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Organizational Adaptation 
A computational model of organizational adaptation in which change occurs at both the 

strategic and the operational level is presented.  In this model  simulated annealing is used to 
alter the organization's structure even as the agents within the organization learn.  Using this 
model a virtual experiment is run to generate hypotheses which can be tested in multiple venues.  
The results suggest that, although it may not be possible for organizations of complex adaptive 
agents to locate the optimal form, they can improve their performance by altering their structure.  
Moreover, organizations that most successfully adapt over time come to be larger, less dense, 
with fewer isolated agents, and fewer overlooked decision factors.  These results have 
implications for organizations of both humans and non-humans.  For example, they suggest that 
organizational learning resides not just in the minds of the personnel within the organization, but 
in the connections among personnel, and among personnel and tasks.  These results suggest that 
collections of non-humans may come to seem more intelligent (i.e., show improved performance) 
even if the agents remain unchanged if the system simply develops duplicate copies of some of 
the artificial agents and if the connections among agents are dynamically altered. 
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Organizational Adaptation 
1. Introduction 

Literature on organizational adaptation suggests that organizations change over time  
(Stinchcombe 1965a; DiMaggio and Powell 1983; Romanelli 1991).  Part of this change is due to 
strategic re-organization (Kilman and Covin 1988; Butler 1993) including re-engineering and re-
organization.  However, not all types of re-organization are equally valuable.  For example, 
organizational performance may improve as individual members of the organization gain 
experience (March 1981).  But, organizational downsizing may lead to corporate anorexia as the 
organization eliminates personnel and so looses the benefits of their experience.  Indeed, 
organizational theorists are faced with many questions concerning adaptation.  For example, what 
leads to successful adaptation?  Or, more specifically, do organizations that adapt successfully 
have different organizational designs?  Do such organizations follow different patterns of 
adaptation? 

Little is known about organizational adaptation, and even less about how organizations 
should change.  Most theories of organizational design speak to the relative advantage of 
different designs in different situations (Lawrence and Lorsch 1967; Hannan and Freeman 1977).  
Such theories, in principle, provide some guidance for organizational change.  For example, 
population ecology can be interpreted as suggesting that if the organization is moving out of a 
niche environment then the organization should move from a specialist to a more generalist 
structure (Hannan and Freeman 1977).  As another example, Staw, Sanderlands and Dutton 
(1981) have argued that  organizations when faced with a decrease in their performance will shift 
to a more rigid and centralized structure such as is typical in many hierarchical forms.  Such 
suggestions, however, provide little theoretical guidance as to the path of change, or the relative 
advantages and disadvantages of different adaptation strategies. 

The dynamics of change result from simple, but possibly non-linear processes.  
Consequently, thinking through the implications of adaptation processes is non-trivial.  Consider 
the following two illustrative processes which may occur simultaneously.  When performance 
drops organizations may enter a downward spiral by choosing to lay personnel off, thereby 
loosing experience, which in turn may lead to a further reduction in performance, which may lead 
to further downsizing.  Alternatively, such layoffs may lead to a reduction in non-essential 
personnel thereby freeing up managerial time to attend to the decisions of key personnel, thus 
making the task simpler for these managers, allowing them to learn faster, and increasing overall 
performance.  Given just these two processes, what will be the impact of downsizing?  How can 
issues such as these be addressed? 

Recent advances in computational analysis and distributed artificial intelligence (DAI) 
suggest a possible avenue for theory creation in this complex domain of organizational 
adaptation.  Researchers have begun to use complex adaptive agent models, such as genetic 
algorithms and neural networks, to answer questions about change.  However, such analyses have 
typically focused more on the evolution of industries and the sets of organizations within a 
market, rather than adaptation within a single organization (Axelrod 1987; Axelrod and Dion 
1988; Crowston 1994, forthcoming; Holland 1975; Holland and Miller 1991; Padgett 
forthcoming).  Another line of research, also employing computational models to explore 
organizational performance, is the work on organizational learning.  These models typically 
examine either individual level (Carley 1992; Lin and Carley forthcoming; Verhagan and 
Masuch 1994) or organizational level learning (Lant 1994), rather than examining the interaction 
among the two levels of learning (Carley and Svoboda forthcoming; Kim 1993).  These two 
streams of research are complemented by the work within DAI.  In this case, researchers have 
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examined organizational adaptation by focusing on the effect on performance of coordination and 
communication among intelligent agents (Levitt et al, 1994; Durfee and Montgomery 1991; 
Ishida, Gasser and Yokoo 1992),  planning (Gasser and Majchrzak 1994), monitoring (Elofson 
and Konsynski 1993) and socially shared cognition (Hutchins 1990, 1991).  Often this research 
focuses on the decision making capabilities of only a few agents and there is little attention to 
organizational design and factors such as the size of the organization, the number of levels in the 
hierarchy, and so on.   

Analyses, such as those mentioned above, have demonstrated the power of computational 
models for theory building and for examining issues of social and organizational dynamics.  Such 
models abstract away many of the complications existent in actual organizations and so lay bare 
the relationships among the remaining components of organizational design and adaptation.  
Further, these computational models can, and generally do, contain complex non-linear 
processes.  In fact, computational analysis is one of the few techniques that enables the theorist to 
think through the possible ramifications of such processes and to develop a series of consistent 
predictions.  Consequently, computational models can be, and have been, used in a normative 
(and sometimes a prescriptive) fashion to generate hypotheses that can then be tested in other 
empirical settings.  Researchers taking this approach use these models to run virtual experiments1 
and so generate a series of hypotheses which can then be tested in other empirical settings.   

