
Vertical Interaction in Open Software
Engineering Communities

Patrick Adam Wagstrom

CMU-ISR-09-103

March 2009

Carnegie Insitute of Technology and School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
James D. Herbsleb, Co-Chair
Kathleen M. Carley, Co-Chair

M. Granger Morgan
Audris Mockus

Submitted in partial fulÞllment of the requirements
for the degree of Doctor of Philosophy in

Engineering and Public Policy and Computation, Organizations and Society.

Copyright c! 2009 Patrick Adam Wagstrom.

This research was supported by the National Science Foundation through the Graduate Research Fellowship
Program, National Science Foundation Grant No. IIS-0414698, the National Science Foundation IGERT
Training Program in CASOS(NSF,DGE-9972762), the OfÞce of Naval Research under Dynamic Network
Analysis program (N00014-02-1-0973, the Air Force OfÞce of Sponsored Research (MURI: Cultural Mod-
eling of the Adversary, 600322), the Army Research Lab (CTA: 20002504), and the Army Research Institute
(W91WAW07C0063) for research in the area of dynamic network analysis. Additional support was provided
by CASOS - the center for Computational Analysis of Social and Organizational Systems at Carnegie Mellon
University.

The views and conclusions contained in this thesis are those of the author and should not be interpreted as
representing the ofÞcial policies, either expressed or implied, of the the National Science Foundation, the
OfÞce of Naval Research, the Air Force OfÞce of Sponsored Research, the Army Research Lab, or the Army
Research Institute.

Keywords: Open Source, software engineering, software development, socio-technical systems, socio-
technical congruence, computer supported cooperative work

This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
United States License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-
nd/3.0/us/or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,
94105, USA.

To Kristina and my parents.

Abstract

Software engineering is still a relatively young Þeld, struggling to develop
consistent standards and methods across the domain. For a given project, de-
velopers can choose from dozens of models, tools, platforms, and languages
for speciÞcation, design, implementation, and testing. The globalization of
software engineering and the rise of Open Source further complicate the issues
as Þrms now must collaborate and coordinate with other Þrms and individu-
als possessing a myriad of goals, norms, values, expertise, and preferences.
This thesis uses four empirical studies to take a vertical examination of Open
Source ecosystems and identify the way that foundations, Þrms, and individu-
als come together to create large scale software ecosystems and produce world
class software despite their differing goals and values.

First, I examine Open Source as a collaborative phenomenon between Þrms
and non-proÞt foundations that support many communities and identify the
ways in which non-proÞt foundations enable member Þrms to create value in
the ecosystem. Next, an empirical study of direct collaboration between Þrms
within the Eclipse system reveals that most Þrms operate relatively indepen-
dently, but there is still heavy reliance on a single dominant player for core
portions of the ecosystem. I then evaluate how the presence of commercial
Þrms affects the attraction and retention of volunteer developers in an Open
Source community. The Þnal study examines how individual developers man-
age their dependencies in Open Source and extends the socio-technical con-
gruence metric to address changing requirements and facilitate the metric as a
tool for continual use. Finally, based on the Þndings of these studies, I close
with a set of recommendations for stakeholders investing in Open Source.

Acknowledgments

A huge amount of thanks goes to my primary thesis advisors, Jim Herbsleb
and Kathleen Carley. Thank you for giving me the freedom to design and
implement a course of research that I wanted. Thank you for gently guiding
me back when I would stray from the course. And thank you for your input,
direction, and most importantly, patience with me.

IÕve had the privilege to work with and build my ideas through interaction
with many other amazing researchers, engineers, and scientists at Carnegie
Mellon. In particular, I am in debt to Marcelo Cataldo for his work laying
the foundation for socio-technical congruence. Thanks to all the folks in the
CASOS lab and COS seminar for your feedback and advice on my research.
Thanks to Peter Landwehr for his help in focusing some of the ideas regard-
ing Eclipse. Thanks to Anita Sarma for her feedback and willingness to take
on additional responsibilities so I could Þnish. IÕm also grateful for the sup-
port and help from Robert Kraut, particularly for his help in understanding
volunteer motivation and the social aspects of volunteer participation in open
communities.

IÕve also had the pleasure of working with numerous individuals outside of
Carnegie Mellon who have greatly shaped my research. Sonali Shah was in-
valuable in organizing, planning, and analyzing the interviews with the Eclipse
Foundation. Thanks to the software governance team at IBM research: Clay
Williams, Kate Ehrlich, Mary Helander and Peppo Valetto for their help in
exploring some of the preliminary ideas with expanding the problem space
around socio-technical congruence. IÕm eternally in debt to my previous aca-
demic mentors at Illinois Institute of Technology, Xian-He Sun and Gregor von
Laszewski who were willing to help direct an undergrad in a class he wasnÕt
supposed to take on how to do research and be successful as a researcher and
scientist.

Finally, this wouldnÕt be possible without the support of my friends and
family. Thanks to everyone who has been in my small groups for letting me
vent. Thanks to my parents for giving me just enough support so I still felt
independent. Finally, thanks to my wonderful wife Kristina, whom I love very
much and who tolerates all of my mood swings, listens to my frustrations, and
is a sane force in my life. Thanks for being willing to move out here and share
in the pain when you decided to come to Carnegie Mellon and get a Ph.D. for
yourself.

Contents

1 Introduction 1

1.1 A Brief History of Open Source. 2

1.2 Academic Research on Open Source. 7

1.3 Overview of Thesis. .12

2 Firms and Foundations: Guiding an Ecosystem To Promote Value 16

2.1 Governance and Intellectual Property. 17

2.2 Foundations in Open Source. 19

2.3 Description of Data. .22

2.3.1 Interview Methodology. 24

2.4 Community Design in Eclipse. 27

2.5 Dominant Purposes of the Eclipse Foundation. 32

2.6 Driving Value Creation. .36

2.6.1 Non-Market Player. 36

2.6.2 Introduction of Process. 37

2.6.3 The Value of the Eclipse Brand and Joint Marketing. 38

2.6.4 Organizational Structure Driving Value. 41

2.6.5 Platform for Innovation. 43

vi

2.7 Conclusion .45

2.8 Topics for Future Research. 46

3 Firms and Firms: Business Collaboration Through Open Source Projects 48

3.1 Description of Data. .53

3.2 The Architecture of Eclipse. 55

3.3 Distribution of work. .58

3.3.1 Firm Participation on Projects. 66

3.4 Comparison of Eclipse with GNOME. 74

3.5 Conclusions. .83

4 Firms and Individuals: The Impact of Commercial Participation on Volunteer
Participation 86

4.1 Introduction. .86

4.1.1 Commercial Participation and Positive Project Momentum. 88

4.1.2 Negative Impacts of Heterogeneity. 90

4.1.3 Business Models and Community Norms. 90

4.1.4 Cognitive Complexity at the Module Level. 92

4.2 Research Method. .94

4.2.1 Community Background. 94

4.3 Study 1: Developer Interviews. 97

4.3.1 Views of Commercial Participation.100

4.3.2 ClassiÞcation of Firms. .102

4.4 Study 2: Quantitative Analysis. .105

4.4.1 Data Collection and Analysis. .106

4.4.2 Product Focused vs. Community Focused Developers. 108

vii

4.4.3 Quantifying the Impact of Commercial Developers on Volunteer
Participation .113

4.5 Discussion. .129

5 Individuals and Individuals: Evolution of the Socio-Technical Congruence
Metric 133

5.1 Organizational Congruence. .135

5.2 Problems with Socio-Technical Congruence.138

5.3 Replication of Original Results in Open Source.141

5.3.1 Selection of Projects. .141

5.3.2 Generation of Networks. .142

5.3.3 Selection of Control Variables.144

5.3.4 Results in Open Source. .146

5.4 Individualized Congruence. .148

5.4.1 Distribution of Metrics. .149

5.4.2 Regression Analysis. .152

5.4.3 Utilization of Individualized Congruence.157

5.5 Metric Stability .157

5.5.1 Decay In Socio-Technical Congruence.160

5.5.2 Network Formulation. .164

5.5.3 Errors In Communication Network.169

5.5.4 Possible Faults. .172

5.6 Discussion. .173

6 Conclusions 176

6.1 Contributions .176

6.2 Recommendations. .179

viii

6.2.1 Recommendations for Individuals.179

6.2.2 Recommendations for Commercial Firms.181

6.2.3 Recommendations for Foundations and Community Designers. . . 184

6.3 Future Work. .188

Bibliography 190

ix

List of Figures

2.1 The Open Source Maturity Model. 34

3.1 Dependencies between major components of the Eclipse ecosystem as mea-
sured using Lattix. .57

3.2 Number of top level projects each Þrm participates on in the Eclipse Ecosys-
tem .60

3.3 Number of sub-projects each Þrms participates on in the Eclipse Ecosystem61

3.4 Top Level Project Shared Participation in Eclipse. 63

3.5 Sub-Project Level Shared Participation in Eclipse. 65

3.6 Number of Firms Contributing Code to Each Top Level Project in the
Eclipse Ecosystem. .67

3.7 Number of Firms Contributing Code to Each Sub Project in the Eclipse
Ecosystem. .68

3.8 Fractional Contributions to the CDT by Firm by Month. 70

3.9 Fractional Contributions to the Eclipse Platform by Month. 72

3.10 Number of different Þrms withs shared project interests. 76

3.11 Number of Þrms contributing code to each project in GNOME. 78

3.12 Firm Participation in Projects in the Eclipse Ecosystem. 79

3.13 Firm Participation in Projects in the GNOME Ecosystem. 80

4.1 Autocorrelation of the number of volunteer developers between time periods116

x

4.2 Autocorrelation of the diffÕd number of volunteer developers between time
periods. .117

4.3 Cross correlation of the diffÕd number of volunteer developers with predic-
tor variables. .119

4.4 QQ-Plot of the residuals from Þtting equation4.1122

4.5 Q-Q Plot of the residuals from Þtting equation4.2124

4.6 Q-Q Plot of the residuals from Þtting equation4.3128

5.1 Distribution of the Unweighted Individualized Congruence metric,UIC ,
across selected projects in the GNOME ecosystem.150

5.2 Distribution of the Weighted Individualized Congruence metric,WIC , across
selected projects in the GNOME ecosystem.151

5.3 Overall network congruence for the project ÒRhythmboxÓ using the com-
plete formulation ofT D and no errors in the network..160

5.4 Overall network congruence for the project ÒBeagleÓ using the complete
formulation ofT D and no errors in the network..161

5.5 Overall network congruence for the project ÒRhythmboxÓ using the pro-
gressive formulation ofTD and no errors in the network..165

5.6 Overall network congruence for the project ÒBeagleÓ using the progressive
formulation ofTD and no errors in the network..166

5.7 Difference between progressive and complete formulations ofTD for ÒRhythm-
boxÓ. .167

5.8 Difference between progressive and complete formulations ofTD for ÒBea-
gleÓ .168

5.9 Landscape of ÒRhythmboxÓ with 0.80 decay at period 28.170

5.10 Landscape of ÒBeagleÓ with no decay at period 1.171

xi

List of Tables

2.1 Summary Information of Interview Participants. 24

4.1 General Description of Interviewees. 98

4.2 Major Þrms participating in the community as measured by the number of
commits to the community source code repository..103

4.3 Mean Activity per Year on Mailing Lists by Class of Developer (super-
scripts indicate statistically different groups of means in each row). 110

4.4 Mean Activity per Year in Bug Reporting Database by Class of Developer
(superscripts indicate statistically different groups of means in each row). . 112

4.5 Mean Activity per Year in CVS Repository by Class of Developer (super-
scripts indicate statistically different groups of means in each row). 112

4.6 Summary Statistics of Data Collected from 14 projects at 8 week intervals
(601 total observations). .115

4.7 Correlations of Data Collected at Project Level afterlog transformations.. . 115

4.8 Hypothesis1 and2 Ð Regression coefÞcients predicting change in number
of volunteer developers by project (equation4.1)121

4.9 Hypothesis3 Ð Regression coefÞcients predicting change in number of vol-
unteer developers by project broken up by Þrm model (equation4.2) 123

4.10 Hypothesis4 Ð Testing for issues of cognitive complexity through the anal-
ysis of effect of commercial developers at the module level with pooled
commercial participation. .127

4.11 Hypothesis4 Ð Testing for issues of cognitive complexity through the anal-
ysis of effect of commercial developers at the module level. 129

xii

5.1 Correlations between control variables for regression in Open Source. . . . 146

5.2 Regression Analysis of STC in Open Source.148

5.3 Simple Regression Using Unweighted Individualized Congruence. 153

5.4 Simple Regression Using Weighted Individualized Congruence. 153

5.5 Regression using unweighted individualized congruence with numerator
and denominator separated. .154

5.6 Regression using weighted individualized congruence with numerator and
denominator separated. .154

5.7 Regression using unweighted individualized congruence with numerator
and denominator separated and extra communication included. 155

5.8 Variables ModiÞed to Test Network Stability. 100 simulations were done
on each point in a full parameter sweep, resulting in 128,000 simulations
per project. .159

5.9 Relation Between Congruence Using CompleteTD Formulation With Error
and Unperturbed Network. .171

5.10 Relation Between Congruence Using ProgressiveTD Formulation With Er-
ror and Unperturbed Network. .172

xiii

Chapter 1

Introduction

Software is embedded in almost everything that uses electricity. Often it is found in places

that were once far removed from the domains of computer scientists. Devices thought of

as primarily mechanical, such as automobiles, now contain millions of lines of code devel-

oped by thousands of software engineers[7, 43]. Traditionally passive receiving devices,

such as televisions and phones, now routinely run operating systems designed for desktop

computers. Faced with increased customer expectations for rich environments and increas-

ing complexity of software, many Þrms have sought out pre-developed components that

can easily be linked together, an no where is the supply of components richer, or more

accessible, than Open Source software[6, 77].

1

CHAPTER 1. INTRODUCTION

1.1 A Brief History of Open Source

The roots of Open Source software go back to the dawn of the computing era. With early

computers, the value of the machine was largely placed on the hardware around the ma-

chine, and the software was often given away or shared very liberally. One of the most

prominent examples of this was the distribution of Unix from AT&T Bell Labs[73]. When

AT&T Þrst made Unix available, it was provided on a single magnetic tape that included

the entire source code to the operating system. Unix was notable because it was written in

a new machine independent programming language, C. This innovation allowed computer

operators to enhance the operating system and share the changes with their friends and

colleagues[73, 92].

In the 1980Õs the market for proprietary Unix and Unix-like operating systems began

to emerge from companies like Sun, DEC, and HP. At the same time, however, Richard

Stallman was laying the foundation for the Free Software movement through the creation

of the GNU C Compiler (now renamed to the GNU Compiler Collection and referred to as

GCC) and EMACS, a powerful and extensible text editor[103, 104]. Rather than licensing

the software under traditional licenses, which prohibited replication and redistribution, the

licenses of software from the Free Software Foundation, such as the GNU General Public

License[32], actively promote redistribution of the software Ð with the caveat that if you

modify and redistribute the software, you must make your modiÞcations available under

the same license. For his innovation in creating and distributing software, Richard Stall-

2

CHAPTER 1. INTRODUCTION

man was recognized with a MacArthur foundation ÒgeniusÓ grant. A nascent community

formed around the Free Software Foundation and the project advanced slowly, but individ-

uals were still forced to run software from the Free Software Foundation on proprietary

Unix platforms[130].

It wasnÕt until a young Finnish student, Linus Torvalds, made the code for Linux, his

personal Unix-like operating system, Linux, freely available under the GNU General Public

license in 1991 that the Free Software Movement really took off. The components were

now in place for a complete operating system and development environment that had zero

monetary cost and was freely redistributable. Over the next six years the community around

Free Software grew dramatically, thanks in large part to the selection of least common

tools for developers and the growing prevalence of internet access for university students

and technically inclined home users. Several companies began to Þnd ways to eek out

a niche business in the emerging Open Source market. Primarily these businesses were

repackaging that software to make it easier for consumers to use[134]. The overall market

for Free Software was still very small.

In early 1998, however, everything changed. In a surprise announcement, and largely in

response to increasing competition from Microsoft, Netscape announced that they would

release the entire source code to their Netscape web browser under a license similar to

the GNU General Public License. NetscapeÕs reticence to utilize the license of the Free

Software Foundation highlighted key issues related to corporate adoption of Open Source;

the term ÒFreeÓ, and the requirement that modiÞcations to the source code be redistributed

3

CHAPTER 1. INTRODUCTION

under the same license as the original software. A group of luminaries in the community

were summoned together and the term ÒOpen SourceÓ was created as a more palatable term

that brought together almost all software that had source code freely available[117]. This

change in terminology not only made the concept more acceptable to commercial endeav-

ors, but also helped solidify the community as large projects like the Apache web server

and FreeBSD were available under licenses that in many ways were more liberal than Free

Software, but lacked the requirement that modiÞcations to the software be redistributed

under the same license.

The open sourcing of NetscapeÕs browser source code was largely a disaster Ð it was

several years before Netscape managed to ship a browser based on the released source

code, by which time Netscape had been purchased by AOL and ceded the Òbrowser warÓ to

Microsoft. This wasnÕt because of a general repulsion to Open Source, but more because as

the Þrst large scale commercial project released as Open Source, there was no predecessor

to base decisions on. Large issues were not addressed that today are second nature, such as

ensuring the code can easily compile for home users, establishing public forums, and not

requiring access to proprietary tools [80].

Despite the initial failure of Netscape to capitalize on Open Source, the movement

continued to grow. Some of the biggest IPOs of the dot-com boom of the late 1990Õs, Red

Hat and VA Linux, had business models that built directly on Open Source. Established

tech giants began to take advantage of Open Source projects to build their own product

lines. In June 1998, IBM made the announcement that the web server component of their

4

CHAPTER 1. INTRODUCTION

WebSphere line of products would be the Apache web server. In their rationale for the

adoption, IBM representatives explained that the Apache web server was a high quality

project, and it made little sense to continue to develop their own proprietary solution when

it was not the primary value driving component of WebSphere[12, 53]. This was an early

example of what would soon become a broad industry trend Ð the utilization of Open Source

technologies to serve as critical components in commercial products across many sectors

of the economy[5, 41].

The market has continued to evolve, and Open Source plays an even more critical role.

In addition to Open Source being wildly successful on Òback-endÓ server processes, many

desktop applications are based on Open Source technologies. The Firefox web browser, is

the heir to the code Þrst released by Netscape in 1998. AppleÕs Safari web browser, avail-

able on Mac, Windows, and mobile phones, GoogleÕs Chrome browser, and AdobeÕs AIR

environment are based on the Open Source web browser Konqueror. Eclipse is one of the

dominant integrated development environments for software engineers, openly challenging

Microsoft for the most popular development environment[37] and OpenOfÞce.org produces

a completely Open Source suite of ofÞce programs that provides most of the functionality

of MicrosoftÕs OfÞce suite of programs.

Parallel to the evolution of project source code, the communities around Open Source

continue to evolve and adapt. In the 1990Õs communities around Open Source projects were

almost entirely volunteers[71]. Collaboration was done almost exclusively over project

mailing lists[44, 132]. High status in the projects was earned through a meritocratic sys-

5

CHAPTER 1. INTRODUCTION

tem that rewarded the best contributors to the ecosystem. As commercial interest in Open

Source communities increased in the early part of the 2000Õs and tools for creating rich ex-

periences on the world wide web . The community also grew. Many projects now feature

user-friendly web forums where users can easily post questions and receive answers. One

of the best examples of this evolution in tools is the suite of tools provided by Canonical to

support the Ubuntu distribution of Linux[11]. These tools include many of the traditional

Open Source tools, but also a framework called Launchpad that uniÞes source code man-

agement, bug tracking, and software distribution. Strategic use of these tools and a strong

focus on the community have allowed the company to quickly expand to $30 million in

annual revenues with only about 200 employees[9, 121].

The community around the Eclipse Foundation is another excellent example of a com-

munity that has evolved and is pushing Open Source in new directions. While many por-

tions of the project operate as a traditional Open Source project would, the community

actively recruits new Þrms to join the foundation and has instituted a rigorous intellectual

property review process. This process serves to ensure that all code contributed to Eclipse

can be legally used and helps to provide a guarantee to commercial partners building on the

Eclipse framework[109].

6

CHAPTER 1. INTRODUCTION

1.2 Academic Research on Open Source

There has now been substantial research on Open Source. It can be categorized into two

broad groups: research utilizing Open Source as a convenience sample for research on

software development and research on the processes and phenomenon of Open Source. For

the purposes of this thesis, which seeks to better understand the processes that underlie

Open Source software development, the latter category is of much greater relevance.

Upon initial observation, Open Source appears to Þt a classical ÒTragedy of the Com-

monsÓ paradigm. Individuals need not contribute to extract value from the completed soft-

ware, therefore, few, if any individuals will contribute[45]. Much of the early research

on Open Source sought to address this issue by attempting to understand the motivations

of individual developers and the process by which such software is created. In 1997 Eric

Raymond, an Open Source developer and lead of the project ÒfetchmailÓ Þrst began to for-

malize some of the differences that made Open Source successful in a document that later

became ÒThe Cathedral and the BazaarÓ. Raymond noted that much of the success of Open

Source, which at the time was very minor relative to the success it enjoys today, was due to

the organizing principles of Open Source software and the way that it allows many people

to do small amounts of self-directed work. Although based only on his observations as an

Open Source developer, as one of the earliest works analyzing the Open Source movement,

it remains an important contribution to the Þeld[93].

The work of Raymond laid the foundation for additional practitioner/researchers to

7

CHAPTER 1. INTRODUCTION

write about their experiences in Open Source projects. Senyard and Michlmayr expanded

on the work of Raymond and described the attributes necessary for a successful Open

Source project. They found that more than just a ÒbazaarÓ was necessary for project suc-

cess. Rather, they posited that strategic initial architectural decisions are necessary to drive

the diverse innovations that lead to a successful project. In particular, projects should

be modular to maximize the degree to which individual developers can work on discrete

components[101]. The importance of modularity in Open Source was also found by Mac-

Cormick in his study of the Netscape web browser and Linux Kernel[66]. Much of this

research echoes the ideas originally put forward by Parnas in his original argument for

modularity and information hiding in software engineering[87].

Mockus, Fielding and Herbsleb performed one of the Þrst broad analyses of how Open

Source communities function when they examined the processes behind the Apache Soft-

ware Foundation and the Mozilla project. They found that although there is a robust process

of cooperation in most Open Source projects, there was great inequity in the distribution of

work. Within Apache 85% of the work was performed by only 15 people, while there were

hundreds of individuals with only small contributions to the project[75].

Some research has also attempted to bridge the worlds of Open Source and models of

team work from organizational behavior literature. Crowston et. al. proposes a model

of hierarchical participation, with varying levels of core developers, co-developers, active

users, and passive users[18]. Beyond this, much research has addressed issues with the

public goods nature of Open source and considered why under-provision is not more com-

8

CHAPTER 1. INTRODUCTION

mon in the community. Von Hippel and von Krogh address this question by speculating

that Open Source implements a hybrid cooperation model dubbed the Òprivate-collectiveÓ,

where innovation happens at an individual level, but is then shared with the collective

community[124]. This view is shared by Osterloh and Rota who speculate that the success

of such a collective is due to the norms of the communities and licensing of the software,

but they caution that development in patent law may hinder future growth[86].

SigniÞcant research has also been done on the population of developers who participate

in Open Source projects. However, much of this research is reliant on the belief that most

Open Source developers are volunteers. Lakhani and Wolf conducted a survey of 684 devel-

opers in 287 different projects where it was found that intrinsic enjoyment of participating

in Open Source software was a primary driver of participation[62]. Ghosh et. al. conducted

a much larger survey of Open Source developers in which any individual was allowed to

participate. Their work found that for many Open Source developers patterns of behavior

resembled those of hobbies and other activities driven by intrinsic motivations. However,

they did Þnd a small number of developers for whom their activity strongly resembled that

of professional developers[40]. Additional research examined learning as a primary mo-

tivating factor for many developers[133] and suggested that Þnancial compensation was a

low priority[3].

Ideology of individual developers has also been identiÞed as a key component of partic-

ipation in Open Source. Many developers cited their ÒbeliefÓ in Free Software as a motivat-

ing factor participation[40]. Research by Stewart and Gosain found that Open Source teams

9

CHAPTER 1. INTRODUCTION

may be too adherent to social norms of not forking source code, and therefore wait until

the team achieved consensus before taking actions. Likewise, they found that teams that

stressed the ÒfreedomÓ of using Open Source were likely to encourage individuals to par-

ticipate in the broad community, rather than focusing their time and skill on a smaller set of

projects[106]. These Þndings echoed evidence from Kogut and Meitu that the governance

of projects effectively discourages forking and helps to enforce a consistent ideology[58].

Further research by Stewart et. al. found that projects with more liberal Open Source

licenses, typically those that stress the ÒfreedomÓ aspect of Open Source less, attracted

greater interest[105].

In a similar vein to the survey work and broad community analysis, Madey et. al.

analyzed the community around SourceForge.net, the largest Open Source project hosting

website, to generate large scale social networks of project membership in the Open Source

community. Their analysis found that projects attracted developers in a pattern that roughly

followed a power law distribution, with many projects that had only a single developer and

very few projects with many developers[67]. Crowston and Howison performed a more in

depth analysis of 120 projects hosted on SourceForge and found that while large projects

do exist within the community, individual developers frequently serve the role of linchpins

for large amounts of participants on the periphery of the community[19].

More recently, research has examined how economic incentives and commercial Þrms

play a role in Open Source participation. Lerner and Tirole speculated that participation

in Open Source acted as a signaling effect for potential employers Ð giving a developer a

10

CHAPTER 1. INTRODUCTION

chance to display and improve their skills beyond what would be possible in more con-

ventional a work environment[64]. Mustonen proposed that developers in open source

communities extracted economic beneÞts from their jobs and that this recognition fed back

into the projects[78]. Roberts et. al. followed numerous developers in the Apache Software

Foundation and found that developers who were elevated to the status of Apache Software

Foundation Member, were likely to receive increased compensation from work[96].

As the Open Source movement has grown, so to has the commercial interest in Open

Source. While at Þrst commercial ventures and Open Source may be at odds, there are

many ways in which they compliment one another. Von Hippel examined Open Source

communities and proposed that commercial organizations could beneÞt from allowing user

communities to innovate on top of commercial solutions, drawing a parallel to individ-

ual developers testing out new ideas on small sections of Open Source project code[122].

Mockus et. al. proposed that hybrid commercial/Open Source projects can be success-

ful, but they need to adopt Open Source strategies of small teams and well componentized

structure for maximum success[75].

OÕMahony addressed some of the tension between Open Source projects and commer-

cial Þrms. She speculated that Open Source projects chose to band together in a foundation

because of the increased protection for trademarks and project code that the pooled re-

sources of a foundation would have against possible exploitation by commercial Þrms[82].

West and OÕMahony presented research on spinning out Open Source projects from pre-

viously proprietary code, a trend that continues to develop and gain momentum. They

11

CHAPTER 1. INTRODUCTION

contrast commercially created Open Source with community created projects and note that

while commercial projects are more likely to have adequate resources for project infras-

tructure and marketing, they may Þnd it difÞcult to attract developers with sufÞcient skill

to work on the project[128]. Stewart et. al. examined a number of Open Source projects

and found that when a large organization sponsors a project, it will attract additional in-

terest than those without sponsors. However, they note that non-market sponsors attracted

more individuals than market based sponsors[105].

While the work of West and OÕMahony and Stewart et. al. begins to examine how

commercial interests work in Open Source environment, it focuses on single projects, and

neglects the trend toward large communities with many commercial players, such as the

Eclipse Foundation and Symbian Foundation. Indeed, as software continues to increase in

complexity and costs continue to spiral, more and more Þrms will turn to Open Source and

collaborate across organizational boundaries.

This thesis seeks to expand the knowledge around these emerging Open Source com-

munities by examining how communities with multiple commercial Þrms interact with

governance structures, amongst Þrms, and with individuals.

1.3 Overview of Thesis

This thesis presents four empirical studies that advance our understanding of Open Source

software development and the communities that build and support the software. The work is

12

CHAPTER 1. INTRODUCTION

based on the observation that many mature Open Source communities have three different

levels of players involved in the community: a non-proÞt foundation that owns the rights

to the project code and other intellectual property, Þrms that contribute Þnancially to the

project and provide developers to work on the project, and the individuals who actually

write the code and work together to make the community function.

The community around Open Source has grown to the point where many of the most

successful projects are not independent, but rather parts of large scale ecosystems guided

by non-proÞt foundations that work to foster collaboration and create value around a set

of Open Source projects. Whereas much of the prior research has focused on individual

projects or Þrms, understanding these new communities requires a holistic view of the

entire community Ð Þrms, projects, foundations, and individuals. I begin with a qualitative

study in chapter2 based on interviews with representatives of the Eclipse Foundation and

the member companies of the foundation. These interviews are analyzed to understand

what actions the Eclipse foundation undertakes to promote a healthy and vibrant ecosystem

and to foster collaboration amongst member companies.

Chapter3 presents a second empirical study on the Eclipse Foundation that examines

how Þrms actually collaborate in the Eclipse ecosystem. I use archival data from the project

source code repository and information from project intellectual property management logs

to identify which Þrms work on each project within the Eclipse ecosystem and to what ex-

tent those Þrms actually collaborate. General patterns are observed about the amount of

actual collaboration occurring in Eclipse, both in terms of number of projects Þrms are

13

CHAPTER 1. INTRODUCTION

involved with, number of Þrms involved with each project, and the distribution of con-

tributions across Þrms for each project. These results are compared with data from the

GNOME ecosystem that show a very different pattern of collaboration around core compo-

nents. This research Þlls several gaps in knowledge about Open Source ecosystems. First,

it provides an overview of contributions and collaborations across Þrms in an ecosystem,

providing a corollary to previous research on individual contributions[75]. Secondly, it

provides insight with regards to the stability of Open Source communities Ð communities

that are heavily reliant on a single Þrm face signiÞcant challenges if that Þrm leaves, while

communities that share responsibility for core components amongst many Þrms have much

higher coordination and collaboration needs.

Chapter4 reports a study of the interactions between Þrms and individuals. Although

many prominent Open Source projects began as commercial projects, there are a numerous

examples of those that began as hobbyist and non-commercial projects. When commer-

cial Þrms Þnd value in these Open Source projects previous research suggests that their

presence could either attract or disenfranchise existing members of the community. Using

a substantially volunteer community, the GNOME project, I examine the extent to which

commercial participation in an Open Source community affects volunteer participation at

both the project and module level within projects. This provides valuable insight for com-

mercial Þrms considering contributing to Open Source and also assists volunteer commu-

nity managers in understanding how best to work with commercial Þrms that have shown

an interest in their project.

14

CHAPTER 1. INTRODUCTION

Finally, in chapter5 I advance the state of knowledge of individual interactions and

cooperation by expanding the socio-technical congruence (STC) metric. I Þrst validate

the use of STC in an Open Source context, showing that when communication is aligned

with coordination requirements defect resolution time decreases, as was previously found

in a commercial context by Cataldo et. al[15]. I then explore the implications of several

modiÞcations to the metric, including weighing edges, modiÞcation of the formula, and

addition of decay metric for long term observation of projects. Finally, I perform a large

scale sensitivity analysis to understand the potential problems with collecting data from

Open Source contexts and how missing and wrongly-inferred data affect the stability and

viability of the metric.

The thesis concludes in chapter6 with a set of recommendations for individuals, Þrms,

and other organizations participating in Open Source communities

15

Chapter 2

Firms and Foundations: Guiding an

Ecosystem To Promote Value

Early Open Source projects were comprised primarily of individuals working disparately

with their own sets of goals that happened to align and form a community. Central co-

ordination was sometimes absent, or managed only by a single central individual[59, 93].

The unit of participation was the individual, regardless of whether or not they worked for

a commercial Þrm. Most of these projects had little commercial value or marketability and

therefore lacked the need for more advanced governance structures.

