
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5047–5058
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5047

Tree LSTMs with Convolution Units to Predict Stance and Rumor
Veracity in Social Media Conversations

Sumeet Kumar
Carnegie Mellon University

5000 Forbes Ave,
Pittsburgh, PA 15213, USA
sumeetku@cs.cmu.edu

Kathleen M. Carley
Carnegie Mellon University

5000 Forbes Ave,
Pittsburgh, PA 15213, USA

kathleen.carley@cs.cmu.edu

Abstract

Learning from social-media conversations has
gained significant attention recently because
of its applications in areas like rumor detec-
tion. In this research, we propose a new way
to represent social-media conversations as bi-
narized constituency trees that allows compar-
ing features in source-posts and their replies
effectively. Moreover, we propose to use con-
volution units in Tree LSTMs that are better
at learning patterns in features obtained from
the source and reply posts. Our Tree LSTM
models employ multi-task (stance + rumor)
learning and propagate the useful stance sig-
nal up in the tree for rumor classification at the
root node. The proposed models achieve state-
of-the-art performance, outperforming the cur-
rent best model by 12% and 15% on F1-macro
for rumor-veracity classification and stance
classification tasks respectively.

1 Introduction

Online misinformation, commonly called ‘fake
news’, has become a serious problem in society
(Ferrara, 2015) to the extent that they are im-
pacting election decisions (Allcott and Gentzkow,
2017). Many machine-learning approaches have
been proposed to identify and contain the fake-
news shared on online social-media platforms
(Jin et al., 2016; Rubin et al., 2016; Rubin and
Lukoianova, 2015; Schifferes et al., 2014; Tac-
chini et al., 2017; Volkova et al., 2017; Vosoughi
et al., 2018). One approach that combines
machine-learning and human-intelligence by ex-
ploiting stance in reply posts has gained significant
attention recently (Zubiaga et al., 2016a, 2015). In
this approach, we first identify the stance – cate-
gorized as ‘supporting’, ‘denying’, ‘commenting’
and ‘querying’ – in the replies to the original post
and then use the stance signal to find rumor ve-
racity i.e. if a rumor is true or false. Prior work

Putin is missing. www.abcnews.co.ir

Source	Tweet	

This is not verified

It’s on TV as well

Stance:	Deny	

Stance:	Deny	

He went missing last week

Stance:	Favor	

R
um

or
: F

al
se

T1:

R1:

R11:

R2: 	

Reply	Tweet	

Reply	Tweet	

Reply	Tweet	

Figure 1: Twitter threads with stance and rumor-
veracity labels. The conversation tree shown above has
two branches a) T1–R1–R11 and b) T1-R2. R1 and R2
are 1st level reply tweets and R11 is a 2nd level reply
tweet. Stance labels for each reply is relative to the
tweet it is replied to i.e. stance for R11 is with-respect-
to R1. There is a rumor-veracity label on the root tweet
(T1 in the example above). The goal of this research
is to learn the root tweet’s veracity based on pattern in
replies.

has confirmed that replies to a ‘false’ (misleading)
rumor contain specific patterns, e.g. more replies
deny the claim made in the source post (Zubiaga
et al., 2016b). This approach is promising as peo-
ple are reasonably good at pointing out misinfor-
mation (Babcock et al., 2019) and if such posts
could be automatically found, the post could go
through enhanced scrutiny before it gets circulated
widely.

In this research, we extend this line of work on
rumor-veracity and stance learning by proposing a
new way to represent conversation trees and new
LSTM cells that could be used to detect rumors
more effectively. In past, researchers have ex-
plored various models to learn from tree structured

5048

T1

R1

R11

R2 	 T1

R1 R11

R2 	

T1

VT1R2 	

VR1R11 	

VT1R1R11 	

VT1R2T1R1R11 	

R1

VT1R1 	

Figure 2: Normal tree structure (left) and the modified binarized constituency tree (BCTree) structure for the
conversation shown in Fig. 1. On left, a tree with structure representing the original thread in which a node can
have any number of children. On right, a binary tree structure where source post and reply posts are all leaf nodes
such that each reply is placed next to the tweet it was made against and connected to a virtual parent node. E.g.
R11 was made against R1 so are connected to VR1R11.

data (Wang et al., 2007; Gildea, 2004). For rumor
veracity classification, prior research have found
that the approach that performs the best on social-
media conversations is a sequence model (like the
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) as discussed in (Zubiaga
et al., 2018)). Sequential classifiers like LSTMs
are good at learning temporal structure and are bi-
ased to use prior inputs to predict outputs (Eck
and Schmidhuber, 2002). However, when it comes
to comparison tasks like stance classification in
threaded discussions, each reply is made against
a post or a response to a source post (see Fig. 1).
So, we ask, is the regular sequential model apt to
learn the relationship between a source post and
its replies in conversations? Would a model that
can learn the contrast between a source and the
reply tweets be more appropriate for rumor clas-
sification? To this end, we propose a new tree
structure that is obtained from social-media con-
versation trees but allows for easy comparison of
the source and its replies. Additionally, we use a
convolution unit to learn patterns in local features
for stance classification, and the tree model prop-
agates the signal up the tree for the rumor classifi-
cation at the root of the tree.