From the perspective of a science of organizing, these computational models speak to another 
point.  That is, these computational models provide basic information about organizing.  Indeed, 
researchers have long used the human organization as a metaphor for the organization of 
computational (and even cognitive) processes (e.g. Minsky 1988) and they have treated multi-
agent models as computational analogs of human organizations (Castelfranchi and Werner 1992).  
Computational models allow researchers to show proof of concept and to demonstrate that 
certain factors, which can be completely modeled, can or cannot generate certain phenomena.  
These computational models employ the use of “artificial” agents, acting as humans.   Thus, the 
predictions these models make may be applicable to organizations of humans, and perhaps may 
be equally applicable (and some would argue more so) to organizations of “non-humans.”  
Depending on the way in which the agents are modeled, the results of these models may be 
interpreted as predictions about organizing in general.  In this way, multi-agent computational 
models are a theory building tool for researchers interested in organizations broadly speaking 
(whether composed of humans, non-humans, or collections of the two) and in the process of 
organizing.  

                                                 
1 A virtual experiment is an experiment where the “agents” are simulations not human beings 

or animals.  The term simulation has been used to refer both to the program (the computational 
model) and the result of running that computational model at least once.  With modern 
computational models, the space of options is sufficiently large that rarely can the complete 
response surface of the model be calculated.  Thus, one approach to locating the models 
predictions is to run a virtual experiment; that is, to vary a small set of parameters within a 
specific experimental design and then analyze the results statistically.  A virtual experiment is a 
computational analog of a laboratory experiment, subject to similar issues in design and 
statistical analysis of the results.  Virtual experiments can be, and are being, used to aid the 
researcher in pre-testing the design of human experiments (by running the experiment with 
computer models that instantiate the theory instead of humans) before they are run in a lab.  
Virtual experiments also play a critical role in the development of computational theories as they 
admit hypoethesis generation. 
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In this paper, a computational approach is taken to the issue of organizational adaptation.  
Drawing on the various literatures previously discussed a dual-level model of organizational 
adaptation is presented in which the organization can change at both the strategic and the 
operational level.  At the operational level the organization is modeled as a collection of adaptive 
agents, each of whom occupies a particular organizational position and has the capability of 
learning over time as they gain experience with the task they are performing.  Agents are 
modeled essentially as a Bush and Mosteller (1955) stochastic learning model with additional 
limits on attention, memory, and information processing which effectively bound the agent’s 
rationality far beyond those in the original stochastic models.  At the strategic level, the 
organization can adapt strategically in response to changes in its performance by altering its 
design in a number of different ways including downsizing, expansion, and re-engineering.  This 
strategic adaptation is modeled as a simulated annealing process.  Using this computational 
model a series of virtual experiments will be done to address the question “what leads to 
successful adaptation?”.  This model has been informed by empirical studies both on individual 
learning by humans and on adaptation within human organizations.  Nonetheless, since this 
model portrays the agents as abstract entities capable of doing only one task and learning only in 
a limited fashion the results can be thought to apply equally to organizations of humans and non-
humans.    

In presenting this model, a somewhat agnostic stance is taken with respect to whether this is a 
model of human organizations or non-human organizations.  The model, is simply, a model of 
organization; i.e., a system that can adapt and that is filled with adaptive agents.  The results from 
a virtual experiment that focuses on the impact of organizational design on performance and the 
ability of the organization to successfully adapt are presented.  These results are then interpreted 
as more specific hypotheses for both organizations of humans and non-humans.  However, before 
presenting the model and discussing some of its implications the basic rationale for modeling 
organizational strategic adaptation as a simulated annealing process is presented. 
2. Organizations as Simulated Annealers 

Why might organizational theorists be interested in using it as a model of organizational 
strategic adaptation?  The basic argument is quite simple.  Simulated annealing can be 
interpreted as a computational analog of the imperfect optimization process organizations appear 
to go through when they alter their design in an attempt to improve performance.  In a detailed 
empirical study of investment banking Eccles and Crane found that the process of strategic 
change in organizational design gone through by human organizations appears to be an annealing 
process (Eccles and Crane 1988).  Perhaps of equal importance, to a science of organizing, the 
process of optimizing the organizational design for an organization of agents is so complex a task 
that a heuristic approach, like simulated annealing, is called for.  But what exactly is simulated 
annealing? 

Simulated annealing, a heuristic approach to optimization, is intended to be a computational 
analog of the physical process of annealing a solid (see Kirkpatrick, Gelatt and Vecchi 1983; and 
for an overview see Rutenbar 1989).  The goal of the annealing process is to find that state 
(atomic configuration) which minimizes system costs (energy).  The process of annealing 
involves  heating the system to a state that admits many alterations, then, given a schedule of 
decreasing temperatures, cooling the system slowly so that it reaches thermodynamic equilibrium 
at each temperature in this schedule, and eventually freezing the system in a good configuration.  
This process is carried out by having a set of possible moves for altering the existent state to 
another state, choosing a move, evaluating the proposed state that this move would create, and 
then moving to that new state if it improves things and possibly even if it does not.  Further, the 
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frequency with which such non-improving moves are accepted decreases with time (as the 
temperature cools).   

