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1 Introduction

Much of the work in social network theory concerns the analysis of change in a sin-

gle network. These analyses often entail attempts to explain change as a function of the

network's structure (Sampson, 1968; Burt, 1980; Johnson, 1986; Coleman, Katz and Men-

zel, 1966). Although issues of change have been addressed in network terms (Granovetter

1973,1974), there are few formal models of network change (see Doreian, 1990). And there

is even less understanding of how one can statistically examine di�erent theories of network

evolution. Thus we present a set of formal models of network change and demonstrate that

relatively simple statistical techniques are available to determine whether or not the speci�c

departure from the null binomial distribution, that is consistent with the model in question,

is present in the data.

The set of models that we describe is not exhaustive; rather, these models derive from

speci�c theories about socio-cognitive adaptation. By contrasting these theories in terms

of reasonable mathematical representations of them we are able to provide a critique of

the current state of theorizing about change in social networks. Furthermore, by formally

representing a suite of theories, we are able to show how relatively simple techniques can

be used to examine the extent to which these formal models �t any given data set.

Three prominent theoretical paradigms for network change derive from social comparison

theory (Heider, 1958), exchange theory (Kapferer, 1972; Blau, 1967), and constructuralism

(Carley, 1990, 1991; Kaufer and Carley, 1993). These social theories suggest general prin-

ciples that may govern the addition or deletion of ties (or edges) between individuals (or

nodes). The same paradigm may provoke several distinct mathematical models for network

change, depending on how it is applied in a given social context. The paradigms are similar

in that they all argue that tie construction is the result of a socio-cognitive process whereby

individuals alter the set with whom they are likely to interact; however, these paradigms

di�er in the particular social agenda they posit as guiding this process.

In studying network change, it is important to employ statistical tests which di�erentiate

among the paradigms. For example, Carley (1990) found that for the Kapferer (1972)

dataset on change in a tailor shop, the constructural model o�ered a better �t to the data

than alternative models of network change. However, this analysis left open the question of
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whether there was a statistically signi�cant di�erence between the models. More generally,

progress in this area requires the development of formal models and a testing methodology.

This paper introduces a bestiary of models for network change. Most (but not all)

of these models represent attempts to reify the three prominent paradigms into speci�c

mathematical forms. Of course, the same paradigm sometimes leads to alternative models;

for example, the exchange theory paradigm places primacy upon dominance relations, and

thus provokes models for degree variance. The mechanism underlying these models depends

on how competition for dominance is seen to develop; hence, a variety of mechanism have

been postulated including charisma, power, popularity, etc. and in the extreme polarization,

and even balkanization. Each of the models focuses on a single mechanism for change. Thus,

a comparison of these models sets into stark contrast these various paradigms. In order to

facilitate comparability, this paper treats only the case in which the number of potentially

interactive individuals is �xed over the entire course of the study (in contrast, Doreian

(1990) discusses issues that arise when the node set is permitted to vary). Similarly, it

standardizes our exposition to restrict attention to models which describe directed edges.

The emphasis in this paper is on the speci�cation of mathematical models, and the

description of statistical tests which (under reasonable assumptions) enable the analyst to

determine whether the bias in edge presence or absence, as suggested by the model, is present

in the data. The discussion of statistical methods for model analysis is incomplete, since

statisticians do not yet have methodology that enables goodness-of-�t tests for network-

valued time series data. Nevertheless, as we demonstrate, it is possible to use relatively

simple and available statistical techniques to begin to address these issues. Generally, the

best we can do is falsify a particular model.

The problem of model selection is further complicated by the fact that di�erent theo-

retical models often evolve towards the same equilibrium state. For example, simple forms

of the triad completion model, the degree variance model, and the constructural model all

lead, asymptotically, to a completely connected network or to observations which are in

some kind of stochastic equilibrium around the completely connected network.

This stochastic equilibrium can be as simple as having each edge present independently

with the same, typically large, probability p. Some models, such as the degree variance
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model, allow these edge-probabilities to di�er; for example, edges to less degree central nodes

would be more fragile than those to highly degree central nodes. In triad completion models,

edges may be deleted independently at a particular time point, but the inclination to achieve

balance makes those missing edges more likely to reform at the next step than a constant

p would suggest. A series of observations would show dependence across time; although,

the asymptotic marginal measure for a single time point would have each edge present with

probability p. The equilibrium result might be a random digraph with dependent edges.

All of the models which are treated in this paper emphasize the process of edge for-

mation. In current social theories, edge removal is not usually discussed or modeled as

carefully, and this paper reects that limitation. At the same time, we note that this is

an area that deserves more attention, especially since it is reasonable to guess that the

breaking of existing ties is less casual than the formation of ties (at least for positive ties,

such as friendship relations), and thus may conform more rigidly to predictive theories of

behavior. But our purpose is to develop methods that enable direct statistical comparisons

of competing models of network evolution, and so we stick close to the standard theoretical

constructs. Nonetheless, it would not be hard to adapt some of the methods we propose to

the analysis of models which incorporate processes of tie deletion.

Given the emphases of the current theories and the fact that most models ultimately

lead to a densely connected network, a key conclusion of this survey is that it is gener-

ally important for analysts of network change to secure multiple observations early in the

developmental trajectory rather than late. This is particularly true if, as these theories

implicitly suggest, edge addition is a stronger force than deletion. Otherwise, it can become

impossible to statistically distinguish the formal models or the underlying social theory.

2 A Bestiary of Models

Change is complex. Many researchers have proposed plausible forces which drive net-

work change, and, in principle, all of these could act in combination. Major drivers include,

but are not limited to, the following: individual learning (Carley, 1990, 1991), mimicry

(Powell and DiMaggio, 1991), cognitive requirements for balance (Heider, 1958), social ex-

change processes (Blau, 1967), socio-demographic factors or personality factors (Homans,
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1950; Blau, 1967), and cognitive limitations (March and Simon, 1958).

This section describes a range of models which are motivated by plausible social theories,

and sketches statistical tests which may be used to discriminate among them. In reality, it

is unlikely that any of the following models in and of itself is truly appropriate or su�cient

for a given dataset given that each model embodies only a single mechanism for change.

For example, the results from Carley's (1990) study of network change can be interpreted

as suggesting that in any socio-cultural environment multiple mechanisms for tie addition

and deletion are at work. When the social theory is broadly correct, it is reasonable to hope

that the dominant behavior of the change will be reected in the �tted model. However,

the social theory may over-generalize or ignore contextual factors, or several theories may

apply simultaneously with nearly equal force. In either case, the procedures we develop

will be inadequate to the di�culties inherent in such applications. These procedures should

therefore be viewed as a �rst step towards organizing the comparative analysis of di�erent

processes of change. Nonetheless, we hope that researchers can use these models, and the

procedures for contrasting them, to identify which types of processes are strongly inuential

in the observed data.