To evaluate our models, we use a human-
labeled Twitter dataset that contains stance labels
and rumor labels for around two thousand rumour
threads related to five different events. Our pro-
posed models achieve the state-of-the-art perfor-
mance, outperforming the current best model by

12% and 15% on F1-macro for rumor classifica-
tion and stance classification tasks respectively.

2 Models for Tree Structured Social
Media Conversations

Tai et al. 2015 proposed a tree structured LSTM
networks and showed its utility on two tasks of se-
mantic relatedness and sentiment classification. In
their work, the tree LSTM is composed of sen-
tence sub-phrases using a given syntactic struc-
ture. The benefits of using a recursive tree ap-
proach was discussed by Li et al. (Li et al., 2015)
where the authors concluded that tree models are
more suitable for root level identification. Social-
media conversations are naturally structured as
trees. Can Tree LSTMs be used for classifying
node labels in such conversations trees? In this
work, we try to answer this question by modeling
conversations as trees where each node in the tree
is a sentence representation (Fig. 2). Node labels
in tree structured conversations can be learned us-
ing: a) branches of the tree as input to an LSTM
(Branch LSTM Model) as used in many prior re-
search e.g. (Zubiaga et al., 2016a, 2018) b) using
the entire tree as the input (Tree LSTM Model) c)
modifying the structure of the tree to better cap-
ture the inherent correlations in conversations for
a given task (Binarized Constituency Tree LSTM
Model). We discuss these formulations next.

5049

2.1 Branch LSTM Model

In branch LSTM, the encodings of source-tweet
text and the replies text along a tree branch are
used as the input and the stance-labels are used
as the output (as illustrated in Fig. 3). Using a
simple text encoder (like mean of a word vectors),
at each step, the LSTM gets a sentence embedding
and predicts a label. The process is repeated for
all nodes in the thread. For example, if we take
the thread (T1-R1-R11) (see an example thread in
Fig. 1), the LSTM takes the R11 as the input in the
first time step, R1 as the input in the second time
step and T1 as the input in the third time step.

Embedding Recurrent Fully Connected Softmax

FC +
Rumor

Softmax

St
an

ce
So

ft
m

ax
St

an
ce

So
ft

m
ax

St
an

ce
So

ft
m

ax

R1

R11

T1

F
alse

U
n

ver-
-ified

T
rue

Favor
Deny
Query
Comm.

Favor
Deny
Query
Comm.

Favor
Deny
Query
Comm.

Figure 3: Branch LSTM: Recurrent Neural Network
(RNN) architecture for sequence labeling. T1 , R1 and
R11 are embeddings. At each time step, the LSTM
uses a sentence embedding vector as input to output a
stance label. At the root node T1, the RNN outputs a
rumor-veracity label.

Modelling tree conversations as branches of the
tree has two limitations: a) repetition of input as
many branches share nodes (e.g. root node is
present in all branches) b) no communication be-
tween branches during the learning process. The
LSTM uses branches independently. Thus, there is
no communication between branches during train-
ing and inference. We expect that not all branches
are useful to predict the veracity of a rumor post
and a few branches might have stronger signal.
The branch LSTM weighs all branches equally
and therefore, is likely to under perform when
there are many uninformative branches in a tree.
This problem is solved in Tree LSTM.

T1 Encoding

R1 Encoding

R11 Encoding

R2 Encoding

FC
 +

R

um
or

So

ft
m

ax

Favor

False
Unverified

St
an

ce
So

ft
m

ax
FC

 +

St
an

ce
So

ft
m

ax
FC

 +

St
an

ce
So

ft
m

ax
FC

 +Deny
Query
Comment

True

Favor
Deny
Query
Comment

Favor
Deny
Query
Comment

Figure 4: Tree LSTM model: Latent vectors at all
nodes (except the root node) are used to predict stance
label and the latent vector at the root node is used to
predict the rumor-veracity label of the conversation.

2.2 Tree LSTM Model

A typical social-media conversations consists of a
post (source post), its reply and reply to the replies.
This is a tree structure with the source post as the
root node and the replies as the child nodes. Mod-
els for such tree structures was explored in (Tai
et al., 2015) where authors suggested a modifi-
cation of the LSTM cell to accommodate an un-
known number of inputs at a node. For a general
tree with any number of child nodes, they sug-
gested ‘Child Sum Unit’ that sums the hidden vec-
tors of child nodes (as in eqn. 8). We generalize
this formulation to accommodate other operations
as shown in Fig. 4.

h̃ = O
k∈C(j)

hk (1)

where C(j) denotes the set of children of node
j and Ok is an operator that acts on the hidden
vector hk of child k to output h̃. Using this, we
define the LSTM transition equations as follows:

ij = σ
(
W (i)xj + U ih̃j + b(i)

)
(2)

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
(3)

oj = σ
(
W (o)xj + Uoh̃j + b(o)

)
(4)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
(5)

5050

cj = ij � uj +
∑

k∈C(j)

fjk � ck (6)

hj = oj � tanh(cj) (7)

Except wherever specified, the notations used
are of standard Tree LSTM as described in Tai
et al. 2015.