However, modern Open Source projects are very different. Recent acquisitions of Open

Source projects by commercial Þrms have frequently been over $100 million and Sun Mi-

croSystemsÕ purchase of MySQL was $1 billion[95]. With such high commercial values,

16

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Open Source projects have experienced a need to preserve and protect the intellectual prop-

erty for the project source code. This has led many popular Open Source projects to evolve

and adopt new forms of government. The largest communities such as Linux, Apache,

Mozilla, Python, Eclipse, and GNOME all have non-proÞt foundations that protect the

intellectual property of the project and coordinate interaction with commercial Þrms[83].

Despite this, there has been relatively little research on how these foundations interact with

Þrms. In this chapter I brießy review some of the various models of Open Source gov-

ernance that led to the creation of non-proÞt foundations. I then report on the results of

an empirical study of Eclipse, a large Open Source ecosystem with a foundation form of

governance. I identify the primary functions that the foundation performs and how those

actions serve to beneÞt the commercial members of the foundation.

2.1 Governance and Intellectual Property

Popular portrayals of Open Source have typically focused on the lone super programmer

working for long hours in isolation to create a magnum opus. This is the pattern or work

that gave rise to original versions of the GNU Compiler Collection, EMACS, and the Linux

kernel[76]. However, with very few exceptions, even the best programmers work with a

number of other individuals. Together these individuals form a community, with norms,

processes and values, and all have a stake in the development of the software and the

protection of the rights associated with the software[125].

17

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Within Open Source, the issues of governance and intellectual property are often closely

related. When starting a project, one of the Þrst decisions that is made is the license of the

project source code. Unfortunately for Open Source developers, there exists a myriad of

Open Source licenses each of which implements subtle differences and incompatibilities[98].

In addition to the choice of license, which can have a dramatic effect on the ability of a

project to attract new participants[105], projects must choose how to manage their intel-

lectual property and who will own the rights to the software[120]. Often there exists a

direct relationship between the ownership of the code and the governance structure in the

community.

There are a number of ways in which the issue of rights in Open Source software are

handled. Many smaller programs tend to ignore the rights issue all together, simply accept-

ing contributions from all individuals without performing any sort of diligence on where

the contributions came from or requiring that the participant sign over their copyright to

a controlling body. This model is very common in volunteer projects with only a single

primary developer who may not be fully aware of the legal issues around software rights

and licensing, or where insufÞcient resources exist to manage the resources[30].

Another model, which was used by Netscape after the release of the code to their

Netscape web browser, which has since provided the groundwork for the very successful

Firefox web browser, was to allow individuals to retain the rights to their code contribu-

tions and include those contributions in the distribution of the software only if they were

the same license as the rest of the code. While this provides full rights for contributors,

18

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

as they continue to own the licenses to their own contributions, it makes it difÞcult for a

project to make even small changes to its license, something that was all too apparent when

the maintainers of the Mozilla code base wished to update the licenses on the software

and many original code contributors could not be reached to verify that their contributions

could be relicensed[68].

An alternative to these two ownership models is to have a single entity own all the code

and require individuals to assign some of the rights of their code to a third party. This is

a common model for mature projects and is used in OpenOfÞce.org and by many projects

from the Free Software Foundation. The recipient organizations then agree to take a role

in protecting the intellectual property of the project and ensuring that the work remains

open and accessible for all[83]. Often times, but not always, this recipient organization is

a non-proÞt foundation.

2.2 Foundations in Open Source

Even though many of the responsibilities of an Open Source foundation are similar across

communities, they vary greatly in the degree to which they manage the activity and de-

velopment of the project. The GNOME Foundation, which oversees the GNOME Desktop

Environment, discussed in more detail in chapters4 and5, has generally taken a very hands

off stance toward project development. While members of the foundation board of direc-

tors are elected by individual members of the foundation, the board makes no decisions

19

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

regarding project code. Rather, the board manages the legal aspects of the project, ensures

the project servers remain accessible, and organizes the annual conferences. Individual

projects within the community are largely free to use their own development methodolo-

gies, release code at their own pace, and decide who can contribute directly to project

source code archives. In this way individual projects and project maintainers retain the

most control over the project. The foundation is quite small and has few employees Ð

most funds from corporations are devoted to bringing developers together to collaborate.

Membership in the foundation is merit based, reserved for individuals, and is independent

of corporate employment. The majority of the budget comes from a handful of corporate

sponsors who choose to join the GNOME foundation advisory board Ð however, this role

does not guarantee inßuence over the community.

The Apache Software Foundation (ASF), which oversees the development of the Apache

Web Server, among other projects, functions similarly to the GNOME foundation, but

also enforces some norms of software development on the projects within the foundation.

Apache has a highly developed ÒincubationÓ process for new projects, that sees potential

Apache projects mentored by experienced ASF members to ensure that development is

proceeding properly and the rules and norms of the community, such as making all deci-

sions over mailing lists, are followed[27]. However, for the most part ASF allows differ-

ent projects to decide their own direction and plan their own releases. Like the GNOME

Foundation, the ASF takes a signiÞcant leadership role in the annual conference for the

community, ApacheCon.

20

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Still other foundations focus on only a particular project, such as the Python Software

Foundation and Linux Foundation. Both of these organizations serve primarily as holding

bodies for the rights related to the software, and do very little in terms of setting devel-

opment policies. While these foundations engage in limited marketing and create focus

groups for speciÞc issues, their overall involvement with the project beyond holding the

intellectual property is minimal[83].

The Eclipse Foundation, which manages the ecosystem around the Eclipse integrated

development environment and associated tools, is the logical evolution of Open Source

foundations. Like many other Open Source foundations, the Eclipse Foundation is a not-

for-proÞt entity that has rights to the code and organizes events for the community. How-

ever, rather than working primarily with independent software developers and having mem-

bership comprised of individuals, members of the Eclipse Foundation are corporations and

institutions. Individuals representing those entities are the ones who do the primary work.

In this way, Eclipse has an explicit commercial focus that other communities typically do

not[110]. It also reßects the commercial success of the Eclipse Foundation[37, 42]. It is

precisely this interaction between the not-for-proÞt foundation and the Þrms in the Eclipse

ecosystem that is interesting, because of itÕs uniqueness, strength, and the fact that it serves

as a role model for other Open Source foundations, such as the Symbian Foundation.

While there exists some literature on the role of foundations in Open Source [82, 83,

128], there is little research on how foundations interact with commercial Þrms in Open

Source ecosystems. Given the prominence of Open Source foundations which focus on

21

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

corporate members rather than older models of individual membership, such as the Eclipse

Foundation, Linux Foundation, and LiMo foundation, it is critical to understand how these

foundations operate and how they provide value to member Þrms, which often must pay

substantial membership fees. This chapter seeks to understand how an Open Source foun-

dation attracts members, develops members, and provides continuing value for members

through an empirical study of the Eclipse ecosystem.

2.3 Description of Data

To better understand the Eclipse ecosystem, a combined qualitative/quantitative strategy

was pursued. The qualitative component of the research consisted of 38 interviews with

40 individuals employed by member companies of the Eclipse Foundation and the Eclipse

Foundation itself. These interviews began in November 2006 and the Þnal interview was

conducted in July 2008. A snowball sampling strategy was used beginning with individ-

uals employed at the Eclipse Foundation, including the executive director and directors

of marketing and ecosystem development. Introductions were graciously provided by the

executive director of the Eclipse Foundation and served to open doors to additional com-

panies and individuals. After the Þrst round of interviews concluded in 2007 we went back

to the Eclipse Foundation for followup interviews and to obtain introductions to several

Þrms that we had previously been unable to contact. Interviews were typically done via

22

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

telephone and consisted of the researchers and a single interviewee1.

Additional individuals were interviewed using opportunistic sampling at the 2007 and

2008 EclipseCon conferences in Santa Clara, CA. This three day gathering of the Eclipse

community consists of technical presentations, training sessions, formal membership meet-

ings, an exhibit ßoor, and a small store marking Eclipse books and products. This confer-

ence is typically attended by approximately one thousand individuals Ð a signiÞcant portion

of which are developers who write the code that makes up the Eclipse ecosystem. At this

conference efforts were made to seek out individuals that represented view points that we

had thus far been unable to locate. Much of this was done through the use of Òtopic tablesÓ

at lunch, and strategically attending sessions presented by individuals who may prove help-

ful. A handful of informal interviews were conducted at EclipseCon, these interviews were

not recorded, but extensive notes were taken. The remainder of the individuals identiÞed at

EclipseCon were scheduled for telephone interviews at a later date. A table summarizing

the interviewees is presented in table2.1. Some interviewees were interviewed multiple

times, and a handful were group interviews.

Finally, I have attended and presented at the Eclipse FoundationÕs annual membership

meeting. This afforded a chance to present preliminary Þndings and obtain feedback on

many of the ideas and conclusions resulting from this research. The membership meetings

serve a variety of purposes in the community including introducing new members, review-

1There were two interviews in this set that had multiple interviewees in a single interview. Although this
was a deviation in our sampling and interviewing strategy, the value of the information from the perspective
of those companies was judged to be more valuable than the potential damage to the interview strategy.

23

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Table 2.1: Summary Information of Interview Participants

Total Interviewees 40
Total Interviews 38
Telephone Interviews 24
In-Person Interviews 14
Number of Firms 15
Developers 24
Executives 6
Other Role 8
Volunteers 1

ing the goals of the boards and councils that make up the Eclipse Foundation, and voting on

any changes that require ratiÞcation by members of the Eclipse Foundation. The meeting

at EclipseCon is the primary in-person membership meeting, with other meetings taking

place via teleconference. Minutes of meetings are made available on the project web site,

allowing me to review meetings that I was unable to attend.

2.3.1 Interview Methodology

Telephone interviews were scheduled at the convenience of the interviewee and usually in-

volved at least two researchers taking notes2. In-person interviews were conducted on-site

at EclipseCon with only the interviewee and author. Interviews were semi-structured with

a set of general background questions about the interviewee and their role in the Eclipse

process asked of all interviewees. Some of the commonly asked questions were:

¥ How did your organization decide to start contributing to Eclipse?

2One interview with a volunteer in the Eclipse community had only one researcher, the author.

24

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

¥ What are the major ways that your organization contributes to the Eclipse project?

¥ How does your organization decide what to contribute as Open Source code to Eclipse

and what to keep proprietary?

¥ How do you work with your competitors in Eclipse?

¥ How do you work with IBM in the Eclipse Ecosystem? If youÕve worked with other

large vendors of development environments (e.g. Microsoft), how does this experi-

ence differ?

¥ In what ways does your organization work with Eclipse Foundation?

¥ What are the beneÞts of being a member of the Eclipse Foundation?

¥ How does your experience in the Eclipse foundation compare to experiences in other

Open Source environments?

¥ How do the Ò4 valuesÓ of Eclipse affect your organization?

At the end of the interview each interviewee was given a chance to bring up any addi-

tional issues they believed would be helpful for our research. Each interviewee was also

asked if there were other individuals who we should seek out for feedback and additional

interviews and if they would be willing to provide a letter of introduction. While this biased

the sample in favor of social contacts, it also dramatically increased the response rate and

success of the study relative to contacts without such direct introductions.

Interviews were recorded and coded based off the notes and recordings. Where needed,

portions of the interviews were transcribed for further analysis. Coding of interviews was

25

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

broken into several categories corresponding to major themes of the interviews:

¥ Central Functions: General functions that Eclipse Foundation fostered for the com-

munity. Major sub-categories were governance, enforcement of rules, roadmap-

ping/planning, and other (fund-raising, marketing, etc).

¥ Distributed Functions: Functions that were important for the Eclipse ecosystem, but

generally done with little intervention from the Foundation, such as creation of code,

Þrm and project selection, selection of committers.

¥ Business Strategies: Ways in which the Þrms participating in Eclipse can extract

value from the ecosystem. Major sub-categories were product strategy, what to re-

veal, selection of project, how to make money, and other beneÞts and competitive

tactics.

After coding of interviews, the data were analyzed for trends across interviewees with

special focus paid to sections of the interviews that discussed the relations to the Eclipse

Foundation. The major aspects of this relationship were found in three different major cat-

egories: the design of the Eclipse Foundation and community around it, the stated purposes

of the Eclipse Foundation, and the actions that the Eclipse Foundation undertakes to drive

value to member companies. In the next sections I examine how interviewees viewed each

of these topics.

26

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

2.4 Community Design in Eclipse

Initially, the community around Eclipse was not much different than a standard industry

consortium. In 2001 when IBM Þrst released the code to Eclipse to the world, they sought

to create a community around the project, the Eclipse Consortium. The Consortium was

structured in a way that reßected the license of Eclipse at the time, one which allowed

anyone to utilize the code to Eclipse and to freely expand it. The initial members of the

consortium were primarily Þrms that had previously been involved with IBMÕs suite of

VisualAge tools and were already active in IBMÕs developer ecosystem. For many of the

smaller members of the Consortium the change to this open model was viewed as a great

success that would give them better access to the internals of IBMÕs tools and allow them

to better compete with larger competitors. Larger Þrms also saw beneÞts in the consortium

construction as it allowed them to easily access all of the code for Eclipse under a single

uniform license, without the need to relicense differing parts of code for further releases.

At the dawn of the consortium, the code was 100% created by IBM and IBM retained

the rights to lay out the roadmap for the project and approve the architecture of the project,

in a very similar manner to their previous ecosystem with the VisualAge suite of tools. A

major change, however, was the newly found ability of Þrms to contribute directly to the

Eclipse code. Rather than requesting an API modiÞcation or enhancement and waiting and

in the hope that IBM would see Þt to create the enhancement, Þrms were free to implement

the modiÞcation themselves and then submit the changes back to IBM for inclusion into the

27

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

main code tree for Eclipse. Furthermore, the licensing agreement allowed Þrms to begin

these efforts and distribute these efforts without permission from IBM Ð allowing greater

innovation to occur at a more rapid pace. As one executive of an early participant in the

community put it, ÒThe Open Source license of Eclipse allowed us to have just one license

agreement for everything and not [individually] negotiate a license.Ó

While the license allowed Þrms to avoid the pain of individually negotiating licenses

for every project, there were still signiÞcant issues with the license and the structure of the

community. The license under which the Eclipse code was released, the IBM Common

Public License, contained several terms that individuals found difÞcult to handle, including

a patent grant clause that required contributors to grant an unlimited royalty free license to

portions of their code they contributed to Eclipse. There was also some confusion amongst

early Þrms in the consortium about the requirement to assign copyright to IBM for the

pieces of code they contributed. It is not clear whether this was ever a formal policy of IBM,

but an individual who had been involved with Eclipse since well before the Consortium

was founded indicated that IBM requested copyright assignment because of the nature

of their business around the Eclipse project which was substantially different from other

Open Source business models of the time that primarily consisted for redistributing and

repackaging Linux3. IBMÕs strategy was to build upon the Open Source project and sell it

3The Linux Kernel is licensed under the GNU General Public License, version 2. This license allows
individuals to make any changes they wish to the code of a software project, however if the modiÞed version
of the project is distributed the source code to those modiÞcations must also be included. This is in contrast
to other more Òbusiness friendlyÓ licenses, such as the Apache Software License and the BSD license that
allow a company to redistribute a modiÞed version of the software while keeping the source code to those
modiÞcations private. The early license of Eclipse, the IBM Common Public License did allow commercial
use and sales similar to the Apache license.

28

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

as a greatly enhanced tool in WebSphere developer studio. Ownership of the copyrights to

all code was seen as a step that would make distribution of the modiÞed product easier.

In addition to issues with licensing, the original structure of the Eclipse Consortium

placed IBM at the top of the hierarchy and afforded IBM the ability to road map the product

and decide on all architectural innovations. According to one participant it Òseemed just

like the old model of working with IBM, except now there was only one license. We still

lacked a say in the direction of the project and were subject to [IBMÕs] whimsÓ. In response

to many of the issues raised by members of the Eclipse Consortium and the changing

models of Open Source governance, in 2004 IBM shepherded the Eclipse Consortium in the

transition to the Eclipse Foundation. This change addressed both issues of governance and

ownership in the Eclipse community by creating the new Eclipse Foundation and making it

the ultimate arbiter of the community. In this process all of the intellectual property rights

of the Eclipse code base which had previously been vested with IBM and internally valued

at more than $40 million were donated to the new foundation[131].

The new foundation adopted a hierarchical structure guided by a board at the top level

with a series of councils and boards underneath. At the top level, the Eclipse Foundation

Board was composed of designated members from Foundation member companies Ð pri-

marily companies that were contributors at the highest strategic level. A smaller number

of individuals were elected by the lower level member companies and to represent to the

committers who wrote code for the project. Beneath this are three primary councils - the

requirements, architecture, and planning council. As deÞned by the Eclipse foundation,

29

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

their purposes are as follows[112]:

¥ Requirements:The Requirements Council is responsible for capturing and organiz-

ing requirements for all of the projects in the Eclipse community. The Requirements

Council reviews and categorizes all of these incoming requirements - from all res-

idents of the Ecosystem - and proposes a coherent set of themes and priorities that

drive the roadmap.

¥ Planning: The Planning Council is responsible for establishing a coordinated Plat-

form Release Plan that supports the roadmap, and balances the many competing re-

quirements. The Platform Release Plan describes the themes and priorities that focus

these Releases, and orchestrates the dependencies among Project Plans.

¥ Architecture: The Architecture Council is responsible for the long-term technical

health of the Eclipse platforms and frameworks. More explanation of the Architec-

ture Council can be found in the Eclipse Development Process and in the guidelines

and checklists for the Architecture Council.

It is worth noting the composition of these councils that direct the community. The

requirements council is composed entirely of individuals representing strategic developers

and the Eclipse Foundation. The planning council which has a slightly more technical role

still has many representatives of strategic developers, but also an individual from each of

the project management committee from each top level project. Finally, the architecture

council, which handles very in-depth technical issues and mentors upcoming projects has

a small number of representatives from strategic developers, with many appointed repre-

30

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

sentatives from add-in providers to ensure expertise over the complete ecosystem. Inter-

viewees believed this led to a much more open and accessible community. However, it

did incur more work for the individuals in the community, leading to additional stresses

especially upon smaller Þrms which may have executive ofÞcers as their representatives on

the various boards.

At a more technical level, each of the projects within Eclipse is managed by a Project

Management Committee (PMC). The PMCs serve to ensure that a project is healthy and

guide the project in its development. The initial lead for new PMCs is appointed by the

board and that PMC lead then selects the initial members of the PMC. Additional people

can be added to the PMC by a unanimous vote of the existing PMC members. All PMCs

must operate under the rules of Open Source engagement which stress meritocracy, trans-

parency, and open participation as primary values[114]. These values mirror the values of

the Eclipse Foundation itself and will be discussed more in section2.5.

Perhaps one of the most remarkable aspects of this transition is that rather than evolving

organically, the community around the Eclipse Foundation was planned from the begin-

ning and it has managed to continually release and improve upon itself since its genesis.

In contrast, many of the most prominent Open Source communities have evolved organi-

cally, adding structure over time as they needed it. The communities around Apache and

GNOME both have exhibited such development[38]. As a result of this organic growth, in

those communities the development methodology drives the foundation and the rules and

values are embedded in the development community rather than codiÞed in the foundation

31

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

as is the case with Eclipse. This design strategy is very similar to the strategy employed

by various projects from Sun MicroSystems, speciÞcally around the OpenJDK and Open-

Solaris communities, however, those communities have not ßourished to the degree of the

Eclipse community4.

2.5 Dominant Purposes of the Eclipse Foundation

The foundation operates using two major tools to guide its evolution and the evolution of its

partner companies: a set of four core values of the Eclipse Foundation and an Open Source

Maturity Model from Carleton University[13]. Those values as enumerated by foundation

chair Mike Malinkovich are brießy described as follows:

¥ Openness - the code and all other artifacts for the project are available for examina-

tion and use by anyone

¥ Transparency - all decisions within the project are recorded and available for public

review.

¥ Meritocracy - roles within the project are given on the basis of contributions directly

to the project and not on any other criteria.

¥ Permeability - projects are open to new ideas and implementations

4Sun MicroSystems hosts a variety of Open Source projects including the very successful MySQL and
OpenOfÞce projects. The OpenJDK and OpenSolaris communities are fairly new projects and rather than
allowing a community to grow organically, they took an approach similar to Eclipse and mandated a structure,
however lacking a community to initially participate, these communities have quickly become bogged down
in bureaucracy their success is not certain.

32

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Each of these four values were enforced through a set of rules and conventions given to

projects and member companies in the Eclipse ecosystem. While most of the time projects

had little problems following these rules, members of foundation pointed out that the foun-

dation had the Òultimate stickÓ of expulsion from the community.

One of the biggest problems that Þrms raised about the four values is that they are, to

some degree, in opposition to many forms of business. For example, almost every Þrm that

marketed products based on Eclipse described an internal struggle to decide what was going

to be open source and what would remain proprietary. On the one hand, Open Sourcing a

component could give the business a great competitive advantage by allowing that Þrm to

dictate the direction of Eclipse for a small component. However, if they chose not to donate

the code, there was the possibility of monetizing the code either as an independent project,

or as part of a larger software release.

While many of the interviewees were familiar with the four values of the Eclipse Foun-

dation and sought to work them into their daily practices, the relationship to the Open

Source Maturity Model[13] was a bit more diffuse. The model, pictured in Þgure2.1

tracks the progression of Þrms those that deny the use of Open Source to those that utilize

Open Source to redeÞne the market place and provide additional value to their customers.

The model proposes six different levels of Open Source use and adoption and positions

bubbles for each level to indicate rising commitment and proÞt from Open Source utiliza-

tion. The assumption is that Þrms gradually move from the lowest level to the highest level

as a natural progression of their exposure and use of Open Source. At the lowest level are

33

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Figure 2.1: The Open Source Maturity Model[13]. Employees of the Eclipse
Foundation frequently talk of working with member companies to advance them
to higher levels of membership.

34

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

those Þrms that use no Open Source and deny its impact on their company. The next three

levels are organizations that utilize Open Source software and contribute back to the project

communities, but are doing so mainly out of pragmatic development reasons. After a pe-

riod of simply using the software, Þrms begin to contribute to the software so the software

addresses more of the concerns of that Þrm. After contributing, a Þrm at stage three begin

to champion support of the project and build an ecosystem around the project.

Moving beyond simply using the software, at the strategist level executives in a Þrm

have committed to making Open Source a major focus of their business strategy. For ex-

ample Sun MicroSystems and their commitment to making Java and the Solaris operating

system Open Source may be considered a strategist in the model. At the highest level

are the Þrms that have adopted an aggressive strategy for Open Source and leverage par-

ticipation across multiple projects and ecosystems, seeking synergies to extract multiple

value from their participation. According to the model author, very few Þrms Þt into this,

however, IBM, the original benefactor of Eclipse is perhaps the best example.

Although this model was frequently highlighted by employees of the Eclipse Founda-

tion in presentations and meetings, many employees of member companies seemed un-

aware of it. Of those that were aware of the model, two Þrms self-described their pattern of

action as one that is moving through different stages of the maturity model, none said they

felt that the Eclipse Foundation itself was pushing them. A large Þrm that several years ago

had no relation to Open Source but now self-identiÞed as being between ÒstrategistÓ and

ÒaggressiveÓ on the model indicated that their movement between different levels wasnÕt

35

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

because of the FoundationÕs actions but because of the changing market and the way that

the Foundation had pushed Eclipse to become the dominant tool set for Java tools.

2.6 Driving Value Creation

Membership for commercial Þrms in the Eclipse Foundation costs between $5,000 and

$500,000 a year, plus a possible commitment of developers to work on Eclipse related

technologies. A member of the Eclipse Foundation staff indicated that sometimes he was

ÒshockedÓ when less active member companies sent checks in every year. This section

examines concrete ways in which the foundation drives value for its member companies

and why, even if a company is only marginally active, they continue to be members of the

Eclipse Foundation.

2.6.1 Non-Market Player

One of the primary methods the Foundation drives value for the members companies is

through the non-market nature of the foundation itself. While it publishes Eclipse and hosts

the ofÞcial repositories for the Eclipse source code and binaries, there is no attempt to sell

modiÞed copies of Eclipse. This allows a number of smaller Þrms such as Genuitec and

Innopract to freely participate in the community by creating Eclipse ÒdistributionsÓ without

the fear of the Eclipse Foundation creating a competitive product. This is in marked contrast

to the old Eclipse Consortium structure in which IBM was actively monetizing Eclipse and

36

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

also had control of the intellectual property around the Eclipse source code. Rather, it is

nearly the same strategy that is employed around the Linux kernel, which for years was

managed through a set of ad-hoc organizations and now is formally managed by the Linux

Foundation and relies on a set of Linux distributors to package up Linux and distribute it to

users and developers.

2.6.2 Introduction of Process

A pleasant side-effect of the non-market nature of the Eclipse Foundation is that it allows

the foundation to exert quality control in a different manner than an organization controlled

by a market player. One of the key ways this is exerted is through the standard set of

processes that is mandated across all projects. By adopting a set of practices that is not

based solely off the practices of the dominant organization, the Eclipse Foundation can

ensure that all participants understand the process and no one Þrm has an undue advantage

because of the formalities of the process.

One of the major aspects of the set of processes around the Eclipse is the project men-

toring and review cycle. In order to create a new project within the Eclipse ecosystem Þrms

must submit a plan that details the functionality of the new project and lists what Þrms sup-

port the project. Although it is stated that a new project should show interest from more

than one company, in practice many projects have the entirety of their code base from a

single Þrm (more information on Þrm to Þrm collaboration is discussed in chapter3).

37

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

A recently controversial role that the foundation has been forced to take is to remove

dead projects from the ecosystem. In Fall 2008 the Eclipse Foundation chose to archive

two projects that were no longer being developed, despite the fact that there were commer-

cial application built based on the technology. However, with no one currently contributing

to the code, employees of the foundation indicated that it would be improper and not-

consistent with their process and standards to leave abandoned projects in an indeterminate

state. While controversial, this action continued to enforce the standards and norms of the

foundation and may have served as a notice for Þrms that seek to focus on commercial mar-

keting of products based on Eclipse source code without contributing to the Open Source

aspect of the community.

2.6.3 The Value of the Eclipse Brand and Joint Marketing

One beneÞt that was almost universally highlighted was the value of the Eclipse brand

name and how being a part of Eclipse allowed Þrms, both large and small to better market

their products. As Eclipse has solidiÞed its position as the dominant Java IDE, many Þrms

have adopted Eclipse technologies for their own IDEs. A representative from one Þrm

that used to ship no less than thirteen different IDEs highlighted how switching to a new

Eclipse-based framework was initially painful, as not all the custom features from each

of the older projects was available in the initial release of the new Eclipse based tools.

However, customers were quickly impressed once they heard it was based on Eclipse and

discovered that developers with skills in Eclipse could easily transfer them to the new tools.

38

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Indeed, there were several smaller companies who indicated that one of the primary

reasons for their involvement in Eclipse was to harness the power of the brand name and

the community. This was particularly common for new startup Þrms who were still seeking

to get customers. The CEO of one of these companies highlighted how his company had

an idea and the beginning of a product, but nothing they felt they could show publicly at

a large scale industry trade show. After joining the Eclipse foundation they were given an

opportunity to provide an introduction about their phone at the upcoming member meeting,

which directly led to their Þrst customer, another Eclipse member company that had heard

their introduction. In fact, four out the Þrst Þve customers for this small Þrm were as a

direct result of either presenting at the Eclipse members meeting or having their company

information available on the Eclipse website.

Members within the foundation also coordinate their marketing and market research

efforts. Early in the life of the ecosystem, much of the marketing and research was done

by consortium members who agreed to share the results with member companies that con-

tributed to the costs (time, manpower, and money) of doing the research. Once the ecosys-

tem transitioned from the consortium to Eclipse Foundation, this has become a major role

of the foundation. The foundation now conducts an annual marketing survey of users of

Eclipse to understand how the ecosystem is developing and how developers use Eclipse.

This survey, which is made available to foundation members, tracks usage of particular

components, identiÞes programming languages Eclipse is being used for, and more re-

cently has begun to address how companies are using Eclipse based technologies outside

39

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

of the IDE.

From time to time the Eclipse Foundation also promotes activities by member compa-

nies. For example, a substantial number of the member companies in the Eclipse ecosystem

focus on training either in the use of Eclipse, or how to develop using Eclipse based tech-

nologies. Several times the Foundation has coordinated global training sessions that feature

these Þrms in their local environments. A representative of one of these Þrms indicated that

the global push of the foundationÕs effort made it much easier to attract participants than if

they just ran a training session by themselves.

The foundation also organizes webinars based on particular technologies. A member

company can choose to sponsor one of these events and in exchange they receive contact

information for the participants in the webinar. Smaller companies that create developer

tools for the Eclipse ecosystem found the leads from these webinars to be particularly

helpful as they not only had a chance to introduce their product to potential users, but

also their full contact information for sales followups. Although we were not able to get

direct sales Þgures from member companies who took advantage of this, an executive at

one member company described the sales as substantial.

A Þnal common thread illustrating how the foundation supported the ecosystem with

marketing and branding is through the planning and management of the major Eclipse

conferences, EclipseCon and Eclipse Summit Europe. Obviously, these venues provide

opportunity for sponsors to market their products via sponsor booths, but a more subtle

form of marketing takes place in the technical sessions, which one interviewee termed

40

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

Òmarketing by osmosisÓ.

The sessions at EclipseCon are really important for us. Even though

weÕre not out there selling [product name], it obviously plays a role in our

presentations and we get customers through that. Last year I gave a talk

where I never mentioned [product name], but I still had an opportunity to

get new customers because people knew [company name] made [product

name], and they asked me about it.

ÐCEO of small Eclipse member company

Another representative of a Þrm that was not an Eclipse member company, but still

sent representatives to EclipseCon liked the fact that the foundation promoted interaction

amongst engineers at EclipseCon. He highlighted how this interaction between engineers

was far better than any typical marketing presentation and it made it easier for his Þrm to

identify products the would want to license for their own use and development.

2.6.4 Organizational Structure Driving Value

The original structure of the Eclipse foundation had two different ÒstrategicÓ membership

levels, strategic developer and strategic consumer. Both roles were granted seats on the

board of the Eclipse foundation, however dues were less for strategic developers as they had

an additional commitment of developers toward the project. Strategic developers always

outnumbered strategic consumers and today there is no longer a distinction between the

two roles made on the project website and most of the strategic consumers have dropped

41

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

down to add-in provider status. The strategic consumer role was originally developed to

provide Þrms who could not, or chose not, commit the developers and resources necessary

to become a strategic developer to still exercise inßuence in the Eclipse community. This

inßuence was given to them by the virtue of the board seat strategic consumers obtained. A

representative from one form strategic consumer highlighted some of the reasons why this

may have not worked as well as Þrst thought:

The role was supposed to give us additional access and help steer the

Eclipse ecosystem. But in the end, it never did because we never had the

developers to contribute to get things done.

ÐFormer Strategic Consumer

This perception that the roles within the ecosystem cannot be bought relates strongly

to the meritocracy value of the Eclipse Foundation. It provides a sense that everyone is

playing by the same rules and acts as an equalizer for small Þrms, so they need to not be

as concerned that a large Þrm will try to swoop into the community and adversely affect

the direction of the Eclipse ecosystem. However, one individual from a large corporation

indicated frustration at the fact their voice was only heard in proportion to their contribution

to Eclipse, and not to their overall market inßuence. He believed that his Þrms expertise in

the broader market could be beneÞcial to the Ecosystem, but because they were only lightly

involved with Eclipse, they were largely ignored.