In examining these models the reader should keep in mind that there is little agreement

over what processes lead to edge addition (let alone deletion). Furthermore, there is dis-

agreement over whether things such as reciprocity, isomorphism, and homomorphism are

themselves processes a�ecting network change or are the result of other cognitive processes

such as balance, homophily, and learning. Neither the Holland-Leinhardt models nor the

metric models treated below make strong claims about whether reciprocity, isomorphism,

or homomorphism are basic processes. The value of these models, in part, is that many

socio-cognitive theories can be tested within the con�nes of these models. In contrast, the

triad completion, degree variance, polarization/balkanization, and constructural models all

make relatively strong claims about socio-cognitive processes. In these models reciprocity,

isomorphism, and homomorphism are not basic processes.

The following discussion assumes that the data consist of successive observations upon

a single social network (digraph) with a �xed set of m distinguished nodes. Edges are

directed, and loops are disallowed (however, it is generally straightforward to extend the
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models to cases with undirected edges and/or loops). There are a maximum of r = m(m�1)

edges in a directed, loopless network.

We let X(t) denote the observed network at time t; here X(t) is an m �m adjacency

matrix with entries xij(t). Speci�cally,

xij(t) =

8><
>:

1 an edge runs from node i to node j at time t

0 otherwise.
(1)

Since the edges are directed, the adjacency matrix will generally be asymmetric. The dataset

X(t1); . . . ;X(tn) is called a trajectory. In this paper we assume that one has observations

only upon a single trajectory, but much of the discussion could be generalized to the analysis

of multiple trajectories (cf. Sanil, Banks, and Carley (1994) for an examination of multiple

trajectory data).

2.1 Holland-Leinhardt Models

Log-linear models for social networks were �rst proposed by Holland and Leinhardt (1981).

We shall refer to the most general such exponential model as the Holland-Leinhardt model,

and follow their lead in referring to a usefully simpler submodel as the p1 model. The

motivation behind these models is a nice combination of statistical tractability and social

theory. Although the p1 model was intended for use in the analysis of a single network at one

point in time, Wasserman (1980) derives a generalization which de�nes a network-valued

process.

The Holland-Leinhardt model employs parameters which exibly capture such social

properties as reciprocity and attractiveness, and it is one of the mainstays of network

analysis. The model has been extensively developed by many authors, notably Wasserman

and Galaskiewicz (1984) and Fienberg, Meyer, and Wasserman (1985). The latter �nd that

the three chief drawbacks to its use are:

1. All dyads (pairs of nodes) form edges independently.

2. The model can be excessively exible.

3. There is no principled way to perform a goodness-of-�t test.
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Obviously, the last de�ciency is common to all interestingly realistic models of network be-

havior, and the second provoked the development of the p1 version of the Holland-Leinhardt

model. The �rst concern is true of many mathematically tractable procedures and moving

away from this assumption can reduce the chances of having a tractable model.

For a network observed at a single time-point, the Holland-Leinhardt probability model

on X = [xij ] is

IP(X) = exp[
X
i<j

�ijxijxji +
X
i6=j

�ijxij ]
Y
i<j

nij (2)

where �ij = ln
mijnij

aijaji
for i < j, �ij = ln

aij
nij

for i 6= j with nij = nji for i > j, and

mij + nij + aij + aji = 1 for mij = IP[xij = xji = 1], nij = IP[xij = xji = 0], and

aij = IP[xij = 1; xji = 0]. Essentially, this model describes a network in which each dyad

forms edges according to its own probability distribution, and the behavior of one dyad

confers no information about the behavior of any other dyad.

The p1 model is obtained from (2) by adding the constraints that �ij = � for all i < j,

�ij = � + �i + �j for all i 6= j, and
P

i �i =
P

j �j = 0. This restriction enables a

satisfying interpretation of �i as a productivity parameter which controls the outdegree

at node i, �j as an attractiveness parameter which controls the in-degree at node j, � as

the average tendency towards reciprocation of edge formation in the network, and � as a

density parameter which controls the expected number of edges. Thus one can describe

network behavior using theories that posit di�erential attractiveness of individuals and the

predispositions to form reciprocal relationships, but the dyadic independence prevents the

use of theories that involve cliquing, hierarchy, or transitivity. This limitation applies to

both the p1 model and the more general Holland-Leinhardt model.

Several strategies enable one to falsify the p1 model upon narrow grounds. Fienberg

et al. (1985) describe log-linear model tests that examine the tenability of the de�ning

constraints. For example, the p1 model is equivalent to �tting the \no three- or four-factor

interaction" log-linear model, and the usual goodness-of-�t test applies. Similar tests check

the constancy of � or �, and enable precise diagnosis of any lack-of-�t that is discovered.

However, all of these tests assume independent dyads.

To falsify the general Holland-Leinhardt model, one must weigh evidence of dyadic

dependency. The most common test looks for an excess or de�cit in the numbers of di�erent
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kinds of triadic relationships. Speci�cally, there are 16 patterns of edges possible for a given

triplet of nodes. One can compare the observed counts of each type of pattern to their

expected values conditional on the observed in- and out-degrees; if the observed counts

di�er signi�cantly from expectations, this is evidence that the model fails to �t. Holland

and Leinhardt (1975) detail the calculations for the expected values and covariance matrix

of the U|MAN model; Holland and Leinhardt (1981) use this technique (together with

conditioning and a multivariate normal approximation) to show that their model �ts poorly

to an example dataset, but is nevertheless a valuable �rst step. Of course, this procedure

is only sensitive to model failures that manifest in the triad counts. However, Holland

and Leinhardt's (1981) goal is to test the p1 model, and it is not intended as a test of the

more general Holland-Leinhardt model. In general, these tests that allow the researcher

to examine triad completion at some level, are helpful but not very satisfactory. There

is a dearth of theory on omnibus goodness-of-�t tests for these models and such work is

necessary for a more satisfactory test.

The foregoing description sets the stage for the examination of network behavior through

continuous time models. Holland and Leinhardt (1977) and Wasserman (1980) develop

models in which dyadic behavior at a given time is independent, but across time, there is

Markov dependency upon the past; also, for current work, see Leenders (forthcoming a and

b). Let S be the set of all social networks on m distinct nodes, and for s; s0 2 S, de�ne

the transition probability function

IPs;s0(t; h) = IP[X(t + h) = s0 jX(t) = s ] (3)

=
Y
i6=j

IP[xij(t+ h) = s0ij jX(t) = s ] + o(h) as h # 0

where s0ij is one or zero according to whether an edge runs from node i to j in s0. This

ensures that dyads change independently.