2.2.1 Child Sum Tree Unit
The child-sum unit involves using sum of all hk
vectors which means O =

∑
. Therefore

h̃ =
∑

k∈C(j)

hk (8)

2.2.2 Child Max-Pooling Unit
The child max-pooling unit involves using the
maximum of all hk vectors across a dimension.
Therfore

h̃ = max
P

k∈C(j)hk (9)

2.2.3 Child Convolve + MaxPooling Tree Unit
Child convolve uses convolution operation of the
set of child hidden vectors i.e. O = ~ where
~ denotes vector convolution operation. As a
normal tree node can have any number of child
nodes, convolution operation using all child nodes
requires a max-pooling operation to preserve the
dimension of h̃.

h̃ = max
P

~k∈C(j)hk (10)

where ~ denotes vector convolution operation and
maxP denotes max pooling operation. A 2d con-
volution over h matrix results in another matrix
and the max pooling operator maps the matrix to
vector containing the maximum value of each col-
umn in the matrix.

A neural-network model (like an LSTM) ex-
pects a pre-defined size of input. Using an oper-
ation that reduces the children hidden layer matrix
h̃ to fixed dimension vector like in equation 8 or in
equation 10 attempts to solve the problem. How-
ever, these reduction operators have limitations
e.g. ‘sum’ weighs all children equally and ’con-
volve+maxpool’ only picks the convoluted fea-
tures with maximum value. Ideally this impor-
tance factor should be learned from data itself,
which is what we intend to achieve using Bina-
rized Constituency Tree (BCTree) LSTM Model.

2.3 Binarized Constituency Tree (BCTree)
LSTM Model

Social media conversations are in the format of a
tree where a node can have many children. Con-
verting this tree structure to another tree structure
in which each node always contain two children
creates a consistent format which is convenient for
matrix operations needed to train neural networks.
Additionally, for tasks like stance learning, where
its important to compare a reply against its source
post, a source reply-pair should be placed such that
the contrast features can be effectively learned. To
achieve this, we modify the original structure to a
binary tree which we call Binarized Constituency
Tree (BCTree).

T1

R1 R11

R2

T1

HT1R2

HR1R11

HT1R2T1R1R11

R1

HT1R1

FC
 +

R

um
or

So

ft
m

ax

FC
 +

St

an
ce

So
ft

m
ax

FC
 +

St

an
ce

So
ft

m
ax

St
an

ce
So

ft
m

ax
FC

 +

False
Unverified

True

Favor
Deny
Query
Comment

Favor
Deny
Query
Comm

Favor
Deny
Query
Comm

Figure 5: BCTree LSTM model: Latent vectors at vir-
tual parent node of each leaf node is used to predict
stance labels (e.g. HR1R11 to predict stance of R11)
and the latent vector at the root node is used to predict
the rumor-veracity label of the conversation.

In BCTree, all source posts and their replies ap-
pear as leaf nodes (Fig. 5). A reply is always
paired with its source (this requires source node
to be duplicated) and they are connected to a new
(virtual) parent node. To construct a BCTree from
a tree, we replace all parent node with a new vir-
tual node. The original parent node and a child
node are then connected to the new virtual parent
node. If a parent node has more than one child, ad-
ditional virtual nodes are created to keep the tree
binary.

Because each node in a BCTree always has only
two children, and therefore is consistent, many op-
erators are trivially supported. E.g. we can use
hidden vector concatenation. Similarly, for convo-
lution, a convolution unit with kernel size 2 and

5051

stride size 1 (comparing a source post and a reply)
preserves the dimension of hk (as BCTree node al-
ways have 2 children). Thus additional operation
like ‘Sum’ or ‘MaxPooling’ is not needed.

2.3.1 Child Sum BCTree Unit
This uses the same operation as in the normal tree
structure (see equation 8).

2.3.2 Child Concat BCTree Unit

h̃ = ⊕k∈C(j)hk (11)

where ⊕ denotes vector concatenation operation.

2.3.3 Child Convolve BCTree Unit

h̃ = ~k∈C(j)hk (12)

where ~ denotes vector convolution operation.

2.3.4 Combinations of BCTree Units
Because a BCTree has a uniform structure, any
combination of the previous discussed units can
also be combined together. Some possible combi-
nations we try are ’Convolve + Concat’, ’Convolve
+ Sum ’ and ’Convolve + Concat + Sum ’.

3 Experiments and Results

3.1 Datasets

We use Pheme 5 events dataset. This dataset was
created as a part of the Pheme project 1 which
aims to find and verify rumors shared on social-
media platforms (Zubiaga et al., 2015, 2016b).
The dataset consist of Twitter conversation threads
on five different events and contains three types of
annotations. Each thread is labeled as either ru-
mor or non-rumor. Rumors are annotated for their
veracity as ‘true’, ‘false’ or ‘unverified’ (see Tab.
1). For a subset of the true rumors, we also have
stance labels for each reply in the threaded conver-
sations. The stance labels are ‘support’, ‘deny’,
‘comment’ and ‘query’ (see Tab. 2). As we can
observe in Tab. 2, this dataset is highly skewed
towards ‘comment’.