42

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

2.6.5 Platform for Innovation

Perhaps the biggest change that the Eclipse ecosystem has experienced is the switch from

being a community around a single product, the Eclipse IDE, to being a community around

a platform, Eclipse and associated technologies[131]. This development is partially the

logical extension of building a community around the Eclipse IDE and partially a result of

the hard work of the Eclipse Foundation in attracting Þrms that are willing to extend Eclipse

in new ways. An interviewee from a Þrm that was working with a Þrm that was working

in a completely novel space highlighted the ecosystem and the platform as a major reason

why they chose to work within the Eclipse ecosystem rather than working with another

community, such as Apache. One of the greatest advantages of this for the small Þrm was

that their participation in Eclipse opened up the possibility to partner with other much larger

Þrms, such as BEA and IBM, that otherwise would have been difÞcult with a startup.

The structure of the ecosystem also encourages innovation, as demonstrated by the

ability of individual developers and Þrms to create projects independently and then bring

these projects into the main fold of the Eclipse Ecosystem. A prime example of this is the

work done in Eclipse plug-in central (EPIC), a repository of add ons for developers using

the Eclipse IDE. This project was originally developed by a coalition of a few small Þrms

as a way to market their own products and allow potential customers to learn about their

product. As EPIC matured and became more popular it was brought into the main Eclipse

infrastructure as a critical component. The original developers believed that their work still

provided them a competitive advantage.

43

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

However, the innovation in creating new projects for the ecosystem pales in comparison

to the innovation in taking portions of the platform and utilizing the technology in new

ways. Eclipse is one of the most complex Java programs available and many of the core

components of the system are not standard components of the Java programming language.

Many of the components and technologies that were originally created for Eclipse have

been extracted into independent projects allowing the technologies to be brought to new

markets and new companies to form around them.

A primary example highlighted by interviewees was the Eclipse Rich Client Platform

(RCP). One interviewee in the mobile device Þeld expressed excitement about his ÞrmÕs

future involvement with the Eclipse Foundation. He believed that the previous generation

of mobile phones were constrained by relatively primitive user interfaces and was excited

that his Þrm had chosen to use RCP as a basis because it provided for a rich environment

that was proven, had a sizable number of existing developers, and cost them very little to

develop. He cited the role of the Foundation in promoting the development of RCP as a

viable platform as major reason for adopting the technology.

When we Þrst starting talking about using RCP people were really hes-

itant. . . The fact that the foundation is solid and they were promoting it

really helped us sell the technology internally.

ÐProduct Manager at Mobile Device Firm

This change from a community based on the Eclipse IDE to a complete ecosystem

based on a family of technologies did not happen overnight, nor did it happen solely as the

result of the actions of a single Þrm. Indeed, if Eclipse had remained as a consortium with

44

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

IBM in the controlling role, these advancements may have never happened. The actions of

the Eclipse Foundation have created a sort of innovation toolkit for the Eclipse Ecosystem.

This strategy of creating a standard set of components that can be easily reused has been

successful in Þelds as diverse as packaged food preparation to sports equipment and has

previously been cited as a contributing factor for why the Apache Software Foundation has

found such success[31, 123].

2.7 Conclusion

There is no doubt that the Eclipse ecosystem has been an incredible success. Prior to the

release of Eclipse the market for Java IDEs was fragmented, while today it has solidiÞed be-

hind Eclipse5[37, 42]. The openness and success of Eclipse has led other non-Java focused

Þrms, such as Adobe, to utilize Eclipse as the framework for their proprietary development

environments. However, even in that context, there is contribution back to the community,

as evidenced by the recent donation of translations by Adobe to the Eclipse project.

Indeed, the Eclipse Foundation has succeeded in creating a robust ecosystem and driv-

ing signiÞcant value to the member Þrms. Through the skillful creation of a governance

hierarchy, application of consistent values across the ecosystem, and actions undertaken

by the foundation speciÞcally to drive value, Eclipse has managed the delicate balance

between an open core of a project and allowing proprietary Þrms to survive and thrive.

5There is one other major player in the Java IDE market, NetBeans from Sun MicroSystems. NetBeans
has gained market share in the last two years, but has yet to garner broad corporate support outside Sun.

45

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

2.8 Topics for Future Research

One of the major innovations of the Eclipse foundation has been to seek out individuals

and companies in areas not traditionally involved with Open Source. For example, Open

Source was initially most successful with small startup Þrms where itÕs cost effectiveness

and the gumption of employees made it a viable option. While Open Source has gained

acceptance across most enterprises, there are many Þelds that merely use Open Source

rather than contribute back to it, for example, banking and Þnance. The Eclipse Founda-

tion has been very proactive about getting these Þrms involved in the Eclipse Ecosystem,

both in the United States and Europe. This broadening of the ecosystem to include Þrms

not traditionally involved in Open Source no doubt will place additional requirements on

the Foundation. Although not all interviewees were asked, those interviewees who were

asked about the broadening of the Eclipse ecosystem to Ònon-traditionalÓ Þelds were almost

universally supportive of this change. As the community expands it will be interesting to

see if this view continues.

In addition, the Foundation has been very successful at broadening the ecosystem be-

yond just the IDE. According to employees of the foundation, one of the major challenges

they are facing is conveying that the Eclipse IDE is for more than just Java, and that the

Eclipse ecosystem is more than just the IDE. In the future it will be interesting to examine

whether early member companies of the Eclipse Foundation, who set their level of mem-

bership based on the focus around the IDE, perceive that their inßuence is waning as the

46

CHAPTER 2. FIRMS AND FOUNDATIONS: GUIDING AN ECOSYSTEM TO
PROMOTE VALUE

ecosystem expands to Þelds such as server and mobile application frameworks.

47

Chapter 3

Firms and Firms: Business

Collaboration Through Open Source

Projects

Open Source software communities have typically been described as single developers

working alone[59], or a loose collaboration between numerous volunteer developers work-

ing with little commercial motivation[61, 75]. From a commercial perspective, many of the

early business models related to Linux and Open Source did little more than package the

software, provide some degree of support, and add predictability to the release cycle of the

software[134]. This is in stark contrast to the large scale commercial involvement found

today in projects like Eclipse.

48

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

The Eclipse community itself provides some of the functionality that was once reserved

for external Þrms, such as Linux distributors. One of the greatest hallmarks of the success

of the Eclipse ecosystem is its ability to release high quality code with substantial improve-

ments on a regular and predictable schedule. This annual effort sees hundreds of developers

and dozens of corporations come together to release a yearly update to Eclipse. In the 2008

Òrelease trainÓ 33 projects all simultaneously released new versions of their software[126].

While there are other communities that perform time based releases, such as GNOME and

Ubuntu, large amounts of their code are taken from other projects and integrated[10, 91].

Eclipse is different because new versions of the core software are released as a uniÞed and

tested package on the same day Ð an act that would be similar to Microsoft updating all of

its developer tools on the same day. This successful release of software is greatly assisted

by the fact that most developers are paid full time to work on Eclipse and there are very few

volunteers within the community. In a 2006 interview with a member of the Eclipse foun-

dation staff, it was estimated that there was about 800 individuals with commit access, of

whom no more than Òa handfulÓ were not employed by a company and being compensated

for their work in Eclipse.

In contrast to traditional Open Source models which describe open source participants

as Òuser-developersÓ[54, 100] Ð highly skilled developers who work on the source code for

a project they also have a need for, much of the code in many large Open Source projects

is generated by paid professionals. For example, many of the features of the Linux kernel,

such as support for IBM S390 mainframes, have no appeal to hobbyists and there is little

49

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

chance that the developers are the end users of the technology. Within Eclipse, there are

certainly projects in which user-developers are present, such as the Mylyn project[55], a

collection of tools to build a task focused workspace on top of Eclipse, and the Bioclipse

platform for bioinformatics[102]. However most projects have a commercial focus and are

driven by commercial developers being paid to create the code. Even the infrastructure

around Eclipse is better designed for corporations, and in the words of one community

member, Òa monolith targeted at companies[118].Ó

Much of this corporate focus is due to the origins of Eclipse and the community that

makes up the Eclipse ecosystem. Prior to the creation of Eclipse, IBM had a substantial

number of partner companies developing technologies to enhance their VisualAge suite

of developer tools. As described by an executive at a small Þrm that had been long term

IBM partners, in the VisualAge ecosystem, all communication was mediated through IBM.

A developer that wished to create an add-on tool for VisualAge needed to utilize a small

number of interfaces, which were documented with varying degrees of care, and had little

hope of extending the interface if additional functionality was needed. Interactions between

companies in the ecosystem were rare, as there were licensing agreements in place for some

Þrms that restricted their ability to collaborate.

This development style, where developers needed to conform to a Þxed API from IBM,

is problematic because it forced IBM to anticipate any API calls that add-on applications

might one day make. Beyond being Þxed on an API, long term IBM partners indicated that

these opaque APIs also would have unintended interactions when documentation was lack-

50

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

ing Ð for example, a method may modify a data structure in a way which is not described

in the documentation.

Furthermore, there was the constant worry that IBM, as the driver of the VisualAge

ecosystem would choose to implement a feature that was remarkably similar to the products

offered by smaller Þrms. This was described as a dance between mice and an elephant

because of the great uncertainty it induced.

When IBM began work on Eclipse, its intentions were not to rectify these issues in the

VisualAge ecosystem by using Open Source. Indeed, as the origins of Eclipse go back to

the mid-1990Õs such an idea would have been far too radical for the state of the market at the

time1. Rather the intention was to utilize some lessons learned through the development

of Smalltalk programs and implement them in a new IDE for Java. The result was the

original version of Eclipse which was novel because everything was designed a plugin,

a small piece of code that linked to the other pieces of code at runtime through a set of

API function calls[16, 24]. These architectural decisions also eliminated the need for a

privileged or private API that previously had been the norm for many tools; most notably

this attracted signiÞcant attention in the Microsoft antitrust lawsuit in which Microsoft

was eventually forced to publish documentation for nearly all of their APIs as part of the

settlement[29, 97].

As the Eclipse code matured, and before the decision was made to release the project as

1The term ÒOpen SourceÓ wasnÕt coined until 1998, the same year that saw the watershed release of
NetscapeÕs Mozilla source code as Open Source[94].

51

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

Open Source, IBM slowly began to show the project to members of its existing developer

network. One interviewee who was among the Þrst to see Eclipse outside of IBM said they

were initially very excited about the project, and the modular structure of the code, but

didnÕt see the project or community as signiÞcantly different from their existing ecosystem

with VisualAge tools. However, when IBM announced that the code was going to be given

away, a great amount of uncertainty was introduced for his Þrm.

In addition to launching Eclipse as an Open Source project, IBM did something no other

project had previously done; they created a community that expressly focused on corporate

participation. Individuals still had roles, and needed to be elected in a meritocratic envi-

ronment to be approved as committers, but it was clear that rather than individuals guiding

development, corporations in the community would learn to cooperate and drive develop-

ment. In contrast to the large communities around the Linux Kernel, Apache Software

Foundation, and Mozilla, for the Þrst time, rather than a community of individuals, some

of which were employed by Þrms, working on an Open Source project, there was now a

community of Þrms which employed individuals working on an Open Source project. This

shift in behavior and the different focus of commercial participants necessitates a new way

of looking at the community.

While there has been previous research that examines the social networks of indepen-

dent developers in Open Source[19, 20, 51], and additional work that has examined the

case for Open Source business models and participation[2, 28, 60, 124], there has been

little work on the actual ways in which corporations involved in Open Source collaborate

52

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

in a modern Open Source project. This chapter presents an empirical study of how Þrms

interact in an Open Community using the Eclipse ecosystem as the subject. I begin by

presenting an analysis of the modularity of the Eclipse project to show the degree to which

components in the ecosystem are coupled and the need for collaboration may be present.

Next, I establish the breadth of interest that Þrms have in Eclipse and the breath of partici-

pants that each of the projects attracts. When combined with information about the project

modularity, this allows analysis of community stability and power in the community. I then

compare these data to another more ÒtraditionalÓ volunteer based Open Source project Ð the

GNOME project. Finally, I compare and contrast these results to the known information

about individual participation in Open Source.

3.1 Description of Data

Once again the primary unit of study is the Eclipse project, the successful Open Source

ecosystem founded around support for software development tools. This research utilizes

data from interviews in chapter2 and builds on it with quantitative data analysis based on

artifacts within the Eclipse ecosystem.

The primary artifacts generated by the Eclipse ecosystem is the source code, which

is kept in a concurrent version systems (CVS) repository. A complete copy of the CVS

version control system repository was obtained. This repository is a shared resource that

all developers in the ecosystem contribute to and it contains all of the ofÞcial code for the

53

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

ecosystem. Each time a developer makes a change to code that they wish to distribute,

they publish it back to the version control system repository where the changes between

different versions of the same Þle are saved. In this way, any change can be Òrolled backÓ

and multiple branches and conÞgurations of the software can be easily created[30].

Projects in Eclipse are typically not ÒbornÓ into the ofÞcial Eclipse CVS repositories,

rather most projects begin life in external repositories that are later migrated into Eclipse

once the project has reached a sufÞcient level of development maturity and the project has

been ofÞcially accepted into the Eclipse community. Typically these projects have their

code imported in such a way that the complete history of the project is maintained.

Within the data set there were 11 top level projects and 89 sub-projects in the commu-

nity. Top level projects in Eclipse correspond to broad areas of interest, such as database

interaction or integrated development environments. Each top level project has its own

project management council that oversees development and ensures that the sub-projects

are proceeding and evolving in a manner consistent with the Eclipse ecosystem[114].

In addition to the CVS archive, data were obtained from the intellectual property man-

agement system, IPZilla, that records the provenance of the code and also provides some

background identity information for many of the developers in the community. Using this

information developers were matched to corporations within the Eclipse ecosystem, and

this resulted in the ability to tie a corporation to the pieces of code they contributed to

the Eclipse ecosystem. This process of managing intellectual property has become more

rigorous over time, so there is some noise in the data from early periods of the Eclipse

54

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

Consortium. Many of the early developers are identiÞed as working for ÒindividualÓ or

ÒunknownÓ. As time progresses these instances of unknown afÞliation decrease signiÞ-

cantly.

This chapter also performs a comparison with another Open Source community, the

GNOME project, a loose collaboration of volunteers which seeks to create a complete

desktop environment for Linux and Unix-like operating systems[38]. In contrast to the

commercially focused Eclipse Foundation this project has an individual and volunteer ori-

ented ecosystem Ð corporations are afÞliated with GNOME only to the degree they employ

individuals working on GNOME or they wish to be members of the GNOME foundation

advisory board.

For this portion of the research a complete copy of the version control system archive

for the GNOME project was obtained. Developers were then matched to the corporations

that employed them to obtain information about the extent of corporate involvement in the

GNOME community. More information about the collection of these data is in chapter4.

3.2 The Architecture of Eclipse

One of the key attributes of the Eclipse source code that allows the project to be divided

between Þrms is the modular nature of the project source code. Modern object oriented

programming languages, such as Java, allow collections of Þles and objects to be grouped

together into packages. These packages then can choose what methods to expose outside

55

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

the package, thereby allowing a degree of abstraction between methods calling the package.

Package designers and maintainers then need only ensure that the these interfaces, typically

called APIs, remain relatively stable, while being free to change the underlying source code

and implementation.

This concept, which is essentially another form of information hiding, is heavily en-

forced in the Eclipse project. Furthermore, the community has strict controls on which

packages are allowed to be dependencies. This is done to prevent the creation of circular

dependencies and also to ensure that the code remains clean and maintainable. Using tools

such as Lattix that evaluate call graphs in software packages it is possible to build a depen-

dency network between packages in the Eclipse ecosystem[63]. For many of the largest

and most prominent projects in the Eclipse ecosystem, these dependencies can be seen in

Þgure3.12.

These results show that there are very few dependencies across most combinations of

modules within the ecosystem. One notable exception is the project calledeclipse 3

which sees dependencies from almost every other major project in the ecosystem. There

are two primary reasons for this. First, theeclipse project contains the equinox sub-

project Ð which forms the core of much of the object model for Eclipse. Secondly, and

more importantly, it contains the platform sub-project, which in itself operates much like a

top level project with numerous sub-projects. The platform sub-project contains the code to

2I wish to thank Smita Ramkete for her work in running Lattix on the Eclipse ecosystem and generating
this data.

3To distinguish between the Eclipse project as a whole, and the top level project within Eclipse called
eclipse , the latter will be all lowercase and typeset using a Þxed width font.

56

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!"##$%

&'(#) %

*+
+

,-

!*
&

./0
*

12
,3

4-
#

5!
5&

6+
7#

,3
8(

*#
2"

8+
,+

(9

6+
7#

,3
8(

5'
$'

*+
+

,-

:#
;*

+
+

,-

*++,- < =>? =@ ?A BB A>= CB% AC %DC
!*&) <)))

./0*)) < BA)))
12,34-# CDA !!"# =CE< "$%& &&'' ('$# ##)% !)') %B?
5!5& (&#) =%C CD% %@A?< @@A!#!* ?D= CE %@BE
&&))))) <))))

*#2"8+,+(9 %BBB @? ?AD %@% @ ?D< A@ %E =EB
6+7#,38() (#$) %B) A@ =??)"#% < %%CD#)!$

5'$'*++,-)))))))) <)
:#;*++,- ?% %A =%)) %% BA)) <

Figure 3.1: Dependencies between major components of the Eclipse ecosystem
as measured using Lattix. Calling modules are across the top, called modules are
along the side. Cells in red and bold indicated instances of more than 2000 calls
from the calling module to the called module.

a number of key components of the Eclipse ecosystem, including the widget toolkit, SWT,

and the framework for updating components in Eclipse[113]. As a result, nearly every

other component of Eclipse that displays information to the user or is able to update itself

is tightly linked to the platform sub-project. This is shown in the dependency network, as

all of the projects have dependencies oneclipse and six of the nine other projects have

very strong dependencies on the theeclipse project.

Interestingly, there are some modules in the ecosystem that are called by none or very

few modules. A good examples of this is the BIRT project, a tool for generating business

intelligence reports. It was originally donated to the Eclipse Foundation by Actuate, and al-

lows almost anyone to create high quality reports in a number of formats with very little ef-

fort. It is often used to generate reports that are displayed on the screen to developers[111].

57

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

However, very few other projects depend on BIRT because it is often seen as a component

that developers use in creating applications based on the Eclipse framework, rather than tool

that comprises a major portion of the Eclipse IDE. However, that is beginning to change

as the modeling project has begun to use BIRT to generate reports for software developers

using the Eclipse IDE. Another example of a project which is not a dependency of any

other project is the Data Tools project. This project exists to provide access to databases

for end users, typically as an assistive component to software developers. Although it is a

higher proÞle project within Eclipse, most of the other projects have not yet been able to

harness the data access methods that the Data Tools project provides.

The lack of calls between most modules indicates that most components in the Eclipse

ecosystem are relatively independent. For example, a developer working on the Data Tools

project requires knowledge about the core Eclipse platform, an attribute common when

building within any large scale platform, but only needs very little knowledge about other

components in the ecosystem. Furthermore, as no projects are dependent on the Data Tools

project, this allows the developers to freely innovate without the need to maintain a legacy

API for dependent projects.

3.3 Distribution of work

The Þrst step in understanding how Þrms interact within the Eclipse ecosystem was to

evaluate how individual Þrms participate in Eclipse. Using the data from the CVS archives

58

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

and IPZilla it was possible to identify which Þrms had made modiÞcations to projects in the

Eclipse ecosystem by matching up commits to the repository with developers and the Þrms

they were employed by at the time of the commit. This allowed the generation of Þgure3.2

and Þgure3.3, which show the number of top level projects and sub-projects each Þrm has

made contributions to.

Both of these Þgures show that despite the fact that the Eclipse Foundation is the central

entity of the Eclipse ecosystem, IBM still dominates involvement. They currently have

code in nine different top level projects, and 57 of the 89 sub-projects in the ecosystem.

Equally telling, however, is the low levels of involvement from many other Þrms in the

ecosystem. After removing the Eclipse Foundation from consideration, which primary

does non-coding work on project source code, such as updating license and formatting

repositories, no Þrm is involved in even half the number of top level projects as IBM or

even 15% of the sub-projects of IBM. More than half of the Þrms are involved in two or

fewer sub-projects, providing a testament to the degree that Eclipse ecosystem is structured

in such a way that Þrms can focus primarily on areas of their expertise.

However, a narrow focus on a handful of projects, does not mean that Þrms never need

to collaborate with other Þrms. To understand the degree to which Þrms collaborated, a

social network of the Þrms was built covering the entire history of Eclipse. Two Þrms were

linked in this network if they had both contributed code to the same project at any point

in history. Using this method, every project was a clique of the Þrms that had contributed

code. Thus, this represents a maximal degree of collaboration between Þrms using CVS

59

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!

!

!

2468

N
um

be
r

of
 to

p
le

ve
l p

ro
je

ct
s

pe
r

fir
m

Number of Projects

AnywareTechnologies
Aonix

AptanaInc.
CAInc.

CentrumvoorWiskundeenInformatica
CiscoSystemsInc.

Compuware
EricssonAB

ExistGlobalFormallyDevZuz
GeensysformerlyTNI!Software

GenuitecLLC
Hewlett!PackardCompanyHP

ILOG
InnoventSolutions

Inpriva
InstantiationsInc.

IntalioInc.
itemisAG

Jboss
JivaMedical

Motorola
Novell

OpenMethodsLLC
Polarion

SerenaSoftwareInc.
Siemens

SocialPhysics
SunMicrosystemsInc.

Symbian
TasktopTechnologies

TelelogicAB
Thales

WeigleWilczekGmbhformerlyiMEDIC
Actuate

ActuateCorporation
ARMLimited

BEA
BorlandSoftwareCorp.

CloudsmithInc.
compeopleAG

EmbarcaderoTechnologiesInc.
eterationA.S.

FujitsuLimited
Innoopract

IONATechnologies
OBEO
Oracle

ProsystSoftware
QNXSoftwareSystemsCo.

ScapaTechnologiesLimited
SOPERAGmbH

Versant
nexBInc.

Nokia
RedHatInc.

SAPAG
SAS

Sybase
WindRiver

ZendTechnologies
IntelCorporation

EclipseFoundation
IBM

1

2

3

4

6

9

F
ig

ur
e

3.
2:

N
um

be
r

of
to

p
le

ve
lp

ro
je

ct
s

ea
ch

Þ
rm

pa
rt

ic
ip

at
es

on
in

th
e

E
cl

ip
se

E
co

sy
st

em

60

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

01020304050

N
um

be
r

of
 p

ro
je

ct
s

pe
r

fir
m

Number of Projects

AnywareTechnologies
Aonix

AptanaInc.
CAInc.

CentrumvoorWiskundeenInformatica
EricssonAB

ExistGlobalFormallyDevZuz
GeensysformerlyTNI!Software

GenuitecLLC
ILOG

InnoventSolutions
Inpriva

InstantiationsInc.
IntalioInc.

Jboss
JivaMedical

Novell
OpenMethodsLLC

Polarion
SerenaSoftwareInc.

Siemens
SocialPhysics

SunMicrosystemsInc.
Symbian

TelelogicAB
Thales

WeigleWilczekGmbhformerlyiMEDIC
ARMLimited

CiscoSystemsInc.
Compuware

FujitsuLimited
Hewlett!PackardCompanyHP

IONATechnologies
Motorola

QNXSoftwareSystemsCo.
SOPERAGmbH

Versant
Actuate

CloudsmithInc.
compeopleAG

itemisAG
ProsystSoftware

ScapaTechnologiesLimited
EmbarcaderoTechnologiesInc.

nexBInc.
TasktopTechnologies

ZendTechnologies
BorlandSoftwareCorp.

IntelCorporation
OBEO

WindRiver
ActuateCorporation

SAPAG
SAS

eterationA.S.
Innoopract

Nokia
Oracle

RedHatInc.
Sybase

BEA
EclipseFoundation

IBM

1
2

3
4

5
6

7
8

21

57

F
ig

ur
e

3.
3:

N
um

be
r

of
su

b-
pr

oj
ec

ts
ea

ch
Þ

rm
s

pa
rt

ic
ip

at
es

on
in

th
e

E
cl

ip
se

E
co

sy
st

em

61

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

as the primary coordination medium. This network was generated at the top level and sub-

project level, and the degree of each Þrm can be seen in Þgure3.4for top level project and

for sub-projects in Þgure3.5.

The top level projects is where much of the roadmapping and management of the

Eclipse ecosystem takes place. The PMC for each top level project ensures that Þrms are

following the rules governing software development. If two Þrms were co-present at the

same time working in the same top level project there is a reasonable chance that some sort

of collaboration was needed (although, it should be noted that Þgure3.4and Þgure3.5do

not take into account temporal relationships). Although IBM is still an outlier in the dataset,

having collaborated with 58 other Þrms at the top-level project, this general distribution is

much more even, following a near-perfect linear distribution.

Of special note in Þgure3.4 is SocialPhysics, which has no collaboration with other

Þrms on top level projects. This is largely because of the nature of the project that Social-

Physics works on, a framework called Higgins that seeks to provide a common interface to

various sorts of identity management tools both over networks and in physical spaces[115].

When the project was proposed to the Eclipse Foundation, it was unique as it was more of a

library than a tool, which is the prior focus of the Eclipse Foundation. At numerous events

the Eclipse Foundation has heralded Higgins as a successful attempt to broaden the com-

munity beyond the traditional IDE market. The website for Higgins boasts the involvement

of numerous tech giants including IBM, CA, and Google. While these Þrms are active

in developing tools that work with Higgins, at the time of data collection, they had not

62

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!

!

0102030405060

In
te

ra
ct

io
n

be
tw

ee
n

fir
m

s
(n

o
un

kn
ow

n
an

d
in

di
vi

du
al

s)

Number of firms

SocialPhysics
WeigleWilczekGmbhformerlyiMEDIC

InnoventSolutions
compeopleAG

IntalioInc.
Hewlett!PackardCompanyHP

itemisAG
Jboss

GeensysformerlyTNI!Software
Thales

Motorola
ScapaTechnologiesLimited

EricssonAB
AnywareTechnologies

Actuate
Inpriva
Aonix

eterationA.S.
ProsystSoftware

BEA
Sybase

Siemens
OBEO

IONATechnologies
EmbarcaderoTechnologiesInc.

ExistGlobalFormallyDevZuz
FujitsuLimited

Symbian
QNXSoftwareSystemsCo.

TasktopTechnologies
InstantiationsInc.

ARMLimited
Novell

WindRiver
CentrumvoorWiskundeenInformatica

SunMicrosystemsInc.
Nokia

CAInc.
AptanaInc.

ILOG
TelelogicAB

OpenMethodsLLC
Polarion

GenuitecLLC
CiscoSystemsInc.

Compuware
Innoopract

JivaMedical
SOPERAGmbH

nexBInc.
SerenaSoftwareInc.

Versant
SAPAG

BorlandSoftwareCorp.
SAS

Oracle
CloudsmithInc.

ZendTechnologies
RedHatInc.

IntelCorporation
IBM

0
1

2
3

4
6

7
9

10
11

12
13

14
15

16
18

19
20

22
24

25
26

27
28

29
30

31
34

36
37

38

58

F
ig

ur
e

3.
4:

To
p

le
ve

lp
ro

je
ct

sh
ar

ed
pa

rt
ic

ip
at

io
n

in
E

cl
ip

se
.

A
pa

ir
of

Þ
rm

s
ar

e
co

ns
id

er
ed

to
ha

ve
sh

ar
ed

pa
rt

ic
i-

pa
tio

n
if

bo
th

Þ
rm

s
co

m
m

itt
ed

co
de

to
a

su
bp

ro
je

ct
un

de
r

th
e

to
p

le
ve

lp
ro

je
ct

.
F

or
ex

am
pl

e,
IB

M
is

ac
tiv

e
on

to
p

le
ve

lp
ro

je
ct

s
th

at
ha

ve
co

nt
rib

ut
io

ns
fr

om
58

ot
he

r
Þ

rm
s.

63

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

yet made contributions to the Higgins source code. While it does appear that Higgins is

successful in developing a new product and business model within the Eclipse Ecosystem,

there is little evidence of collaboration between Þrms that has been the hallmark of much

of EclipseÕs development.

The sub-project level, which provides a more nuanced view of technical collaboration

is shown in Þgure3.5. There is signiÞcantly less collaboration between Þrms at this level.

This is to be expected as there are 89 sub-projects compared to 11 top level projects. More

than half of the Þrms in the community contribute to projects that have three or fewer other

Þrms contributing and eight Þrms work on no sub-projects that have participation by other

Þrms. From a technical perspective, this allows those Þrms nearly complete freedom to

implement their projects in a way of their choice. It may also prove a temptation for those

Þrms to utilize communication and development processes that are more suited for propri-

etary development than the more expensive and time consuming Open Source process.

From the perspective of building an ecosystem, these results are both worrisome and

encouraging. The degree to which Þrms are able to operate independently is worrisome

and it changes the picture of the community from a group of Þrms working together toward

a shared set of goals to a collection of Þrms working independently that, within a deÞned

set of constraints, may each seek to maximize their own beneÞt to the detriment of other

portions of the project. However, it also works well for building an ecosystem because

Þrms can clearly succeed and need to master only a small niche of the greater ecosystem in

order to extract beneÞts from a substantial portion of the community.

64

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

010203040

In
te

ra
ct

io
n

be
tw

ee
n

fir
m

s
(n

o
un

kn
ow

n
an

d
in

di
vi

du
al

s)

Number of firms

FujitsuLimited
Aonix

Polarion
SocialPhysics

Motorola
OpenMethodsLLC

ExistGlobalFormallyDevZuz
SerenaSoftwareInc.

CentrumvoorWiskundeenInformatica
GenuitecLLC

CiscoSystemsInc.
Thales

TasktopTechnologies
TelelogicAB

WeigleWilczekGmbhformerlyiMEDIC
Novell

InstantiationsInc.
AptanaInc.

SunMicrosystemsInc.
ILOG

GeensysformerlyTNI!Software
JivaMedical

InnoventSolutions
Compuware

CloudsmithInc.
nexBInc.

EricssonAB
Jboss

CAInc.
Inpriva

Innoopract
compeopleAG

itemisAG
AnywareTechnologies

Versant
BorlandSoftwareCorp.

SOPERAGmbH
ProsystSoftware

IntalioInc.
Hewlett!PackardCompanyHP

ZendTechnologies
EmbarcaderoTechnologiesInc.

BEA
IONATechnologies

Sybase
eterationA.S.

ScapaTechnologiesLimited
Actuate

Symbian
Siemens

SAS
QNXSoftwareSystemsCo.

Oracle
ARMLimited

OBEO
SAPAG

IntelCorporation
WindRiver

RedHatInc.
Nokia

IBM

0
1

2
3

4
5

6
7

8
9

10
11

14

39

F
ig

ur
e

3.
5:

S
ub

-p
ro

je
ct

le
ve

ls
ha

re
d

pa
rt

ic
ip

at
io

n
in

E
cl

ip
se

.
Tw

o
Þ

rm
s

ar
e

co
ns

id
er

ed
to

ha
ve

pa
rt

ic
ip

at
ed

in
th

e
sa

m
e

su
b-

pr
oj

ec
ti

ft
he

y
bo

th
co

m
m

itt
ed

co
de

to
th

at
su

b
pr

oj
ec

t.
F

or
ex

am
pl

e,
th

e
su

b-
pr

oj
ec

ts
th

at
IB

M
ha

s
co

m
m

itt
ed

co
de

to
ha

ve
co

nt
rib

ut
io

ns
fr

om
39

ot
he

r
co

m
m

er
ci

al
Þ

rm
s.

65

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

3.3.1 Firm Participation on Projects

Projects in the Eclipse ecosystem are encouraged to have contributions from developers

employed by multiple Þrms. This is believed to help guard against a single Þrm leaving

the ecosystem and causing a variety of possibly critical projects from faltering. Using

the same data it was possible to generate the number of Þrms working on each of the top

level projects and sub-projects, in essence while the previous section showed the breadth of

interest of Þrms in the community, this section shows the breadth of appeal of projects to the

community. The results can be seen for top level projects in Þgure3.6and for sub-projects

in Þgure3.7.

