prisoner's dilemma is a
game-theoretic problem that explores the conditions under which cooperation may arise between
self-interested actors who have the potential to gain in the short run if they violate agreements to
cooperate (Rapoport and Chammah 1965).  In a computer tournament, the organizer invites
people to submit computational models that do the “task” of the tournament. Results from
tournaments demonstrate repeatedly that computational modeling can produce robust and
sometimes unexpected results and advance theory.  Tournaments enable theories to “compete”
with each other, leading to better theoretical understanding of their relative efficacy, common
features, and differences. For Axelrod’s prisoner’s dilemma tournament the programs submitted
were models of actors who followed various strategies for playing the iterated prisoner's
dilemma game. The “agent” that won, was one of the simplest, the agent employing the "tit-for-
tat" that cooperated on the first move and then imitated the previous action of its partner. This
demonstrated that agents following a simple reciprocity norm could succeed even in an
environment that was largely asocial.  There were two central theoretical contributions.  First, the
primacy of the reciprocity norm. Second, the recognition that social outcomes are as affected by
social interaction as by human cognitive architecture.  Today, numerous researchers are using
multi-agent systems to understand the dynamics and contexts under which cooperation evolves.

Another theoretical breakthrough is in the area of chaos.  The notion of deterministic chaos
has captured the imagination of scholars and the public (Mandelbrot, 1983; Hao 1984; Gleick,
1987).  Kephart et al. (1992) noted that social behavior can become chaotic.  This in itself is not



8

the novel theoretical proposition.  However, they ran a series of simulations that demonstrated
that intelligent strategies can reduce chaos.  The level of chaos in societies is reduced when the
intelligent agents in these societies have the capacity to base their actions on beliefs about others’
strategies and on the observed behavior of the collection of agents. Mental models, even
rudimentary ones, about others and knowledge of the collective behavior are sufficient to
generate non chaotic behavior.  This suggests that in order for recognizable social behavior to
emerge the content of individual cognition needs to contain mental models of others and
knowledge of others actions.  One of the key questions here is to what extent does this
knowledge need to be of specific others, versus the generalized other, and to what extent does
this knowledge need to be accurate.

A related breakthrough is in the area of social knowledge. Wegner (1995) using a computer
system as a metaphor for human memory developed the powerful idea of transactive memory.
Transactive memory (Wegner, 1987; Wegner et al., 1991) refers to the ability of a group to have
a memory system exceeding that of the individuals in the group.  The basic idea is that
knowledge is stored as much in the connections among individuals as in the individuals. Wegner
argues that factors that are relevant in linking computers together such as directory updating,
information allocation, and coordination of retrieval are also relevant in linking the individuals’
memories together into a group memory. Empirical evidence provides some conformation and
suggests that for a group, knowledge of who knows what is as important as knowledge of the
task. Transactive knowledge can improve group performance (Moreland, Argote and Krishnan,
1996).  Thus, in order for recognizable social behavior to emerge, part of the content of
individual’s mental models needs to be knowledge of who knows what and presumably
knowledge of who knows who.

These findings suggest a paradigmatic view in which social agents are information
processors and interactors with internal mental models containing a model of self and others
(specific and generalized) and others’ interaction that can be used to predict others performance,
to determine who to interact with, and to select among alternative actions.  This model of others
and their interaction includes knowledge such as who knows who and who knows what.  Norms
become rules of behavior that link knowledge of self and other to specific interaction behaviors.
An important element of this paradigm is that social behavior realizes social outcomes as the
result of changes in interaction among agents and agents who themselves both in their mental
models and in their behavior take into account what others know, who they know, and what they
are likely to do.  This socio-cognitive perspective on agents is partially summarized by the
Carley Newell Model Social Agent (1994).

Complexity and Emergent Behavior
One of the tremendous values of using computational models is that you can reason about

dynamic systems and complex systems. Questions such as what is the impact of learning,
socialization, enculturation, and so on can be addressed.  Moreover, the co-evolution of groups,
groups and technology, two cultures, and so on can be addressed.  This ability to use
computational models to look at change on multiple fronts at once is a very powerful theoretical
device.

The ability to use simple computational models to examine dynamics has fired the theoretical
imagination leading to a vocabulary and set of tools that can be used for sociological theorizing
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and collectively referred to as complexity theory.   Complexity analysis provides us with a means
for re-thinking and extending social theories (Axelrod and Cohen, 1999; Morel and Ramanujam,
1999).  The vocabulary and tools are deriving in part from advances in biology and physics.
Clearly the history of social theory is replete with work on change and on societies as complex,
adaptive, evolutionary systems.  The work today, however, uses a distinct vocabulary, has a level
of formalism not heretofore possible given the ubiquitousness of computing, and have a focus on
the pattern of outcomes relative to the pattern of desired outcomes.   From a paradigm standpoint
there is now an increase of interest in complexity, landscapes, emergence and co-evolution.