3.2 Feature Representation

We use four different models that have shown
good results on various NLP tasks to extract text
features.

1https://www.pheme.eu/

Events True False Unverified

Charlie Hebdo
(CH)

193 116 149

Sydney siege
(SS)

382 86 54

Ferguson (FG) 10 8 266
Ottawa shoot-
ing (OS)

329 72 69

Germanwings-
crash (GC)

94 111 33

Total 1008 393 571

Table 1: Conversation threads in the Pheme dataset

Events Support Deny Query Comment

CH 239 58 53 721
SS 220 89 98 700
FG 176 91 99 718
OS 161 76 63 477
GC 69 11 28 173
Total 865 325 341 2789

Table 2: Stance labels for Tweets in the conversations.
Event codes are described in Tab. 1

3.2.1 Mean of Glove word vectors
To get word vectors, we used Glove (Penning-
ton et al., 2014) and the mean of these word vec-
tors are used as the sentence embedding. Before
extracting the Glove word vectors, we perform
some basic text cleaning which involves remov-
ing any @mentions, any URLs and the Twitter
artifact (like ‘RT’) which gets added before a re-
tweet. Some tweets, after cleaning did not contain
any text (e.g. a tweet that only contains a URL
or an @mention). For such tweets, we generate
an embedding vector containing uniformly gener-
ated numbers between -0.5 and 0.5. The same text
cleaning was performed before generating features
for all embeddings described in the rest of the pa-
per.

3.2.2 BERT embeddings
BERT 2 is not a ready to use model to generate
embeddings in its original form. It is rather a
model that can be tuned for a task (Devlin et al.,
2018). We first tried to tune the model on our ru-
mor classification task. But since the rumor clas-
sification dataset is relatively small, while evalu-

2https://github.com/huggingface/pytorch-pretrained-
BERT

5052

ating we found that tuning did not lead to a good
performance. We then considered other datasets
that can be used for tuning. Because natural lan-
guage entailment task (which predicts entailment,
contradiction, or neutral between two sentences) is
similar to stance learning, we use the BERT model
and tune it on Multi-Genre Natural Language In-
ference task (Williams et al., 2018). The tuned
model is then used to generate BERT embedding
which is the vector representation on the last layer
of the Bert model. This tuned BERT model gener-
ates a 768 dimension vector for each sentence.

3.2.3 Skipthought (SKP) embeddings
We use the pre-trained model shared by the au-
thors of Skipthought (Kiros et al., 2015) 3. The
model uses a neural-network that takes sentences
as input and generate a 4800 dimension embed-
ding for each sentence. Thus, on our dataset, for
each post in Twitter conversations, we get a 4800
dimension vector.

3.2.4 DeepMoji (EMT) embeddings
We use the DeepMoji (Felbo et al., 2017) pre-
trained model 4 to generate deepmoji vectors. Like
skipthought, DeepMoji is a neural network model
that takes sentences as input and outputs a 64 di-
mension feature vectors.

3.2.5 Skipthought and DeepMoji joint
(SKPEMT) embeddings

Because DeepMoji and Skipthoughts are different
types of encodings, we also tried a concatenated
version of them which we call SKPEMT. This en-
coding is of size 4864 dimension.

3.3 Models Training
Following the convention in prior work (Zubiaga
et al., 2018), we use event wise cross-validation,
which means out of five events, four events are
used to train a model and one event is used to val-
idate the performance.

We define the overall objective function using
cross-entropy loss, as can be seen in equation 13,
where i ∈ n samples, j are classes, y is the (one-
hot) true label, and p is the probability output for
each label. In multi-task training, the total loss is
the sum of loss for stance learning task and rumor
learning task. As shown in Fig. 3, Fig. 4 and Fig.

3https://github.com/ryankiros/skip-thoughts
4https://github.com/huggingface/torchMoji

5, we use the output of the softmax layer for clas-
sifying stance and rumor labels of nodes in trees.

L(y, p) = − 1

n

∑
i,j

yij log(pij) (13)

All operations in our models are fully differen-
tiable, so these models can be trained end-to-end.
Because the dataset has unbalanced labels, we can
use over sampling of minority classes to create
balanced input to train models. For rumor, bal-
ancing is easy as each tree has one rumor label, so
we over-sample minority labeled trees to balance
the training set. For stance labels, balancing is not
trivial. The stance classes can be balanced by cre-
ating duplicate nodes of minority classes and con-
necting the new nodes to the original parent nodes.
However, this results in changing the structure of
trees. Thus we only used balancing on original
conversation trees for stance classification and not
for rumor classification on BCTrees.