At the sub-project level a handful of projects show that they have no commercial partic-

ipation, this result may be artifact of the data as commits by developers who were classiÞed

as ÒunknownÓ for their corporate involvement, typically individuals active in the early days

of Eclipse, were not allocated to a commercial Þrm. Therefore, while these projects may

have commercial interest, it is not possible to ascertain to what degree they appeal to a

commercial market.

The sub-project which has gathered the most widespread interest is the tools.CDT

project, which is commonly called CDT in the community. The CDT is an effort to create

a development environment for the C programming language on top of the Eclipse frame-

work. It is one of the oldest sub-projects in Eclipse dating back to the days of the Eclipse

Consortium and continues to be developed today. It has also found widespread acceptance,

66

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!

!
!

!
!

!
!

!

!

51015202530

N
um

be
r

of
 fi

rm
s

pe
r

to
p

le
ve

l p
ro

je
ct

Number of Firms

rt

tptp

birt

stp

dsdp

datatools

modeling

eclipse

webtools

tools

technology

3
4

7
8

9
10

11

17

33

F
ig

ur
e

3.
6:

N
um

be
r

of
Þ

rm
s

co
nt

rib
ut

in
g

co
de

to
ea

ch
to

p
le

ve
lp

ro
je

ct
in

th
e

E
cl

ip
se

ec
os

ys
te

m
.

T
hi

s
is

th
e

to
ta

l
nu

m
be

r
of

di
st

in
ct

Þ
rm

s
th

at
ha

ve
co

nt
rib

ut
ed

co
de

to
th

e
su

b-
pr

oj
ec

ts
be

lo
ng

in
g

to
th

at
pr

oj
ec

t.
P

ar
tic

ip
at

io
n

is
sh

ow
n

fo
ra

ll
tim

e,
th

us
ol

de
rp

ro
je

ct
s

su
ch

as
te

ch
no

lo
gy

an
d

to
ol

s
ex

hi
bi

tm
uc

h
hi

gh
er

le
ve

ls
of

pa
rt

ic
ip

at
io

n
th

an
th

e
ne

w
er

ru
nt

im
e

pr
oj

ec
t(

rt
).

67

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!

!
!

!

!

0246810

N
um

be
r

of
 fi

rm
s

pe
r

pr
oj

ec
t

Number of Firms

modeling.mddi
technology.jwt

technology.ofmp
technology.osee

dsdp.nab
dsdp.tml

eclipse
modeling

modeling.amalgam
modeling.tmf

technology.actf
technology.alf

technology.corona
technology.examples
technology.g!eclipse

technology.nebula
technology.photran

technology.rap
technology.soc

technology.swordfish
technology.tigerstripe

tools.buckminster
tools.hibachi

tools.mylyn
tools.ptp
tptp.test

webtools.datatools
eclipse.jdt

eclipse.pde
modeling.gmf
modeling.gmt

modeling.m2m
rt.riena

technology.albireo
technology.aperi
technology.babel

technology.dltk
technology.eclipselink

technology.epf
technology.imp

technology.kepler
technology.mat

technology.maynstall
technology.spaces

technology.subversive
tools.ajdt

tools.aspectj
tools.cobol

tools.ve
tptp.monitoring

tptp.performance
webtools.atf

webtools.common
webtools.incubator

webtools.jsf
dsdp.dd

dsdp.ercp
dsdp.mtj
dsdp.tm

modeling.m2t
modeling.mdt

rt
technology.bpel

technology.cosmos
technology.linux!distros

technology.ohf
technology.packaging

technology.phoenix
technology.voicetools

tools.gef
tools.orbit
tools.pdt

tptp.platform
webtools.dali

webtools.webservices
birt

datatools.modelbase
eclipse.equinox

modeling.emf
modeling.emft

technology.dash
technology.ecf

datatools.connectivity
datatools.sqltools
webtools.jeetools

webtools.sourceediting
datatools.enablement

eclipse.platform
webtools.servertools

stp
webtools

webtools.releng
datatools
tools.cdt

0

1

2

3

4

5

6

7

8

910

F
ig

ur
e

3.
7:

N
um

be
r

of
Þ

rm
s

co
nt

rib
ut

in
g

co
de

to
ea

ch
su

b-
pr

oj
ec

ti
n

th
e

E
cl

ip
se

ec
os

ys
te

m
.

C
on

tr
ib

ut
io

ns
fr

om
th

e
E

cl
ip

se
F

ou
nd

at
io

n
(m

ai
nl

y
ho

us
ek

ee
pi

ng
ch

or
es

),
de

ve
lo

pe
rs

w
ith

Ò
un

kn
ow

nÓ
af

Þ
lia

tio
ns

,a
nd

Ò
in

de
pe

nd
en

tÓ
de

ve
lo

pe
rs

ha
ve

be
en

re
m

ov
ed

,t
hu

s
re

su
lti

ng
in

se
ve

ra
lp

ro
je

ct
s

w
ith

no
ap

pa
re

nt
co

m
m

er
ci

al
co

nt
rib

ut
io

ns
.

68

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

especially in the community of embedded systems developers. However, while many Þrms

have been active on the project, the actual pattern of participation paints a very murky

picture of the project history.

In Þgure3.8the history of the CDT is broken up into month long time periods. At each

month the proportion of commits made by each Þrm is shown, along with a black line that

indicates the volume of commits relative to the busiest time period on the project, in this

case period 50. This very clearly shows a tumultuous history for the project, with multiple

Þrms taking the lead on the project at different periods of time.

The genesis of the project was from IBM and group of developers who were categorized

as ÒindividualÓ4 or working for IBM. Shortly into the life of the project QNX Software, the

developer of the real-time operating system of the same name, took the reins of the project,

eventually seeing IBMÕs contributions to the project drop away completely for a period of

almost a year starting in period 16. This marks the Þrst dramatic change in project lead-

ership within CDT. It is also within this period that ARM Limited (now owned by Intel),

the developers of a highly efÞcient microprocessor suitable for embedded environments

became very involved in the project.

In period 20 Wind River, one of the dominant market players in the embedded systems

market makes its Þrst contributions to the project and in period 24 IBM again returns to

the project. These Þrms represent the bulk of the activity for the next two years, with

4Within the data set, appearances of ÒindividualÓ and ÒunknownÓ for commercial afÞliation are much
more common in the early time periods before the Eclipse Foundation had more rigid intellectual property
procedures in place.

69

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!
!

!

!

!

!
!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!
!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

20
40

60
80

0.00.20.40.60.81.0

!
!

!

!

!

!

!

!

!

!

!
!

!
!

!
!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!
!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!
!

!
!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!

!
!

!
!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

!

!

!
!

!
!

!

!
!

!

!
!

!

!
!

!

!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!
!

!

!
!

!
!

!

!

!

!
!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!

!

!

!
!

!

!

!
!

!

!
!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!
!

!
!

!
!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!

!
!

!
!

!

!

!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!

!

!
!

!

!

!

!

!
!

!

!
!

!

!
!

!

!

!
!

!

!

!
!

!
!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

!
!

!
!

!

!
!

!
!

!

!

!
!

!
!

!
!

!

!

!
!

!
!

!

!
!

!

!

!
!

!

!
!

F
ra

ct
io

na
l C

om
m

its
 fo

r
to

ol
s.

cd
t

T
im

e
P

er
io

d

Fraction of Commits

! ! ! ! ! ! ! ! ! ! ! ! !

T
op

 3
 F

irm
s

IB
M

R
ed

H
at

In
c.

in
di

vi
du

al
un

kn
ow

n
N

ok
ia

S
ym

bi
an

S
ie

m
en

s
Q

N
X

S
of

tw
ar

eS
ys

te
m

sC
o.

E
cl

ip
se

F
ou

nd
at

io
n

W
in

dR
iv

er
In

te
lC

or
po

ra
tio

n
A

R
M

Li
m

ite
d

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!

!

!
!

!
!

!

!

!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

F
ig

ur
e

3.
8:

F
ra

ct
io

na
lc

on
tr

ib
ut

io
ns

to
th

eto
ol

s.
cd

t
pr

oj
ec

tb
y

Þ
rm

by
m

on
th

.T
he

re
d

lin
e

at
th

e
to

p
re

pr
es

en
ts

th
e

su
m

co
nt

rib
ut

io
n

of
th

e
to

p
th

re
e

Þ
rm

s
in

th
e

pr
oj

ec
t

(I
B

M
,

W
in

dR
iv

er
an

d
Q

N
X

S
of

tw
ar

e
S

ys
te

m
s)

.
Ti

m
e

is
m

ea
su

re
d

in
m

on
th

s
si

nc
e

th
e

Þ
rs

t
av

ai
la

bl
e

da
ta

,
A

pr
il

20
04

.
T

he
bl

ac
k

lin
e

w
ith

th
e

no
n-

co
nn

ec
te

d
ci

rc
le

s
re

pr
es

en
ts

th
e

vo
lu

m
e

of
co

m
m

its
re

la
tiv

e
to

th
e

m
os

ta
ct

iv
e

m
on

th
in

th
e

pr
oj

ec
tl

ife
cy

cl
e,

pe
rio

d
51

.
N

ea
rt

he
en

d
of

th
e

da
ta

,t
he

re
is

a
tw

o
m

on
th

sp
an

fo
r

w
hi

ch
th

er
e

w
as

no
da

ta
ab

ou
tÞ

rm
le

ve
lc

on
tr

ib
ut

io
ns

.

70

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

IBM typically leading the way, followed by QNX, Wind River, and ARM limited. Time

period 50 represents a remarkable change for the project, during this time QNX made

a huge number of commits to the project, while IBM backed off slightly. According to

one interviewee, this was the point where QNX had Þnished enough of the work on the

CDT that they had a working project for their needs. After the major involvement by

QNX most of the development on the project has been managed by Wind River who have

successfully marketed the Wind River Workbench as the primary IDE for developing a

wide variety of embedded systems. Another member of the CDT community indicated that

these changes of leadership werenÕt always viewed as a success however. It was perceived

that the handoffs of leadership in the community occurred frequently because one Þrm was

changing focus or leaving the project, and without someone else stepping up the project

would die. He described many of the transitions as ÒreluctantÓ on the part of the Þrm that

took leadership.

This pattern of leadership change and multiple Þrms with substantial involvement is in

contrast to the patterns seen around the Eclipse platform, as seen in Þgure3.9which shows

contributions to the platform project in theeclipse top level project. Once again, noise

in the data at the beginning of the Eclipse project yields a number of active developers with

ÒunknownÓ afÞliations at the genesis of the project. After this fact, however, the bulk of

the code has been written by a single company, IBM.

From a long term ecosystem stability perspective, this is a challenge for the Eclipse

community; if IBM ever chooses to change focus away from Eclipse, many of the core

71

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

0
20

40
60

80

0.00.20.40.60.81.0

!

!

!

!

!

!

!
!

!
!

!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!

!
!

!

!

!

!
!

!
!

!

!

!
!

!
!

!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!

!
!

!
!

!
!

!
!

!

!
!

!

!
!

!

!

!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

F
ra

ct
io

na
l C

om
m

its
 fo

r
ec

lip
se

.p
la

tfo
rm

T
im

e
P

er
io

d

Fraction of Commits

! ! ! ! ! ! ! ! !

T
op

 3
 F

irm
s

IB
M

E
m

ba
rc

ad
er

oT
ec

hn
ol

og
ie

sI
nc

.
in

di
vi

du
al

un
kn

ow
n

Q
N

X
S

of
tw

ar
eS

ys
te

m
sC

o.
S

A
S

W
in

dR
iv

er
In

te
lC

or
po

ra
tio

n

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!
!

!

!
!

!
!

!
!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!
!

F
ig

ur
e

3.
9:

F
ra

ct
io

na
lc

om
m

its
to

th
ee

cl
ip

se
.p

la
tfo

rm
pr

oj
ec

t
by

Þ
rm

by
tim

e.
T

he
re

d
lin

e
at

th
e

to
p

re
pr

es
en

ts
th

e
su

m
co

nt
rib

ut
io

n
of

th
e

to
p

th
re

e
Þ

rm
cl

as
si

Þ
ca

tio
ns

in
th

e
pr

oj
ec

t(
IB

M
,i

nd
iv

id
ua

l,
an

d
un

kn
ow

n)
.

T
he

bl
ac

k
lin

e
w

ith
th

e
no

n-
co

nn
ec

te
d

ci
rc

le
s

re
pr

es
en

ts
th

e
vo

lu
m

e
of

co
m

m
its

re
la

tiv
e

to
th

e
m

os
ta

ct
iv

e
m

on
th

in
th

e
pr

oj
ec

tl
ife

cy
cl

e,
pe

rio
d

47
.

72

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

components of the community, including the object model, graphical widgets, and plug-in

management would be unmaintained. However, such a setup may be beneÞcial for IBM

as they have a greater ability to direct the development of the project and create features

they desire Ð which is exactly what IBM has done. Recent versions of many software

packages from IBM, including Lotus Notes, Lotus Sametime, and Lotus Symphony are

built using the framework provided by the platform project. IBMÕs great investment in

the core technologies across a wide variety of projects provides a degree of certainty for

community members. One interviewee described his Þrms use of SWT, the widget toolkit

for Eclipse, and said ÒIBM takes care of SWT, they need to. We just build on it and make

SWT a stronger market force.Ó

Indeed, some of this dramatic difference in contribution levels may be due to the difÞ-

culty of monetizing standard components, such as graphical user interface widgets. Most

popular widget toolkits, including the standard widget toolkits on Windows and Mac are

free with the development environment. One of the most prominent commercial widget

providers, TrollTech, who produce the QT multi-platform widget toolkit, was recently pur-

chased by Nokia and announced in early 2009 that it was relicensing the entirety of the

project under the terms of the LGPL license[89]. In effect, this made the QT toolkit non-

commercial. This lack of marketability makes it difÞcult for a single Þrm to devote large

resources to the project

73

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

3.4 Comparison of Eclipse with GNOME

To better understand the implications for the Eclipse community of their work distribution

between Þrms, and assess if this distribution is common within Open Source communities,

a comparison analysis was performed with the GNOME community. GNOME, which was

founded in 1997, has achieved moderate success as a desktop environment for Open Source

operating systems such as Linux. It is primarily volunteer driven, although a signiÞcant

number of commercial Þrms, primarily Linux distributors, pay developers to contribute

full time to the project. The entire CVS history of the GNOME project was collected until

the point where the version control system was migrated to Subversion on January 1, 2007.

Employees of Þrms were identiÞed through a combination of email address analysis

(e.g. someone with an @redhat.com email address most likely worked for Red Hat), read-

ing through mailing lists, and in some cases questioning individual community members

directly about their professional involvement. In total there were 16 companies who made

signiÞcant contributions to GNOME5. These companies employed 259 developers. There

were commits from 832 developers for which they were either veriÞed as volunteers or for

which there was no sign of commercial employment.

The governance style of GNOME is very different from Eclipse, as each project is

allowed to manage itself, decide on its own standards and issue releases as it sees Þt.

However, as the community uses time based releases, their are general periods when all

5One artifact of this data is that Helix Code was later renamed Ximian. Ximian was purchased by Novell
near the end of the data set. In addition, SuSE was also purchased by Novell around the same time. The
contributions are sorted out by Þrm name at the time the commits were made to CVS.

74

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

developers are rushing to complete code for the next release. The release cycle along with

annual conferences provides for some degree of shared vision and planning for members

of the community. Most telling about the community is that anyone with commit access

can contribute to any module of the project source code. While there is a social norm dis-

couraging developers from committing code to projects without Þrst checking with project

maintainers, this norm does not apply to translators who are able to take advantage of the

open nature of the product source code repositories and quickly translate the software into

a variety of different languages by lowering the amount of bureaucratic work necessary to

create a translation.

As with Eclipse, the Þrst step was to analyze the number of Þrms that each Þrm had

shared interest in code. Once again, the standard used was that if the two Þrms both con-

tributed code to the same module, then they would be connected. The degrees of each

of the Þrms is shown in Þgure3.10. Unlike Eclipse, GNOME has no major commercial

benefactor, and therefore, there is no outlier like was found in Eclipse. Aside from that,

however, both communities display a relatively similar pattern of commercial involvement.

The next step was to evaluate the number of commercial Þrms working on each project

in the community. Unlike Eclipse, GNOME has no concept of top level projects, so it was

only possible to evaluate co-participation as the individual project level. Another artifact of

GNOME is that because almost anyone with CVS access can create a project, this leads to

numerous projects that die out or get folded into other projects. In the Eclipse Ecosystem

the Eclipse Foundation prunes such projects from the CVS tree, but this is not present in

75

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!

!

! !

!

!

! !

! !

!

! ! !

!

!

0
2

4
6

8
10

12

Interaction between firms (no unknown and individuals)

N
um

be
r

of
 fi

rm
s

N
ok

ia

X
an

dr
os

C
on

ec
tiv

a

C
od

e
F

ac
to

ry

W
ip

ro

F
lu

en
do

S
uS

E

C
an

on
ic

al

Im
en

di
o

M
an

dr
iv

a

S
un

 M
ic

ro
sy

st
em

s

N
ov

el
l

E
az

el

H
el

ix
co

de

R
ed

H
at

X
im

ia
n

0
1

3
4

5

6

8

10
11

12

13

Figure 3.10: Number of Þrms with shared project contributions in the GNOME
ecosystem. For example, for all projects across the ecosystem that Red Hat made
contributions two, there were contributions from twelve other distinct Þrms. The
distinction between HelixCode and Ximian, Ximian and Novell, and SuSE and
Novell has been maintained in this data even though HelixCode later became
Ximian and Ximian and SuSE were later purchased by Novell.

76

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

GNOME. The number of commercial Þrms with code in each of the projects in GNOME

is shown in Þgure3.11.

Once again, a similar pattern of involvement is seen as in Eclipse, with many projects

garnering commercial interest from only a few commercial Þrms. The major difference,

however can be seen in the GTK project. GTK is the standard widget toolkit that all end-

user applications for GNOME are built upon. As the library has matured, it has began

to include more utility code making it serve as the primary module for all projects in the

community. In contrast to the Eclipse community, in which one Þrm, IBM, made all the

commits to the platform, in GNOME, Þfteen out of the sixteen Þrms have contributed code

to GTK. The exception to this is Nokia, which did later contribute to GTK as it forms the

basis for their Maemo platform and n7xx/n8xx line of internet tablets, although this was

after the data for the project was collected.

As a Þnal point of comparison between the two communities, a social network was gen-

erated that linked contributions by Þrms to projects within the communities over the course

of a one month period. For Eclipse, as shown in Þgure3.12the month selected was May

2008, about a month before the Eclipse community ships its annual Òrelease trainÓ. During

this period there was large amount of bug Þxes while simultaneously developers were plan-

ning out new features in new branches of the software. In particular, many of the ideas from

EclipseCon 2008, which took place in March 2008, were beginning to see their initial ex-

perimental implementations. This is contrasted with Þgure3.13, which shows a one month

snapshot of the community around GNOME. Taken from May 2005, the GNOME commu-

77

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!!!!

!!!!
!!!!

!!!!
!!!!

!!!!!!
!!!!

!!!!
!!!!

!!!!

!!!!
!!!!

!!!!
!!!!!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!

!!!!!
!!!!

!!!!

!!!!
!!!!!!!

!!!!
!!!!!

051015

N
um

be
r

of
 fi

rm
s

pe
r

pr
oj

ec
t

Number of Firms

gnome/aptivate
gnome/atlas

gnome/barefoot
gnome/bugzilla218

gnome/coaster
gnome/denzil

gnome/gci
gnome/gegl!web

gnome/gio
gnome/glightoff

gnome/gnome!alsamixer
gnome/gnome!games!extra!data

gnome/gnomemm
gnome/gnome!screensaver
gnome/gnome!web!photo

gnome/gswitchit_plugins
gnome/gtkglarea!!

gnome/gtkimageviewer
gnome/gtkticker

gnome/guile!gtk
gnome/gyrus

gnome/jg!common
gnome/libastro

gnome/libgconf!java
gnome/libgnomevfs!java

gnome/libmergeant
gnome/libpreview

gnome/libversit
gnome/maintainers

gnome/mlview
gnome/mozilla!bonobo

gnome/objIDL
gnome/pek

gnome/po2mysql
gnome/pygtk!docs

gnome/rpmbuild
gnome/sewfox

gnome/silky
gnome/tcd2

gnome/website!pt_BR
gnome/XGtk

gnome/address!editor
gnome/astrolabe

gnome/bookworm
gnome/contact!lookup!applet

gnome/cupid
gnome/desktop!vfs!module

gnome/drivel
gnome/erdos

gnome/fast!user!switch!applet
gnome/fplan

gnome/gbook
gnome/gdesklets

gnome/gegl
gnome/giftoxic

gnome/gjobs
gnome/gnfs

gnome/gnomacs
gnome/gnome!chart
gnome/gnome!druid

gnome/gnome!info
gnome/gnomepedia

gnome/gnome!schedule
gnome/gnome!tinderbox

gnome/gnome!vfs!proxy!capplet
gnome/gobject!introspection

gnome/gpda
gnome/groomf

gnome/gspeech
gnome/gtkDPS
gnome/gtkscan
gnome/gtrouble
gnome/gwhois

gnome/i18n!web
gnome/im!perl

gnome/java!access!bridge
gnome/language!bindings

gnome/libgda!perl
gnome/libglass

gnome/libgtop!bindings
gnome/livecd!project

gnome/mango
gnome/memprof!web

gnome/monkeybeans2
gnome/mooonsooon
gnome/OpenApplet

gnome/orbit!perl
gnome/Perl!Epplet

gnome/plain!gnome
gnome/qahog

gnome/sash
gnome/straw

gnome/tepache
gnome/usak

gnome/walk500
gnome/web!mirror

gnome/battstat_applet
gnome/bookmark!applet

gnome/dasher
gnome/eears

gnome/gcolorsel2
gnome/gdf!test

gnome/gimp!help!2
gnome/gmdns

gnome/gnome!backgrounds
gnome/gnome!commander

gnome/gnome!filer
gnome/gnome!nettool

gnome/gnome!transfer!manager
gnome/gnop

gnome/gprocview
gnome/gtk!!draw

gnome/guile!server
gnome/libcroco
gnome/libguppi

gnome/libole2
gnome/muine

gnome/porting!doc
gnome/reef

gnome/storage
gnome/toolchain!tests

gnome/xml!browser
gnome/atomix

gnome/encompass
gnome/galf

gnome/gnomba
gnome/gnome!fm

gnome/gnome!talks
gnome/granite

gnome/guadec!web
gnome/libgtktty
gnome/nethack

gnome/sane
gnome/trilobite
gnome/beagle
gnome/dryad

gnome/gill
gnome/gnome!http

gnome/gnome!user!docs
gnome/gob

gnome/gw!web
gnome/medusa

gnome/redcarpet
gnome/uf!view

gnome/foundation!web
gnome/gnome!guile

gnome/gnome!speech
gnome/gxsnmp

gnome/libunicode
gnome/soup

gnome/devhelp
gnome/gnome!chess

gnome/gnome!objc
gnome/guppi3

gnome/linc
gnome/sodipodi

gnome/evince
gnome/gnome!hello
gnome/gtk!engines

gnome/libxml2
gnome/scaffold

gnome/file!roller
gnome/gnorpm

gnome/libIDL
gnome/dia

gnome/ghex
gnome/libwnck
gnome/anjuta

gnome/esound
gnome/gnome!terminal

gnome/gtk!doc
gnome/web!devel!2

gnome/glib
gnome/gnome!mime!data

gnome/yelp
gnome/gtkhtml
gnome/bonobo

gnome/gnome!control!center
gnome/gnome!session

gnome/gtk

0
1

2
3

4
5

6
7

8
9

10
11

12
13

1415

F
ig

ur
e

3.
11

:N
um

be
r

of
Þ

rm
s

co
nt

rib
ut

in
g

co
de

to
ea

ch
pr

oj
ec

ti
n

G
N

O
M

E
.D

ue
to

sp
ac

e
co

ns
tr

ai
nt

s
on

ly
25

%
of

th
e

pr
oj

ec
tl

ab
el

s
ar

e
sh

ow
n

in
th

e
Þ

gu
re

.
T

he
pr

oj
ec

tw
ith

th
e

m
os

tc
om

m
er

ci
al

co
nt

rib
ut

io
ns

is
gn

om
e/

gt
k

,
w

hi
ch

fo
rm

s
th

e
ba

si
s

of
th

e
G

N
O

M
E

ec
os

ys
te

m
an

d
ha

s
co

nt
rib

ut
io

ns
fr

om
Þ

fte
en

di
ffe

re
nt

co
m

m
er

ci
al

Þ
rm

s.

78

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

Figure 3.12: Participation by Þrms (red) in projects (blue) within the Eclipse
ecosystem during May 2008.

nity was approximately the same age as the Eclipse community in the previous Þgure. This

was two months after the most recent release; most developers were patching bugs in the

software and implementing new features in anticipation of their upcoming annual confer-

ence, GUADEC. At this point Novell had already purchased Ximian and SuSE, however

the data keeps developers with their original afÞliations in the case of an acquisition.

Several things stand out between these two networks. The network around the Eclipse

ecosystem is a disconnected network, while the network around GNOME is nearly fully

connected, with the exception of Nokia. Many Þrms in Eclipse are active on only a handful

79

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

Figure 3.13: Participation by Þrms (red) in projects (blue) within the GNOME
ecosystem during May 2005.

80

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

of projects, and these projects often occupy areas where the largest players, attached the

giant component in the center of the graph, typically are not involved. Contrast this with

the GNOME ecosystem, which sees many Þrms heavily involved in all aspects of the in-

frastructure, often sharing numerous projects between each other. Only a single Þrm was

active on just one project during the period, Nokia.

Without a major benefactor, the Þrms involved in the GNOME ecosystem all work

on key components of the infrastructure together, forcing a larger amount of collabora-

tion between Þrms. In this snapshot, GTK+ and GLIB, the primary libraries for building

GNOME applications each have Þve Þrms contributing to their code during the month. In

the Eclipse ecosystem, however, during the month shown only IBM contributed code to

the Eclipse platform, despite the fact that many Þrms rely on the platform for their own

application development.

However, this is not necessarily a good or a bad aspect of the Eclipse ecosystem. The

large amounts of centralization around IBM may be a concern for many Þrms, indicating

a heavy reliance on IBMÕs continued participation, but the disconnected nature of the net-

work makes it clear that many Þrms are able to participate and create value without needing

to be tightly tied to the core of the ecosystem. In essence, these Þrms on the periphery are

taking advantage of opportunities for additional value creation within the ecosystem with-

out the need to have expert knowledge of the internals of the ecosystem. This is in marked

contrast to GNOME, where most Þrms are close to the internals of the community and must

retain developers with intimate knowledge should the need for platform modiÞcations arise.

81

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

There exist some differences between the communities that may be able to explain some

of the variation between the two. There are far fewer projects in the Eclipse ecosystem than

in the GNOME ecosystem, despite the fact that Eclipse has many more commercial Þrms

contributing. This is largely a result of the need for projects in Eclipse to be approved by

a council and have a formal incubation period before being accepted into the main Eclipse

CVS repository. In contrast, GNOME freely allows the creation of new modules in CVS

with no formal review process. Rather, the review happens when a module is proposed to

be included with the full GNOME desktop distribution. Beyond sheer numbers, the scopes

of the projects vary between the communities. Within Eclipse many of the core components

are coalesced into the Eclipse platform project, while in GNOME these are separated into

many different modules, primarily GTK+ and GLIB. This, while it is possible to compare

these networks based on overall connectedness, caution should be exercised when inferring

larger trends based on degree.

Finally, part of the difference and the increased connectedness in GNOME over Eclipse

may be a result of the programming languages for each ecosystem. Eclipse is written in

Java, which is designed to be object oriented and foster information hiding, while GNOME

is written primarily in C, which is typically non-modular.

82

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

3.5 Conclusions

This chapter has made several contributions toward understanding how Þrms actually col-

laborate in an open source ecosystem. Within the Eclipse ecosystem there is very little

collaboration between different Þrms Ð many Þrms work on only a handful of projects that

are shared with other Þrms. Numerous companies are able to successfully compete and

innovate in the Eclipse ecosystem by specializing in only a single component. This high-

lights one of the major strengths of the Eclipse Ecosystem Ð the ability for Þrms to make

money by specializing in a small component.

However, most notable about the Eclipse community is the degree of centralization

around Eclipse by IBM. This core component of the ecosystem is almost exclusively main-

tained and developed by IBM with little contributions from other other Þrms. Participants

in the community generally believed that the heavy participation by IBM in the platform

was a boon, which is most likely true given IBMÕs heavy use of platform technologies in

other projects. However, not every project that IBM leads is guaranteed to survive and this

creates a potential vulnerability for Eclipse participants. Most recently the Aperi project,

which was an ambitious effort to provide a uniÞed interface for large scale disk storage sys-

tem management was forced to close after IBM withdrew itÕs support for the project[74].

Although there were no shipping commercial products based on Aperi, the presence of

commercial products based on an Eclipse project is not enough for the community to keep

a project alive without signiÞcant developer support. This was shown with the closure of

83

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

the Application Lifecycle Framework (ALF) and several sub-project streams in the SOA

Tools Platform project within Eclipse. In these the Eclipse Foundation chose to archive the

projects after there was a lack of developer interest in the projects Ð in spite of the fact that

Serena software the primary developer of ALF was shipping a commercial product based

on it[69]. This strategy on behalf of the Eclipse Foundation almost certainly helps to deter

free-riding as it closes down projects that are populated exclusively by free riders.

In a broader sense, such a strategy by the Eclipse Foundation also empowers Þrms

that maintain projects and may afford them an additional level of bargaining. The license

for Eclipse does little to prevent a Þrm from taking the code of a project and creating a

proprietary fork of the source code, where additions and changes are not licensed under the

Eclipse Public license or shared with the upstream Eclipse Foundation[108]. Although it is

unclear if a Þrm has ever explicitly used the threat of taking their work out of the ecosystem

(interviewees indicated it would be heavily frowned upon within the community), members

companies did perceive the risk inherent in having a single Þrm control most of the commits

behind a project.

The comparison with GNOME showed that this distribution of commercial interest in

Eclipse was similar to that of another mature Open Source community. However, within

Eclipse the great centralization around IBM in the maineclipse project and the plat-

form sub-project is not replicated in GNOME Ð instead showing the complete opposite

result with all nearly all Þrms contributing to the core GTK project. The Eclipse Founda-

tion frequently needs to counter the misconception that IBM is the only company behind

84

CHAPTER 3. FIRMS AND FIRMS: BUSINESS COLLABORATION THROUGH
OPEN SOURCE PROJECTS

Eclipse and still owns the intellectual property, a statement that has been wholly false since

the creation of the foundation, but their heavy reliance on IBM for work on the platform

may serve to continue to support such perceptions. For the long term health of the com-

munity the Eclipse Foundation needs to Þnd ways to incentivize other commercial Þrms to

participate in core portions of the project that are not easily monetizable.

85

Chapter 4

Firms and Individuals: The Impact of

Commercial Participation on Volunteer

Participation1

4.1 Introduction

Early Open Source software projects, those that originated before the dot-com boom of the

late 1990Õs and early 2000Õs, were typically developed by a core of distributed volunteers

who freely exchanged ideas and code to create software for the common good of those con-

tributing individuals[85, 127]. Over time, many of these projects became robust enough to

1This chapter is substantially based on a paper in progress with Jim Herbsleb and Robert Kraut.

86

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

attract a wide variety of contributors and end users resulting in the creation of a commu-

nity of both developers and users. These communities were held together by a common

set of norms and expectations. Central to most communities were the norms of sharing

modiÞcations to the software with the greater community and governance by a meritoc-

racy Ð a system that gave those who made the greatest contributions to the community the

ability to directly modify the project source code and control the overall direction of the

software[26, 93].