Pictorially one might imagine a three dimensional surface in which all states are arrayed on 
two dimensions with the height of the surface being the cost of that particular state.  The cost 
function plays a critical role as it determines the shape of the surface.   Simulated annealing has 
been likened to a process of using a ball to locate the lowest point on such a surface.  Imagine 
randomly dropping a single ball on this surface, rolling it around, and then shaking the surface to 
pop the ball to a new location (with decreasing frequency over time).  The spot on the surface 
where the ball touches is the current state of the system.  Like the ball on this surface, the system 
can be in only one state at a time.  Clearly, some surfaces, will be easier for the ball to traverse 
and find the lowest spot.  For example, single peak surfaces are relatively easy to traverse. 

Heuristic optimization techniques such as simulated annealing are not guaranteed to find the 
optimal solution; however, they do satisfice.  That is, they move the system to a state that is 
typically better than the initial state. Returning to the pictorial description, if the surface 
described by the cost function is extremely lumpy then there is no guarantee that shaking the 
surface will move the ball to the lowest point;  i.e., there is no guarantee that the annealer will 
locate the lowest cost state.   Further, for combinatorial optimization problems which are NP-
complete it may not be possible to locate the exact solution in a reasonable amount of time.  
Thus, heuristic solutions like simulated annealing are often the only practical answer.   

But, how does this apply to organizations?  On the one hand, simulated annealing is a 
reasonable approach to the organizational design problem.  Organizations can be viewed as faced 
with the design problem;  i.e., the need to locate the organizational design that optimizes 
organizational performance subject to various constraints.  Organizational performance is a 
function of a large number of factors of which the various elements of design is only one 
component, but one over which the organization has some, albeit limited, control.  Thus, the 
organizational design problem is, at least, NP-complete.  From a purely technical perspective, 
some type of heuristic based approach appears to be called for.   

On the other hand, simulated annealing is a reasonable computational analog of 
organizational strategic adaptation.  Let us consider this argument in greater detail.  To begin 
with, there is a significant difference between organizations and general collectivities of agents, 
to wit, within the organization there is a CEO or central unit that directs some of the change in 
the way the set of agents is structured or connected, which agents are connected, and which 
agents are doing what.  These connections and assignments can be thought of as the 
organization’s design.  The organization moves through a series of organizational designs, one at 
a time.  This directed change in the organization’s design can be characterized as strategic 
adaptation.  The organization (specifically the CEO or central unit) has a set of possible strategies 
(move set) that dictate which designs are possible given the current design. Such strategic 
adaptation requires the strategist (the CEO or central unit) to have knowledge about which agent 
knows what, which agent has which capabilities, and it requires the ability to anticipate, however 
imperfectly, the future.   

Over time, the organization attempts to optimize its design given some cost function.  For 
organizations, the cost function depends on what the organization perceives as important, e.g., 
minimizing salary, maximizing the number of widgets produced, or maximizing decision 

�accuracy.  Further, the organization’s optimization process is imperfect. That is, a strategic 
change is employed if it appears to move the organization closer to the goal regardless of whether 
or not it actually does so and regardless of whether or not it is the best change for accomplishing 
that goal (Simon 1944; March and Simon 1958).  The organization (more precisely the CEO or 
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central unit) is not omniscient, does not compare all strategies, but simply evaluates a strategy 
through a kind of “what if” analysis, trying to forecast or anticipate, albeit imperfectly, the future 
(Allison 1971; Cohen and March 1974; Axelrod 1976).  Since the forecast is known to be 
imperfect, the organization may at times gamble on redesigns that might possibly “increase 
costs” if it is felt that there is some long term advantage.  In general, organizations are much 
more prone to this kind of risky behavior when they are new.  This can be characterized as the 
liability of newness (Stinchcombe 1965b).  As the organization matures the number of high risk 
moves decrease, and the organization becomes more staid and locked into a certain way of doing 
business.  This staidness has also been characterized as competency traps (Levitt and March 
1988).    

The parameters and processes of simulated annealing have direct and obvious translations 
into known organizational behaviors.  In this sense, an annealing model of organizational change 
has reasonable face validity.  The mapping of simulated annealing onto organizational strategic 
adaptation is summarized in Table 1.  Even at this gross level, there is a reasonable mapping 
between simulated annealing and organizational strategic adaptation.  In actuality, the mapping 
exists even at a finer level of detail.  Some of this additional detail will be seen when the 
computational model is described.    

 
Table 1.  Comparison of Simulated Annealing and Organizational Adaptation 

Simulated Annealing Organizational Strategic Adaptation 
system organization’s CEO or central unit 
state organizational design 
current state current organizational design 
temperature risk aversion 
accepting a cost increasing move taking a risk 
high temperature means accepting many 

cost increasing moves 
liability of newness 

move set re-design strategies 
heuristic optimization process imperfect optimization process 
minimize cost maximize performance 
cooling schedule approach to becoming risk averse 
proposed state proposed new design 
evaluation of proposed state limited lookahead, anticipation of future 
state evaluation observed performance 

 
3. Computational Model of Organizational Adaptation 

A dual-level information processing model of an organization adapting in response to its 
environment is employed (see Figure 1).  The organization acts at both a strategic and an 
operational level.  At the operational level,  organizational performance is determined by the 
actions of the individuals in the organization as they work on tasks.  The specific model used is 
the CORP model of organizational performance (Carley 1992; Carley and Lin forthcoming).  At 
the strategic level organizational performance is affected by the ability of the CEO or central unit 
to anticipate the future and take the appropriate strategic actions to alter the organization in 
response to environmental cues.  The model of strategic adaptation is based on a simulated 
annealing model.   
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Strategic Level - Simulated Annealer