From this perspective, many dynamic models can be built through speci�cation of the

in�nitesimal transition rates; i.e., one de�nes

IP[Xij(t+ h) = 1 jX(t) = s; sij = 0] = h�0ij(s; t) + o(h) (4)

IP[Xij(t+ h) = 0 jX(t) = s; sij = 1] = h�1ij(s; t) + o(h):
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By choosing the functional form of the �:ij , analysts can often capture features predicted

by social theory in a Markov model. For example, Leenders (forthcoming a and b) develops

a dynamic model of friendship formation. Carley (1990) develops a dynamic model of

interaction and group stability in which changes in network ties emerge from changes in

knowledge and which, for a small number of individuals and ideas, can be represented as a

Markov model. For example, Wasserman (1980) develops a dynamic model in which edge

formation is governed by degree centrality, so that nodes with the largest in-degrees tend

to attract more edges. A fuller account of this is given in subsection 2.4.

A drawback to the Markov approach is that it entails potentially delicate assumptions

and may be impractical with a large number of states. For example, the large number of

states in Carley s (1990) model led to the need to employ simulation in order to analyze

the model under various conditions. For Holland-Leinhardt models it may, at times, be

preferable to apply some simple techniques which directly examine their �t over time. We

urge analysts to consider the following exploratory data analysis methods, if the goal is to

examine data, before resorting to intensive modeling.

1. To check the adequacy of the assumption of dyadic independence, plot the signi�cance

probabilities of triad census tests against time. An approximate test based on the p1

model is given in Holland and Leinhardt 1981.

If signi�cance probabilities are small, or if consistent trends appear, then the funda-

mental Holland-Leinhardt assumption is suspect. Bear in mind that consistency of

trend is di�cult to spot in correlated signi�cance probabilities, and that the strength

of the correlation will probably diminish as the time steps increase. The examination

of trend is important since (1) If there are many time points, a few low signi�cance

probabilities will occur by chance, but these will form no pattern; (2) As the network

moves to stochastic equilibrium (if it does), the signi�cance probabilities should be-

come larger with time, so a young network may seem not to �t the Holland-Leinhardt

model, but an older network might; (3) If one sees a pattern, this can do much to

suggest the kind of model which may do better than the Holland-Leinhardt, so the

examination of trend acts as a diagnostic for the kind of model failure observed.
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2. If dyadic independence holds, one should check for drift in the model parameters. To

decide whether the same p1 model holds at each t, one can estimate the parameters

�, �, �i, and �j for each observation. If these show no trend, then information may

be pooled to obtain sharper estimates. In contrast, if there is dyadic dependence,

then even without a discernible parameter drift more elaborate models are needed.

To check for parameter drift plot the parameter estimates and their standard errors

against time. A reasonably important trend should be visually apparent.

If one is not using a p1 model, but rather the more general model of (2), then one can

still look for trends in the switching times of each edge. Of course, this will require

observations at a substantial number of well-spaced time points.

Should the dyads appear independent at each observation, and if the model parameters show

discernible drift, then it becomes worthwhile to consider the use of some more elaborate,

possibly Markovian, model.

2.2 Metric Models

Metric models for social networks were proposed by Banks and Carley (1994). The moti-

vation derives from statistical practice rather than social theory, and thus, in analogy with

the mean and variance of conventional statistics, they build a model which is naturally

parameterized in terms of a central network and a dispersion about that network. Sanil et

al. (1994) extended the metric model to the analysis of social networks evolving over time.

The general approach they describe does not assume dyadic independence and so can be

used with theories that posit di�erential attractiveness of individuals and the predisposi-

tion to form symmetric relationships, as well as theories that involve cliquing, hierarchy, or

transitivity. We summarize this work, and describe a further extension which may increase

the range of applicability.

The cornerstone of a metric model is a probability measure over the set of S of directed

networks on m distinct nodes which has the following form:

IP(s�;�)[ s ] = c(s�; �)e�� d(s;s�) 8 s 2 S (5)

where d : S � S ! IR
+ is a metric, s� is the unknown central network, and � is a measure
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of concentration (1=� is the corresponding dispersion parameter). Thus the probability of

observing a particular social network s diminishes as its distance from s� increases. Also,

for �=0, one has uniform measure on S, whereas � = 1 implies one observes s� with

probability one.

This formulation is related to Mallows' method (1957) of setting probabilities on the set

of permutations. The choice of the metric d is crucial, and should reect a sense of nearness

appropriate to the context of the study. For example, if one wants to model reciprocity,

then the distance metric should declare two networks which di�er by a reciprocating edge

change to be closer than two networks which di�er by a non-reciprocating edge change.

Similarly, one can model the degree centralization e�ect by selecting a metric that makes

two networks which di�er by an edge change that increases the in-degree of a popular node

closer than two networks which di�er by an edge change that increases the in-degree of an

unpopular node.

If one has an i.i.d. sample s1; . . . ; sn from (5), then the maximum likelihood estimates

of s� and � must satisfy:

1

n

nX
i=1

d(si; ŝ
�) =

P
s2S d(s; ŝ�)e��̂d(s;ŝ

�)P
s2S e��̂d(s;ŝ

�)

ŝ� = argmins2S �̂
nX
i=1

d(si; ŝ
�) + n log

X
s2S

e��̂d(s;ŝ
�):

Solving these equations requires enumeration of the elements of S. For even moderate m

it quickly becomes impossible to maximize the likelihood through complete enumeration;

unless the metric is unusually tractable, one must resort to numerical search.

A useful characterization of (5) is possible in a common simple case. Frank and Strauss

(1986) used the Hammersley-Cli�ord theorem to show that all probability measures on S+,

the set of undirected networks, can be written in the form

IPD[ s ] = c exp[
X
A�C

�A] 8 s 2 S+ (6)

where c is a normalizing constant and �A is a nonzero constant if and only if A is a clique

of the nonrandom dependence graph D. In our context, the nodes of D are all possible

undirected edges on m vertices; a clique in D is a subset of the vertex set of D that is either

a singleton set or has the property that all pairs of elements are connected by edges in D.
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The graph D determines the dependence structure between random edges; if D connects

a speci�c pair of edges, then those edges in s are conditionally dependent given the other

edges in s.

For undirected networks, the dependence graph D is edgeless if and only if one has a

Holland-Leinhardt model. To show that the Holland-Leinhardt model is a special case of

the metric model, identify the network s with its adjacency matrix; thus sij = 1 if and only

if an undirected edge links nodes i and j. The Frank and Strauss representation enables

the following result.

Theorem 1: A probability measure on S+ is Holland- Leinhardt (i.e., has independent,

but possibly di�erently distributed, dyads) if and only if it can be written as (5) for a

semimetric of the form

dHL(s1; s2) =
X
i<j

aij js1ij � s2ij j (7)

where the aij � 0. (A semimetric allows zero distance between distinct objects; it corre-

sponds to taking aij = 0 for some (i; j).)