Today, Open Source projects have evolved and many projects have a variety of com-

mercial Þrms with full-time developers contributing to the project. In the Firefox web

browser, Linux operating system, and OpenOfÞce suite of ofÞce programs, volunteer and

paid developers from numerous Þrms collaborate to plan and develop key features of the

software[46, 47, 64]. Before entering these communities, Þrms and their associated de-

velopers may have different goals from those of volunteers and in some cases may not be

familiar with, or implement properly, the Open Source development process and commu-

nity norms[125]. Their presence in Open Source projects could either foster or disrupt

the original volunteer communities. While previous research has addressed the motiva-

tions and actions of individual commercial developers in an Open Source software envi-

ronment, there has not been any analysis of the overall community impact of commercial

participation[96].

The primary goal of this chapter is to determine how volunteer developers react to com-

mercial participation in Open Source communities and to better understand what attributes

87

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

of commercial Þrms lead to successful commercial/volunteer partnerships. The following

sections describe four hypotheses regarding how commercial Þrms could inßuence volun-

teer participation in Open Source projects. These hypotheses are based on the issues of

having a commercial Þrm in a volunteer project. They are further reÞned by dividing the

Þrms into two categories based on their broad interests within the community. The analysis

of these hypotheses utilizes a multi-method approach consisting of qualitative interviews

and quantitative analysis of archival data. Together this allows better understanding of how

commercial Þrms affect volunteer participation in Open Source communities.

4.1.1 Commercial Participation and Positive Project Momentum

Commercial participation in Open Source communities often brings increased overall visi-

bility to the community, increasing the value for participants, especially those who wish to

use their participation to signal potential employers[64]. Commercial Þrms often provide

wider distribution by adding the project to their existing offerings, garner media attention

for the project by issuing press releases about the software, present information about the

project and community at trade shows, and encourage their employees to become active

within the community through the use of community run mailing lists and websites such

as wikis, bug trackers, and weblogs. These community tools serve a dual purpose, in ad-

dition to providing a forum for developers to discuss, plan, and share information about

their current tasks and ideas, these websites provide easy access for individuals outside

the community to see and learn about what is going on in the community, including new

88

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

releases, new developers, and new corporations involved in the community[44]. For exam-

ple, the GNOME project, a successful desktop environment for Linux and Unix systems,

has a website called Planet GNOME2 that aggregates the weblogs of most of the developers

in the community. As community members write articles on their personal weblogs, the

articles are automatically added the Planet GNOME where they appear next to a picture

of the developer. Using this website individuals can visit a single website and get up to

date information about development in the project and the lives of the primary developers.

When an individual is only marginally involved with the community and looking for ways

to get involved he may see the participation of commercial Þrms in these tools as valida-

tion of the project and seek to participate and contribute to such a project because of the

possibility for future rewards, such as increased technical know-how or the possibility of

career advancement.

If commercial developer participation validates the importance of the project and in-

creases the momentum, then an inßux of commercial Þrms and paid developers should

attract volunteer developers and increase their participation in the community. The number

of changes that full time commercial developers can make, and their high level of skill may

speed up the development process, increasing the utility of the project to community mem-

bers and contribute to volunteers identiÞcation and attachment to a successful project. Such

attachment with projects, communities, and movements is an important factor in volunteers

remaining active in a community and overall community success both in conventional vol-

unteer organizations and Open Source communities [56, 62].

2Planet GNOME can be found athttp://planet.gnome.org/

89

http://planet.gnome.org/

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Hypothesis 1 Participation of commercial developers on an Open Source project is asso-

ciated with an increase in volunteer participation in the project.

4.1.2 Negative Impacts of Heterogeneity

However, just as participation by commercial Þrms can provide resources to a community,

they also introduce heterogeneity into the pool of developers. Whereas initially all of the

volunteer developers may have been able to rally around the primary focus of the commu-

nity, developers employed by commercial Þrms may be working just for a pay check, with

little concern for overall community health and well-being. In the long run, such hetero-

geneity in workgroups decreases overall productivity and increases tension within teams

[90, 129]. Open Source communities have additional issues of heterogeneity which result

in decreased performance, such as personal ideology for community participation [106].

Hypothesis 2 The participation of commercial developers on an Open Source project is

associated with a decrease in volunteer participation in the project.

4.1.3 Business Models and Community Norms

In the late 1990Õs when Open Source was Þrst attracting interest from commercial Þrms,

most had similar business models. These Þrms followed the model of Linux distributors,

such as Red Hat, that took the output of the community as a whole, packaged it with doc-

umentation and additional software to make it easier to use, and then sold the complete

90

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

collection of software with enhanced support[116, 134]. These companies tied their Þnan-

cial success to the success of the Open Source community as a whole. More recently as

the market has matured, additional business models have arisen that allow Þrms to isolate

and derive revenue from a single component that is part of a larger community or start their

own communities around small niche products[60].

Commercial Þrms were separated into two broad classes based on their business model

and interactions in the community: community focused Þrms that package the entire out-

put of a community, such as Linux distributors, and product focused Þrms that utilize

only a portion of the output from the community for their products. Within the context

of GNOME, most of the community focused Þrms are Linux distributors that have a vested

interest in shipping a complete and usable desktop environment with their distributions of

Linux. Product focused Þrms typically enhance particular components from a community,

such as a component library, or focus on a particular application in their business model.

Many small consultancies Þt in the category of product focused Þrms Ð for example when

a major electronics manufacturer was developing a way to stream media via the Internet,

they contracted a Þrm that specialized in the multimedia framework that GNOME uses to

extend the framework and develop substantial portions of the product.

As the community around GNOME was founded on the principle of creating a Free

Desktop Environment, rather than a collection of individual projects, this may foster a com-

munal spirit amongst volunteers. When combined with the nature of many tools, such as

Planet GNOME, that provide an overview of the whole community and the fact that anyone

91

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

can easily participate anywhere in the community, it is likely that volunteers will identify

more closely with community focused Þrms leading to an increased power in attracting

new volunteer developers over that of product focused Þrms.

Hypothesis 3 Community focused Þrms will have a more positive relation to the change in

the number of volunteer developers than product focused Þrms.

4.1.4 Cognitive Complexity at the Module Level

At the heart of Open Source projects is source code Ð Þles written in various programming

languages that embody the primary functionality of the project. The code for complex

projects may consist of hundreds or thousands different Þles, each performing a speciÞc

task. To assist in developer logistics and comprehension, within large projects code and

responsibilities are typically broken up into smaller components, called modules[87]. For

example, a simple email client may have three modules: receiving mail, sending mail, and

graphical user interface. All work within a module must typically be carefully coordinated,

since all parts of the module tend to be closely coupled. Work in different modules tends

to be much more loosely-coupled, and typically requires much less coordination. Each

module may have a set of developers who are responsible for maintaining the module and

overseeing development. Organizationally, modules often replicate the structure of the

larger project Ð complete with their own mailing lists, bug tracking, and social norms.

Because of the distributed nature of most Open Source software development, projects

92

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

have adopted strong norms of open communication and decision making. For example, the

Apache project requires that all decisions reach consensus on publicly accessible mailing

lists. However, collocated developers employed by a commercial Þrm who work closely

together have decreased incentive to post to the project mailing lists and maintain the trans-

parent decision and documentation process. Such a process increases the cognitive com-

plexity of code and prevents volunteers from fully understanding the logic of the new code.

The loss of open discussion allows collocated developers to create code that is less mod-

ular making future changes more difÞcult further decreasing participation [66]. Because

commercial developers work full time, they change project code much faster than volun-

teer developers. A survey of volunteer Open Source developers found volunteers average

14 hours a week on Open Source projects only a third of a standard 40 hour work week

for commercial developers[62]. These issues posit a real danger that as developers from

commercial Þrms modify code within a module of a module of a project, it will become

increasingly difÞcult to for volunteer developers to comprehend the set of changes, forcing

the volunteers previously working on the module to migrate to alternate modules within the

project or leave the project completely.

Hypothesis 4 The participation of commercial Þrms in modules of an Open Source project

is associated with reduced volunteer participation in those modules.

93

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

4.2 Research Method

Open Source software projects have rich historical archives of communication. For many

projects, every communication, debate, and decision is automatically recorded by project

support tools. While it is possible to gain useful insights into a community using just the

archival data, understanding the context and ensuring correct interpretations of the data

require qualitative as well as quantitative analysis. This combination of qualitative and

quantitative research techniques allows us to understand the nuances of how communities

and commercial Þrms interact and is particularly helpful in the cases where commercial

Þrms make decisions regarding project participation outside the framework of the project.

Two studies were conducted focusing on a single large Open Source community. The

Þrst study was a qualitative study to identify the views of developers toward commercial

participation and to provide additional background context about the community. The sec-

ond study analyzed quantitative data obtained from the community in order to evaluate

hypotheses regarding commercial participation in Open Source suggested both by previous

research and the results of the qualitative study.

4.2.1 Community Background

Our research focuses on the GNOME project, a large and successful Open Source desk-

top environment started by volunteer developers in 1997 as a response to the lack of a

completely free and Open Source desktop environment for Linux and other free computer

94

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

operating systems. By many metrics, this is a highly successful project: more than 10 years

of history, stable releases every six months, and a continually growing user base[39, 57].

GNOME is the desktop environment for computers from Sun Microsystems, software

from the project is in use in a myriad of devices like the One Laptop Per Child and Nokia

n800 series of Internet tablets, numerous startup Þrms have created solid businesses around

the project, and it recently was made available direct from Dell computers as part of their

option to provide Linux on new computers. In our period of analysis, which goes from

the origins of the project in 1997 to late 2006, there were over 1200 individuals who had

ÒcommitÓ status Ð the ability to directly modify the project source code without needing

to go through an intermediary and almost 1000 different components in the shared source

code repository. The community coordinates most of their activity through Internet enabled

tools such as a shared bug tracker, mailing lists, and real time chats. The community, al-

though originally comprised only of volunteers, has adopted modern software engineering

practices such as release reviews, formal bug tracking, and project roadmapping [38] and

faces many of the coordination and collaboration issues found in most distributed teams

from cultural differences that frequently arise between Americans, Europeans, Australians,

and Asians to the need to schedule board conference calls in such a way that only a single

member has to take the call in the middle of the night[57].

One of the key elements of the GNOME project is that it is composed of many smaller

projects of varying size, complexity, and maturity. For our purposes, when I refer to the

ÒGNOME projectÓ I mean this larger community, and a ÒprojectÓ is one of these smaller

95

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

projects in the community. The community operates as a federated system, giving each

project with the opportunity to control their own outcomes and chart their own roadmap

subject to some broader constraints and goals developed by the community. When a project

has reached sufÞcient maturity, the developers may apply to have that project included as

part of the main community software distribution, greatly increasing the probability that

the project will be included as a default component with new installations of Linux and

granting the project a large userbase. Most projects in the community have their own

mailing lists and bug trackers and are generally managed by individuals working on those

projects. Most community participants are active on multiple projects, but because there

are hundreds of projects within the community, there are no developers who are active in,

or able to monitor all the projects.

The community has a track record of commercial investment. During the dot-com boom

of the late 1990Õs several Þrms were created to customize the project, develop components,

and provide support for users of the software. However when the bubble burst in 2000-

2001, many of these Þrms went bankrupt or left the market, leaving critical components

largely unmaintained. The community slowly built up commercial support again and now

has signiÞcant corporate investment from Þrms that distribute software as a component of

the Linux operating system, and from other Þrms that utilize the software as a base toolkit

that can be used for the design and manufacture of embedded devices such as PDAs and

mobile phones.

96

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

4.3 Study 1: Developer Interviews

The Þrst study was a set of interviews designed to better understand the community and

the role of commercial Þrms within the community. The Þrst author attended one of the

two major annual face-to-face meetings for both volunteer and commercial community

participants. These events are generally considered to be one of the highlights of the year

for the project and take place shortly after the major releases of the software, approxi-

mately every six months. To encourage participation by volunteers in the conferences, the

GNOME Foundation provides travel stipends to volunteers in the community to attend the

conferences. While this helps volunteers attend the conference, because of issues with

getting time away from work or school and the limited number of stipends, the popula-

tion at conference typically under-represents volunteers relative to their contribution to the

community.

Before attending the conference, key individuals were identiÞed and contacted to sched-

ule the interviews, and the most active Þrms in the community were researched and clas-

siÞed according to their business model within the community. During the conference, a

total of eighteen individuals were interviewed over the course of three days. Interviews

were semi-structured, lasted twenty to forty minutes, and were conducted during breaks in

the schedule. Each interviewee was asked for the relevant professional background, how

they got involved with the community, where they currently participate in the community,

how they relate to commercial developers in the community, and if they believed our divi-

97

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.1: General Description of Interviewees

Total Interviewees 18
Commercial Developers 50%
Volunteer Developers 50%
Student Volunteer Developers 17%
Commit Access 78%
Self-Described as Developer 89%
Self-Described as Community Support 11%
Longest Participation 10 years
Shortest Participation 11 months
Median Participation 3 years

sion of Þrms into community focused and product focused classiÞcations was accurate.

General descriptive statistics about the interviewees can be found in Table4.1. Of

interest is that only fourteen of the eighteen individuals could directly commit to the project

source code Ð two of the newer developers, one commercial and one volunteer, still needed

to contribute through intermediaries and neither of the individuals who self-described their

role as community support could make changes directly to the source code. As previous

studies had shown that Open Source communities were typically only 1.5% female[40], it

was not unusual that all interviewees were male.

The nine volunteer participants had varied backgrounds. Three of the volunteers iden-

tiÞed themselves as students who primarily participated during their free time. The other

six volunteers indicated their use and participation in the project was at least marginally

related to their roles at work. For example, two of the volunteers were IT support staff

in environments where GNOME was used as the desktop environment. All six of these

98

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

non-student individuals admitted to writing code and contributing to GNOME while they

were Òon the clockÓ, even though their jobs had no role that involved GNOME. These par-

ticipants believed their participation was relevant to their jobs and participation improved

their performance at work.

The participants came to the project through a variety of routes. Most Þrst became in-

terested in the community because of their general interest in Linux and technology, but

their reasons for changing from a passive community member who only uses the software

to an active, contributing, member varied. Three of nine volunteer developers indicated

that another individual working in the community had played a very large role in bringing

them in to work on the community. Two of the developers indicated they started submit-

ting changes to a project in the community and were later offered the chance to become

maintainers of the project. The remaining four volunteer developers could not identify a

speciÞc reason they became more active in the community. Five of the commercial devel-

opers were active as volunteers in the community before they were hired. The remaining

four commercial developers were hired by the Þrm for other projects and later shifted to

projects in the GNOME community.

ÒIf it werenÕt for [commercial developer name], I wouldnt be involved in

the community. He saw my postings on the mailing list and encouraged

me to get more involved. About a month later he asked if I would like to

maintain the project.Ó

ÐVolunteer developer speaking about how he became involved

99

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

4.3.1 Views of Commercial Participation

Both commercial and volunteer developers thought commercial developers provided man-

power and the focus necessary to accomplish tasks that volunteer developers lacked the

skill or motivation to accomplish. Additionally, the commercial developers believed their

Þrms provided a marketing force for the community, increasing the appeal and bringing in

more individuals to work on and participate in the community.

Volunteers generally welcomed the expertise and effort that commercial developers pro-

vided. One volunteer explicitly stated he hoped that his participation would be noticed by

commercial developers and they would offer him a job, as they had for one of his friends.

Three of the volunteer developers believed there were times when the heterogeneity in-

troduced by commercial developers was beneÞcial Ð in particular the skills of commercial

developers were sought for highly technical areas such as system performance and low-

level libraries that volunteers often could not develop. None of the developers, volunteer

or commercial, ever mentioned intentionally treating another individual differently because

they worked for a different Þrm or were a volunteer, although a commercial developer did

indicate that he believed code written by volunteers wasnÕt always as useful or reliable as

code written by professional software engineering employed by his Þrm. At a modular

level such a comment highlights the differing directions and goals of commercial Þrms and

volunteer developers.

Two of the commercial developers who began working in the community as volunteers

100

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

expressed a small amount of frustration in aligning the goals of their Þrm and the commu-

nity Ð possibly alienating volunteers in the community, but generally thought their Þrms

had found ways to succeed. In one case the Þrm adopted a dual process model for partic-

ipation in Open Source, where developers had individual responsibility for ensuring their

participation was congruent with the values and norms of both their Þrm and the project.

Internal to their Þrm they had to follow the roadmap and processes for the ÞrmÕs prod-

uct, while at the same time they needed to follow and work within the roadmap created

by the community. This model caused many problems for the Þrm because the roadmaps

diverged as the project progressed. In the end, the commercial developers de-emphasized

the roadmap of their company, working harder to Þt their development into the process of

the community. The developers perceived that this led to a slow down in production and

persisted until they were successful in convincing their managers to adopt and internal pro-

cess that was much closer to the communal development processes. Although this caused

contention within the Þrm, it was thought to be best for the community.

ÒI certainly would not want to see commercial participation go away. But

I think there are things that some companies should be more careful of

when working in the community. At [Þrm name], weve been very careful

how we work with the community.Ó

ÐDeveloper at community focused Þrm

The need to be careful when choosing how to participate was echoed by a commercial

developer who had been active in the community for more than Þve years and had worked

with multiple Þrms. He was currently employed by a product focused Þrm and was critical

101

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

of his Þrms participation; believing that his current Þrm had little respect for the community

norms. Rather he believed his Þrm was involved only the sake of exploiting the community

for their own products, and had little interest in the health and values of the overall com-

munity. This view was in sharp contrast to his previous experience at a community focused

Þrm that he described as fostering involvement within the community. This developer left

the product focused Þrm and the entire community shortly after the conference and his de-

parture stirred up debate within the community about how Þrms should interact with each

other and volunteers.

4.3.2 ClassiÞcation of Firms

The interviewees were asked about their views of the nine largest Þrms (as measured by

the number of changes made to the community source code repository). As researchers, we

had previously classiÞed the Þrms according to business model within the community. Five

of the Þrms were product focused Þrms, which worked primarily within smaller areas of the

community code, and four were community focused with contributions to many projects

within the community. A brief description of each of these Þrms can be seen in Table4.2.

Each of the interviewees was provided a description of our classiÞcation scheme and asked

to classify each of the nine Þrms. Out of the 162 classiÞcation tasks across interviewees,

only two were not in agreement with our classiÞcation (Fleiss! = 0.953). The two points

of disagreement were both employees of a Þrm classiÞed as product focused who believed

their Þrm was better classiÞed as a community focused Þrm.

102

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.2: Major Þrms participating in the community as measured by the num-
ber of commits to the community source code repository.

Product Focused Firms

Firm A A large IT Þrm that became involved in the last Þve years through the pur-
chase of Firm B. Migrating from a community focused to product focused
Þrm.

Firm B A medium Þrm that developed enterprise class software and provided services
for the community. Purchased by Firm A.

Firm C A small Þrm that assists in application development for the embedded market.
Firm D A small Þrm that produced enterprise class applications for the community.

Ceased operations in 2002.
Firm E A small venture capital funded Þrm that developed software and sold inte-

grated services for the community. Ceased operations in 2001.

Community Focused Firms

Firm F A large Linux distributor and long time supporter of community.
Firm G A large IT Þrm that uses the community software to compliment hardware

offerings.
Firm H A Linux distributor that historically shipped a desktop environment from a

competing Open Source community and had small participation in the com-
munity.

Firm I A medium Linux distributor that historically supported the community and
that of its competitors.

103

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

However, when asked about perceptions of speciÞc Þrms the views of interviewees var-

ied. In particular, most of the volunteer developers believed that product focused Þrms

had more difÞculty working with the community than community focused Þrms. Attitudes

were almost universally favorable toward community focused Þrms. In contrast, develers

had mixed perceptions of product focused Þrms. In the words of one volunteer these Þrms,

were viewed as being guilty of Ònot caring about volunteers.Ó Another volunteer, who

maintained a project within the community that had contributions from about ten develop-

ers, was extremely skeptical about participation by a major product focused Þrm, despite

being good friends with many of their developers and contributing to other projects main-

tained and stewarded by the Þrm. He expressed concern about the method of participation

by the Þrm and the fact that they didnÕt require everyone to go through the same community

socialization process before gaining committer status. This led him to be wary of contribu-

tions to his component from the commercial Þrm. Later in the interview process, when Þve

of the other volunteer developers were asked speciÞcally about this Þrm, they all echoed

similar concerns about the ÞrmÕs participation.

ÒI dont think the commercial Þrms have the same interests as volunteers.

If they submitted code to my project, IÕd accept it, but if they started to

submit lots of code, IÕd start to look a lot more at where the project was

going.Ó

ÐVolunteer developer and project maintainer

These interviews paint a mixed picture with regards to commercial development. While

most developers indicated that they appreciated commercial development in the commu-

104

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

nity, a substantial portion of the developers were skeptical about the behavior of these

commercial Þrms. The views expressed toward commercial Þrms by the developers in-

dicate that there may be a relation between business model and perceived attractiveness

of commercial Þrms in the community. In particular, there was some preliminary support

for commercial Þrms attracting volunteers (hypothesis1), but it was not universal. There

was also a difference in perception between the Þrms classiÞed as community focused and

those classiÞed as product focused, with the product focused generally slightly more nega-

tive, lending support for hypothesis3 and hypothesis4.

4.4 Study 2: Quantitative Analysis

Theory surrounding the issue of commercial participation in Open Source communities

and the interviews conducted in the Þrst study provide a foundation for the second study, a

longitudinal analysis of historical data obtained from the community. I begin by further val-

idating the classiÞcations by business model proposed to, and validated by, the interviewees

through an analysis of three kinds of behavior of commercial and volunteer developers: 1)

open and potentially non-technical interactions in a forum with little learning curve (mail-

ing lists), 2) a focused technical forum open to anyone with a moderate learning curve (bug

tracking system), and 3) the highly technical interactions that build the software and require

signiÞcant dedication and skill to understand and participate in (project source code). The

data are then used to develop proÞles of developers and projects and test for the effects of

105

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

commercial participation on volunteer participation at the project and module levels.

4.4.1 Data Collection and Analysis

Most Open Source projects follow a set of norms that are generally referred to as Òthe Open

Source process.Ó A key component of this process is the collection and archival of nearly

all communication data as a form of organizational memory and as a tool for developers

and users to later reference. In most communities public mailing lists are archived where

they can be easily indexed and searched, bug tracking systems provide a complete audit

history of every change made to each bug report, and a version control system manages

and records all changes made to the software. When using a version control system, each

developer downloads a complete copy of the code for the project, makes and tests their

modiÞcations, and then sends information about the Þles that were modiÞed back to a

main server in a single action called a commit. Each change is tracked in the system,

allowing developers to revert to a previous point in the development process or Òroll backÓ

changes that may have been detrimental to overall development while providing a method

of providence for all code modiÞcations [30].

Working with the system administrators in the community, archival copies of mailing

lists, bug databases, and the communityÕs version control system were obtained. During the

period of study, the community utilized concurrent version system, CVS, as their version

control system. It was set up in such a way that any developer with a CVS account could

106

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

commit directly to the repository for any project. To control the community and protect

the project source code, CVS access was only granted to developers after a request was

made by another developer to create the account, limiting the number of individuals who

could contribute to those who demonstrated signiÞcant dedication to the project. Bugs

were managed and tracked using the Bugzilla software package, allowing anyone with an

account, available instantaneously through a web form, to submit and comment on issues

related to a project. The mailing lists were managed using the Mailman software, and most

lists were open to anyone with an email address.

Each of the tools utilized different account and identity management solutions. All

accounts belonging to each developer were manually uniÞed and linked together within

the data set. This allowed us to simply and directly obtain all contributions for developers

across different projects and mediums. Information about developers was augmented with

employment information gathered from examining developer email addresses, signatures

at the end of messages, blog postings, project web pages, and interviews with community

developers. This provided the necessary information to classify a developers participation

as volunteer, product focused commercial, or community focused commercial allowing the

analysis of Þrm level behaviors in the community.

107

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

4.4.2 Product Focused vs. Community Focused Developers

The interviewees supported our idea that there were two different types of Þrms contribut-

ing to the GNOME project Ð community and product focused. Initially, based on some

of the comments of the interviewees, it was believed that community focused developers

might have more experience and thus be seen as experts in the community. This seemed

reasonable, as the Þrst Þrms to invest in the community were community focused Þrms.

However, there was no statistical difference between the tenure in the community for prod-

uct focused (mean of 5.24 years) and community focused (5.51 years) developers. Both

had more experience in the community than did volunteers (3.93 years).

Several interviewees also believed that there were observable behaviorial differences

between community and product focused developers. Based on interview responses and

personal experiences in the community I identiÞed and analyzed a set of behaviors that

could be seen as pro-social and community building. These behaviors have the primary

characteristics of showing an interest in the community beyond the narrow focus of prod-

ucts the developer is paid to work on or are behaviors which have a high probability of

interacting with individuals in the community who are not already developers. As devel-

opers were active in the community for widely varying amounts of time, each activity was

normalized by the number of years the developer was active in the community.

The Þrst way that individuals outside the community are likely to interact with commer-

cial developers is through project mailing lists. Individuals that start many new discussions

108

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

and reply to a variety of messages are likely to interact with a variety of volunteers and ad-

dress issues raised by the community. Beyond being highly active, the number of mailing

lists a developer posts to also increases the sense that the developer is building commu-

nity. The community building effect is magniÞed it the developer is active on mailing lists

serving projects that they have never committed code into.

I examined the mailing lists from the community and for each developer counted the

number of messages posted, new discussion threads started, projects mailing lists they were

active on, and the number of projects they posted messages to for which they had never con-

tributed code. Each of these values was normalized by the number of years the developer

had been in the community, as measured by the duration from their Þrst observable contri-

bution in any project to their last observable contribution (or the end of the data set if still

active). I then took the mean across each of the classes of developer; volunteer, product

focused, and community focused; and performed an ANOVA to compare the three means.

The results as shown in table4.3 indicate that there is a signiÞcant difference in participa-

tion patterns between the three classes of developers. In particular, commercial developers

were found to be much more active on mailing lists. However, when tests were performed

analyzing just the difference between product and community focused commercial devel-

opers; a difference was found only in the number of messages posted to project mailing

lists.

A semantic content analysis of all email messages sent to public mailing lists was then

performed. This identiÞed elements that support information seeking behavior in the com-

109

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.3: Mean Activity per Year on Mailing Lists by Class of Developer (su-
perscripts indicate statistically different groups of means in each row)

Variable Volunteer Product Focused Community Focused P-value

Messages 39.04A 87.10B 135.80C < 0.001
Threads Started 13.85A 34.42B 56.37B < 0.001
Mailing Lists 0.37A 0.68B 0.53B < 0.001
Extra Mailing Lists 0.20 0.23 0.20 0.400

munity, such as posting email addresses of contacts and providing pointers to web pages.

The results were then aggregated by whether the author of the message was employed by

a community or product focused Þrm. This analysis found that community focused devel-

opers included 85% more references to email addresses, and 140% more references web

addresses than developers at product focused Þrms (as measured by the proportion of words

that were email addresses and web addresses). Both of these behaviors are pro-social and

may help new community members become acquainted with the project and eventually

contribute as developers.

Mid-level technical interactions on the Bugzilla bug tracking system may have similar

affects in building community as posting to message to a mailing list. In particular, users

are encouraged to post any bugs encountered to Bugzilla. These bugs are periodically

triaged by a group of community members who then assign the bugs to project developers.

At the simplest level, each bug is given a small message form that allows developers to

post messages which are sent back to the original submitter and any other individual with

interest in the bug. Often times, developers post messages indicating that a bug has been

veriÞed as present, asking for more information, or provide a workaround for the user

110

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

experiencing the bug. Individuals also may submit patches to bugs that address the bug,

a behavior that could be seen by a volunteer as taking a signiÞcant interest in their issue.

When working with Bugzilla, developers can mark bugs as Þxed, indicating that the patch

has been submitted and accepted. Finally, we can count the number of distinct projects a

developer was active on within the Bugzilla system to get an idea of overall activity and also

cross-reference this against activity in the source code repository to see where developers

contribute to bug management but do not write code. We take this to be an indication that a

developer is taking concrete action showing a broader concern for the project, beyond the

local areas that are the focus of the developerÕs interest.

Each of the previously described metrics was collected for every developer and used

the same method that was used for the mailing lists to normalize for the length of time the

developer was active in the community. The metrics were aggregated by class of developer,

and summarized in table4.4. Surprisingly, while commercial developers had a greater fre-

quency of activity, as measured by the number of comments, patches, and bugs Þxed, they

had the same relative amount of breadth in the system as volunteer developers. Contrary

to our initial belief, when accounting for tenure in the project, product focused developers

were active on project bug trackers for signiÞcantly more projects and projects for which

they had written no code than community focused developers (as measured by the Extra

Projects variable). However, as a whole, the ANOVA for these values were not signiÞcant.

Certain actions by commercial developers in the CVS code repository may also be con-

strued as pro-social community oriented behavior. Working on a variety of projects within

111

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.4: Mean Activity per Year in Bug Reporting Database by Class of De-
veloper (superscripts indicate statistically different groups of means in each row)

Variable Volunteer Product Focused Community Focused P-Value

Comments 74.92A 156.50B 133.40B 0.010
Patches 4.93A 9.60B 6.14A 0.042
Bugs Fixed 1.44A 3.80B 7.30B < 0.001
Projects 2.60 3.54 2.43 0.141
Extra Projects 1.56 2.09 1.11 0.556

Table 4.5: Mean Activity per Year in CVS Repository by Class of Developer
(superscripts indicate statistically different groups of means in each row)

Variable Volunteer Product Focused Community Focused P-Value

CVS Projects 13.72A 5.42B 15.29A 0.002

the community probably shows that the developer has a greater interest in the overall health

and well-being of the community. Analysis of the logs indicates that developers employed

by community focused Þrms contribute are active on signiÞcantly more projects, as shown

in Table4.5. The increased participation across a wider number of projects conÞrms the

responses by many of the volunteer interviewees who believed the product focused Þrms

worked only in narrow niches within the community and that community focused Þrms

spread their effort across multiple projects.

This analysis shows that there are sometimes dramatic differences in the patterns of

participation between volunteer, product focused, and community focused developers. In

general, all commercial developers are more active in the community than volunteer de-

velopers, community focused developers are much more active and visible on commu-

112

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

nity mailing lists and within the project source code. Furthermore, when analyzed using

ANOVA, there is statistically little difference between developers at community focused

Þrms and those at product focused Þrms.

4.4.3 Quantifying the Impact of Commercial Developers on Volunteer

Participation

The community makes it very easy for developers to start a new project, leading to a vari-

ety of projects that contain only small amounts of code, or represent the efforts of only a

single developer working on a very speciÞc tool. To select projects that had a substantial

community around them, I Þltered the data selecting only projects with more than 20 devel-

opers, more than 100 bugs Þled in the Bugzilla bug tracking system, at least one community

hosted mailing list associated with the project, and more than a year of overlap between the

source code history, mailing list archives, and bug tracker data. These requirements yielded

fourteen projects from the community.

As the data was presented as a continual time series, there was a need to aggregate the

data into longer time periods to facilitate the analysis. Time periods ranging from one week

to six months were explored. At the shorter end, the data exhibited great variability from

one period to another, especially with respect to participation by volunteer developers who

often disappeared for weeks at a time due to commitments outside of the project. Longer

time periods faced the opposite problem, the release cycle for GNOME is six months long

113

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

and longer time periods would fail to capture the different stages of development and would

lead to substantial delay between effects. In addition, while some projects had almost ten

years of history, other projects only had approximately Þfteen months of history. Eight

weeks was chosen as a compromise length of time to aggregate into time periods. Each

release cycle for GNOME then contained three distinct time periods, enough time to show

changes in participation without being subject to the noise of shorter time periods.