Move Set 
   hire 
   fire 
   re-assign 
   re-engineer

Operational Level - CORP

Agent Training 
   experiential 
   SOP

Organizational Design 
   reporting structure 
   resource access structure

Task 
    binary 
   decomposable 
   unbiased

Process Order 
   given an organization 
   new task 
   get information 
   process information 
   make recommendation 
   organization makes decision 
   update memory

Agent Limits 
   number of tasks remembered 
   amount of information  processed

Process Order 
   randomly generate initial organization 
   generate performance from CORP 
   choose a move from move set 
   generate performance for adapted organization using CORP 
   decide whether to accept move 
   update organization if necessary 
   record performance 

Organization's characteristics

Figure 1:  Overview of Dual-Level Model  
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3.1 Operational Level:  CORP 
CORP is a simple information processing model of organizational performance in which 

organizational learning is the aggregate of individual learning plus learning the appropriate 
weights (or trust) in other’s decisions (Carley 1992).  Within CORP organizational performance 
is seen as a function of the type of training received by the agents (experiential or procedural), the 
type of task (complexity — number of choices, bias — likelihood of certain outcomes, and 
decomposability — interdependence among sub parts), the reporting structure  (who reports to 
whom), S, and the resource access structure (who has access to what resources or information), 
R,  CORP, related models,  and predictions from the CORP model have been extensively 
described in previous studies (Carley 1992; Carley and Lin 1995, forthcoming).  CORP has been 
shown to be a reasonable model of organizational performance both against experimental lab 
studies (Carley forthcoming) and archival data on actual organizations (Lin 1994; Carley and Lin 
1995).  Models like CORP, or extensions of CORP have received extensive attention  (Ouksel 
and Mihavics 1995; Mihavics and Ouksel 1996) as has the binary and trinary choice tasks 
underlying CORP (see for example, Tang, Pattipati and Kleinman 1992; Pete, Pattipati and 
Kleinman 1995; Carley 1992; Lin and Carley forthcoming; Hollenbeck, Ilgen, Sego, Hedlund, 
Major  and Phillips 1995; Hollenbeck, Ilgen, Tuttle and Sego 1995).   

In CORP there is a single organization composed of a set of intelligent adaptive agents, each 
of whom must process some task related information, and all of whom are connected within a 
single reporting structure.  The performance of this single organization is its accuracy given a 
classification tasks which is measured as the percentage of problems in a window of opportunity 
that the organization correctly classifies.  Basically, the organization is faced with a sequence of 
tasks drawn from at random with replacement from the set of possible tasks.  The specific task 
used for this paper is a nine bit binary unbiased decomposable classification task in which the 
true decision is an A if there are more 1’s than 0’s in the set of task features and B otherwise.  
Each time period the organization must make a decision for the current task.  The organizational 
decision making process involves a series of individual decision making processes.  Of the N(t)  
agents who are collectively processing I(t)  resources or pieces of information some are 
processing the information on that task and are reporting to other agents and while other agents 
are simply processing the reports of others.    

The agents in the organization are all either experiential learners (Carley 1992) or they follow 
standard operating procedures (Carley and Lin, forthcoming).  Each experiential agent classifies 
the pattern of information that it sees and recommends the choice that was most often correct in 
the past for that pattern.  If the agent has no previous experience it simply guesses.  This 
information can be either or both raw information on this specific task or the recommendations 
of other agents for this task.  After the organization makes its decision each agent receives 
feedback as to what was the correct choice for that task.  Each agent then increments its’ 
memory.  Each procedural agent simply follows this standard operating procedure:  report choice 
A if there are more 1’s than 0’s in the pattern it observes, and choice B otherwise. With sufficient 
experience, experiential agents typically come to resemble procedural agents.  Changes in the 
organizational design may alter the number of pieces of information various agents see for both 
experiential and procedural agents.  

In keeping with the information processing perspective,  all agents are boundedly rational 
both in terms of organizational access to information and in terms of cognitive ability to process 
information (Simon 1955, 1956; Carley and Newell 1994).  First, agents can only handle a 
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maximum of seven pieces of information.  Second, agents do not remember exactly what 
happened on a particular task; rather, they remember general trends.  Third, what information the 
agents know is a function of their position in the organization.  Fourth, experiential agents have 
an additional limitation which is that they do not remember all the tasks that they have seen.  
Rather they suffer from both a primacy and a recency effect and thus remember only the first 500 
tasks and the most recent 500 tasks they have seen.   

The organization may be composed of anywhere between 2 and 45 agents organized in one to 
three layers with a maximum of 15 agents per layer.  The organizational decision is the CEO’s 
decision.  The CEO’s decision is based on the recommendations of the agent or agents in the top 
tier in the organization.  Essentially, the CEO simply makes that decision recommended by the 
majority of the top tier managers.  If there is no majority decision then the CEO randomly 
chooses one of the two options.  

Strategic Level:  Simulated Annealing 
Organizational strategic adaptation is modeled as a simulated annealing process, such that the 

organization’s restructuring strategies are the move set.   The move set includes the following 
actions: firing  — drop n agents (such that 1 ≤ n ≤  No(t) ), hiring  — add n  agents (such that 1 ≤ 
n  ≤  Nmax - No(t) ), reassigning  — delete the tie between agent i and j (i reports to j) and 
reassign agent i to report to agent k., and re-engineering  — delete the tie between agent i and 
resource s and add a tie between agent j and piece of information s,  Exactly how many agents are 
hired (or fired, re-engineered, or reassigned) at a time is given by a Poisson distribution.2   Notice 
that the effect of the connection changes (re-assignment and re-engineering) is to simply move 
connections and will not lead to an absolute increase or decrease.  This type of connection based 
change was used so as to distinguish simple tie movement from the more extensive tie changes 
caused by adding or dropping nodes. 