Our LSTM models are built using PyTorch 5

and DGL library 6. The Branch LSTM mod-
els used feature vectors as input, adds an LSTM
layer, a linear dense activation layer followed by
a dropout (0.3) (Srivastava et al., 2014) and uses
a softmax layer for the output (rumor or stance).
The models are trained using stochastic gradient
descent (SGD) optimization using a cross-entropy
loss function. The size of LSTM hidden layer and
learning rate were used as hyper-parameter. The
learning rate we tried were in range .0001 to 0.01.
The LSTM layer size we tried varied from 16 to
256. We found 64 to be the best hidden dimension
vector size and 0.08 to be a good learning rate for
training the branch LSTMs. Once we find the best
value for these hyper parameters by initial experi-
ments, they remain unchanged during training and
evaluations of the model for all five events.

The training of tree models also followed the
same pattern except they use an entire tree con-
versation. The convolution units use convolution
kernels of size 2 (i.e. it used two hidden vectors at
time) and stride of 1. We tried learning rate from
0.001 to 0.1, and .008 was found to work the best.
We again used stochastic gradient descent (SGD)
optimization with a cross-entropy loss function.
For multi-task training, we used step wise training
that alternates between rumor objective and stance
objective. We train the models for 30 epochs.

5https://pytorch.org/
6https://www.dgl.ai

5053

Model↓ Event → CH SS FG OS GC Mean F1
Majority 0.189 0.190 0.197 0.192 0.175 0.188
Branch LSTM Models
GLOVE 0.332 0.322 0.298 0.305 0.385 0.329
BERT 0.384 0.393 0.332 0.380 0.425 0.383
SKP 0.424 0.417 0.373 0.454 0.455 0.425
EMT 0.370 0.332 0.365 0.399 0.442 0.381
SKPEMT 0.428 0.424 0.397 0.463 0.468 0.436
Tree LSTM Models - ‘Child Sum’ Cell Type
BERT 0.512 0.580 0.528 0.481 0.522 0.524
SKP 0.490 0.565 0.540 0.495 0.568 0.532
EMT 0.443 0.514 0.444 0.453 0.509 0.473
SKPEMT 0.509 0.577 0.524 0.504 0.529 0.529
Tree LSTM Models - ‘Child Convolve + MaxPooling’ Cell Type
BERT 0.510 0.564 0.522 0.476 0.530 0.520
SKP 0.514 0.579 0.553 0.469 0.547 0.532
EMT 0.486 0.478 0.530 0.439 0.496 0.486
SKPEMT 0.480 0.574 0.497 0.477 0.598 0.525
Prior Research
(Zubiaga et al., 2018) 0.465 0.446 0.373 0.475 0.543 0.460
(Zubiaga et al.,
2016a)

0.427 0.495 0.390 0.457 0.523 0.458

(Lukasik et al., 2016) 0.326 0.323 0.260 0.323 NA NA

Table 3: Stance learning results: F1-score (macro) and mean of F1-macro (Mean-F1) for different events.

To evaluate the trained models, we use F1-score
which is defined as the harmonic mean of preci-
sion and recall. Rather than using accuracy, we
use F1-score as the metric for evaluating the per-
formance of the models for two reasons: a) Pheme
dataset (the dataset we use) is skewed towards
one class (‘comment’), hence, a classifier that pre-
dicts the majority class can get a good accuracy.
F1-score (macro) balances the classes and consid-
ers precision as well as recall. 2) Prior work on
this dataset used F1-score (Zubiaga et al., 2018).
Thus, the use of this measure allows to compare
with prior research. The performance for a vali-
dation event is the F1-macro obtained by evaluat-
ing the model trained on all data except the valida-
tion event data. This step is performed for all five
events, and the mean of F1-macro scores from all
five events is used to compare the models. For the
stance classification task, the F1-score (macro) is
defined in Eqn. 14. For the rumor classification
task, the F1-score (macro) is defined in Eqn. 15.

F1stance =
F1deny + F1favor + F1query + F1com.

4
(14)

F1rumor =
F1true + F1false + F1unverified

3
(15)

3.4 Stance Classification Results
We present the results of evaluating the models for
stance classification in Tab. 3. The Tree LSTM

model that uses ‘Child Convolve + Maxpooling’
with skipthought features outperforms all other
models (0.532 mean f1). The Tree LSTM model
using ‘Child sum’ unit performs equally well on
mean value but was worse on three events.

Q S D C
Predicted label

Q

S

D

C

Tr
ue

 la
be

l

0.50 0.15 0.34 0.01

0.13 0.62 0.16 0.09

0.27 0.31 0.40 0.02

0.01 0.11 0.03 0.84
0.2

0.4

0.6

0.8

Figure 6: Normalized stance confusion matrix. Q, S,
D and C labels indicate ‘Query’, ‘Support’, ’Deny’ and
‘Comments’ respectively.

In Fig. 6, we show the confusion matrix for the
best performing stance classifier. As we can ob-
serve, the model is best at classifying ‘Comment’
and is worst at classifying ‘Denial’. The poor per-
formance of the denial class could be partially at-
tributed to the unbalance of classes (‘Deny’ being
the smallest) in the dataset.