Proof: See the appendix.

The semimetric in Theorem 1 may be viewed as a weighted version of the Hamming

metric on S+. As the proof shows, the aij are the log odds ratios of the edge probabilities,

where the numerator of the ratio contains the least probable outcome. The theorem states

that the assumption of independent dyads which characterizes the Holland-Leinhardt model

is equivalent to a concept of distance based upon a weighted sum of edge discrepancies. This

contrasts with alternative metrics, entailing edge dependencies, which are sometimes more

appropriate. An analogous result holds for directed networks.

The dynamic version of the metric model for directed edges implements the intuition

that network evolution is more likely to occur by short steps than large leaps. To formalize

this, Sanil et al. (1994) proposed the discrete-time Markov model

IP[d(X(t);X(t � 1)) = jjX(t� 1); . . . ;X(1)] = IP[d(X(t);X(t� 1)) = jjX(t� 1)]

=

 
N

j

!
f(; t)j(1� f(; t)r�j (8)

where f(; t) such that 0 � f(; t) � 1 is a parametric function controlling the expected
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rate of change, and the metric on S is

d(s1; s2) = tr[(s1 � s2)
T (s1 � s2)] =

X
i6=j

js1ij � s2ij j (9)

for s1; s2 the adjacency matrices identi�ed with networks s1; s2. Also, N is m(m � 1) if

directed edges are allowed and there are no loops. Whereas, N is m(m� 1)=2 if undirected

edges occur and there are no loops. This metric implies that whether or not edge changes

are independent can change over time; the starting point can be determined nonrandomly or

by some dependent random mechanism. If the rate of change is slow, then this dependence

will persist. Moreover, this metric implies that the conditional distribution of Xt given

X(t� 1) is such that all edges change independently with the same probability f(gamma,t).

Therefor, the number of edge changes is a for f(; t) at time t. If f(; t) changes smoothly

over time, then the su�cient statistic consists of the number of edge changes at each time

point, since there is information in the entire trajectory. In typical applications, f(; t) is

monotonic decreasing in t. For example, if f(; t) = exp(�t), then as t " 1, the expected

rate of change slows and probability mass would concentrate upon a single network.

Under (8), the reduced log-likelihood equation is

`(jX(1); . . . ;X(n)) =
n�1X
t=1

[dt ln f(; t) + (r� dt) ln(1� f (; t))] + ln P (X(1)) (10)

where dt = d(X(t + 1);X(t)). Then, assuming that P (X(1)) is independent of , the

maximum likelihood estimate ̂ satis�es

nX
t=1

�
@f

@̂

�
f(̂; t) � (dt=r)

f(̂; t)(1� f(̂; t))
= 0: (11)

There is an appealing interpretation of (11). If we consider the binomial distribution at

each time point, then one has a weighted sum of the di�erence between the estimated and

the observed proportion of relations that change at each time step, divided by the variance

of the estimate. In other words, the equation seeks the ̂ which minimizes a weighted sum of

standardized discrepancies. The weights on each term are the rate of change of f(; t) with

respect to  at time t. For general functions f(; t), one solves (11) numerically (multiple

solutions are possible).

To test the �t of a model of the form (8), one can use the fact that under the null

hypothesis that the model is correct, one knows the distribution of the number of edges
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that change at each step. De�ne

pt = IP[X � dt] =
dtX
j=1

 
r

j

!
f(̂; t)j(1� f(̂; t)r�j t = 1; 2; . . . ; n � 1: (12)

Were  known, this would be the probability integral transformation, and the p1; . . . ; pn �

1 would be an i.i.d. sample from a discrete distribution that is nearly the continuous

distribution U [0; 1]. But the e�ect of estimating  should be small, so the Kolmogorov-

Smirnov test enables an approximate assessment of whether the pt are (nearly) uniformly

distributed. If they are not, then the model does not hold.

The principal advantage of the model in (8) is its tractability, which derives from its

close connection to the binomial distribution. But it possesses the undesirable property that

for a slowly decreasing function f , its asymptotic distribution concentrates on a network

that is uniformly distributed on S.

Before leaving the metric perspective, we propose an analog of the linear model de-

composition which may have value in describing social networks. In particular, it o�ers a

plausible model for measurement error.

Consider measurements taken upon handshaking relationships in an o�ce. It is arguable

that the measurements consist of three components: a �xed component, corresponding to

relationships enforced by the organizational structure; an evolving component, correspond-

ing to the formation and dissolution of friendships; and a random component, corresponding

to reporting error or chance encounters in the elevator. This suggests the model

X(t) = (M � Y (t))
E(t); (13)

where X(t) is the observed network at time t, M is the constant relationship network

derived from the organizational structure, Y (t) is the set of evolving relationships (whose

stochastic structure could be governed by whatever social theory seems most apt), and E(t)

represents measurement error. Here � denotes the operation of edge union, and 
 denotes

the operation of addition modulo 2 on the components of the adjacency matrices. The

error networks E(1); . . . ;E(n) are i.i.d. according to (5), where the central network s� is

the edgeless network.

It is unclear whether this linear models approach will prove useful, but we are optimistic.
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For certain metrics it is easy to obtain the maximum likelihood estimates of the components

in (13), but for others one must resort to numerical techniques.

2.3 Triad Completion Models

Triad completion models are derived from the work by Heider (1958) on balance. Heider's

theory pertains to the perceptual level. According to this theory, individuals seek to min-

imize perceived imbalance. Thus, if Isaac considers himself a friend of Johanna, and Isaac

perceives that Johanna is friends with Kirsten, then if Isaac is not friends with Kirsten

there will be imbalance. There are several points here. First, analyses of balance, to be true

to the original Heiderian formulation, should use socio-cognitive data on each individual's

perception of all other pairs (see Carley and Krackhardt, forthcoming). Second, balance

theories are all concerned with the directedness of relations; however, the theories di�er in

whether and how (at the sociometric level) they expect the tie to be reciprocated. Accord-

ing to Heider, two individuals are prone to interact at time tq+1 if, at time tq, they are both

interacting with the same third partner (mutual friend). Heider's theory accounts for both

positive and negative relations, and predicts that both kinds evolve towards balance. Our

present focus, in this paper, is exclusively upon positive relations. This restriction has little

practical impact, since researchers rarely collect data on negative ties (for exceptions see

Sampson, 1968, and Blau, 1967). The role and existence of negative ties is an important

study for future investigation.