The organization begins with a particular design (S(0) and R(0) ) and proceeds to process 500 
tasks.  After this, its basic life cycle begins.  First, the performance of the organization for a 
sequence of 100 tasks is generated using CORP,  then a move from the move set if chosen and a 
new organizational design is suggested, this design is then hypothetically evaluated in a limited 
lookahead for 100 tasks, then the forecasted performance of the proposed design is compared 
with the previous performance of the current organization and a strategic decision is made as to 
whether or not to accept the change.  Finally, if the change is accepted the organization’s design 
is altered and the process begins again. Whereas, if the change is not accepted the process begins 
again with the unchanged organization.  Performance at time, t,  for the current organization is 
the percentage of most recent 500 tasks that the organization correctly classified prior to time t.. 

The probability of accepting the new design is determined via the Metropolis criteria.  
Specifically, the change is always accepted if the forecasted  performance for the hypothetical 
organization is better than the known performance of the current organization.  Further, when the 
forecast is poorer the change may still be accepted.  In fact, we can think of the probability  of 
                                                 

2Different strategic approaches than that explored herein can be characterized either by 
adding additional moves or by altering the mean value for the Poisson distributions for each of 
these four types of moves.  One might also think of altering the means as simply a perturbation 
on a single strategy.  A reasonable approach would be to consider small differences in the means 
(those that are not significantly different) as a procedure for representing perturbations of the 
same strategy, and large differences in the means (such as setting the mean to 0 versus the mean 
to 1) as a procedure for representing different strategies.  
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accepting the “bad” design as the organization’s degree of risk aversion.  This probability is 
calculated, using the boltzman equation, as P = Po e( )-² cost(t)/T  such that  cost(t) = 0 - 
performance(t) and Po is the initial probability of accepting a “bad” design.  This probability 
decreases as the temperature decreases.  Temperature drops every 100 tasks (time periods) as 
T(t+1)  = α * T(t)  where α is the rate at which the organization becomes risk averse.   

 
4. Virtual Experiment 

In order to examine the relationship between design and organizational adaptation the 
following virtual experiment was run.  Organizations were composed of either all experientially 
or all procedurally trained agents.  Three types of strategic adaptation were considered — agents 
change (individual agents could be hired or fired), linkage change (individuals could be 
reassigned to new managers or tasks could be re-engineered and so components of the task are 
assigned to different agents), and general change (both agents and linkages).  The size of the 
organization (2 to 45 agents), the number of levels (1 to 3), the initial reporting structure (S(0)), 
and the initial resource access structure (R(0), were all chosen randomly with replacement from 
the set of possibilities.  Each organization was simulated for 2000 time periods (after the initial 
500).  A total of 1000 organizations were sampled for each of the six condition (two types of 
training by three types of adaptation). 

In exploring the impact of organizational structure on performance a number of factors will 
be considered.  The specific factors that will be attended to are: size, density, number of isolates, 
redundancy, and number of factors overlooked.  Size, the number of agents in the organization is 
considered as, in principle, as the size of the organization is increased more aspects of the task 
can be analyzed but the coordination problems increase.  Density, the fraction of possible 
connections in the reporting structure that actually exist, is considered as the higher the density 
the higher the management workload but the greater the communication and so potential for 
noticing errors.  The number of isolates is the number of agents in the organization that are not 
reporting to any other agent.  Isolates represent points of organizational inefficiency as the work 
of these agents does not contribute to overall organizational performance. Redundancy, the 
number of agents per task for only those tasks that at least one agent is attending to, is examined 
as organizations are thought to need redundancy for error checking in complex tasks.  This 
measure is calculated as the average number of agents working on a task factor and includes only 
those factors that are not being overlooked.  Finally, the number of factors overlooked, like the 
number of isolates, represents a type of organizational inefficiency.  A factor is overlooked if no 
agent is examining that factor.  The higher the number of overlooks the lower the organization’s 
performance should be as information needed to make that decision is not being factored into the 
organization’s decision.  Finally, organizational performance is simply the fraction of tasks in the 
last 500 tasks seen by the organization that it correctly classifies.  Herein, performance is often 
recoded into a six point scale.  Let x be the fraction of tasks that the organization correctly 
characterizes.  Then the scale is as follows: less than or equal to 70% (=0), 70% < x ≤ 75% (=1), 
75% < x ≤ 80% (=2), 80% < x ≤ 85% (=3),  85% < x ≤ 90% (=4), and 90% < x ≤ 100% (=5).   

For the binary choice task the particular levels of training (500 tasks) and experiential 
memory (500 tasks) used tends to result in all agents, on average, being completely trained.  For 
the binary choice task examined, in 500 trials each agent, even if it attends the maximum 
possible pieces of information (seven) will on average have seen each pattern 4 or more times 
which is sufficient for the agent to, on average, act like a majority classifier.  When this is 
coupled with the fact that most agents will remain in the organization longer than 100 time 
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periods and the fact that individual agents can remember up to 1000 pieces of information (500 
through training and 500 through recent experience), it should be obvious that, except in rare 
circumstances, these agents will act like the SOP agents.  Thus, in general, there should not be 
any organizational differences based on training. 