The number and identity of volunteer and commercial developers committing code dur-

ing the period and the number of commits to the project during the period were recorded for

each eight week time period. The distribution of the number of commercial and volunteer

developers is highly skewed toward the lower end of the range and can be approximated

with a log-normal distribution. To a lesser degree the distributions of the number of com-

munity focused developers, product focused developers, and commits are also skewed. To

accommodate for this in the models, the logarithm (base 2) of these variables is used. Sum-

mary statistics and correlations can be seen in Table4.6and Table4.7below. Of note is the

high correlation between the number of volunteer developers at timet and timet " 1. This

is a sign of a broader problem of autocorrelation in the number of volunteer developers

across many time periods, which can be seen in Þgure4.1. This high level of autocor-

relation can be compensated for by examining the difference in the number of volunteer

developers between different time periods. The autocorrelation of this new variable are

seen in Þgure4.2.

The correlations between time periods are now signiÞcantly less, with the maximum

114

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.6: Summary Statistics of Data Collected from 14 projects at 8 week
intervals (601 total observations)

Variable Mean Median Skewness Kurtosis Std Dev Max Min

V olDevsi,t 4.01 3 1.24 0.96 3.94 18 0
Number of volunteer developers contributing code to projecti at timet
ComDevsi,t 3.57 2 2.19 4.70 4.87 26 0
Number of commercial developers contributing code to projecti at timet
ComDevsCF,i,t 1.12 1 2.16 4.77 1.66 9 0
Number of commercial developers from community focused Þrms contributing code to projecti at timet
ComDevsP F,i,t 2.65 1 2.84 8.22 4.49 26 0
Number of commercial developers from product focused Þrms contributing code to projecti at timet
Commitsi,t 114.97 46 2.98 11.54 175.64 1407 0
Number of commits made by all developers to projecti at timet
Observations,N 42.92 49 -1.66 1.74 12.72 53 14

Table 4.7: Correlations of Data Collected at Project Level afterlog transforma-
tions.

V olDevst V olDevst! 1 ComDevst! 1 ComDevsCF,t ! 1 ComDevsP F,t ! 1 Commitst! 1

V olDevst 1.0000
V olDevst! 1 0.8263 1.0000
ComDevst! 1 0.3755 0.3921 1.0000
ComDevsCF,t ! 1 0.4346 0.4258 0.6272 1.0000
ComDevsP F,t ! 1 0.2733 0.2773 0.9272 0.3555 1.0000
Commitst! 1 0.6655 0.7331 0.6400 0.4208 0.5504 1.000

115

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Autocorrelation of Volunteer Develoers

Figure 4.1: Autocorrelation of the number of volunteer developers between time
periods

116

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

5 10 15 20 25

!0
.2

0.
0

0.
1

0.
2

Lag

A
C

F

Autocorrelation of Diff(Volunteer Developers)

Figure 4.2: Autocorrelation of the diffÕd number of volunteer developers be-
tween time periods

117

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

correlation ocurring at time lag 1. Figure4.2 suggests that the difference in the number

of volunteer developers may take on an AR(2) model, which has interesting implications

for predicting the future number of volunteer developers, but is beyond the scope of this

work. This reformulation of the response variable as a diff continues to satisfy the original

hypotheses.

The next step in building a model with time lagged elements is to evaluate the cross

correlation between the response variable and possible predictor variables, as seen in Þg-

ure 4.3. In all cases the cross correlations are below 0.3. Most interesting is the result

shown at the top of the Þgure, illustrating the dramatic change in sign between a lag of zero

and a lag of one time period. This indicates that periods of highest volunteer activity, as

measured by the number of volunteer developers, often attract additional developers, but

the next time period many of these developers leave the project.

A variety of different control variables were explored for the projects, including number

of email messages, total commits to project source code, and number of Þles active during

the time period. These variables were consistently highly correlated (> 0.92) with one

another, so the number of total commits was selected as a control for the general level of

project activity. An additional control variable of the time period of the observation was

also included to account for a general observation that projects frequently loose developers

over time. As some projects had signiÞcantly longer history than others, this variable also

had a log transformation applied.

I begin with a regression model that predicts the change in the logarithm of the of the

118

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

!20 !10 0 10 20

!0
.2

0.
0

0.
2

Lag

A
C

F

ccf(diff(log(VolunteerDevs)), log(VolunteerDevs))

!20 !10 0 10 20

!0
.0

6
0.

02

Lag

A
C

F

ccf(diff(log(VolunteerDevs)), log(CommercialDevs))

!20 !10 0 10 20

!0
.0

6
0.

02

Lag

A
C

F

ccf(diff(log(VolunteerDevs)), log(CommunityDevs))

!20 !10 0 10 20

!0
.0

6
0.

02

Lag

A
C

F

ccf(diff(log(VolunteerDevs)), log(ProductDevs))

Figure 4.3: Cross correlation of the diffÕd number of volunteer developers with
predictor variables. The top Þgure shows the cross correlation with the num-
ber of volunteer developers. The second Þgure shows cross correlation with the
total number of commercial developers. The third and fourth Þgures show the
cross correlation with the number of community and product focused developers
respectively.

119

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

volunteer developers contributing source code to project at timet as a function of the log

transformed number of volunteer developers, commercial developers, and commits at time

t " 1. To accomidate for the varying level of inherent attractiveness for different projects

in the ecosystem, each project had a dummy variable applied to determine the intercept..

The regression model is shown in equation4.1. Within this model, the response varible

is the difference in the log of the number of volunteer developers for projecti from time

periodt " 1 to t, di! (log (V olDevsi,t)) and the predictor variables are the intercept for

the project," i , the log of the number of volunteer developers for projecti the previous

time period,log (V olDevsi,t), the log of the number of commercial developers for project

i for the previous time period,log(ComDevsi,t ! 1), the number of commits for projecti for

the previous time period,log(Commitsi,t ! 1), and an identiÞer for the current time period,

log (t).

di! (log (V olDevsi,t)) = " i + #0 log(V olDevsi,t ! 1) + #1 log(ComDevsi,t ! 1) +

#2 log(Commitsi,t ! 1) + #3 log (t i) + $i,t (4.1)

The results of the model, reported in Table4.8 indicate that an increase in the number

commercial software developers working on a project has no effect on attracting additional

volunteer developers to the project. However, general activity in a project, as measured by

the number of commits, is related to an increase in the number of volunteer developers in

120

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.8: Hypothesis1 and2 Ð Regression coefÞcients predicting change in
number of volunteer developers by project (equation4.1)

Variable Estimate Std Error P-Value

log (V olDevsi,t ! 1) -0.4779 0.0356 < . 001
log (ComDevsi,t ! 1) 0.0411 0.0311 0.187
log (Commitsi,t ! 1) 0.0819 0.0199 < . 001
log (t i) -0.0471 0.0156 0.003

R2 = 0.211, AdjR 2 = 0.193, DF = 746, p < 0.0001

the next time period. This effect is tempered by the general trend of projects attracting fewer

new volunteer developers as they grow older. CoefÞcients for project dummy variables, not

all shown, ranged from 0.09 to 0.89 and were signiÞcant at thep < 0.001level for 11 of the

13 projects. The model meets the requirements for a linear regression and the distribution

of the residuals is rougly linear on a QQ-Plot, as shown in Þgure4.4. Due to the lack

of signiÞcance oflog (V olDevst! 1) it is not possible to reject or support hypothesis1 or

hypothesis2 with this model.

As I have shown there is a marked difference between the methods and magnitudes of

participation of the two types of commercial developers: product focused and community

focused. In Equation4.2 I expand on the model to differentiate between participation

of developers for community focused Þrms,ComDevsCFt ! 1 , and product focused Þrms,

ComDevsP Ft ! 1 . The same data are used with a regression model, with the regression

coefÞcients presented in Table4.9.

121

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!
!

!

!

!

!
!!

!

!

!

!

!

!!

!
!

!

!

!

!

!
!

!

!

!

! !

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!
!

!
!

!
!

!!
! ! ! !

!!!

!

!

!!!!!!!!

!
!

!
!

!
!

!

! !

!!

!!

!

!!

!
!!

!

!

!
!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!
!

!

! !

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

! !

!
! !

!

!

!

!

!
!!

!
!

!

!

! !
!

! !

!!

!

!

!
!

!

!

!!

!!

!

!
!!

!

! !

!
!

!

!
!

!

! !
!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

! !

!

!

!
!

!

!

!

!
!

!

!

!
!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!!!!!!!!!

!

!

!!

!

!

!

!

!!!!!!
!

!!!!!

!

!

!!!

!

!!

!

!!!!!

!

!

!

!

!

!!

!

!
!

!

!

! !

!

! !
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!! !!

!

!

!

!

!!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!
!!

!

!

!

!

!

!

!

!

!

! !!
!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!!

!

! !
! !!

!

!

!
! !

!

!

!

!!!!
!!

!
!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!! !

!!

!

!
!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!!

!

!

! !

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! ! !

!

!

!

!

!! !

!

!

!

!
!

!
!

!
! !
! !

!

!
!

!
!

!

!
!

!

!

!!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!3 !2 !1 0 1 2 3

!2
0

2
4

Normal Q!Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.4: QQ-Plot of the residuals from Þtting equation4.1

122

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.9: Hypothesis3 Ð Regression coefÞcients predicting change in number
of volunteer developers by project broken up by Þrm model (equation4.2)

Variable Estimate Std Err P-Value

log (V olDevsi,t ! 1) -0.4871 0.0356 < . 001
log

!
ComDevsCFi,t ! 1

"
0.0918 0.0350 0.008

log
!
ComDevsP Fi,t ! 1

"
-0.0212 0.0299 0.479

log (Commitsi,t ! 1) 0.0843 0.0194 < . 001
log (t i) -0.0401 0.0159 0.011

R2 = 0.217, AdjR 2 = 0.198, DF = 745, p < 0.0001

di! (log (V olDevsi,t)) = " i + #0 log(V olDevsi,t ! 1) + #1 log(ComDevsCFi,t ! 1) +

#2 log(ComDevsP Fi,t ! 1) + #3 log(Commitsi,t ! 1) + #4 log (t i) + $i,t (4.2)

In contrast to the original model where there was not a signiÞcant relationship between

Þrm participation and the change in the number of volunteers, when the Þrms are broken

up by business model, we see a signiÞcant difference. Participation by developers from

community focused Þrms has a signiÞcant and positive relationship to the change in the

number of volunteer users, while participation by developers for product focused Þrms has

no statistically signiÞcant impact. The other coeffecients in the model remain similiar to

those shown in table4.8 and the explanatory power of the model has increased slightly.

Once again, the residuals of the model are close to normally distributed, as shown in the q-

q plot in Þgure4.5. This difference between developers at community and product focused

Þrms lends support for hypothesis3.

123

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!
!!

!

!

!

!!!

!
!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!
!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!! ! !!! !!! !!!!!!!!!!

!

!

!!!!!!!! !!!! ! !! !!!! ! !! ! !! !!
!

!

! !!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!!
!

!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!
!

!

!
!

!
! !

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

! !

!

!

!!

!

!

!
!

!!

!
!

!
!

!

!!

!
!

!

!
!

!

! ! !
!

!
!

!

!

!

!

!
!

!

! !

!

!

!

!
!

!

!

!

!

!
!

!

!

!!

!

!

!
!

!

!

! ! !

!

!

! !

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
! !!

!

!

!

!

!

!
!

!

!

!

!

!
!

!!!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!!
!

!

!

!

!!!!!!!!!

!

!

!!

!

!

!

!

!!!!!!
!

!!!!!

!

!

!!!

!

!!

!

!!!!!

!

!

!

!

!

!!
!

! !

!

!

!
!

!

! !

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!!!!!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!!!!

!

!

!
!

!
!

!

!

!

!

!

!
!

!

!
!

!

!
!

!

!

!!

!

!!

!

!

!

!

!!

!

!!
!!

!

!

!!!!

!

!

!

!!!!!
!!!!

! !

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! ! !

! !

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
! !

!

!

!

!

!
! !

!

!

!

!
!

! !

!!!!!

!

!
!

!
!

!
!

!

!

!

!
!

!

!
!

!
!

!

!

!
!

!

!
!

!

!

!

!

!

!
!

!3 !2 !1 0 1 2 3

!4
!2

0
2

4

Normal Q!Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.5: Q-Q Plot of the residuals from Þtting equation4.2

124

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

In order to evaluate Hypothesis4, projects were subdivided into their constituent mod-

ules, in order to use modules, rather than projects, as the unit of analysis. While language

speciÞc methods exist to specify explicit module structures and infer implicit structure

through static source code analysis, the code in the GNOME project is written in a variety

of different languages and programming language speciÞc methods are inconsistent and

impractical. As an alternative, social network analytic clustering methods were used on the

network of source code to approximate modules within the project. The CONCOR algo-

rithm was used to produce eight clusters per project as it requires no additional information

beyond link information when generating the groupings. Functionally, the computation

views the network of Þles as a matrix and then attempts to rearrange the rows and columns

of the matrix so entities that are structurally equivalent, meaning they link to the same set

of other Þles, are grouped together [4]. While a variety of unsupervised clustering algo-

rithms exist that determine an optimal number of clusters (e.g. NewmanÕs algorithm [79])

these methods often produce more clusters than practical, leaving many clusters with only

a single active developer.

My method of inferring code modules within a project utilizes a network structure

where nodes in the network are Þles and edges are added between nodes if they were

committed back to the central repository in a single commit. This approach is com-

monly used in software engineering research, and such links are often called ÒlogicalÓ

dependencies[36] and has been shown to be particularly appropriate for measuring coor-

dination requirements[14, 15]. This approach is based on the observation that Þles are

125

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

generally changed at the same time by the same person because there are important de-

pendencies between them. In this way, network is generated where highly related Þles

are densely clustered together. The CONCOR algorithm was run on this network for each

project and conÞgured to generate eight clusters, each approximating a module within the

project. The number eight was selected as a compromise value that typically yielded mul-

tiple developers in each cluster without having clusters that contained all developers. The

same summary statistics shown in Table4.6were generated for each module in each time

period, yielding a total of 6360 observations.

The analysis at the project level was then replicated with the new data based on the

clusters within each project. For this analysis, a new subscript,j , is added to the model

indicating the cluster within projecti . Intercepts are calculated for each of the clusters in

the data," i,j , and time is the number of periods since the start of the project. The complete

equation is shown in equation4.3.

di! (log (V olDevsi,j,t)) = " i,j + #0 log(V olDevsi,j,t ! 1) +

#1 log(ComDevsi,j,t ! 1) + #2 log(Commitsi,j,t ! 1) +

#3 log (t i) + $i,j,t (4.3)

The new model testing for cognitive complexity issues was analyzed and the results

can be seen in Table4.10and a Q-Q plot of the residuals can be seen in Þgure4.6. The

126

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.10: Hypothesis4 Ð Testing for issues of cognitive complexity through
the analysis of effect of commercial developers at the module level with pooled
commercial participation

Variable Estimate Std Err P-Value

log (V olDevsi,j,t ! 1) -0.5405 0.0142 < . 001
log (ComDevsi,j,t ! 1) 0.0038 0.0132 0.774
log (Commitsi,j,t ! 1) 0.0992 0.0079 < . 001
log (t i) -0.0022 0.0055 0.693

R2 = 0.226, AdjR 2 = 0.213, DF = 5996, p < 0.0001

residuals within the model deviate slightly from a normal distribution, however, this is

not considered to be sufÞcient to jeopardize the results of the model. The effects of the

model largely mirror the results found when analyzing the project level (see table4.8.

The lack of signiÞcance for the coeffecient oflog (ComDevsi,j,t ! 1) does not allow either

conÞrmation or rejection of Hypothesis4. The developers from commercial Þrms were

once again segregated by whether or not the developer worked for a community or product

focused Þrm, resulting in equation4.4.

di! (log (V olDevsi,j,t)) = " i,j + #0 log(V olDevsi,j,t ! 1) +

#1 log(ComDevsCFi,j,t ! 1) + #2 log(ComDevsP Fi,j,t ! 1) +

#3 log(Commitsi,j,t ! 1) + #4 log (t i) + $i,j,t (4.4)

After Þtting the model using the availble data, shown in table4.10, the familiar pattern

of developers from community focused Þrms having a postive relation to the number of

127

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

!

!

!!

!

!!
!!!!!!!!

!

!

!!

!

!!

!

!! !

!

!
!

!!

!
!

!

!

!

!

!

!

!

!!
!

!

!

!
!

!

!

!!

!

!

!!

!!

!

!

!

!

!
!

!!!!

!

!

!
!!!!!!!!

!

!

!

!!!
!

!!

!

!

!

!!

!

!!!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!!!!!!!!!!

!

!
!!

!

!

!!

!

!!!!!!!!!!!!!

!

!

!!!

!

!

!

!!!!

!

!

!

!!

!

!!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!!!!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!!!!!!!!!
!

!!!!!!

!

!

!!!!!!!!!!!
!

!

!

!

!
!

!
!

!

!

!!!!!

!

!

!

!!!!!!!!!!!

!
!

!

!

!

!

! ! !

!

!

!

!

!

!

!

!
!!

!
!

!

!

!

!!
!

!

!
!

!

!

!
!

!

! !
!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!
!

!

!

!

!
!

!!!!!!!!!!!!!!!!!!!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!!!!!!!!!

!

!

!

!

!!!!!!!!!!!!!

!

!!
!

!

!!!

!

!

!
!

!

!

!

!!!!!

!

!

!

!!!
!

!!!!!!!!!!!!

!

!

!!!!!
!!

!!!!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!!

!

!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!!!

!

!

!

!

!

!
! !

!!

!

!

!

!

!

!

!

!

! !!!!!!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!
!

!

!

!

! !!
!

!

!!!
!!!

!

!
!

!
!

!!!

!

!

!

!

!
!!

!

!!

!

!!

!
! !

!!!!!!!!!!!!!!
!!

!!!!!!!!!
!

!!!
!!

!
!

!!

!!

!

!!

!!!
!

!

!
!

!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
!!!!

!

!
!

!!!
!!

!

!!

!!!!
!!!

!!
!

!

! !
!

!
!!

!!!!!!!!!!!!!!!!!!!!!

!
! !

!
!

!

!

!!

!!

!!

!

!!

!!!

!
!

!
!

!!

! !

! !

! !
!

!

!
!

!!
! ! ! !

!!!

!

!

!!!!!!!!

!

!!!
!

!!!!!!!!!
!!

!
!!!! !!

!!

!!!!!!!!!!

!
!

!

!

!

!
!

! !

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!!!!! ! !

!

!

! !
!

!

!!

!

!
!

!

!!

!

!
!!

!

!

!

!

!

!!!!!!!!!!

!
!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!
!

!

!!!!!!

!
!

!
!

!

!

!

! !
!

!
!!

!

!

!!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!!
! ! !
!!
! !! !!

! !! !

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!!!
!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!

!

!
!

!

!

!

!

!! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!! !!!!
!

! !!!

!
!

!!!

!

!

! !

!

!

!

!

!

!

!

!!!!!!!!!!!!!!

!!!

!

!

!

!

!

!

!

!

!!!

!
!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!!
!!!!

!

!

!

!
!
!

! !

!

!

!

!
!! !

!!!!!!!!!!!!!!!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!!!!!!!
!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!!!!!!!!!!!!

!
!!!!!!

!
!!!

!
!!!

! !
!!

!
!!!!!

!!!
!

!!!!
!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!!!!!!

!
!

!

!

!

!

!

!

!
!

!

!

!! !

!

!

!

! !

!
!

!
!

!

!!

!
!

!

!!

!

!

!

!

!

!

!!!!!!!!!!!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!
! !

!
!

!
!

!

!

!

!

!!
!

!

!

!
!!!!!!!!!!!!!!

!

!!
!

!
!!!

!

!

!!

!

!

!!!

!

!!!!!!!!!!!!

!!!!!!!!!!!!

!!
!!

!

!

!

!

! !!

!

!

!

!

!!!

!

!!
! !

!

!

!
! !

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!! !

!

!

!!

!

!

!

!

! !
!!!

!

!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!

!

!

!!!!!!!

!

!

!

!

!!
!

!

!

!!
!

!
!

!!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!
!

!!

!

!!!

!

!

!

!!!
!!!!!!!!

!

!

!

! !!

!
!

!

!

!

!

!

!

!

! !

!

!

!

! !

!
! !

!

!

!!!!!!!!!

!

!

!

!
!

!

!!

!
!

!

!
!

!

!

!

!

!

!
!

!
!

!!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!
!!

! !

!
!

!

!
!!!
!

!

! !

! !

!
!

!!

!
!
!

!
!

! !

!

!
!

!

!

!!

!

!
!

!

!

!

!

!

!
!

!

! !
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!!

!

!

!

! !

!

!

!!!!!!!!!!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!!

!!

!

!

!

!

! !!

!!
!! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!!!!!

!

!

!
!

!

!

!

!!!

!

!

!

!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!
!

!!
!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!
!

!

!!!!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !
! ! !!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!

!

!

!

! !

!
!

!

!

!

!
!

!
!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!!

!!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!
!!

!

! !

!

!

!

!

!

!

!

!

!

!! !
!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

! !

!!

!

!

!!
!

!!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!
!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!
!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!!!!!

!

!

!!!!!!!!!!!!!!!!!!!!!!!

!

!

!
!!!!

!

!!
!!!!

!
!! !

!!!!!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!!!!!!

!

!

!!!!!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!!!!!

!

!

!!!!

!

!

!

!

!

!

!!

!

!

!!!!

!

!

!

!!!!
!!

!

!

!

!!
!!!!!

!

!

!!!!!!!!!!
!

!!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!!!!!!

!

!

!!!!!!!!

!

!

!!!!!!!!!!
!

!!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!

!

!

!!

!
!

!

!

!

!

!
!

!

!

!

!

!!!!

!

!

!!!!!!!!!!!!!!

!

!

!

!!!!!!!
!

!!!!!

!

!

!!!

!

!

!

!!!!!!

!

!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!!

!

!

!

!

!!

!

!

!!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

! !

!
!!!!!!!!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!

!!

!

!

!

!!!

!

!

!

!

!! !
!

!

!

!
!

!!

!

!!

! !!

!

!

!

!

!!!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!!!

!

!

!!

!

!

!

!

!

!!!!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!!

!
! !

!
!

!

!

!

!

!

!

!

!!

!

!!!!!

!

!

!

!!!

!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!! !!!

!

! !!!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!!!!!
!!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!!!!!
!

!
!

!
!!

!

!

!

!

!
!

!!!!!

!

!

!

!!

!

!

!

!!
!

!!!
!

!!

!!!!!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!!
!

!!!

!

!

!
!

!

!

!

!!!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!!
!!!

!

!

!!!!!

!

!

!

!

!

!

!!!
!

!!!!!!!!

!

!
!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!!!

!!!!!!!

!

!!
!

!

!!!!!!!!!
!

!!!!

!

!

!

!

!

!

!!!!!

!

!

!

!

!

!

!!

!!

!

!

!!

!

!

!

!

!
!

!

!!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!!
!!

!!
! !!

!

!!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!!
!!

!
!!

!
!!

!!!
!!!!!!!

!

!

!

!

!

!

!

!

!

!

!
!

!!!!!!!!!!!!!

!

!

!

!

!

!
!

!

!

!
!

!!
!

!
!

!!!!!!!!!!!!!!!!!!!!!!!!!

! !!
!!!!!!!!!!!!!!!!!!!!!!!

!!!
!

!
!

!!

!

!
!!

!

!

!

!
!

!

! ! !!

!

!

!!

!

!

!

!

!
!

!

!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!!!!

!!

!

!

!

!

!!!

!

!

!

!

!

!

!!

!

! !
!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!! ! ! !
!

!

!

!

!

!
!
!

!!

!

!! !

!

!

!

!!!!!

!

!!

!

!!!

!

!

!
!

!

!

!

!
!

!

!

!!

!

!

!

!

!!!!
!

!

!

!!!!
!!!! !

!

!

!

!

!

!

! !!
!

!!!!

!

!

!!

!

!!
!

!

!

!

!

!

!

!

!

!!!!!!!!!!!!!!!!!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!

!

!

!
!!!

!

!

!

!

!!

!

! !!

!

!

!
!!

!

!

!

!!!!!

!

!

!

!!!!!!!!!

!

!

!
!

!!

!

!

!!

!!!!!!!!!!!!!!!!!!!!!

!!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!!!!!! !
!!

!!!!
!

!
!! !

! !!

!

! !

!
!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!!!!
!!

!
!

!

!
!

!
!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!
!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
!

!!!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
!

!! !

!!!

!
!

! !

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!!

!

!

!!!

!

!

!

!

!

!
! !!!!!!!!!!!!!!!!!!!!

!

!!

!

!

!

!

!

!

!!

!
!

!

!!!

!

!

!

!

!!!

!

!

!

!

!
!!!!!! !

!

!

!
!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!
!

!
!

!

! !
!! !

!

!!!

!

!
!!!

!
!!!!!!!!!

!

!

!

!!!!!!!!!!!!!!!!!!!!

!

!

!! !

!

!!

!

!

!

!

!!
!

!

!!!!!!!!!!!!

!

!

!

!!!!!!!!!!!!!!!!

!

!

!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

! ! !!
!

! !
!!!!

!

!
!!

!! !

!

!

!

!

!

!

!

!

!!!!!!!

!

!

!
!

!

!

!
!!!

!

!

!

!

!

!

!
!

!!
!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

! !
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!
!

!

!

!
!

!

!
!!!
!

!

!

!

!

!

!!!!!!!!!!!!

!

!

!

!!!

!

!

!

!

!!!!!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!

!!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!

!
!

!!!!!

!

!

!
!!

!!
!

!
!!!
!

!
!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!
!

! !

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!!!

!

!

!

!

!

!
!! !

!

!

!!!!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!

!!!
!!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!
!

!

!

!!

!

!

!

!
!

!

!

!

!

!!

!

!
!

!

!

!!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!! !

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!!!

!

!

!
!

!

!
!

!

!

!
!

!

!

!!

!

!

!

!

!!

!!!!!!!
!

!!
!

!

!

!
!

!

!!!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!!!!!!!!!!!!!!!!!!!!

!
!!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!!!!!!!!!!!!!!!!!!

!

!

!

!

! !

!

!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!
!

!!!!

!
!

!

!

!

!

!

!

!

!

!!
!

!

!!

!

!

!
!

!

!4 !2 0 2 4

!4
!2

0
2

4

Normal Q!Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.6: Q-Q Plot of the residuals from Þtting equation4.3

128

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Table 4.11: Hypothesis4 Ð Testing for issues of cognitive complexity through
the analysis of effect of commercial developers at the module level

Variable Estimate Std Err P-Value

log (V olDevsi,j,t ! 1) -0.5464 0.0142 < . 001
log

!
ComDevsCFi,j,t ! 1

"
0.0616 0.0156 < . 001

log
!
ComDevsP Fi,j,t ! 1

"
-0.0284 0.0134 0.034

log (Commitsi,j,t ! 1) 0.0996 0.0075 < . 001
log (t i) 0.0004 0.0055 0.934

R2 = 0.229, AdjR 2 = 0.215, DF = 5995, p < 0.0001

new volunteer developers and developers from product focused Þrms having a negative

relation once again emerges. Therefore, this results in conßicting evidence about whether

or not commercial developers increase the cognitive complexity at the module level and

force volunteer users to leave. Therefore, it is not possible to reject Hypothesis4, nor is it

possible to support it.

4.5 Discussion

The results presented in this capter show that participation by commercial Þrms can have

a positive impact on the participation of volunteer developers. At an overall level, it was

found that at a macro level, the participation of commercial developers in an Open Source

project did not have a statistically signiÞcant relationship to a change in the number of

volunteers working on the project, preventing rejection of Hypothesis1 and Hypothesis2.

On the positive side, for project maintainers, there was not signiÞcant evidence that at the

macro level commercial participation caused volunteers to leave the community, suggest-

129

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

ing that project managers should not exert effort to actively deter commercial investment

in their projects. Likewise, however, this research also shows that commercial Þrms should

not expect to be greeted with entirely open arms in a purley volunteer community as their

contributions may not be attractive to the community and may not attract additional volun-

teers to the project.

Another contribution is the identiÞcation and validation of two distinct classes of busi-

ness models for Þrms participating in Open Source communities and the different impact

they have on volunteer participation. These models closely aligned themselves either with

broad community success or with a single project in the community. As expected, commu-

nity focused Þrms were found to be highly visible on project mailing lists and wrote code

for more projects than developers from product focused Þrms. The different business mod-

els were found to have very different impacts on volunteer developers with community

focused developers attracting volunteers while product focused developers had no statisti-

cally signiÞcant effect. Given the predominant view of the interviewees that community

focused Þrms were more aligned with the values and norms of the community, this supports

the notion that the communities are sensitive to the values and norms of commercial partic-

ipations and inidicates that rather than valuing the views of a wide variety of participants

with differing knowledge and goals, the community tends to shy away from heterogenity.

This result should urge caution on Þrms wishing to participate in Open Source projects,

and suggests that behaving in a way that supports the community may actually strengthen

and enlarge it.

130

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

Finally, I analyzed whether or not the collocation of commercial developers and the pos-

sible increase in cognitive complexity had an effect on volunteer participation. Contrary

to the hypothesis, it was found that this was not the case when commercial participation

was pooled. There are multiple possible reasons for this, all of which may be subjects of

future research. Developers for commercial Þrms may take extra care to ensure that they

communicate the changes they make on public mailing lists or other forums. They may be

faster at giving responses back on personal emails about projects. Perhaps the self-selection

process in Open Source, which requires developers be able to Þgure the project source code

with little assistance, draws developers who are able to compensate for such situations. A

Þnal possible explanation is that the norms of writing clean and modular code force all

developers to write code in such a way that the advantages obtained through co-location

are lessened to the point where they no longer impact the cognitive complexity of the code.

When participation was segmented by the business model of each Þrm, it was once again

found that participation by developers of community focused Þrms was associated with a

subsequent increase in the number of volunteer developers, while developers of product fo-

cused Þrms were associated with a decrease in the number of volunteer developers. Further

work should be conducted to identify why this effect persists at the micro level.

This research suggests both caution and some reassurance for Þrms considering a prod-

uct focused relationship to an Open Source community. Our qualitative results show that

volunteer developers frequently made negative comments about product focused Þrms,

which is quite worrisome. On the other hand, increased participation of developers from

131

CHAPTER 4. FIRMS AND INDIVIDUALS: THE IMPACT OF COMMERCIAL
PARTICIPATION ON VOLUNTEER PARTICIPATION

product-oriented Þrms did not drive volunteers away. It may be that the increased visibility

that commercial participation lends a project offsets any negative effects from its perceived

failure to uphold community norms.

No matter what the reasons for the increased success of community focused Þrms in

attracting and retaining volunteer developers, Þrms continue to release projects both large

and small as Open Source and they continue to take advantage of Open Source based tech-

nologies. We have seen that in this case, the dual worlds of volunteer and commercial can

co-exist in an Open Source project with little danger of the commercial Þrm dramatically

damaging the incumbent volunteers. Going forward, understanding the methods by which

these Þrms attract and retain volunteer developers is an open research question that will

yield great beneÞts for Þrms seeking to utilize this revolutionary software development

model.

132

Chapter 5

Individuals and Individuals: Evolution

of the Socio-Technical Congruence

Metric

Early pieces of computer software were frequently written by a single individual. The

bulk of VisiCalc, the Þrst spreadsheet and the computer program that is frequently cited

as the turning point for home computers from hobbyist toys to serious business tools was

largely written by a single developer, Dan Bricklin, and later reÞned by another developer

Bob Frankston[52]. In the context of such small teams of engineers, the need to manage

information ßow is small and can be managed by face-to-face meetings or emails between

developers. As teams grow, however, the dependencies become more difÞcult to manage,

133

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

and work typically must be broken up into small components and handed off to individuals

in a less collaborative fashion[70]. As a project progresses teams tend to naturally develop

informal patterns of communication that address dependencies between these components

and foster progress[35].