Balance theory, and the related triad completion models, have been extensively studied

in the social sciences. This has led to a series of interrelated models; these include Heider's

\balance model" (1946, see also Cartwright and Harary, 1956), Davis' \clustering" model

(1967, 1970), Holland and Leinhardt's \transitivity" model (1971), Davis and Leinhardt's

\ranked cluster's of cliques" model (1972), Newcomb's \positive balance" model (1968), and

Johnsen and McCann's \direct positive inuence" model (1982). Johnson (1986b) gives a

discussion of the relationships among these models. We shall not recapitulate the details

of these variations, but rather focus upon procedures for testing standard features common

across triad models.

To clarify the exegesis, we shall again briey violate our convention and discuss networks
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with undirected edges. This deviation reects the fact that there are 16 kinds of triadic

relationships for directed edges, but only four kinds for undirected edges, and thereby we can

avoid conceptual clutter entailed by keeping account of direction. It also means that issues

of reciprocity will not arise. (For directed edges, we note that while a balancing process

does not guarantee reciprocity, at least in the short run, it does tend towards reciprocity in

the long run. We also note that, theoretically, balance is an alternative to reciprocity as a

process for creating network change.) But all of the points that we make in the undirected

case extend in a straightforward way to the more complicated directed case.

For networks with undirected edges, triad completion models assert that changes be-

tween X(tq) and X(tq+1) are likely to be edge additions that link nodes which both have

an edge to a common node. Formally, if xij(tq) = 0, then

IP[xij(tq+1) = 1 j 9 k such that xik(tq) = 1 and xkj(tq) = 1] > (14)

IP[xij(tq+1) = 1 j 6 9 k such that xik(tq) = 1 and xkj(tq) = 1]:

A subnetwork of three nodes that are completely linked is called a completed triad.

Variations of the triad completion model may add some or all of the following conditions:

A.1 Edges that are part of a completed triad are less likely to disappear in the next time

step than those that are not.

A.2 For a triad (i; j; k), the occurrence of the �rst edge in the subnetwork has the same

probability as the occurrence of the second edge, provided there is no completed triad

formed with a fourth node at either addition.

A.3 For a triad (i; j; k) with exactly two edges between them, the disappearance of the

�rst edge has the same probability as the disappearance of the second edge, provided

that neither edge forms a completed triad with a fourth node.

The addition of A.1 implies that completed triads are relatively stable. The use of all

four conditions is the strongest form of the triad completion model, and greatly restricts

evolutionary behavior. Naturally, more complicated sets of elaborating conditions can arise

when edges are directed.
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One can use simple tests to corroborate the triad completion model. For example, at

time tq on an undirected network, there are r=2 possible changes. Let r1 be the number

of potential edge additions that would complete a triad, and r2 be the number of potential

edge additions that would not complete a triad, Also, let Y1 count the number of observed

edge additions that completed a triad in X(tq+1), and Y2 count the number of observed edge

additions that did not complete a triad. Then to verify the de�ning condition (14), one can

use the elementary test of binomial proportions to decide whether the sample proportion

Y1=r1 is signi�cantly greater than Y2=r2. Each of the three subsidiary conditions A.1-1.3

can be examined in a similar fashion.

However, these simple tests disguise several de�ciencies:

1. If the triad completion model holds, then asymptotically, the observations will be in

stochastic equilibrium around the completely connected network (the variance will

depend upon the propensity to delete edges). At this point, it is extremely di�cult

to distinguish between the triad completion model and any model that implies high

edge density since r1 and r2 will be small, lowering the power of the test of binomial

proportions. Indeed in a very dense network the power of any test will be low.

2. The test does not combine information across time periods; one can test for triad

completion tendencies between t1 and t2, but one would like to combine this with

information on the change from t2 to t3, and so forth, in order to make a statement

about the adequacy of the model over the entire trajectory.

3. It is unclear how one should handle cases such as the following:

� At time tq, edges link i and j to k, but no edge links i to j; at time tq+1, the

edge linking i to j is added, but the edge linking i to k is removed.

� If at time tq, an edge between i and j would complete triads with nodes k

and l, does that edge have a greater probability of occurring than an edge that

completes only a single triad?

Many possible conventions could remove these ambiguities, but the best solution prob-

ably depends upon the social context of the problem. Again, this is a place where our
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statistical models easily outrun our social theory.

4. In each test, the null model is that the counts are binomial with parameter values

embodying a di�erent relationship than that implied by the particular condition under

examination. This null model o�ers a decent qualititative approximation to more

complex models of behavior, but interpretation requires caution. Thus the tests are

chiey corroborative|rejecting the null supports the triad completion model, but does

not exclude similar models; failure to reject the null invalidates the triad completion

model, but does not prove that a simple binomial model is correct.

We describe a natural methodology for addressing some of these concerns, which may be

useful when one wants a more stringent examination of the data than simple binomial tests

enable.

The �rst test we proposed above (based on triad counts) is usually too simplistic, but

it pertains to the model which leads to the triad census tests invented by Holland and

Leinhardt (1978). Their approach is a conditional test; for the case of undirected links,

one �xes the number of edges, and then decides whether the observed number of completed

triads is greater than would be expected from i.i.d. uniform placement of the edges. (In

usual applications this is slightly more complex; one has directed links, and takes weighted

counts of the di�erent kinds of partial triads.) In contrast, our recasting of the test for this

situation depends upon the edge census, not the triad census.

We now propose a second test, that is related to the �rst, but adds important re�ne-

ments. This test is tailored to reject the null model against more re�ned speci�cations of

the alternative. These re�nements embody sensible extensions of the broad social theory,

such as might arise in plausible situations. For example, this test repairs the second de�-

ciency by examining multiple networks over time. It begins to address the third de�ciency

by suggesting a mechanism for thinking clearly about the di�erent types of edge additions

and deletions that may a�ect behavior. However, the �rst and fourth de�ciency still apply.

This second test is based on the recognition that an edge addition to X(tq) may complete

a triad, or it may provide the second link in some triad but does not complete any triads,

or it may provide at most the �rst link in all triads. Count the number of such possible

additions; denote them by r1(tq), r2(tq), and r3(tq), respectively. Similarly, an edge dele-
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tion in X(tq) may break one or more triads, or it may break one or more pairs of edges

on a common node, or it may remove an isolated edge. Count the number of such possible

deletions; denote them by r4(tq); r5(tq) and r6(tq), respectively. Then
P

ri(tq) = r=2.

Similarly, let Yi(tq) denote the actual number of edge changes of each of the six types

that occurred in X(tq+1). Then (Y1(tq)=r1(tq); . . . ; Y6(tq)=r6(tq)) is a vector of sample pro-

portions; it is a straightforward exercise to calculate its covariance matrix. Then one can

perform a simultaneous test (cf. Miller, 1981) to see whether the orderings imposed by the

conditions chosen to capture the sense of the social context are actually rejected by the

data. If they are violated, then the triad completion model fails.