Social theory in general and organizational theory in particular has a tradition of looking at
societies and organizations as complex systems.  A common feature of this work and modern
complexity theory is that systems are seen as more complex when there are more parts and more
connections among the parts.  So, for example, when there are more individuals in the society or
more activities in the organization the system is more complex.  Further, when there are more
ties among individuals or more constraints among organizational activities then again there is
more complexity.  To this the formal work on complexity theory would add that complex
systems typically have internal change, adaptation, or evolutionary mechanisms that result in
behavior that might appear random but which actually has an underlying order (Holland, 1995).
The underlying order is attributable to multiple agents, often operating on very simple principles.

The outcomes are complex for two reasons.  First, there may be an appearance of
randomness. Second, what outcomes are reached can be quite divergent depending on the initial
conditions the history of the agents activities (Kauffman, 1995).  Complex systems have the
ability to self-organize (Bak, 1996).  Self organization means in part that group behavior occurs
that is distinct from a simple average of individual agent behaviors.  For example,  imagine a
group of agents moving through a grid.  Even though individual agents may only move N,S,E or
W, the group qua group can move NE.  Moreover, even though individual agents may be trying
to optimize their outcome, the overall outcome for the group may be less than optimal.  For
example, in a group level repeated dilemma game even though each individual is trying to
maximize their return, the overall pattern of cooperation may result in the return to the group
being suboptimal.  Having a group level outcome that is less than the optimal can be thought of
as a complexity catastrophy (McKelvey, 1999).

The research on complex systems varies in whether or not a time invariant fitness function is
assumed. A fitness function defines the relation of inputs to outputs.  A landscape is a graphical
depiction of the relation of inputs to the output of concern, of the independent variables to the
dependent variable (Levinthal, 1997).   In this case there is a known apriori fitness function.  The
landscape is fixed and features of the landscape may make it harder or easier for individuals and
groups to locate the optimum point in this landscape.  In contrast, the fitness function may not be
known apriori and/or the relation of inputs to outputs is time variant (dancing landscapes).  In
this case features of the landscape and of the way it changes determine the ease or difficulty of
moving about this space.  Changes in the landscape are commonly attributable to factors such as
learning, innovation, population, turnover, birth and death processes, and so on. Agents and
groups move about on this landscape.  For some theorists, the agents move about because they
are trying optimize their outcomes.  For other theorists, the agents are seen as trying to satisfice
or to move randomly about on this landscape.  While there is growing agreement that social
theories need to be dynamic, there is not widespread theoretical agreement about the shape of the
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underlying landscapes, the nature of the fitness function, whether or not the fitness function is
fixed over time, and whether agents optimize or satisfice.

In complex systems things emerge.  As previously noted this emergence may take the form
of group outcomes that are distinct from individuals, or they make take the form of new
procedures, groups, ideas, and so forth.  The theoretical issues include what enables new things
to emerge, to become stable, to become accepted and whether the history of the system alters
what can and does emerge.  In Kauffman’s models (Kauffman, 1993) emergent structures
derived from two sources:  (1) forcing functions; and (2) homogeneity bias.   When only one
input can force a particular outcome state there is a forcing function. An example here is the
relation between age and drug usage.  If it is the case that if you have never used drugs by the
time you are 35 then you never will use drugs, then there is a forcing function.  There will be a
resultant structure to the relation between age and drugs that remains fixed across populations
and groups such that there will be a larger than chance number of individuals over 35 who do not
use drugs. The second factor is a homogeneity bias.  Homogeneity biases may be processes or
limits on variables that reduce the number of actual outcomes.  For example, if the outcome were
clothing color and only two dyes were available that is a stronger homogeneity bias then if the
number of dyes were unlimited. Other theorists working with complex systems have noted that
learning (Carley, 1990, 1991), mimicry (Macy, 1991a, 1991b), temporal and physical constraints
(Carley and Prietula, 1994) all lead to a certain level of emergent structuration.  The basic nature
of dynamic systems is that things tend to emerge.  Thus the issue is not do patterns emerge, but
what patterns emerge when and under what conditions.

The work on organizational adaptation is a classic example.  Here, computational theorists
have shown that individual learning and strategic choice do enable organizations to adapt.
Change, in fact, is pretty much inevitable.  Some of those changes are adaptive; i.e., they enable
certain outcomes to be maintained or improved.  Moreover, this work demonstrates that the
emergent patterns are path dependent (history matters) and a complex function of interactions
among agents, knowledge and task.  Interdependence among agents and among, knowledge, and
tasks is a fundamental feature of  social and organizational systems that affects group and
organizational learning, performance and adaptability (Levinthal, 1997; Sorenson, 1997,
Krackhardt and Carley, 1998).