With large scale complex tasks, or the type now addressed by software engineering,

even small changes in the system, either in the informal communication patterns or task de-

pendencies, may have cascading effects throughout the project. The changes affect the task

dependency structure and results in a misalignment of the informal communication patterns

with the actual dependencies needed for the work, decreasing overall productivity[48]. In

this chapter I expand upon the socio-technical congruence (STC) metric that is used to un-

derstand how team communications, both formal and informal, align with dependencies

between tasks[15]. I approach this problem through an empirical study of the GNOME

project. I begin by Þrst reproducing a portion of the results of Cataldo et. al. This is no-

table because it is a replication within an Open Source community, which tend to be far

more organic, relying on ad-hoc teams and informal communication processes for team

coordination[132] and because of difÞculty of collecting the requisite data for STC in less

controlled software engineering environments.

I then propose several modiÞcations to the metric that provide better and easier in-

sight into team coordination by separating out the effects of increases in coordination re-

quirements and the communication that addresses those requirements. Next, I address the

changing nature of task dependencies in the organization. This is particularly important

134

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

for organizations with long running development cycles that wish to calculate STC on a

rolling basis, as previously the task dependency network was assumed to be Þxed. Finally,

I address one of the major concerns with the overall validity of the metric, that of noise in

the collected data and the possibility of falsely inferring or omitting data.

5.1 Organizational Congruence

In 1968 Melvin Conway proposed a concept which has since come to be called ÒConwayÕs

LawÓ. Brießy stated, he noted that organizations tend to mirror the products they design.

For example, if a Þrm had three teams working together to create a compiler, the resulting

compiler would likely be a three pass compiler[17]. In such a scenario the technical de-

pendencies and organizational structure are in alignment and therefore the when technical

issues arise they are largely contained to a single coherent team. While most organiza-

tions break tasks into smaller components for ease of project management[70], software

engineering is one of the few Þelds that is explicit about this structure due to the concept

of modules within modern software engineering[87]. Such a modular structure assists in

understanding tasks and assignments of individuals to tasks within an organization.

Beyond merely structuring work, organizations serve as information processing units

and dynamically adapt their social structure to create information conduits between differ-

ent segments of the organization[21, 34]. As the tasks that each organizational segment

performs become more intertwined, the amount of information exchanged between these

135

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

segments increases in response[22]. This relationship between the inter-related tasks of

an organization, different segments of the organization, and communication between the

segments is the heart of socio-technical congruence (STC), a metric designed to provide a

quantiÞable value for the degree that organizational communication matches coordination

requirements[15].

The calculation of STC is formulated in matrix notation, although additional work by

Valetto et. al. has formulated the problem in graph theoretic notation[119]. In both the ma-

trix and graph formulation, three pieces of information are required. The Þrst is a network

of task assignments,T A . This binary matrix maps an individual member of the organiza-

tion to tasks within the organization. In the context of a software engineering organization

this may map individuals to modules of the project they have modiÞed. The second compo-

nent is the task dependency network,T D , which identiÞes the ways in which tasks have in-

terrelated dependencies. Within software engineering this may show logical dependencies

between Þles[36]. The Þnal network needed is the network of actual coordination,CA . In

the original work various different networks were tested forCA , including organizational

structure, geographical proximity, and recorded communication between individuals[15].

Under a matrix notation, a network of coordination requirements,CR , is calculated by

multiplying the task assignment network,T A , by the task dependency network,T D , as

seen in equation5.1. After computation,CR is transformed to a binary matrix such that

any non-zero cell inCR is set to 1.

136

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

CR = T A # T D # T A
" (5.1)

The overall congruence for the organization is then the Þt of the coordination require-

ments,CR , to the actual coordination,CA . This is based on the concept of organizational

Þt within organizations that relates the ability of a particular organizational design to carry

out a task[8]. The calculation yields the proportion of links inCR that are also present in

a network of actual coordination within the team,CA . This calculation can be mathemati-

cally represented as the logical conjunction between corresponding cells in theCR andCA

matrices, as shown in equation5.2.

#
(CA $ CR)
#

CR
(5.2)

One intriguing potential use of the STC metric is in the creation of tools to assist soft-

ware developers. For example, a team with a tool that automatically calculates STC can

quickly see where technical dependencies exist for which there is no corresponding com-

munication to resolve the dependencies, also known as gaps. By directing communication

to Þll these coordination it is possible to reduce overall development time[14]. In a dis-

tributed team, such as an Open Source project, a tool that provides this direction is even

more important as individuals have fewer chances for ad-hoc opportunistic collaboration

and what communication is possible is typically over very lean media[44, 132].

137

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Such a tool can also make a developer aware of new colleagues to consult with, a use-

ful feature when someone Þrst joins a project or returns from an extended hiatus. While

many commercial Þrms may pair up junior developers with more accomplished senior de-

velopers, who already understand the structure of the code and the social network in the

organization, this is rarely the case in Open Source projects. Providing a tool that takes

advantage of STC to a new individual who seeks to contribute to an Open Source project

could prove to be very beneÞcial to the new developer and the the project as a whole, as the

new developer would have some context of whom they must coordinate with to accomplish

their task[99].

5.2 Problems with Socio-Technical Congruence

While STC has shown to be a useful metric, there are several issues associated with the

metric that have yet to be addressed. One is the lack of replication of the metrics. The

data used in the original study required a signiÞcant amount of manipulation and Òclean

upÓ before valid results were obtained[15]. To the best of my knowledge, this result has

not been duplicated on any other Òreal worldÓ data set. Therefore, one priority was to run

the metric on a less processed data set from a similar environment using primarily data that

could be collected automatically from pre-existing tools such as version control systems,

bug trackers, and project mailing lists.

Beyond the practical analysis needed to validate the metric, there are several issues that

138

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

reviewers raised regarding STC. Notably among these are the fact that STC is a network

level metric, which provides a single numeric value for the overall organization. From a

high level management perspective, this may be beneÞcial, but when designing tools for

individual users, the slight change in a STC provided by a new communication link may

seem diffuse and difÞcult to understand. I propose further formalizing how STC affects

individuals and develop a method for generating STC scores for individuals in an organi-

zation.

Changes in social and technical architecture also pose problems to STC. A large scale

re-factoring of a project will make many previous dependencies no longer relevant. The

introduction of a decay factor, where the networks from the previous time periods are scaled

by a factor< 1 before adding in the data for the current time period can help address these

changes. I apply this decay not only to the task dependency network,TD , but also to the

actual communication networkCA to reßect loss of knowledge over time and the need to

periodically refresh communication links in an organization.

There is also some debate about the structure of the task dependency networks in the

metric. As it relates to software development, the task dependency network represents the

logical dependencies between Þles in the project. So if ÞleA andB were ever modiÞed and

committed back to the version control system during the same transaction, then a link will

appear in the task dependency network. In the original work, this network was generated

once, at the end of the observational period, representing the complete task dependency

network for the entire history of the project. When performing a retrospective analysis

139

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

of a project, it is possible to generate and utilize such a network structure, however when

designing tools for real-time use of the project, this is not possible. Furthermore, such a

structure assumes that logical dependencies that occurred at the very early stages of the

project never Òtime-outÓ, and have a continual and lasting effect. This is also unlikely as

dependencies that were handled long ago are unlikely to require frequent addressing by

developers, or changes in project source may have made them irrelevant. For this reason,

we compare the results between metrics whereTD is generated once for all time periods in

the project, and whereTD is generated for each time period by using the sum of the logical

dependencies before that time period. These models are then integrated with the decay

parameters to obtain a robust model of task dependencies.

Finally, all of the data used in the calculation of STC are inherently noisy. This is par-

ticularly important when we consider the actual coordination network,CA , which may be

obtained from automated tools. Use of automatically collected networks from mediums

such as email and real time chat are subject to both high levels of errors of omission Ð a

failure to infer a link between two individuals where there should be a link, and errors of

commission Ð incorrectly linking together two individuals on the basis of a communica-

tion that was not relevant to satisfying any coordination dependencies. There may be an

opportunity to augment automatically collected information with data from surveys, which

provide more information, but such surveys are time consuming to create and manage, and

often indicate that individuals have problems remember to whom they spoke.

140

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5.3 Replication of Original Results in Open Source

Calculation of STC requires several different networks from a project, many of which may

not be easily available. For this study, I used data from the GNOME project, previously

discussed in detail in chapter4. Detailed data from the origin of the project in 1997 until

the the end of 2006 were collected including a copy of the version control system archive,

a complete copy of the bug tracking database, and messages from project mailing lists1.

Identities were uniÞed across data sources by examination of common email addresses,

name recognition, and manual analysis. All 1218 individuals who contributed code to the

project were manually veriÞed and checked for accuracy by the author. Where uncertainty

about the identity of an individual was found, the identity of that individual was veriÞed

with members of the community.

5.3.1 Selection of Projects

The GNOME project is a large and diverse community that maintains an open policy that al-

lows developers to easily create new projects in the community. Often times these projects

are Òone-offÓ demonstration projects or simple toys that a developer was working on in their

spare time and never gather any real traction. Other times the project may be a valuable

component of the GNOME desktop environment, but maintained by a single developer. For

1I wish to thank the system administrators and my liaisons in the GNOME project for their help with this
data collection. SpeciÞcally, thanks to Luis Villa for providing access to the bug database, Olav Vitters for
providing copies of the source code repositories, and Jeff Waugh for lubricating the whole process.

141

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

this reason, the selection of projects was pared down using the same criteria as described

in section4.4.

5.3.2 Generation of Networks

As volunteer Open Source projects typically lack a formal hierarchy, and most members of

the project are geographically distributed, it was not possible to test organizational hierar-

chy and geographic congruence. The actual coordination network,CA , was generated by

examining the bug trackers and project email lists for each month.

For email messages, networks were created by examining the message headers to iden-

tify message threads. A link was then created between all individuals participating in a

particular message thread. This effectively generates a symmetric network that is a clique

between all participants in the thread. A message was determined to be in a thread through

one of two different methods:

¥ TheIn-Reply-To header in the message that indicates the unique ID of the mes-

sage that is the parent in the thread. This header is automatically appended by most

desktop mail clients and nearly all of the current webmail offerings. However, for

extremely old archives, in particular messages dating from before 2000 this method

is not always practically because the header is frequently absent.

¥ A heuristic analysis of the message subject, header, and content of the message to

see if it is related to other messages. In particular, examining theto header of the

142

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

message in conjunction with the subject and examination of quoted text tends to

accurately identify which messages are in the same thread. This method was used

only in the case that the former method could not be used. It is based on the routines

found in GNU Mailman[33], one of the standard tools for managing mailing lists

and creating archives of mailing lists. This method was rarely needed for messages

newer than 2000 as most mail clients now supportIn-Reply-To headers.

These communication data were augmented with data from the Bugzilla bug tracker

database for the community. Within the Bugzilla data, two individuals were assumed to

have communicated during a period if they both commented on the same bug. Thus, once

again, a clique was effectively formed between all participants on a bug discussion.

The data from project mailing lists and bug tracker data were aggregated together and

dichotomized to create a binary network representing actual coordination,CA between

individuals in the community.

The task assignment,TA , and task dependency,TD , networks in the community were

generated through an examination of the CVS source code archives for the community. In

this network structure, tasks were mapped to individual Þles and Þltered to include only

source code related Þles, eliminating documentation, project build Þles, images, and other

non-technical elements. An individual was mapped to a task if the individual modiÞed

and committed the Þle back to the repository during that time period. Files were mapped

as having a dependency if they were modiÞed together in the same logical commit[36].

Commits were further Þltered such that commits with more than 20 Þles were removed as

143

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

they most likely are part of large scale non-code changes such as changing licenses and

updating version numbers.

5.3.3 Selection of Control Variables

Using data from an Open Source setting presents a variety of challenges that were not

present in the study by Cataldo et. al.[15]. In particular, as this is a volunteer community

with no central arbiter of qualiÞcations or requirements, there is no way except through a

survey to get typical control variables commonly used in software engineering regression

analysis, such as education level and tenure. However, for the results to be viable a survey

would need a response rate high enough to provide complete coverage for the projects of

interest. This is simply not possible in an Open Source context.

However, it was possible to account for general properties of the bug in question. In

particular the number of individuals involved with a bug and the number of changes made

to the status of the bug have previously been shown to be highly related to an increase in

time to resolve bugs[50]. The control variables proposed for the regression are:

¥ numDevs Ð the number of developers who were active on that bug, either by com-

menting on the bug in the bug tracker, or committing code and tagging the commit

with the bug number. Most of this comes from activity on the bug tracker as in prac-

tice, only 12% of bugs in the data set had commits that were easily tracked back to

the bug. Contrary to the concept of the Òdeveloper-userÓ espoused in many pieces of

144

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Open Source literature, most of the comments on bugs are not written by developers,

and for that reason their participation is broken out here.

¥ deltas Ð the number of changes made to the bug status. This number was incre-

mented whenever the status of a bug was changed, such as going from ÒNEWÓ to

ÒASSIGNEDÓ, ÒNEEDINFOÓ, or ÒRESOLVEDÓ. It also was incremented when the

person the bug assigned to was changed.

¥ deltasPeopleÐ the total number of people who made delta increments to the bug.

In practice only a handful of individuals ever changed the status of the bug thanks to

some strong community norms. A high number ofdeltasPeopletypically indicates

that the bug has some confusion about ownership or that it has been handed off

between developers.

¥ comments Ð the total number of comments left on the bug. Bugs that attract more

comments are typically either high visibility bugs or controversial issues.

¥ commentsPeopleÐ the total number of people who have posted comments on the

bug.

Another common variable which is often used in such regressions is the assigned pri-

ority of the bug. However, in practice most bugs, 69.2% in the case of GNOME, are never

changed from the ÒNormalÓ status. Further, in most projects anyone can change the status

of the bug, even if they are not afÞliated with the project. This often leads to individuals

that are new to the community Þnding a small bug that affects them and immediately mark-

ing it as a ÒblockerÓ because it impairs their use, when the ÒblockerÓ status is reserved for

145

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.1: Correlations between control variables for regression in Open Source

deltas deltaPeople numDevs comments commentsPeople

deltas 1.0000
deltaPeople 0.7701 1.0000

numDevs 0.4456 0.5186 1.0000
comments 0.5241 0.4660 0.3281 1.0000

commentsPeople 0.5838 0.6738 0.4983 0.62278 1.0000

bugs that absolutely must be Þxed the next release of the software.

5.3.4 Results in Open Source

Analysis of the control variables yielded high levels of correlation between the variables as

shown in table5.1. This high correlation along with some preliminary analysis indicates

that the combinations of(deltas, deltasPeople) and(comments, commentsPeople) are

problematic for a linear regression model. I decided thatdeltas andcommentsPeople

should be dropped from the model to assist in producing a statistically valid result. Al-

though high correlations between control variables still exists, there was little problem

found with variable inßation and multicollinearity in the Þnal model.

The regression model was then to predict the time to resolve a software defect, as

measured in thelog2 of days based on the congruence of the organization at the time and

the control variables around the defect. The regression shown in equation5.3 uses the

above mentioned control variables and the overallSTC as the independent variables. The

network was broken up into eight week long periods and all software defects opened and

146

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

resolved in a period were given the same value ofSTC. Defects that spanned multiple

periods were given a value ofSTC that was the average projectSTC across those periods.

LogResolutionT ime = # + #1numDevs+ #2deltaPeople+ #3comments+ #4STC+ $

(5.3)

The regression was run with 26512 non-enhancment related bug reports from projects

that were part of the GNOME ecosystem. The results are shown in table5.2. As has

been shown in previous research, the more developers that are active on a bug, the longer

it will take to resolve[49]. In addition, the more people that have changed the status of

the bug, indicating possible changes in ownership, the longer it will take to resolve the

bug, although this effect is smaller than the increase from the number of developers. More

communication, as measured by the number of comments on the software defect, reduces

the overall time to resolve the bug. Finally, teams with high socio-technical congruence

experience shorter times to resolve bugs. It is important to note that in this regression, the

value of STC is calculated once per project, per time period, and not for each individual

software defect. This shows that teams with high STC will perform better across the entire

project.

147

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.2: Regression Analysis of STC in Open Source

Variable Estimate Std Error P-Value

Intercept 1.4297 0.0548< . 0001
numDevs 0.3202 0.0302 < . 0001
deltaPeople 0.0794 0.0177 < . 0001
comments -0.0144 0.0036 < . 0001
STC -0.2804 0.1236 0.0233

R2 = 0.126,DF = 26507, p < 0.0001

5.4 Individualized Congruence

Within a small organization it may be easy to interpret how the communication patterns

of an individual developer affect overall STC, but as the size of the network, both indi-

viduals and dependencies, increases the connection between individual actions and overall

STC becomes more diffuse. Work was undertaken to address the disconnect between an

individual actions and network level congruence. I begin by formally describing the indi-

vidualized congruence,UIC of an individual,i , as the congruence of only those edges that

are incident uponi in theCR andCA matrices, as shown in equation5.4. In this notation,

CR [i ,] is used to indicate the entirety of the column (or row)i in the coordination require-

ment matrix. All matrices in the calculation ofUIC should be binary matrices to ensure

the metric is in the range[0, 1].

UICi =
#

(CR [i ,] $ CA [i ,]) +
#

(CR [, i] $ CA [, i])
#

CR [i ,] +
#

CR [, i]
(5.4)

148

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Likewise the concept of individualized socio-technical congruence is easily expandable

to utilize weights of edges as proposed by Helander[119]. This new formulation, termed

weighted individualized congruence,WIC , is shown in equation5.5. In contrast toUIC ,

WIC utilizes networks that need not be binary. Therefore, the degree of coupling between

tasksT D , and the frequency of an individual working on a task,T A , both play relevant

roles in this calculation. In this equation we deÞned(M) to be a function that takes a

matrix M and dichotimizes it such that all cells greater than 0 are set to 1 and all cells less

than or equal to 0 are set to 0.

WIC i =
#

(CR [i ,] $ d(CA [i ,])) +
#

(CR [, i] $ d(CA [, i]))
#

d(CR [i ,]) +
#

d(CR [, i])
(5.5)

This formulation retains the same lower bound on individualized congruence of 0, but

there is no upper bound ofWIC . Logically, this formulation should reward individuals

who not only communicate across links, but also pick those links where the most coordina-

tion is necessary. TheCA matrix is dichotomized to prevent easy tampering with the metric

and also because of the inherent uncertainty already present in collecting information about

the actual coordination in the network.

5.4.1 Distribution of Metrics

First, to understand the distribution of the metrics and how they may impact the regressions,

a histogram of the distributions of bothUIC andWIC for each developer at each time

149

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Unweighted Individual Congruence Score

O
bs

er
ve

d
C

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00

Figure 5.1: Distribution of the Unweighted Individualized Congruence metric,
UIC , across selected projects in the GNOME ecosystem

period they were active on a bug was created. The results can be seen in Þgure5.1 and

Þgure5.2.

The UIC results in Þgure5.1 follow roughly a normal distribution, although with

slightly heavier weighting toward individuals with very low congruences, most likely be-

cause of missed communication between individuals in the ecosystem, the previous es-

tablishment of development mechanisms that serve as proxies for coordination, such as

documentation, or attrition of members from the community.

The results forWIC in Þgure5.2 are not nearly as clear. Without the exception of

150

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Weighted Individual Congruence Score

O
bs

er
ve

d
C

ou
nt

0 100 200 300 400 500

0
10

00
30

00
50

00

Figure 5.2: Distribution of the Weighted Individualized Congruence metric,
WIC , across selected projects in the GNOME ecosystem

151

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

a spike in the300" 350 range, the results roughly follow an exponential decay model.

Analysis of the abnormal spike shows that it comes primarily from developers working on

the Evolution email client, which was primarily developed by a single company with many

co-located developers in a manner very similar to a proprietary closed source application.

Another interesting aspect of this Þgure is that not all projects had the same range of scores.

Some smaller projects, such as Beagle, never had the coupling between modules that would

allow such high scores forWIC . Thus, while the distribution of the values is interesting,

it is not comparable across projects in the same thatUIC can be compared.

5.4.2 Regression Analysis

To understand the relationship between individual congruence and the time to resolve a

bug, a regression model was created. The dependent variable islog2 of the time to resolve

defects in the software as measured in days. Independent variables were the previously de-

scribed control variables and the mean of the individualized congruence for the developers

active on that bug. In practice most bugs had only a single developer working on them (me-

dian=1, mean=1.41, max=7), so taking the mean of all developers on a bug should not have

a signiÞcant impact on the results. The results, as shown in table5.3and table5.4, indicate

that the number of developers contributing to the bug and number of people changing the

status of the bug both increase the amount of time to resolve software defects, while an

increase in the number of comments made on the bug and an increase in the individual-

ized congruence of the developers working on the bug both serve to decrease the amount of

152

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.3: Simple Regression Using Unweighted Individualized Congruence

Variable Estimate Std Error P-Value

Intercept 1.9707 0.0581< . 0001
numDevs 0.2846 0.0301 < . 0001
deltaPeople 0.8074 0.0176 < . 0001
comments -0.0142 0.0036 < . 0001
UIC -1.2140 0.0770 < . 0001

R2 = 0.134,DF = 26507, p < 0.0001

Table 5.4: Simple Regression Using Weighted Individualized Congruence

Variable Estimate Std Error P-Value

Intercept 1.7509 0.0508< . 0001
numDevs 0.3048 0.0301 < . 0001
deltaPeople 0.7882 0.0175 < . 0001
comments -0.0142 0.0036 < . 0001
WIC -0.0020 1.38# 10! 4 < . 0001

R2 = 0.132,DF = 26507, p < 0.0001

time necessary to resolve a bug. In the case ofUIC , a developer with highUIC may easily

take less than half the time to solve the defect as a developer with very low congruence.

Disappointingly, the overall explanatory power for the model is quite low, explaining only

approximately 13% of the overall variance. Similar to the original work, the addition of the

congruence metric adds about 2% to theR2 value over a model without congruence and

approximately 1% against the model previously shown in table5.2.

The next step was to break apart the fractional portions of the individualized congruence

metric to independently evaluate the relationship between actual coordination and coordi-

nation dependencies. This new regression replaces the independent variables ofUIC and

WIC with a matchCommUIC andmatchCommW IC , a variable that reßects the numer-

153

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.5: Regression using unweighted individualized congruence with numer-
ator and denominator separated

Variable Estimate Std Error P-Value

Intercept 1.3944 0.0537< . 0001
numDevs 0.2639 0.0304 < . 0001
deltaPeople 0.8021 0.1772 < . 0001
comments -0.0126 0.0036 0.0005
matchCommUIC -0.0634 0.0046 < . 0001
coordReq 0.0331 0.0032 < . 0001

R2 = 0.132,DF = 26506, p < 0.0001

Table 5.6: Regression using weighted individualized congruence with numerator
and denominator separated

Variable Estimate Std Error P-Value

Intercept 1.377 0.0536 < . 0001
numDevs 0.3043 0.0302 < . 0001
deltaPeople 0.7715 0.1775 < . 0001
comments -0.0123 0.0036 0.0007
matchCommW IC " 1.006# 104 7.960# 10! 6 < . 0001
coordReq 0.0220 0.0027 < . 0001

R2 = 0.131,DF = 26506, p < 0.0001

ator of equation5.4 and equation5.5. A new variable,coordReqis added that is the total

number of coordination requirements, the denominator of the STC ratio. The results of

these new regressions can be seen in in table5.5and table5.6.

In this enhanced model it is possible to break congruence apart into the constituent parts

of the ratio and that their independent results are still signiÞcant. Furthermore, the results

are consistent with previous theories and results that propose that defects in highly coupled

modules, as shown by high values ofcoordReq, will take a longer time to resolve than

154

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.7: Regression using unweighted individualized congruence with numer-
ator and denominator separated and extra communication included

Variable Estimate Std# Std Error P-Value

Intercept 1.4590 0.0568< . 0001
numDevs 0.2500 0.0560 0.0306 < . 0001
deltaPeople 0.8020 0.3289 0.0177 < . 0001
comments -0.0125 -0.0224 0.0036 0.0006
matchCommUIC -0.0210 -0.0392 0.0056 < . 0001
unmatchCommUIC 0.0314 0.0572 < . 0001
extraComm -0.0119 -0.0264 0.0035 0.0006

R2 = 0.132,DF = 26505, p < 0.0001

defects in less coupled modules. Furthermore, the more communication that an individual

has that resolves coordination dependencies the faster the time to resolve the defect. How-

ever, of note is that the results do not differ signiÞcantly between using the weighted and

unweighted models of the metric.

As a Þnal step, we can perform one Þnal regression that takes into account commu-

nication by developers that is present inCA , but has no corresponding edge inCR , we

term these communications as ÒextraÓ because they appear to be communications that do

not satisfy a coordination requirement. For example, if Alice and Bob communicated

during the period of study but they had no coordination requirements then this commu-

nication is considered to be extra communication. In table5.7 the effect of including

this extra communication,extraComm, is evaluated in a new regression model. Rather

than using the amount of coordination requirements in this new model, the number of un-

matched communications is included. Functionally, this does little to change the model as

coordReq= matchCommUIC + unmatchCommUIC .

155

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

The addition of the extra communication to the model does little to increase the ex-

planatory power of the model, theR2 increased by less than 1/1000th of a point. Most

of the coefÞcients for the independent variables remained approximately the same. The

most interesting aspect of this regression is that even additional communication that does

not directly address coordination requirements has a beneÞcial impact on the time to re-

solve bugs, however this effect is much smaller than the effect of matched communication.

Table5.7also includes the standardized betas for each of the variables in the model. Com-

parison of the beta values show that not only does matched communication have a stronger

impact than extra communication on reducing the time to resolve software defects, it also

plays a more signiÞcant role in the regression model, although the dominant factors in the

time to resolve software defects are the number of people changing the status of the bug

and the number of developers working on the bug.

This Þnding of the differences between matched communication, extra communication,

and unmatched communication greatly supports the continued development as the socio-

technical congruence family of metrics as it has, for the Þrst time, isolated the differences

between communication across coordination dependencies and communication without re-

gard to coordination dependencies.

156

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5.4.3 Utilization of Individualized Congruence

While WIC corresponds to the logical concept of rewarding individuals for communicat-

ing across links that satisfy many coordination dependencies, in practice, the differences

betweenUIC andWIC are rather small, and in no place do they exhibit opposite results.

This small difference suggests that in most cases it makes little difference from an accu-

racy and results standpoint whether edges in the congruence networks are weighted or not,

therefore for the remainder of this work I utilize only those congruence networks that are

unweighted.

5.5 Metric Stability

Although software engineering teams typically stay together for extended periods, turnover

of developers and changes in architectures can lead to decay in team structure and task

dependencies[25, 72, 81]. To validate the stability of the STC metric and address ques-

tions regarding the structure of the task dependency network,T D , a large scale sensitivity

analysis was performed along multiple different variables.

The Þrst way the metric was tested was through the introduction of a decay factor ap-

plied to theCA , T A , andT D networks. This factor,%was scaled between 0.8 and 1.0,

where 1.0 indicates no distortion and can be seen in equation5.6 for T D . It was likewise

mapped forCA andT A . In this way older dependencies, assignments, and communica-

157

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

tions are slowly removed from the network over time.

TD i =
i$

j =0

%i ! j tD j (5.6)

To account for possible errors in obtaining the actual communication networks,CA , a

parameter sweep introducing random errors into the network was performed. Errors were

modeled as simple errors of commission and omission.ErrOm , which resulted from leav-

ing a communication link out of the network when it should have been present and errors

of commission,ErrCom , which resulted from inserting a link into the communication

network where in fact none existed. Care was taken to ensure that the networks remained

symmetric after distortion. As the networks of interest were frequently large and therefore

rather sparse, the distortion factor was based on a proportion of the existing links. For

example, assume a network with 20 agents (190 possible links in a symmetric network)

in which there are currently 40 links between individuals. If the distortion algorithm was

given a 10% error of omission and a 20% error of commission then on average 4 links

would be added to the network to represent edges there were erroneously omitted from

the original network (error of omission) and 8 links would be removed that were wrongly

added to the network (error of commission). Edges which are removed and added are cho-

sen randomly and there is no account made for network structure when dealing with errors

of omission.

To address issues of task dependency network,T D , generation and better understand

158

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.8: Variables ModiÞed to Test Network Stability. 100 simulations were
done on each point in a full parameter sweep, resulting in 128,000 simulations
per project.

Parameter Start Stop Delta

Decay 0.80 1.00 0.05
ErrOm 0.00 0.30 0.02
ErrCom 0.00 0.30 0.02

how the metric can be deployed in real world software development tools, two different

formulations forT D were tested. The Þrst formulation utilized a view that worked on the

premise of complete information and provided a static network based on the sum of the

task dependency from all periods in the sample, both forward and backward. Such a for-

mulation was used in the original work on Socio-Technical Congruence and is appropriate

for retrospective studies. Here, such a formulation ofT D is called ÒCompleteÓ. The second

formulation utilized only task dependencies that occurred before that time, a mechanism

that is suitable for development of tools to assist software engineers and managers. Such

a formulation is called ÒProgressiveÓ. Both formulations ofT D were subject to the decay

previously discussed.

A full parameter sweep was done over all parameters utilizing the exiting data and net-

works from the GNOME project. The parameters for the sweep can be seen in table5.8. On

a monthly basis overall congruence and individualized congruence for project participants

was calculated. This analysis allows the evaluation of sensitivity of the metric to decay, for-

mulation of the task dependency matrix, and errors in creation of the actual communication

network and any combinations thereof.

159

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

gnome_rhythmbox Overall Congruence
(Complete, ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
O

ve
ra

ll
C

on
gr

ue
nc

e

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

!

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.3: Overall network congruence for the project ÒRhythmboxÓ using the
complete formulation ofT D and no errors in the network. Note how additional
decay produces higher congruence. Each time period is one month.

5.5.1 Decay In Socio-Technical Congruence

As anticipated, implementing a decay factor in STC brings additional insight into organiza-

tional structure and work patters when using STC. In Þgure5.3, we see that increasing the

decay factor for the project ÒRhythmboxÓ typically increases overall congruence. In con-

trast, Þgure5.4, shows that increasing the decay factor for the project ÒBeagleÓ typically

decreases the overall congruence for the project.

To understand why these seemingly different results can occur, it is important to un-

160

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gnome_beagle Overall Congruence
(Complete, ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
O

ve
ra

ll
C

on
gr

ue
nc

e

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 !

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.4: Overall network congruence for the project ÒBeagleÓ using the com-
plete formulation ofT D and no errors in the network. Note how additional decay
produces lower congruence. Each time period is one month.

161

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

derstand what networks the decay function was acting upon. Were decay applied only

to the cumulative actual coordination network,CA , there would be no way that overall

congruence could increase as more decay was applied. However, because both the task

dependency network,T D , and task assignment network,T A are decayed along with ac-

tual coordination, it is possible for congruence to rise because of decay, particularly in the

case where either the task dependencies or task assignments experience a heavy amount of

churn. Which is the situation that occurs in the Rhythmbox project.

Rhythmbox is an application written in the C programming language for listening to

and organizing music. Although there are ways within C to create modular code, most

projects, Rhythmbox included, do not take advantage of such methods. For this analysis, I

had about four years of project history, during which time the project went from the casual

project of a single developer to the standard music player tool for the GNOME desktop.

However, during the evolution of Rhythmbox the leadership of the project also changed as

the original developer left the project and allowed other developers to take over the project

and begin to re-architect the project. This change affected not only the social network of

the project, as the original lead programmer was no longer involved, but also the technical

networks of the project. A key component of the task assignment network was removed

and the re-architecture proposed by the new project leads involved creating a new set of

technical dependencies. This occurred around period 15 in the projectÕs life. It is shortly

after this period that we see congruence begin to increase in the model with the highest

decay, 0.80, precisely because the older dependencies inT D , which are no longer reßected

162

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

in actual code, have since waned and are no longer relevant.

In contrast, the structure of Beagle, a Þle indexing program written in C#, a program-

ming language that makes it easy to create highly modular programs, shows that applying

greater decay to the networks results in lower overall congruence. In contrast to Rhythm-

box, Beagle has a a consistent modular structure that was created in the beginning of the

project and never changed during the course of the observation period. The primary team of

developers also remained constant. In this case, task dependencies were renewed through-

out the life of the project, but the coordination around those dependencies, which were

largely static, was not renewed because the dependencies had shown little change.