To pool the results of such a test over time, one can use Fisher's procedure (Fisher,

1934, p. 101). For each tq (except the last), one obtains a signi�cance probability pq

for the hypothesis that the conditions hold at time tq . It is reasonable to assume these

signi�cance probabilities are independent, and under the null hypothesis that the triad

completion model holds, each pq is uniformly distributed on [0; 1]. Then �2
P

ln pq has the

chi-squared distribution with 2(q � 1) degrees of freedom under the null, and tends to be

larger when the model fails. This permits a test of the model which combines information

across the entire span of observation.

Two �nal notes on this topic. First, one could use the continuous-time Markov process

model in (4) to describe triad completion behavior. To do this, one would allow the �0ij(s; t)

and �1ij(s; t) to increase or decrease depending upon whether the formation of the edge

completes a triad or removes an isolated edge, respectively. A similar approach is suggested

by Leenders (forthcoming b). But testing the �t of this model would not be easy. Secondly,

since triad completion models are close transitivity models one could use a transitivity

statistic (Snijders, 1990).

2.4 Degree Variance

Degree variance models derive in part from the work by Blau (1967) and others on exchange

theory. These models assume that nodes di�er in their intrinsic probability of attracting an

edge. Nodes with high degree centrality tend to attract many edges, while those with low

degree centrality tend to attract few. You might think of this process as involving individual

19



or structural attributes like charisma, popularity, or power. In its purest form, the theory

makes no predictions about reciprocity.

Kapferer (1972) used a degree variance model to argue that, over time, there would be

an increase in interaction between senior and junior workers, and an increase in interaction

between supervisors and those who directly reported to them. Mathematical formulations of

exchange theory have been less closely examined than the triad completion model, although

some studies have been undertaken by Cook, Emerson, Gilmore, and Yamagishi (1983),

Friedkin (1993), Bonacich (1987), Markovsky, Willer, and Parron (1988), and Skvoretz

and Willer (1993) which look at this with an over time perspective. Much of the current

theoretical debate in this area concerns the basis for attributing degree variance, which in

turn determines the propensity for attracting and maintaining ties and whether or not ties

will be reciprocated.

For clarity, and since one expects evolving degree variance to be observable in networks

at �xed times, we temporarily ignore evolution to concentrate on measuring degree variance

in single networks. Indeed, much of the extant work in this area takes exactly this approach;

e.g., the p1 model, and variations of the U|MAN model such as the approximation pro-

posed by Holland and Leinhardt (1981) in which theU|MAN model is conditioned on the

variances of the in and the out degrees and on the correlation between in and out degrees.

This particular literature contains tests of the models relative to the null hypotheses that

there are no node di�erences and edges are i.i.d.. Additionally, Snijders (1991) provides a

test of these models as null hypotheses.

A standard approach to assessing degree variance is due to Snijders (1981), who proposed

a test based on the comparison of the observed variance in the in-degrees to the variance

expected under a model of completely random edge connection (conditioning on the observed

numbers of edges). That procedure seems more sensitive to the null model than a method

based on mixtures of binomials; additionally, the mixture of binomial approach obtains

substantially more information about any degree variant structure which may exist (such

as the number of components, and the proportions of nodes at each of the di�erent levels

of degree centrality).

It is also possible to test a degree variance model as a submodel of the p1 model, in
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which all of the attractiveness parameters �j are zero. But other versions of the degree

variance model are possible, and these need not incorporate the very strong independence

assumptions of the p1 model. For example, the mechanism underlying degree variance may

be that individuals look around to see who is more popular or powerful and then throwing

their vote in with the rest of the crowd. Thus an analyst should be cautious in interpreting

log-linear model tests about the �j coe�cients.

Unlike these models we focus on identifying components in a mixture distribution. We

see this as an important step to understanding changes in degree variance over time as

much of the theoretical literature in this area focuses on how classes of nodes and not

just individual nodes change (see for example Kapferer 1972). To examine degree variance

at a �xed time tq, let Zi be the number of in-edges to node i in X(tq). If one assumes

that in-edges occur independently and that all nodes are equally degree central, then the

Z1; . . . ; Zm are a random sample from a binomial distribution Bin(m;p), where p is the

unknown probability of an in-edge. Alternatively, if the degree variance model holds and

nodes have di�erential levels of attractiveness, then the Z1; . . . ; Zm are a random sample

from a mixture of binomials; formally, the probability mass function for Zi is given by

IP[Zi = z] =
cX

j=1

�j

0
@ m

z

1
A pzj (1� pj)

m�z (15)

where c is the unknown number of components in the mixture, and the �j are the mixing

proportions. Perhaps c = m, in which case each node has a unique degree, or perhaps c is

much smaller. The latter case might arise if there were a small number of di�erent kinds of

nodes; for example, if there were one supervisor and many subordinates, then the number

of components might be two. The supervisor would have a high degree centrality score, and

the others would have lower but equal degree centrality scores.

The problem of identifying the components in a mixture distribution is classically dif-

�cult, especially when the number of components is unknown. Recently, there has been

considerable progress on this front. Crawford et al. (1992) describe a Bayesian approach

to this problem, and Roeder (1992) gives a frequentist approach. Either avenue o�ers in-

teresting possibilities for advancing social network data analysis. Both o�er methods for

assessing the accuracy of their inferences.
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Symmetrically, one could consider a corresponding study of the tendency of nodes to send

out-edges to other nodes. If one counts the number of out-edges for each node at time tq,

then one can perform an exactly analogous analysis to distinguish the model of independent

equiprobable out-edges from a model in which the nodes are unequally sheepish. As before,

one assesses the adequacy of a simple binomial model against a mixture of binomials. The

extent to which reciprocity holds again depends on the exact model.

To assess degree variance over time, one wants to see whether some nodes maintain

consistently high probabilities of receiving in-edges, and/or consistently lower probabilities

of losing edges. A variety of techniques can be used. For example, if there are only two

time points then a test for the null hypothesis of equal binomial probabilities can be used,

such as a chi square test. Alternatively, Snijders (1990) proposed a goodness of �t test

for a model of network change in which the nodes varied in their tendency to receive and

send edges. Additionally, the researcher can look for over time trends in tie addition and

deletion. Whether nodes vary consistently in their tendency to receive or send ties can be

assessed by inference on binomial proportions, using procedures similar to the procedures

described in subsection 2.3 One has to count the number of nodes that have not sent edges

to i at time period tq , and record the proportion of those that send edges by time tq+1. By

comparing the vector of such proportions for node i to a similar vector for node j, one can

make a simultaneous test of whether the tendency of node i to receive or send ties is greater

than that of node j.