A related argument surrounds the notion of co-evolution.  Work in the area of ecology led to
the view that populations of agents evolve through processes involving Darwinian selection of
the fittest and trait propagation.  This view, was translated to the study of organizations where
population ecologists (Hannan and Freeman 1977, 1989; Hannan and Carroll 1992), proponents
of organizational evolution (Aldrich 1979, Baum and Singh 1994b), and economists (Nelson and
Winter 1982) all put forward the view that selectionist processes drive out the less fit firms,
leaving “order” to be explained as the consequence of the survival of the more fit firms.  Factors
such as population density and niche overlap were used, in conjunction with evolutionary
principles to explain the varying states populations of firms.  Kauffman (1993), suggests that
complexity effects may thwart selectionist effects under some circumstances. In particular he
argues that the extent of interdependence within and among firms when coupled with regression
to the mean can generate order even when the most fit firms do not survive. Kauffman (1993)
suggests  that internal and external interdependencies (K and C respectively) create a level of
complexity that can explain order in any world that can be thought of as a multiple groups with
linkages within and between the groups..  His analysis suggests that aggregate economic order
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(such as the distribution of size of firms that survive or the distribution of survival times) could
be at least as much determined by intrafirm and interfirm dependencies as it might stem from
external selection.

These interdependencies ensure that firms co-evolve. This line of reasoning, although novel
to economics is the familiar social network explanation long part of sociological theorists toolkit.
.However from a sociological perspective the core assumptions are obviously non-social.  For
example, a limitation of Kaufmann’s model from a grounded theory perspective is that it
assumes that the number of links within and between groups (or in the example above, within
and among organizations) is fixed over time and identical across group members.  In other
words, the shape of the underlying social network is fixed with uniform centrality per agent.
Thus, social order is explained in this work without an appeal to differentiation in the network.
In contrast, the Carley constructural model (1990. 1991) the social network and the knowledge
network co-evolve, and initial network differentiation is a key determinant of order.

Not all work in complexity assumes away the importance of the pattern of relations.  A
parallel line of theorizing, derived from information processing theory and cognitive science
argues that the relations within and among groups evolve over time through a process of
individual learning.  Moreover, these links are seen as embedding knowledge.  In particular,
organizational learning theorists (Levinthal 1997, Carley and Hill, forthcoming) suggest that
even when there is not population level evolution, organizational learning is sufficient to
generate order.  In this case, learning determines both the degree of interdependence and the
value of that interdependence.  For Carley (1990, 1991), the degree of interdependency within
and among groups is dynamic and co-evolves with the knowledge network (who knows what).
Natural leaning and communication processes coupled with barriers to communication, to
learning, and the advent of new people, technology and inventions prevent or enable groups from
collectively moving toward optimal positions in the landscape and produce order.  Co-evolution
occurs on multiple fronts – individuals co-evolve with each other, individuals and groups co-
evolve, groups co-evolve with each other,  culture and social structure co-evolve, and patterns of
individual knowledge and interaction co-evolve.

This work has led to a neo-information processing perspective in which social outcomes
emerge from network dynamics over a set of interlocked networks.  Traditional social theory has
looked at networks in terms of the relations among people, or at an inter-organizational level, the
relations among organizations.  Linguist and learning theorists have looked at networks in terms
of the relations among knowledge and people.  Operational researchers at networks as relations
among tasks.  This can be brought together in a unified meta-network perspective where the
relations within and among agents, knowledge, tasks, and organizations are seen as constraining
and enabling social behavior (see Figure 1).  Moreover, these networks are seen as co-evolving
through dynamics such as learning, innovation, and population growth.
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Figure 1.  Embedding Social Behavior in a Meta-Network

A Glimpse of the Future
Traditionally there has been a strong tie between the study of machine and human

intelligence.  For example, mathematical models of human learning (Bush & Mosteller, 1955)
were among the first “learning” algorithms used in artificial agents.  Advances in cognitive
science have come hand-in-hand with advances in computer science.  Today, one of the links
between social theory and computer science is in the area of machine learning.  Machine learning
techniques inform and are informed by our understanding of both individual cognition and group
or organizational learning.  One of the areas of greatest potential for their application is in the
area of social agents, another is in the area of organizational theory.

Social agents, such as personalized webbots, avatars and socially sophisticated data bases are
becoming increasingly technologically feasible.  Artificial agents can generate and respond to
rudimentary emotions,  do tasks, and answer questions.  As more of these agents are created the
issue arise as to how these agents can and should interact with each other and human beings.
New questions that need to be addressed include “do these agents need to be social to
communicate effectively with humans?” and “will a society of webbots be more or less effective
if it follows the same norms of behavior as a human society?”   For the social theorists the
creation of societies of these agents provides an important opportunity for addressing
fundamental questions about the nature and value of socialness, and the relation of sociality to
other human characteristics such as emotions and cognitive processing.
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Computational analysis and theorizing is playing an increasingly important role in the
development of social and organizational theory.  There is a growing recognition that complex
adaptive processes underlie social life.  There are three elements to this view.  First, social and
organizational processes are complex, dynamic, adaptive, and non-linear.  Second,
organizational and social behavior emerges from interactions within and between ecologies of
agents, resources, knowledge, tasks, and other organizations.  Third, the relationships among and
within these entities are critical constraints on, and enablers of individual and organizational
decision making and action.  There is a parallel recognition that societies in general, and
organizations in particular, are inherently computational.   The reason being that they have a
need to scan and observe their environment, store information and procedures, communicate, and
transform information through human or artificial agents. Computational theories are providing
the social theorist with both a new toolkit for examining social phenomena and new insights into
the fundamental nature of the social agent.
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