If we compare the stance classification results

5054

based on feature types, we see that BERT and SKP
are often comparable and EMT is slightly worse
then them. SKPEMT performs better than EMT
and BERT, but is as not as good as SKP. Because
of space limitation, we do not present results for
Glove features for Tree based models as, in al-
most all cases, the mean of Glove vectors as sen-
tence representation performed worse than other
features.

For stance learning, the BCTree based models
did not work as well as the Tree LSTM based mod-
els. This is likely because we are not able to bal-
ance stance classes in BCT trees. BCTrees stance
nodes can be balanced before binarizing, but that
adds many additional new nodes. These new vir-
tual nodes don’t have stance labels and results in
poor performance.

3.5 Rumor Classification Results

We present the rumor classification results in Table
4.

CellType ↓ Feature → SKP EMT BERT SKPEMT
Branch LSTM - Multitask

0.358 0.359 0.332 0.347
Tree LSTM - Multitask
Sum 0.364 0.348 0.341 0.364
MaxPool 0.369 0.352 0.339 0.375
Convolve + MaxPool 0.379 0.365 0.359 0.370
BCTree LSTM - Multitask
Sum 0.371 0.356 0.338 0.371
Convolve 0.367 0.335 0.337 0.362
Convolve+Sum 0.353 0.353 0.329 0.364
Convolve + Concat 0.370 0.354 0.340 0.364
MaxPool 0.353 0.354 0.326 0.352
Convolve+MaxPool 0.363 0.349 0.333 0.357
Concat + Sum 0.364 0.341 0.324 0.364
Convolve+Sum+Concat 0.366 0.343 0.342 0.354
Baselines and Prior Research
(Kochkina et al.,
2018)

0.329

NileTMRG (Enayet
and El-Beltagy, 2017)

0.339

Majority 0.223

Table 4: Rumor classification results: Mean F1-
score from different cell-type and feature-type combi-
nations. For NileTMRG, we used the results presented
in (Kochkina et al., 2018), Tbl. 3.

For rumor classification, the best performing
model uses ‘Convolve + MaxPool’ as units in Tree
LSTM (Mean F1 of 0.379 using SKP features)
and is trained in multi-task fashion. Other compa-
rable models are ‘sum’ and ‘Convolve + concat’
units with BCTree LSTM. For SKPEMT features,

the best performance was obtained using ‘Max-
pool’ cell with a Tree LSTM model. We expected
BCTree LSTM to work better than Tree LSTM.
They are almost comparable but BCTree LSTM is
slightly worse. This is likely because binarizing a
tree creates many new nodes (without labels), and
as height of trees increase it becomes more diffi-
cult for LSTMs to propagate useful information to
the top root node for rumor-veracity classification.

If we compare the different types of features,
SKP features outperformed others in almost all
cases. It should be noted that SKP features are also
higher in dimension (4800) in comparison to EMT
64 and BERT 768. If we compare, multi-task vs
single-task, in almost all cases, performance im-
proved by training in a multitask fashion.

F U T
Predicted label

F

U

T

Tr
ue

 la
be

l
0.34 0.20 0.46

0.12 0.54 0.35

0.20 0.17 0.62 0.2

0.3

0.4

0.5

0.6

Figure 7: Normalized rumor confusion matrix. F, U
and T labels indicate ‘False’, ‘Unverified’ and ‘True’
respectively.

Overall, for rumor classification, the best model
is the LSTM model that uses ’Convolve + Max-
Pool’ unit and trained on Tree LSTM using multi-
task. This exceeds the best prior work by 12%
in f1-score. For this model, we show the confu-
sion matrix in Fig. 7. As we can observe, ‘True’
(T) and ‘Unknown’ (U) performs equally well and
the ‘False’ (F) rumor is the most confusing class.
The poor performance of ‘False’ rumors could be
linked to the poor performance of ‘Denials’ stance
in stance classification. Prior research have shown
that a high number of denials is a good indicator
of ‘False’ rumors, and therefore a model that is
poor at predicting denials also performs poorly at
predicting ‘False’ rumors.

5055

4 Related Work

Stance learning and rumor detection lie at the in-
tersection of many different fields. We highlight
important related topics here.

4.1 Stance Learning

Computational approaches of Stance learning –
which involves finding people’s attitude about a
topic of interest – have primarily appeared in two
flavors. 1) Recognizing stance in debates (Soma-
sundaran and Wiebe, 2010; Ozer et al., 2016) 2)
Conversations on online social-media platforms.
Since our research focuses on conversations on
social-media platforms, we discuss some impor-
tant contributions here. Mohammad et al. built a
stance dataset using Tweets and organized a Se-
mEval competition in 2016 (Task 6). Many re-
searchers (Augenstein et al., 2016; Liu et al., 2016;
Wei et al., 2016) used the dataset and proposed al-
gorithms to learn stance from this text data. In al-
most the same time frame, work on stance in con-
versations appeared in the context of fake-news
and misinformation identification, we discuss this
in the next section.