These analyses were run for organizations composed entirely of either experiential agents or 
procedural agents.  The results indicate that there is no significant difference between 
organizations of experiential or SOP agents.  Thus, the results for these two cases are pooled.  
The lack of difference in these two cases indicates that all agents are acting as though they are 
fully trained and the rate of organizational strategic adaptation examined is slow enough that 
agents have time to learn to “work within the system” before it changes again.  Thus, there are no 
“memory” effects.  Performance differentials are primarily a function of strategic adaptation and 
not individual learning.   

 
5. The Infeasibility of Optimization 

In theory, if the set of strategies considered is sufficient, if there is an optimal design for that 
environment, if the organization does not change its cost function, and if the environment does 
not change then the organization should eventually be able to locate the optimal design.  At least, 
that is the implication of much of organization theory.  But how feasible is it that an organization 
will be able to locate the optimal design?  The answer depends on the shape of the performance 
surface; i.e., the number of performance peaks and valleys and how they are distributed in the 
space of organizational designs.  For example, if the optimal design (a slim peak) is surrounded 
by a set of extremely sub-optimal designs (a big wide valley), then it is unlikely that the 
organization will discover it.  In contrast, if the optimal design is surrounded by nearly optimal 
designs, then it is more likely that the organization will locate the design.  Organizational 
designs, however, can be characterized along a large number of dimensions.  Even in this simple 
model these dimensions include the size of the organization, organizational density, the number 
of isolates, the number of decision factors overlooked, the number of agents working on each 
task, the amount of training the agents have, and so forth.  The performance surface is thus truly 
multi-dimensional and cannot be easily graphed.  Nevertheless, we can get a feel for what this 
surface looks like by exploring different pairs of dimensions.  Basically, the underlying 
performance surface is “not well behaved.”  This is illustrated graphically in Figure 2 where the 
performance surface by size and organizational density is displayed.  Additionally, on the bottom 
plane, the position of all organizations with 85% or better performance are shown.  These near-
optimal organizations do tend to lie along a ridge (size 18-36, and density .07 to .14), but known 
optimal points do not lie on this ridge. 

Regardless of the dimensions chosen, the performance features we have just seen appear.  
That is, there are equiperformance plateaus with sporadic and narrow peaks more or less 
randomly popping up.  The known optimal designs are not surrounded by other designs which 
exhibit almost as good of performance, rather they are surrounded by valleys of very low 
performance.   For example, one optimal design is at size 9 density 0 and another at size 18 
density 0.25.  Both of these points are surrounded by low performing designs or performance 
valleys.  The organizations with better than 90% performance tend to be tightly clustered (see 
Table 2).  The results of these analyses suggest that although all organizations might find better 
designs, they will rarely, if ever, find the optimal design. 



— 11 — 

0.
00 0.

14 0.
28 0.

42 0.
56 0.

70

0
9

18
27

36
45

30

40

50

60

70

80

90
100

DENSITY

SIZE

PERFORMANCE

 
Figure 2:  Organizational Performance by Size and Density 

 
 

 
Table 2.  High Performance Plateau:   

Statistics on Organizations with Greater than 90% Performance. 
Variables Size Redundancy Density 

Mean 26.46 4.98 0.09 
Standard Deviation 7.35 1.27 0.04 
Minimum 11.00 2.38 0.06 
Maximum 38.00 6.78 0.20 
    

 
Indeed, once the organizations are allowed to adapt its design, we find that this is exactly 

what happens.   Initially, all organizations only make the correct decision 50% of the time.   Over 
time, the set of organizations end up normally distributed in terms of performance.  With the 
average  performance level around 79% when both modes of adaptation are possible and none 
reach 100% performance.  Over time, all the organizations tend to gravitate toward the high 
performance plateaus; across all organizations when both modes of adaptation are possible the 
final average size is 26.15 and the final average redundancy is 4.01.  Although, on average, the 
emergent organizations tend to drop their density too much (final average is 0.06).   

 
6. Successful Adaptation 

Over time, all organizations change and their performance improves. Some organizations, 
however, improve more than others.  Some organizations are more successful in their adaptation.  
The most successful organizations tend to be highly flexible; i.e., they hire more, they fire more, 
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they re-assign more agents, and the re-engineer the organization more often.    In fact, the most 
successful organizations make almost twice as many changes (re-assignments plus re-
engineerings) as do the least successful (see Figure 3).  In the most successful organizations, 
there is a tendency to hire more than to fire (see Figure 4).  Thus, retaining more experienced 
agents.  Moreover, the most successful organizations tend, on average, to have a higher ratio of 
change to their size (number of agents). 
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Figure 3:  Average Number of Changes Per Performance Level Across All Organizations. 
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Figure 4:  Average Number of Hires and Fires Per Performance Level Across All Organizations 
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Are we seeing a case of success breeding success? All organizations start out with the same 
initial performance level, the same level of success. However, they do differ initially in terms of 
structure.   And having the “right” initial structure is important for long term success.  This does 
not mean that organizations that are “poorly structured” can never succeed.  Rather, it is possible 
for them to do so, and the path they take to success may be more torturous.  However, it is easier 
to succeed, and the organization is more likely to succeed, if it is initially well structured.  In this 
way, structure lays the ground work that enables initial successes to breed future successes.  
Returning to the analogy of a ball on a surface, what we are seeing is that it helps, just a little, to 
drop the ball in the right place.   For example, when both types of adaptation are allowed 15% of 
the organizations have an initial size, density and redundancy that is more extreme than the mean 
values in table 2.  For these organizations, their final performance is 80.13%.  For organizations 
that were not in this “advantaged” position, the  final performance was 78.80%.  Thus, there is an 
advantage to starting out in the right place, but this advantage is quite small.  