As described in subsection 2.1, Wasserman (1980) developed a Markov model for network

evolution that adjusts the form of the in�nitesimal transition rates to build in certain types

of evolutionary behavior. One example which is detailed in that paper is the \popularity

model," which implements the basic degree variance strategy. The structure of the rates is

�0ij(s; t) = �0 + �0s+j

�1ij(s; t) = �1 + �1s+j

where s+j is the in-degree of node j, �0 and �1 reect the number of edges overall, and �0

and �1 measure the inuence of the current number of in-edges and non-edges on node j's

popularity. It turns out that this model is tractable, and enables Wasserman to calculate
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the asymptotic equilibrium distribution of the network in terms of the model parameters.

Another over time test of degree variance would examine whether the variance in node

centrality increases or decreases over time. Assuming limited time to interact the variance

in node centrality should increase over time if popularity/attractiveness/charisma thesis

holds. This captures a di�erent aspect of node variance than the mixture of binomials

test does. The chief di�culty in practice is that one typically has only two or three time

points, so a regression test of increasing variance with only two or three x values will be

unpersuasive.

At the component level, networks at two points in time can be compared by �rst locating

the components, and then determining whether the components have become increasingly

di�erentiated in average degree centrality and the extent to which the members of the

component (the individual nodes) are the same over time. Di�erentiation of density can

be handled as previously discussed. Similarity in membership can be calculated by a chi

square test over group members being the same or di�erent at the two time periods, or by

doing a QAP correlation on the membership matrices.

Generally speaking, in equilibrium, it becomes relatively di�cult to distinguish nodes,

or to distinguish degree variance models from certain types of Holland-Leinhardt models.

This occurs because the in-degree of nodes tends to increase, so that all nodes ultimately

appear highly and equally degree central; similarly, it is di�cult to distinguish the later

stages of a degree variance model from a p1 model when density is high.

2.5 Polarization and Balkanization

Polarization and Balkanization also follow from theoretical conceptions of power, and may

be viewed as variations on the degree variance model. Polarization occurs when the society

splits into two groups each centered around a speci�c node, as happens when there are

opposing cliques, each with a powerful leader. Balkanization occurs when the society splits

into a large number of groups, each centered around a speci�c node. Theories of polarization

and balkanization have traditionally been more conspicuous in the political than the social

sciences. Such theories rarely argue either for or against reciprocity. Rather, they are more

concerned with the overall structure of the network than particular dyadic relations.
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Polarization has not been well-de�ned mathematically. Broadly, for a single time point,

it is said to occur if there is a set S2 consisting of two nodes such that nearly every other

node is linked to exactly one of the two. In contrast, Balkanization has not been de�ned at

all. For our development, it is a natural generalization of polarization, and occurs if there

is a set Sk consisting of more than two nodes such that nearly every other node is linked to

exactly one member in that set.

Let s; s0 2 Sk (where kmay be 2). Then variations on the polarization and balkanization

models can add some or all of the following conditions:

B1 If nodes i and j both link to s, then the probability of a link between i and j is greater

than if i linked to s and j linked to s0.

B2 The probability that an edge between nodes i and j is removed is greater if i has an

edge to s and j has an edge to s0, than if i and j are both linked to s.

B3 For node i the probability that a new in-edge links to s is an increasing function of

the in-degree of s. Alternatively, one might argue that the probability for a node i to

have a new edge to s is also a function of the involvement of node i with other nodes

already linked to nodes in Sk; for example, it may be dependent on the number of

paths of length 2 from i to these nodes.

B4 If node i has no links to any node in S, then the probability that it forms such a link

is a decreasing function of the cardinality of S.

Notice that extensions B1 and B2 of the de�nitions add features that make the network

behavior resemble networks evolving under triad completion. They also result in s and s

being two poles when k = 2. Also, B3 says that the rate polarization or balkanization speeds

up as the trajectory progresses. Finally, B4 is based on the principle that in individuals or

states have limited capabilities to interact and so are less likely to form involvements to any

particular node as the number of nodes increases.

As before, one can test models of this kind through tests on simultaneous binomial

proportions. The methodology is very similar to that of subsections 2.3 and 2.4, and thus it

will not be detailed here. If Sk is not known a priori and must be estimated from the data,
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then the involvement of this discrete parameter makes the problem signi�cantly harder and

invites the use of Bayesian models. In many respects, polarization and balkanization models

represent hybrids of the degree variance model that has already been treated.

Additionally one can construct a test around the poles. The polarization for known poles

is characterized by a strong negative association between them. Given the null hypothesis

of a random network a test of independence can be used for an kxk table where the cell

values are the number of links between the nodes in Sk.

2.6 Constructural Model

Constructural models were initially proposed by Carley in 1986, and more precise math-

ematical formulations appeared in 1990 and 1991 (see Kaufer and Carley, 1993, for an

extended treatment). Similar arguments centering around cohesion and structural similar-

ity were advanced by Friedkin (1993).

According to the constructural paradigm, social network change is the result of the

ongoing learning process carried out by all individuals in the community. Speci�cally, the

strength of the tie from individual i to individual j is an increasing function of the ratio

of the amount of information i and j share to the amount of information i shares with all

other individuals. Reciprocity results in the long run as individuals come to share more

information with each other and similar others. However, and importantly for the model,

reciprocity need not occur in the short run. As individuals interact and communicate

information, the quantity of shared information between the interactants increases; however,

the strength of the tie need not increase, if others in the community acquire common

information even more rapidly. Ultimately, as long as there are no barriers to communication

or forgetfulness, all individuals in the society end up with equal propensity to form ties.

In this model, unlike the others discussed, the actual network (who actually interacts with

whom) and the expected network (the probability that individual i will choose to interact

with individual j in the next time step) are distinguished. The expected network is a

weighted network and can be converted to a simple digraph by transforming all probabilities

greater than some cuto� to 1 and all others to 0. Asymptotically, the probability of an actual

interaction in the observed network comes to equal the value in the expected network. Thus,
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asymptotically, the observed network is in stochastic equilibrium around the completely

connected network. Moreover, the expected network becomes at equilibrium a completely

connected network. In equilibrium, reciprocity is assured.

The constructural theory is based on several well explored social tenets, including ho-

mophilia and social relativity. Homophilia was the interaction process described by Homans

(1950) as the basis for the production of friendship, and by Durkheim (1912) as the basis

for the production of moral solidarity. Homophilia has been empirically demonstrated on

a number of dimensions, including age, sex, race, education, social class, and occupation

(Lazarsfeld and Merton, 1954; McPherson and Smith-Lovin, 1987; Coleman, 1957, and

Laumann 1966). Similarly, social relativity has been viewed as a normative tendency under

which the individual chooses actions and attitudes according to a process that involves the

evaluation of self relative to others (cf. Burt, 1982, p.1-16). This tendency has also received

strong empirical support (e.g., Merton, 1957; Sherif, 1935; Festinger, 1954).