4.2 Rumor and Misinformation
Identification

Finding misinformation on social-media platforms
has been an active area of research in recent years
(Hassan et al., 2015; Lukasik et al., 2015; Dang
et al., 2016; Volkova et al., 2017; Zubiaga et al.,
2018; Zhou et al., 2019; Sharma et al., 2019). Ru-
mor detection that uses stance in the reply posts
was in initiated by the Pheme project 7 and was
popularized as a SemEval 2017 task 8 8. The task
involved predicting stance (‘supporting’, ‘deny-
ing’, ‘commenting’ and ‘querying’) in replies to
rumor posts on Twitter and the dataset is described
in (Zubiaga et al., 2015, 2016b). A number of re-
searchers used this dataset and proposed many al-
gorithms. For example, (Derczynski et al., 2017)
proposed an LSTM that uses branches in conver-
sation trees to classify stance in reply posts, and
(Kochkina et al., 2018) used sequential classifiers
for joint stance and rumor classification. More re-
cently (Ma et al., 2018) suggested two tree struc-
tured neural-networks to find rumors i.e. if a post
is rumor or not. In this work, we focus on rumor-
veracity and stance learning objectives. Our work

7https://www.pheme.eu/
8http://www.aclweb.org/anthology/S17-2006

extends this thread of research by showing that
convolution operations that compare source and
reply tweets are more effective in learning stance
and rumor-veracity.

4.3 LSTM and Convolutional Neural
Networks

Deep neural networks (DNN) have shown great
success in many fields (Hinton et al., 2012). Re-
searchers have used DNNs for various NLP tasks
like POS tagging, named entity recognition (Col-
lobert and Weston, 2008). Convolution neural net-
works (LeCun et al., 2010) are popular in com-
puter vision tasks for quite some time but lately
they have shown potential in NLP tasks as well
(Zhang et al., 2015). Yoon Kim (Kim, 2014) used
convolution neural networks (CNN) for various
NLP tasks. To the best of our knowledge, this
is the first work that uses a convolution unit in
LSTMs.

5 Conclusion

In this work, we explored a few variants of LSTM
cells for rumor-veracity and stance learning tasks
in social-media conversations. We also proposed
a new Binarized Constituency Tree structure to
model social-media conversations. Using a hu-
man labeled dataset with rumor-veracity labels
for source posts and stance labels for replies,
we evaluated the proposed models and compared
their strengths and weaknesses. We find that us-
ing convolution unit in LSTMs is useful for both
stance and rumor classification. We also exper-
imented with different types of features and find
that skipthoughts and BERT are competitive fea-
tures while skipthoughts have slight advantage for
rumor-veracity prediction task.

Acknowledgments

We are thankful to anonymous reviewers for their
valuable feedback. This work was supported in
part by the ONR Award No. N00014182106, ONR
Award No. N0001418SB001 and the Center for
Computational Analysis of Social and Organiza-
tion Systems (CASOS). The views and conclu-
sions contained in this document are those of the
authors only. Funding to attend this conference
was partly provided by the CMU GSA/Provost
Conference funding.

5056

References
Hunt Allcott and Matthew Gentzkow. 2017. Social me-

dia and fake news in the 2016 election. Journal of
Economic Perspectives, 31(2) 211-36.

Isabelle Augenstein, Andreas Vlachos, and Kalina
Bontcheva. 2016. Usfd at semeval-2016 task 6:
Any-target stance detection on twitter with autoen-
coders. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 389–393.

Matthew Babcock, Ramon Alfonso Villa Cox, and
Sumeet Kumar. 2019. Diffusion of pro- and anti-
false information tweets: the black panther movie
case. Computational and Mathematical Organiza-
tion Theory, 25(1):72–84.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Anh Dang, Michael Smit, Abidalrahman Moh’d,
Rosane Minghim, and Evangelos Milios. 2016. To-
ward understanding how users respond to rumours
in social media. In 2016 IEEE/ACM International
Conference on Advances in Social Networks Analy-
sis and Mining (ASONAM), pages 777–784. IEEE.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. SemEval-2017 task 8: RumourEval:
Determining rumour veracity and support for ru-
mours. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 69–76, Vancouver, Canada. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Douglas Eck and Juergen Schmidhuber. 2002. Find-
ing temporal structure in music: Blues improvisa-
tion with lstm recurrent networks. In Neural Net-
works for Signal Processing, 2002. Proceedings of
the 2002 12th IEEE Workshop on, pages 747–756.
IEEE.

Omar Enayet and Samhaa R El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 470–
474.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Emilio Ferrara. 2015. Manipulation and abuse on so-
cial media. ACM SIGWEB Newsletter, (Spring):4.

Daniel Gildea. 2004. Dependencies vs. constituents for
tree-based alignment. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015. Detecting check-worthy factual claims in
presidential debates. In Proceedings of the 24th
ACM International on Conference on Information
and Knowledge Management, pages 1835–1838.
ACM.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82–97.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo.
2016. News verification by exploiting conflicting
social viewpoints in microblogs. In AAAI, pages
2972–2978.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Elena Kochkina, Maria Liakata, and Arkaitz Zubi-
aga. 2018. All-in-one: Multi-task learning for ru-
mour verification. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 3402–3413. Association for Computa-
tional Linguistics.