Dropping the ball in the right place is not sufficient for success.  It is also important to roll 
the ball around a lot.  Some organizations with “good” initial designs still end up as low 
performers. Of the organizations that end up in the lowest performance level in the long run 16% 
of them are in this advantaged category in terms of initial size, density and redundancy.  
Whereas, of the organizations that end up in the highest performance category in the long run, 
only 23% of them are in this advantaged category.  Successful organizations not only change 
faster, they change “smarter.”  That is, the changes they make are those that are more likely in the 
long run to be performance enhancing. 

Let us look at these results in more detail.  Organizations that successfully adapt (end up with 
the highest performance) have a slight initial advantage in size.  For example, in Figure 5 we see 
that organizations with more agents initially do tend to end up more successful.  However, 
although the most successful organizations do not start out the largest; they do end up the largest.  
In contrast, most organizations start out with comparable density, but the successful 
organizations are those that most dramatically lower their density (see Figure 6).    We saw 
earlier that there was a ridge of near-optimal performers between size 18 to 36 and density 0.7 to 
0.14.  At each performance level, the average value of the organizations lies within this ridge.  
Thus, at each level there are some organizations that are in this space.  Over time, organizations 
tend to move (relative to Figure 2) up and to the left (increasing size and decreasing density) 
along this ridge. The organizations, particularly, the successful ones, are gravitating toward the 
spot in the performance landscape where there is the highest density of near-optimal designs.  
Over time, organizations that end up as low performers end up falling off of this ridge. 
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Figure 5: Change in Size by Performance Level 
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Figure 6:  Change in Density by Performance Level 

 
Successful organizations are initially more redundant than less successful organizations (see 

Figure 7).  This interesting difference, which is only slight initially, is exaggerated over time.  
The low performers decrease their redundancy slightly.  In contrast, over time, high performers 
alter their design, adding additional agents per task. 
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Figure 7: Change in Redundancy by Performance Level 
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Figure 8: Change in Number of Decision Factors Overlooked by Performance Level 
 
Moreover, low performers tend to make strategic errors in the way they change their design.  

That is, they make changes that actually increase the number of  decision factors overlooked (see 
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Figure 8).  Whereas, more successful organizations overlook fewer factors.  Additionally, there is 
a more subtle error that unsuccessful organizations are prone to; specifically, they do not get rid 
of integrate isolates into the organization.  Notice that both high performance and low 
performance organizations start out with high numbers of isolates (see Figure 9).  However, the 
successful adapters alter their design (sometimes through judicious firing, sometimes through re-
assignment, and sometimes through both) so that they reduce the number of isolates. 
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Figure 9:  Change in Number of Isolates by Performance Level 

 
7. The Impact of Strategy 

Now let us consider the impact of the types of change the organization can employ.  For 
example, what happens if the only strategies employed are to hire or fire agents?  Alternatively, 
what is the impact of only re-assigning agents or re-engineering the organization?  What happens 
when both change strategies are employed?  In Table 3 the percentage change in various factors  
under each of these three change strategies at each level of final performance is shown.   When 
the organization only engages in reassignment and re-engineering it is not possible for the 
number of agents or density to change.  When the organization can change both agents and 
connections, organizations which successful adapt,  alter the number of agents less and alter the 
connections more than do organizations which employ only change in agents strategy,   
Organizations can substitute judicious reassignment and re-engineering for  staff augmentation to 
achieve high performance (connection changes).  If organizations are willing to be flexible in 
altering their structure they need not employ large structures.  With respect to redundancy, we see 
that organizations which do not successfully adapt use re-engineering to decrease their 
redundancy.  Further, organizations that can alter the number of agents, if they are to be 
successful, add agents so as to increase redundancy. 
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When organizations only change connections, only 3 organizations ended up in the most 
successful category.  All three of these organizations have the feature that they neither isolate 
individuals nor overlook decision factors.  Importantly, they also (unlike some other 
organizations) do not alter their structure so as to increase the number of isolates or factors 
overlooked.  Barring these three cases, we see that when the organization only changes 
connections typically, successful adaptation requires isolating agents who are not performing 
well and dramatically decreasing the number of factors overlooked.  When the organization can 
alter the number of agents, isolates are eliminated and there is even more emphasis on making 
sure factors are not overlooked. 
 

 
Table 3: Percentage Change by Level of Final Performance 

 Final Performance Level 
Variable 0 1 2 3 4 5 
 
Size 

 

Personnel -10.90 37.09 45.58 57.04 75.74 72.33 
Connections 0.000 0.000 0.000 0.000 0.000 0.000 
Both -4.15 35.06 58.71 66.49 47.06 60.55 

 
Density 

      

Personnel 54.56 4.03 -14.19 -21.73 -21.64 -7.51 
Connections 0.000 0.000 0.000 0.000 0.000 0.000 
Both 11.55 -10.30 -18.90 -25.99 -26.64 -39.86 

 
Redundancy 

      

Personnel -12.26 3.70 13.23 33.89 59.63 61.53 
Connections 0.86 -0.22 0.30 -0.28 -0.28 0.000 
Both -17.26 3.71 17.41 33.88 33.64 35.25 

 
Isolates 

      

Personnel 2.19 22.69 4.83 -9.25 -25.52 -28.27 
Connections 9.64 9.47 8.68 8.96 7.36 0.000 
Both 41.42 18.89 6.65 -4.49 -24.57 -19.62 

 
Factors 
Overlooked 

      

Personnel 59.46 32.21 -1.10 -17.04 -23.10 -15.56 
Connections 5.94 1.20 2.56 -1.88 -2.61 0.000 
Both 81.39 20.37 -2.54 -17.97 -11.11 -23.08 

       
 
8. Toward a Science of Organizing 

Computational models, such as this, embody organizational theory and so  can act as 
hypotheses generators. The results from the virtual experiment can be thought of as hypotheses.  
That is, it is difficult to theorize about complex adaptive processes so we have used the 
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computational model to generate hypotheses.  The organization scientist can now test these 
hypotheses with empirical data.   