According to the constructural model, the strength of the tie between individuals will

oscillate as they learn new information. However, in a connected society, ultimately everyone

will know everything that anyone knows. A consequence is that at equilibrium all individuals

are tied to all other individuals with exactly the same strength of tie. The constructural

model di�ers from the other models of network change in that it di�erentiates between the

tie among individuals as they perceive it and the tie between individuals as it is observed

by others.

The formal analysis of this model for even moderate numbers of nodes or pieces of

information goes beyond any conveniently simple theory. Given the current state of social

network assessment, probably the best that one can do is to simulate the evolutionary

behavior of such networks under a constructural model, and then judge whether the results

are consistent with observed data.

The general strategy for such simulation tests is to select a constructural model, start

many simulations at the �rst observed sample point, and then count the proportion of

trajectories that are close to the observed trajectory. If the proportion is high, then the

model is corroborated. If the proportion is small, then the model fails. There are very

delicate questions regarding the extent to which one can use the sample data to estimate
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the parameters in the simulations; Snijders (forthcoming) describes a method that addresses

such problems.

3 Conclusions

We have presented a bestiary of models for network evolution. The theoretical bases

for these models vary. Often the rationales are su�ciently general that an entire class of

models follows from the same theoretical paradigm; e.g., one can motivate degree variance

and its extreme forms( polarization, and balkanization) from the exchange perspective.

Conversely, in their pure form the diverse theoretical perspectives often result in models with

indistinguishable long-term behavior. Basic versions of balance theory, exchange theory and

constructuralism can all lead to completely connected networks, or networks that oscillate

randomly in the neighborhood of the completely connected network.

High levels of asymptotic connectivity are not necessarily a problem in the short run.

Many of the models derive from theories that predict some decrease in ties; however, they

simply do not predict as much of a decrease as is often observed. Carley (1990), in her

re-analysis of Kapferer's (1972) data on change in a tailor shop, found that there were a

substantial number of cases where the strength of the tie between two individuals weakened

over time, or the tie ceased to exist. However, she found that exchange theory, Heiderian

balance theory, and constructuralism were all limited in their ability to account for such

decreases. Even though formal representations of these theories could account for some

of the observed decrease, they were inadequate to the magnitude of decrease that was

observed. This weakness is shared by many of the theories treated in this paper, and we

urge the pursuit of theory and modeling that emphasizes mechanisms for the removal of

edges.

With respect to the addition and deletion of edges, as a �eld we run the risk of our

methodology outstripping our theory. In the theoretical literature more attention has been

focused on the addition of edges than on their removal, although there are allusions to

\deletion" processes, such as limited cognition, limited time, limited resources, moving,

�ring, and death. Each of these processes would result in a di�erent prediction about which

edges were to be deleted. Clearly, any statistical elaboration of a theory could arbitrarily
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add one or more of these mechanisms. Our point, in part, is that such elaboration should not

be done arbitrarily; rather, theoreticians and empirical researchers need to work to develop

a clearer understanding of the deletion processes. Once these processes are understood

then we can generate the appropriately elaborated statistical model. Ideally, the theoretical

and methodological understanding of edge removal and deletion processes would co-evolve.

Finally, whether or not edge additions and deletions can be treated symmetrically in a model

depends on the underlying theory chosen. We expect that in most models edge addition

and deletion will not be treated in a symmetrical fashion.

A second, more methodological, point is that in order to test theories of change (and

the associated models), the researcher must generally capture data well before the group

reaches equilibrium. From a practical standpoint, such an equilibrium may be unreachable;

experience suggests that external factors often intervene well before the simplicity of asymp-

topia is attained. Nonetheless, our analysis suggests that the closer the group is to this �nal

state, the more indistinguishable key models become. Speci�cally, all models that empha-

size mechanisms for the formation of edges over mechanisms for their removal tend, with

time, to become more dense; thus predicted networks are qualitatively similar, and there

is little power for tests of alternative models. A caveat here. If the model contains edge

deletion mechanisms then the equilibrium may not be the completely connected network.

Such models would entail theoretical extensions beyond those discussed here. Nevertheless,

given such models it should be possible to distinguish between competing theories even

when the group is in equilibrium. This suggests the need for longitudinal data with large

enough time steps to observe change but small enough that external factors will not have

intervened and disrupted the equilibrium. See also the discussion by Leenders (1995, p.

175).

A third suggestion is that we must recognize the power of the computer; it can obviate

the need to seek tractable models which are too delicate for realistic applications. Simulation

analysis has been widely adopted in many sciences, and our formal models have not been

so successful that we should be slow to follow suit. There is every reason to hope that they

will be able to discriminate more �nely than the currently popular tools.

Issues of ultimate prediction aside, a central concern is which model (and hence which
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underlying theory) best �ts a given dataset. Currently, there are few omnibus goodness-

of-�t tests available for social network applications. Thus, a possible strategy, and one we

have taken in this paper, is to use extant statistical techniques tailored to be sensitive to

the speci�c kinds of departures from the null binomial model speci�ed by the theoretical

model. This speci�city enables researchers to identify the kinds of social theories that seem

to be most inuential in directing the changes in the network. The techniques for doing this

are fairly straightforward. However, in many cases, it may be the case that several models

provide acceptable descriptions of one's data. In this case, there is no magic solution.

Further progress in this domain requires a better understanding of goodness-of-�t tests.

4 Appendix

Proof: Assume the model in (5) holds. Since the semimetric in (7) is a sum, using it

as the metric in the model enables one to factor the probability mass function into terms

that depend only upon each edge. Thus edges are independent and the model is Holland-

Leinhardt.

Going the other way, assume the Holland-Leinhardt model holds. If pij is the probability

of an edge between nodes i and j, then

IP[s] =
Y
i<j

p
sij
ij (1� pij)

1�sij : (16)

For the model in (5), the case when s = s� shows that the normalizing constant is

c(s�; �) =
Y
i<j

maxfpij ; 1� pijg: (17)

Now de�ne

aij =

8><
>:

log
pij
qij

if pij � :5

log qij
pij

if pij > :5
(18)

so that the expression in model (5) can be rewritten as

IP[ s ] =
Y
i<j

maxfpij ; 1� pijg �
Y

eij in s; not in s�

pij
qij

�
Y

eij in s�; not in s

qij
pij

: (19)

Now suppose that eij is an edge in s, so that the corresponding term in the Holland-

Leinhardt product is pij . If pij > :5 then eij is also an edge in s�, and thus the only term
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that appears in (19) is pij , from the �rst product. However, if pij � :5, then eij is not in s�,

and the qij in the �rst product is multiplied by pij=qij in the second, yielding pij as required.

Similar argument holds when eij is not an edge in s, and thus the Holland-Leinhardt model

can be written in the indicated form. 2.
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