Yann LeCun, Koray Kavukcuoglu, and Clément Fara-
bet. 2010. Convolutional networks and applications
in vision. In Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems, pages
253–256. IEEE.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard
Hovy. 2015. When are tree structures necessary for
deep learning of representations? In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2304–2314, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

https://doi.org/10.1007/s10588-018-09286-x
https://doi.org/10.1007/s10588-018-09286-x
https://doi.org/10.1007/s10588-018-09286-x
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.18653/v1/S17-2006
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://aclweb.org/anthology/C18-1288
http://aclweb.org/anthology/C18-1288
https://doi.org/10.18653/v1/D15-1278
https://doi.org/10.18653/v1/D15-1278

5057

Can Liu, Wen Li, Bradford Demarest, Yue Chen, Sara
Couture, Daniel Dakota, Nikita Haduong, Noah
Kaufman, Andrew Lamont, Manan Pancholi, et al.
2016. Iucl at semeval-2016 task 6: An ensemble
model for stance detection in twitter. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 394–400.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Classifying tweet level judgements of ru-
mours in social media. In EMNLP.

Michal Lukasik, PK Srijith, Duy Vu, Kalina
Bontcheva, Arkaitz Zubiaga, and Trevor Cohn.
2016. Hawkes processes for continuous time se-
quence classification: an application to rumour
stance classification in twitter. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 393–398.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Ru-
mor detection on twitter with tree-structured recur-
sive neural networks. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1980–
1989, Melbourne, Australia. Association for Com-
putational Linguistics.

Saif M Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
ACM Transactions on Internet Technology (TOIT),
17(3):26.

Mert Ozer, Nyunsu Kim, and Hasan Davulcu. 2016.
Community detection in political twitter networks
using nonnegative matrix factorization methods. In
Advances in Social Networks Analysis and Mining
(ASONAM), 2016 IEEE/ACM International Confer-
ence on, pages 81–88. IEEE.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Victoria Rubin, Niall Conroy, Yimin Chen, and Sarah
Cornwell. 2016. Fake news or truth? using satirical
cues to detect potentially misleading news. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Deception Detection, pages 7–17.

Victoria L Rubin and Tatiana Lukoianova. 2015. Truth
and deception at the rhetorical structure level. Jour-
nal of the Association for Information Science and
Technology, 66(5):905–917.

Steve Schifferes, Nic Newman, Neil Thurman, David
Corney, Ayse Göker, and Carlos Martin. 2014. Iden-
tifying and verifying news through social media:
Developing a user-centred tool for professional jour-
nalists. Digital Journalism, 2(3):406–418.

Karishma Sharma, Feng Qian, He Jiang, Natali
Ruchansky, Ming Zhang, and Yan Liu. 2019. Com-
bating fake news: A survey on identification and
mitigation techniques. ACM Trans. Intell. Syst.
Technol., 10(3):21:1–21:42.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text, pages 116–124. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Eugenio Tacchini, Gabriele Ballarin, Marco L. Della
Vedova, Stefano Moret, and Luca de Alfaro. 2017.
Some like it hoax: Automated fake news detection
in social networks. CoRR, abs/1704.07506.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and
Nathan Hodas. 2017. Separating facts from fiction:
Linguistic models to classify suspicious and trusted
news posts on twitter. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 647–653.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Bi-
narizing syntax trees to improve syntax-based ma-
chine translation accuracy. In Proceedings of the
2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, and
Tengjiao Wang. 2016. pkudblab at semeval-2016
task 6: A specific convolutional neural network sys-
tem for effective stance detection. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 384–388.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume

https://www.aclweb.org/anthology/P18-1184
https://www.aclweb.org/anthology/P18-1184
https://www.aclweb.org/anthology/P18-1184
https://doi.org/10.1145/3305260
https://doi.org/10.1145/3305260
https://doi.org/10.1145/3305260
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1126/science.aap9559
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

5058

1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Kaimin Zhou, Chang Shu, Binyang Li, and Jey Han
Lau. 2019. Early rumour detection. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1614–1623, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob
Procter, and Michal Lukasik. 2016a. Stance classifi-
cation in rumours as a sequential task exploiting the
tree structure of social media conversations. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 2438–2448, Osaka, Japan. The
COLING 2016 Organizing Committee.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob
Procter, Michal Lukasik, Kalina Bontcheva, Trevor
Cohn, and Isabelle Augenstein. 2018. Discourse-
aware rumour stance classification in social media
using sequential classifiers. Information Processing
& Management, 54(2):273–290.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Kalina
Bontcheva, and Peter Tolmie. 2015. Crowdsourc-
ing the annotation of rumourous conversations in
social media. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pages 347–
353. ACM.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016b.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PloS one, 11(3):e0150989.

https://www.aclweb.org/anthology/N19-1163
https://www.aclweb.org/anthology/C16-1230
https://www.aclweb.org/anthology/C16-1230
https://www.aclweb.org/anthology/C16-1230