In presenting the results from the computational model, the attempt was made herein to 
remain agnostic as to whether the artificial agents in the proposed model are computational 
analogs of humans, non-humans, or some combination.  Consequently, the hypotheses might 
apply in multiple domains, such as human and non-human organizations.  How might the results 
we have just seen be interpreted differently for humans and non-humans?  Would the predictions 
in these two cases be different?  Following are illustrations of the types of hypotheses that would 
be consistent with the results previously presented. These hypotheses go a bit beyond the model, 
but the indicate the kinds of hypotheses that would make sense given this analysis. 

Let us begin by assuming that the agents are humans.  The foregoing results suggest that 
individuals who join large organizations are more likely to remain with the organization longer 
and to see the organization grow around them.  As organizations become more successful, the 
individuals within the organization will come to interact with other individuals within the 
organization less (density decrease).  This should be due in part to an increase in the size of the 
organization.  Nevertheless, this decreased interaction may result in individual's feeling 
increasingly severed from the organization and feeling that the organization is becoming 
increasingly bureaucratized.  In such cases, one might here statements like “I used to know 
everybody and their families, I hardly know most of the new people" or “this organization no 
longer cares about people."  These results also suggest that in organizations that are becoming 
increasingly successful people might find themselves increasingly surrounded by others doing the 
same or similar tasks, so that no individual is as critical as he or she was in the earlier, less 
successful, days. This might lead to an increasing feeling that they are not particularly important 
to the organization, or it might lead to the feeling of relief that they now have someone to share 
the job with.  Despite this feeling of disconectedness, these results are also suggesting that the 
likelihood of an individual actually being isolated is higher in unsuccessful organizations and 
increases as organizations become increasingly unsuccessful.  Thus, while individuals in 
increasingly successful organizations may feel that they are becoming less involved in the 
organization, their actual likelihood of being isolated is lower.  In contrast, in organizations that 
are becoming increasingly unsuccessful, people might find themselves increasingly relied on to 
do more tasks and with fewer others doing the same thing.  In this case, we would see individuals 
becoming critical to the organization's performance to the point that, ultimately, the loss of one 
individual may be catastrophic.  These results also suggest that organizations that are 
increasingly successful will come to overlook fewer decision factors.  However, this result may 
be due to cleverness in the adaptation strategy chosen and correctly timed risks, rather than a 
particular ability on the part of the CEO (or corporate board) to correctly anticipate the future.    
These results suggest that organizational learning resides not just in the minds of the personnel, 
but also in the connections among them and in the connection between people and tasks.  This is 
different than saying that organizational learning resides in rules and procedures.  Rather, it is 
saying that the structure or design of the organization itself holds knowledge. 

Now, how do we interpret these same findings when the agents are non-humans. Let us 
imagine, for example, that the agents are webbots (Carley and Prietula, 1996), artificial agents on 
the web who have some type of information processing capability, accepting some input and 
passing some output that can potentially come from or be used by another webbot. 

For artificial agents such as webbots, the foregoing results suggest that adding more 
webbbots to an integrated collection of these artificial agents will increase performance.  At one 
level, this hypotheses is hardly surprising as additional webbots might add additional 
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functionality.  Importantly, however, the model would also predict that additional copies of the 
same webbots would increase performance.  After all, the agents in the foregoing model are 
basically identical, differing only in their experience.  These results also suggest, that to improve 
performance, the interactions among webbots should be structured so as to minimize interaction.  
That is, a defined set of linkages (that can change) is more advantageous that simply letting all 
webbots send all output to all other webbots.  Further, collections of webbots should become 
more successful if they restructure these connections to overlook fewer factors.  Such 
restructuring might give the impression of increased intelligence, even without any additional 
intelligence being given to any of the separate webbots.  Importantly, the intelligence here, 
resides not in the webbots but in the connections between them.  These results also suggest that 
to increase performance, collections of webbots need to integrate all webbots, create a reporting 
structure that actually links them, rather than assume users will know on their own how to 
transform and move the output from one webbot to become input to another webbot. 

The foregoing discussion has briefly suggested how the results of the model might play out in 
two distinct venues.  Underlying this discussion are two important issues.  First, can there be a 
science of organizing?  Clearly the predictions for organizations of humans and organizations are 
non-humans are similar.   Imagine for the moment, that these predictions held up in both-venues.  
This would suggest that there are general principles of organizing.  In this case, an important 
research endeavor would be to distinguish when an organization of agents is acting as a human 
organization and not as an organization of non-human agents.  The second, and closely related 
issue, is how accurate does the model of the agent need to be to adequately model human 
organizations?  Earlier research using CORP has suggested that at a macro organizational level, 
the agents may not need to be very accurate at all.  Further research, however, is needed to see 
whether there are certain tasks, or certain levels of tasks, or certain types of performance, where 
more cognitively and physically accurate models of humans are needed.  Being precise about 
such items would help set the boundary between a science of organizing and a science of human 
organization. 
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