This shows in the case of long running projects where the architecture and project

membership may change over time, the use of a decay factor in calculating STC is greatly

beneÞcial for calculating a more realistic measure of how the organization reacts to changes

in the code structure. In the case of consistent teams and code structures, however, the

addition of a decay function appears to do little other than deßate the score for congruence

in a rather predictable given. These results were also seen in several other projects within

GNOME that are not detailed here. This is a key Þnding for the development of interactive

tools for managing software development that utilize STC, as larger projects often span

multiple years with varying teams and possibly varying architectures, especially between

release cycles. This stands in contrast to the original work on STC which looked only at

the congruence of the project in shorter periods around release management and did not

take into account the full history of the project[15].

163

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5.5.2 Network Formulation

A comparison between the complete and progressive formulations ofT D found that in

most cases there is little difference between the complete and progressive formulations of

T D . In particular, as a project progresses further congruence calculated with both metrics

will converge as the progressive formulation ofT D gets closer to the complete formulation

of T D . Continuing the examination of the Rhythmbox and Beagle projects, the results

of these networks using the progressive formulation ofT D can be seen in Þgure5.5 and

Þgure5.6respectively.

STC when calculated with the progressive formulation is very similar to the results

found when calculating STC with the complete formulation ofT D in the previous section.

In fact, for the situation where no decay is applied to the networks in the model, both

formulations ofT D produce identical results after time period 15. As the amount of decay

applied increases, so does the amount by which the progressive formulation exceeds the

complete formulation. The differences between the formulations can be seen in Þgure5.7

and Þgure5.8.

The combination of applying a decay factor and using a progressive formulation of

T D is most visible in Rhythmbox when there is a high decay factor. The beneÞts of the

progressive formulation also begin to dramatically accelerate around period 15, which, as

previously described, is the point in the project history when project management was

changed and an effort to re-architect the project source code began. From this point on the

164

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gnome_rhythmbox Overall Congruence
(Progressive, ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
O

ve
ra

ll
C

on
gr

ue
nc

e

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 !

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.5: Overall network congruence for the project ÒRhythmboxÓ using the
progressive formulation ofTD and no errors in the network. Each period is one
month.

165

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gnome_beagle Overall Congruence
(Progressive, ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
O

ve
ra

ll
C

on
gr

ue
nc

e

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 !

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.6: Overall network congruence for the project ÒBeagleÓ using the pro-
gressive formulation ofTD and no errors in the network. Each period is one
month.

166

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

0 5 10 15 20 25 30 35

!0
.2

!0
.1

0.
0

0.
1

0.
2

gnome_rhythmbox Deviance between Congruence Metrics
(ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
D

ev
ia

nc
e

0 5 10 15 20 25 30 35

!0
.2

!0
.1

0.
0

0.
1

0.
2

0 5 10 15 20 25 30 35

!0
.2

!0
.1

0.
0

0.
1

0.
2

0 5 10 15 20 25 30 35

!0
.2

!0
.1

0.
0

0.
1

0.
2

0 5 10 15 20 25 30 35

!0
.2

!0
.1

0.
0

0.
1

0.
2

!

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.7: Difference between progressive and complete formulations ofTD for
ÒRhythmboxÓ. Each period is one month.

deviance between the two metrics continues to increase until time period 30, at which point

a sharp drop in STC is observed and at time 34 congruence for the progressive formulation

of T D with a 0.80 decay drops to 0.

Examining the project during this time period yields that month 34 was a time of very

little communication for the project. In particular, most of the primary developers of the

project were not highly active during that month because of a conference and travel. How-

ever, that is not to say that they were not active on the project. Most of the conferences

within the GNOME community provide a single room where developers can take advan-

167

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

5 10 15 20

0.
00

0.
01

0.
02

0.
03

gnome_beagle Deviance between Congruence Metrics
(ErrOm=0.00, ErrCom=0.00)

Period

M
ea

n
D

ev
ia

nc
e

5 10 15 20

0.
00

0.
01

0.
02

0.
03

5 10 15 20

0.
00

0.
01

0.
02

0.
03

5 10 15 20

0.
00

0.
01

0.
02

0.
03

5 10 15 20

0.
00

0.
01

0.
02

0.
03

!

!

!

!

!

0.80
0.85
0.90
0.95
1.00

Figure 5.8: Difference between progressive and complete formulations ofTD for
ÒBeagleÓ. Each period is one month.

168

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

tage of radical co-location and make rapid progress on the software[107]. This is what

happened in this case, the developers were working on new features of the software, which

were beginning to be captured in the dependency network at that time and the next time

period, but there was little captured actual communication related to it because the primary

mode of communication switched from computer mediated tools to face-to-face.

This shows one possible vulnerability of utilizing a progressive formulation of theTD

network, rapid changes that are discussed slightly out of sync with the time window of

interest can cause dramatic drops in congruence. However, it appears that this is rather an

edge case as it did not exhibit itself on any other projects within the study set.

5.5.3 Errors In Communication Network

The largest part of the simulation pertained to establishing the stability of the congruence

metric in the face of noise in the actual coordination network. For each project at each time

period a Þtness landscape was produced showing the average network level congruence

across 100 permutations of the network. Figure5.9shows the landscape generated by one

of these runs for the Rhythmbox project at period 28, an example which best highlights

the differences between the progressive and complete formulations of the task dependency

matrix. Please note that no distortion is in the right of each graph, and maximum distor-

tion is on the left of the graph. Moving forward visually increases the rate of errors or

commission, while moving to the left increase the rate of errors of omission.

169

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

ErrOm

0.00

0.05

0.10

0.15
0.20

0.25
0.30

E
rr

C
om

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ean C

ongruence

0.0

0.1

0.2

0.3

0.4

0.5

Progressive

ErrOm

0.00

0.05

0.10

0.15
0.20

0.25
0.30

E
rr

C
om

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ean C

ongruence

0.0

0.1

0.2

0.3

0.4

0.5

Complete

gnome_rhythmbox, decay=0.80, period=28

Figure 5.9: Landscape of ÒRhythmboxÓ with 0.80 decay at period 28

The networks were most noisy during the Þrst few periods of the project, often swinging

wildly, but almost never going above the value of congruence provided by the network with

no noise. Figure5.10shows the landscape for the Beagle project in the Þrst period of the

projectÕs history. Also, as is typical, an increase in the rate of errors of omission had no

effect on the overall network congruence.

A regression model was used to identify the relationship between the error levels and

congruence. The dependent variable was the congruence of the perturbed network and the

independent variables were the decay factor,ErrOm , ErrCom , and the congruence of the

unperturbed network, as shown in equation5.7. The results of this regression can be seen in

table5.9and table5.10for the complete and progressive formulations ofTD respectively.

170

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

ErrOm

0.00

0.05

0.10

0.15
0.20

0.25
0.30

E
rr

C
om

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ean C

ongruence

0.1

0.2

0.3

0.4

0.5

Progressive

ErrOm

0.00

0.05

0.10

0.15
0.20

0.25
0.30

E
rr

C
om

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ean C

ongruence

0.1

0.2

0.3

0.4

0.5

Complete

gnome_beagle, decay=1.00, period=01

Figure 5.10: Landscape of ÒBeagleÓ with no decay at period 1

STCP erturbed = #0 + #1Decay+ #2ErrOm + #3ErrCom + #4STCBase + $ (5.7)

The results clearly show that the metric is fairly resilient to random errors of omission

Table 5.9: Relation Between Congruence Using CompleteTD Formulation With
Error and Unperturbed Network

Variable Estimate Std Error P-Value

Intercept -0.0190 0.0013< . 0001
Decay 0.0541 0.0015 < . 0001
ErrOm 0.0004 0.0011 0.668
ErrCom -0.1440 0.0011 < . 0001
Congruence 0.8499 0.0012< . 0001

R2 = 0.9553,DF = 28155, p < 0.0001

171

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

Table 5.10: Relation Between Congruence Using ProgressiveTD Formulation
With Error and Unperturbed Network

Variable Estimate Std Error P-Value

Intercept -0.0179 0.0013< . 0001
Decay 0.0543 0.0015 < . 0001
ErrOm 0.0004 0.0011 0.742
ErrCom -0.1515 0.0011 < . 0001
Congruence 0.8502 0.0012< . 0001

R2 = 0.9512,DF = 28155, p < 0.0001

within the network. Higher levels of errors of commission tend to decrease the overall

congruence of the organization, as this action removes edges from the actual coordination

network. Furthermore, systems with less decay tend to exhibit slightly higher congruence,

however, this is a very small factor that within the actual data would cause the overall STC

of the network to increment only 0.01 from a 0.8 decay to a 1.0 decay (no decay).

5.5.4 Possible Faults

The generation of noise in the networks was done on a purely random basis. While this

random effect takes into account the network structure when removing links through errors

of commission, errors of omission are treated as a purely random phenomena, with no

particular attention paid to the location of the links outside of the random selection. To

perform a truly random analysis, the structure of the network would need to be taken into

account.

However, this effect is somewhat mitigated by the fact that within the data set, the

172

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

chance of entirely missing an individual is low. Of the individuals with coordination re-

quirements, less than 1% of those individuals had no links at all in the actual coordination

network. The work process of the GNOME community also helps to reinforce the strength

of this claim, by encouraging all developers to collaborate on project mailing lists and dis-

cuss bugs on the project bug tracker this leads to fewer than 2% of the individuals with

coordination requirements not having communication found in either the bug tracker or

project mailing lists. This greatly limits the chance that an individual would be completely

left out of the network.

5.6 Discussion

This chapter has extensions and contributions to the continued study and use of socio-

technical congruence as a tool for understanding team performance. Firstly, it was able

to successfully replicate the original results in an open source context. This is valuable

because few environments are as controlled as was the original study on STC. By showing

its validity in an Open Source context this provides additional incentive for tool builders to

create suites of tools for developers and project managers based on STC. It is not necessary

to devote an individual to work for weeks to unify the data, or to have an organization that

is CMM Level 5, to get useful results. Rather, using the data from an open environment

can provide similar valuable insights.

To better understand exactly how STC works, I also proposed breaking the ratio apart

173

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

and showed that the presence of ÒextraÓ communication is also related to increased per-

formance. This indicates that in most cases, more communication is good, although there

most likely is a point diminishing returns from team members pending too much time com-

municating. The evidence suggests that rather than creating tools that rely solely on the

STC metric as a ratio, incorporating matched communication, coordination requirements,

and extra communication as elements may prove beneÞcial.

This chapter has introduced the concept of decay to STC and found that it is most

useful on long lived projects when a substantial portion of the team leaves or there is a

major change in architecture. However, the value to use for decay is not yet clear and most

likely depends on team work processes and the window size for generating the metrics.

Clearly this is an area ripe for future study.

Next, I addressed the issues of the structuring of the task dependency network,T D ,

and whether it should be a purely backwards looking network or it should include all data

as there may be dependencies in the network that have not yet manifested themselves. For

many projects there is very little difference between the values generated using the different

formulations, especially in a stable project. This Þnding indicates that tools developed that

calculate STC on a rolling basis as development proceeds, which necessitates the use of a

progressiveT D , should produce statistically signiÞcant results.

This work has also addressed stability issues related to STC and concluded that sta-

bility of the metrics is not a major issue. In particular, when assuming even up to 30%

noise in the system the deviation of the metrics generally remained low. Furthermore, one

174

CHAPTER 5. INDIVIDUALS AND INDIVIDUALS: EVOLUTION OF THE
SOCIO-TECHNICAL CONGRUENCE METRIC

of the primary concerns was that an individual may be completely missed in the course of

collecting data about actual coordination,CA . Within the GNOME Open Source commu-

nity this was found to not be a concern as there were few times when individuals who had

high coordination requirements were completely missing from the network. However, we

note that narrowing the window of analysis too much will lead to cases where individuals

are missed because of personal reasons, such as vacation, illness, or work schedules, and

introduce error into the use of STC as a viable metric for software developers.

Based on these Þndings, I recommend that STC be calculated on a rolling basis by

breaking the metric apart into itÕs constituent parts of matched communication, coordina-

tion requirements, and extra communication. Furthermore, a small decay factor should be

applied to the networks to account for changes in project structure and team membership.

175

Chapter 6

Conclusions

Although the term ÒOpen SourceÓ is only 11 years old, it has made dramatic impacts on the

Þeld of software engineering and on commercial software development. What Þrst started

as a social movement has shown itself to be a robust way to develop software in commercial

environments. In this thesis I built upon previous work that examined individual interac-

tions in single Open Source projects by expanding and evaluating interactions within Open

Source ecosystems at multiple levels: foundations, Þrms, and individuals.

6.1 Contributions

I began with a thorough examination of the ecosystem of commercial Þrms around the

Eclipse integrated development environment and how the non-proÞt Eclipse Foundation

176

CHAPTER 6. CONCLUSIONS

helps to drive value for those Þrms. Key properties identiÞed were the non-market nature

of the Eclipse foundation, which allows Þrms to focus on their specialties with less of a

worry that the main project driver will implement similar features and destroy their market.

The introduction of process and the joint marketing efforts that the foundation can put forth

were also highlighted as key factors driving success. Finally, the structure of the Eclipse

ecosystem is such that Eclipse is regarded as a platform, rather than a single tool. This

allows Þrms to quickly innovate in new and radical ways without having to master all

aspects of the ecosystem.

In chapter3 I examined the interactions of the Þrms in the Eclipse ecosystem as they

collaborate through code artifacts. This found that despite the fact that although IBM is

no longer the dominant player in Eclipse from a legal perspective, it still is the dominant

player when it comes to developing and contributing code to Eclipse. In particular, IBM

plays key roles in the development of the reusable platform components of Eclipse. This

over dependence on IBM introduces some weaknesses into the ecosystem, as was high-

lighted when IBM recused itself of internationalization for Eclipse and it several releases

were issued without internationalization. This pattern is signiÞcantly different than the pat-

tern that was seen in volunteer-founded GNOME ecosystem and, while lacking as much

corporate support, has a more diverse set of Þrms contributing to the core portions of the

platform.

Next, a study of the relationship between Þrms and volunteers in an Open Source com-

munity found that the general presence of commercial developers in volunteer communities

177

CHAPTER 6. CONCLUSIONS

has no statistically signiÞcant relationship to the ability of projects to attract additional vol-

unteer developers. However, when the Þrms are classiÞed by the nature of their business

within the community, divergent effects are found. The presence of developers working

for Þrms that package the complete output of the community, dubbed community focused

Þrms, is related to an increase in the amount of volunteer developers at a later time. In con-

trast, the presence of developers working for Þrms that focus only on niche projects within

the community, known as product focused Þrms, is related to a decrease in the amount of

volunteer developers working on the project at a later time.

Finally, in chapter5 I examined the patterns of individual communication and coordina-

tion requirements. This section used an Open Source community to successfully reproduce

the earlier results that Cataldo et. al. found in a commercial software environment[15].

This allowed the expansion of the socio-technical congruence metric and found that com-

munication that matches coordination requirements has a very strong impact on time to

resolve software defects and, perhaps more importantly, even communication which does

not line up with coordination requirements has a beneÞcial impact on the time to resolve

software defects, although to a lesser degree than communication that matches coordina-

tion dependencies. A key implication of this Þnding is that it allows the differentiation

between individuals who communicate across coordination requirements and those who

merely communicate a lot Ð providing a powerful validation for the concept of socio-

technical congruence. The work on the metric was further expanded to propose a decay

parameter to account for changing project membership, dependencies between tasks, and

178

CHAPTER 6. CONCLUSIONS

shifting patterns of communication. Finally, analysis of the metric with respect to noise in

the data found that random errors in the observed networks caused only very slight varia-

tions in the value and signiÞcance of STC.

These Þndings all contribute to the knowledge of Open Source ecosystems as a new

method for collaboration across Þrms and markets. In the remaining this chapter I provide

a set of recommendations for individuals, Þrms, foundations, and community designers to

better build communities that function in these complex ecosystems that see volunteers,

multiple Þrms, and foundations all working together toward a shared goal.

6.2 Recommendations

This thesis examined participation in Open Source projects at three different levels, foun-

dation, Þrm, and individual. Here I make recommendations to participants at each of those

levels while expanding the deÞnition of foundation to include any group that may wish to

foster the creation of an Open Source community.

6.2.1 Recommendations for Individuals

Recommendation 1Lower your ideological goals to embrace and work with commercial

developers

179

CHAPTER 6. CONCLUSIONS

Many individuals within Open Source ecosystems are motivated by ideological goals.

Particularly in Europe it is common for developers to express a desire to work in a com-

pletely free (as in liberty) software environment[65]. Such a desire often leads to distrust

of commercial Þrms in the community and creates a disconnect between the users of the

software who often desire the Open Source because of itÕs low cost and the ideological

developers[23]. In chapter4, however, it was shown that commercial Þrms had typically

had a positive impact on the number of volunteers participating on a project, indicating that

at least some of the concerns of ideological developers regarding commercial participation

may be unfounded.

Recommendation 2Focus communication to address coordination dependencies to max-

imize the beneÞt of communication

From the perspective of individual developers attempting to work in an Open Source

community, this research suggests that with respect to the time to resolve software de-

fects more communication is almost always beneÞcial. While communication that satisÞes

coordination dependencies is most helpful, communication that is unmatched with coor-

dination dependencies also decreases the time to resolve software defects. This may be

because some of the communication that does not match dependencies serves to update all

members of the community about the developerÕs current status and how future dependen-

cies may be resolved. Given limited time and attention resources of developers, focusing

on meeting individual coordination requirements will have a greater impact than general

communication.

180

CHAPTER 6. CONCLUSIONS

6.2.2 Recommendations for Commercial Firms

Recommendation 3A perceived loss of control over technology is rarely a sufÞcient rea-

son to avoid participating in Open Source because it is possible to participate without

giving up control

Although the state of commercial involvement in Open Source has matured signiÞcantly

in recent years, there still are many ways in which this thesis can guide Þrms as they

participate in Open Source communities. While tech giants such as Intel are frequently

members of multiple Open Source communities, there still exists numerous Þrms that are

hesitant to participate in Open Source at any level. This research has demonstrated that

although joining an Open Source community means a change in work practices to match

that of the community, it does not mean giving up control of components or technologies to

other Þrms. In reality, most projects within Eclipse are managed by a single Þrm which is

able to guide and develop the technology according to internal roadmaps while leveraging

the beneÞts of the Open Source platform.

The major downside to participating in an Open Source community is that it requires

publication of the project source code. In certain cases this may be untenable due to external

requirements from customers and clients that the source code remain proprietary. In these

cases, although the Þrm still would maintain all rights to the software, Open Source may

not be a feasible strategy.

Recommendation 4When entering an existing community with volunteer developers, Þrms

181

CHAPTER 6. CONCLUSIONS

should survey the community to ensure maximum compatibility and that the partnership is

beneÞcial for all sides

Firms cannot blindly enter into an Open Source community and expect that they will be

welcomed with open arms. On the contrary, Þrms that wish to attract additional individuals

to their project should be heedful of the scope and methods they use to interact in the

community. For example, releasing a project as Open Source does not immediately attract

new developers and contributors. In many cases providing a Òcode dumpÓ to an Open

Source community with little context will cause community members to be hesitant about

the commitment to maintain the code and work with the community in the future. Greater

interaction with the community as a whole, which is the pattern of community focused

Þrms, will lead to additional participation from community members. Such participation,

however, has cost as members of the Þrm must still work their way into the meritocracy of

projects.

This suggests that there may be cases when it is beneÞcial for a Þrm to create their own

fork of a project and not contribute directly back to the community (provided the license

allows it). An example of such a situation is a product focused Þrm that intends to provide

a speciÞc commercial application of the project that feels it may cause more confusion and

do more harm to the community by participating than by maintaining their own source code

tree.

Recommendation 5Firms entering an Open Source ecosystem need not completely re-

182

CHAPTER 6. CONCLUSIONS

orient their business model to participate

When Netscape embraced Open Source in 1998 it was widely seen as a last ditch effort

to Þght back against MicrosoftÕs rising dominance. When they released the source of their

ßagship product as Open Source, Netscape effectively bet their entire business on a radical

change. History has shown they lost the bet. Within Eclipse, there are numerous Þrms

that are part of the Eclipse community, but release only small amounts of code as Open

Source. Furthermore, many of these Þrms have little need to collaborate with other Þrms

in the process of developing their product. Often times these Þrms use participation in the

Eclipse ecosystem as a way to leverage additional resources, but offering a small amount

of their own technology, theyÕre able to use and guide a much larger amount of technology.

It is also incorrect to assume that a Þrm can choose to participate in an Open Source

ecosystem or create an Open Source project based on previously proprietary technology

and not have to alter its business model. Firms need to be intimately aware of the desire

of community members to have real impact on the design and implementation of the soft-

ware. Firms must be willing to dedicate additional resources to activities that have little

immediately quantiÞable beneÞt, such as developer time, to building and supporting the

community. This necessitates that many Þrms change how they account for developer time

by acknowledging the social side of building and participating in an Open Source commu-

nity.

183

CHAPTER 6. CONCLUSIONS

6.2.3 Recommendations for Foundations and Community Designers

Recommendation 6Forward thinking modular architectures should be used to promote

innovation by community members with minimal overhead

Individuals involved in the Eclipse community consistently extolled the virtues of the

highly modular architecture of the Eclipse ecosystem. This architecture allowed Þrms to

easily build tools without necessitating a complete knowledge of the architecture and intri-

cate details of the implementation of key components. Modular architectures also reduce

the amount of communication and coordination necessary as developers can treat substan-

tial components as black boxes. In addition to fostering development at the core of the

project, the modular architecture of Eclipse was seen as supporting radical innovation, in-

cluding efforts to bring Eclipse technologies to the server and web based engines.

In the broader context of loosely federated distributed systems a service oriented archi-

tecture (SOA) can play a similar role as the modular architecture of Eclipse. However, like a

modular architecture, care must be taken to ensure that individual components are properly

documented, tested, and veriÞed. Although modular architectures, such as Eclipse, saw

contributions in many projects centered around a single Þrm, most prominent projects had

some contributions from multiple Þrms. Within a SOA based architecture where compo-

nents are developed and hosted by disparate entities, this may not be possible and therefore

may limit the overall success of the community.

Recommendation 7When building an Open Source community, give the community con-

184

CHAPTER 6. CONCLUSIONS

trol over the community

One of the key issues arising from the analysis of the Eclipse platform is that a substantial

portion of the project code was written by a single Þrm, IBM. Within the Eclipse ecosys-

tem there has, to this point, been little dissent with regards to IBM having a high amount of

control over the platform, however this is not true across Open Source ecosystems. For ex-

ample, the tight control that Sun MicroSystems exerts over core portions of OpenOfÞce.org

has led to fragmentation and dissent in the community[88]. Part of the success of Eclipse in

this regard may be expressly because IBM, although maintaining de facto control through

their contributions to the Eclipse platform, is still beholden to the larger community of

Þrms in the Eclipse ecosystem through the work of the Eclipse Foundation.

This is a bold step for a community founder to undertake as it requires giving up ad-

ditional rights to the intellectual property and giving others a major stake in project man-

agement, leaving open the possibility that the goals of the project will diverge from the

founderÕs goals. In practice, with regards to the Eclipse Foundation the goals of the com-

munity have expanded and varied from IBMÕs original goals of creating an extensible IDE.

However, this is not a case of the size and prominence of IBMÕs interests getting smaller,

rather the entire ecosystem has grown, making room for Þrms with innovative new busi-

ness models to participate. The nature of Open Source also provides additional protections

for a community founder as they can choose to retain rights to their original code, provid-

ing security that original contributions can never be taken from contributors without their

consent.

185

CHAPTER 6. CONCLUSIONS

Recommendation 8Recognize that some components of an ecosystem will be dominated

by single Þrms and plan accordingly

The centralization of the Eclipse platform around a single Þrm, and the focus of many

Þrms on only a handful of projects illustrates a fundamental problem with many communi-

ties: when Þrms focus on and contribute primarily to their areas of expertise, it is difÞcult to

get contributions to core technologies that all Þrms build upon, but are commonly regarded

as a commodity. Even GNOME, which saw many Þrms contributing to the core technolo-

gies of the GTK+ widget set, still experienced some centralization. The initial design for

the GTK+ widget set was done by a small group of developers who sought to create a ro-

bust widget set for a paint program. Since that point, much of the work on the widget set

has been undertaken by Red Hat, and it is only the social norms of the community, which

is much more open and amenable to individuals contributing to multiple projects, that has

allowed so many Þrms to contribute to the core technologies. Yet, the contributions of other

Þrms are still dwarfed by that of Red Hat.

From the perspective of a Þrm or institution choosing to participate in an ecosystem,

adoption of components developed primarily by an external entity may limit the ability to

direct some aspects of their own project. For example, a Þrm that builds an application

using the Eclipse Rich Client Platform may have little control over how the platform and

base user interface components evolve and may create licensing implications for the tool.

Such concerns bear little difference to those concerns needed when evaluating proprietary

toolkits, with the major differences being the lesser cost and frequently greater access of

186

CHAPTER 6. CONCLUSIONS

utilizing tools from an Open Source ecosystem.

Recommendation 9In communities without a dominant market player additional incen-

tives may be needed to develop some key components

This centralization issue highlights a fundamental challenge in building platform in-

frastructure software, unless a single Þrm stands to obtain a disproportionately large beneÞt

from the code, it may be difÞcult to Þnd Þrms willing to invest their resources for devel-

opment. While the Eclipse platform has been successful because of IBMÕs utilization of

core technologies in many products from Lotus, there are numerous examples where plat-

form infrastructure projects end up as too customized or underdeveloped. In particular, in

the Þeld of scientiÞc computing, there are frequently scores of programs that all provide a

small portion of the functionality needed, but many often require expansion. For example,

there exists at least fourteen different java based libraries for visualizing social networks.

While a handful of the libraries share code, many reimplement functionality present in

other projects, such as the code to load and save network data sets. This reimplementation

in addition to being an unnecessary expenditure of time undoubtedly introduces bugs into

the software and leads to incompatibilities.

In the context of scientiÞc software, which often has little commercial value and for

which the authors frequently receive little credit, but is valuable to many scientiÞc projects,

providing additional incentives for projects to Open Source their software could prove a

boon for scientiÞc research. For example, the National Science Foundation could provide

187

CHAPTER 6. CONCLUSIONS

additional funding to projects developing social network analysis tools. These funds would

be speciÞcally designated to support building a community around the code, much in the

same way that the Eclipse Foundation has taken a strategic approach to building a commu-

nity. While such a strategy would not completely resolve all differences between projects,

by providing a supported community an ecosystem for research could easily be created.

Such a system would differ signiÞcantly from the way that most academic software is

currently released as Open Source, where support is only available from already stressed

academics and the communities are typically very small. Indeed, the willingness to ded-

icate employees to manage the Open Source community was previously shown to have

signiÞcant beneÞts for research on Java virtual machines in the Jikes RVM project[1]. As

an added beneÞt, the availability of source code and the support necessary to compile and

run the source code may assist in replication of results from experiments. While there have

been some efforts in this direction, most notably from the United KingdomÕs funding from

OMII-UKÕs MyExperiment and Taverna projects[84], there has, to this point, been little

funding from the United States government for such work.

6.3 Future Work

While this thesis has made signiÞcant progress in understanding commercial participation

in Open Source communities, the are still many ripe opportunities for additional explo-

ration. In particular, this work focused on two of the most successful Open Source com-

188

CHAPTER 6. CONCLUSIONS

munities and examined commercial involvement as a whole. Both of these communities

support numerous Þrms that embed and extend the technologies for very speciÞc purposes,

product focused Þrms in the parlance of chapter4. Relative to community focused Þrms

these Þrms have decreased motivation to contribute their innovations back to the commu-

nity. An analysis of these Þrms and how they contribute back to the community could

prove beneÞcial for foundations that wish to build community and ensure that development

continues.

189

Bibliography

[1] ALPERN, B., AUGART, S., BLACKBURN, S., M, B., COCCHI, A., CHENG, P.,
DOLBY, J., FINK , S., GROVE, D., HIND, M., MCKINLEY, K., MERGEN, M.,
MOSS, J., NGO, T., SARKAR, V., AND TRAPP, M. The jikes research virtual ma-
chine project: Building an open-source research community.IBM Systems Journal
44, 2 (2005), 399Ð418.

[2] BONACCORSI, A., GIANNANGELI , S., AND ROSSI, C. Entry strategies under
competing standards: Hybrid business models in the open source software indus-
try. Management Science 52, 7 (July 2006), 1085Ð1098.

[3] BONACCORSI, A., AND ROSSI, C. Why open source software can succeed.Re-
search Policy 32, 7 (July 2003), 1243Ð1258.

[4] BOORMAN, S. A.,AND WHITE, H. C. Social structure from multiple networks. II.
role structures.American Journal of Sociology 81, 6 (1976), 1384Ð1446.

[5] BROWN, A., AND BOOCH, G. Reusing Open-Source software and practices: The
impact of Open-Source on commercial vendors. InProceedings of the Seventh Inter-
national Conference on Software Reuse(Austin, TX, Apr. 2002), Springer, pp. 381Ð
428.

[6] BROWN, G. Linux - a platform for innovation in converged mobile handsets.BT
Technology Journal 25, 2 (Apr. 2007), 126Ð132.

[7] BROY, M. Challenges in automotive software engineering. InProceedings of the
28th international conference on Software engineering(Shanghai, China, 2006),
ACM, pp. 33Ð42.

[8] BURTON, R. M., AND OBEL, B. Strategic Organizational Diagnosis and Design:
The Dynamics of Fit, 3rd ed. Springer, Dec. 2003.

[9] CANONICAL LTD. About us. http://www.canonical.com/aboutus, Oct. 2008.

[10] CANONICAL LTD. TimeBasedReleases - ubuntu wiki.
https://wiki.ubuntu.com/TimeBasedReleases, 2009.

[11] CANONICAL LTD. Ubuntu home page| ubuntu. http://www.ubuntu.com/, 2009.

[12] CAPEK, P. G., FRANK, S. P., GERDT, S., AND SHIELDS, D. A history of IBMÕs

190

CHAPTER 6. BIBLIOGRAPHY

Open-Source involvement and strategy.IBM Systems Journal 44, 2 (2005), 249Ð257.

[13] CARBONE, P. Competitive open source.Open Source Business Resource(July
2007), 4Ð6.

[14] CATALDO , M., HERBSLEB, J. D., AND CARLEY, K. M. Socio-technical congru-
ence: a framework for assessing the impact of technical and work dependencies on
software development productivity. InProceedings of the Second ACM-IEEE inter-
national symposium on Empirical software engineering and measurement(Kaiser-
slautern, Germany, 2008), ACM, pp. 2Ð11.

[15] CATALDO , M., WAGSTROM, P., HERBSLEB, J., AND CARLEY, K. IdentiÞca-
tion of coordination requirements: Implications for the design of collaboration and
awareness tools. InProceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work(Banff, Alberta, Canada, Nov. 2006), ACM Press,
pp. 353Ð362.

[16] CERNOSEK, G. A brief history of eclipse.
http://www.ibm.com/developerworks/rational/library/nov05/cernosek/, Nov.
2005.

[17] CONWAY, M. How do communities invent?Datamation 14, 5 (Apr. 1968), 28Ð31.

[18] CROWSTON, K., ANNABI , H., HOWISON, J.,AND MASANGO, C. Effective work
practices for FLOSS development: A model and propositions. InSystem Sciences,
2005. HICSS Õ05. Proceedings of the 38th Annual Hawaii International Conference
on (2005), p. 197a.

[19] CROWSTON, K., AND HOWISON, J. The social structure of free and open source
software development.First Monday 10, 2 (Feb. 2005).

[20] CROWSTON, K., WEI, K., LI , Q., AND HOWISON, J. Core and periphery in
Free/Libre and open source software team communications. InProceedings of
the 39th Annual Hawaii International Conference on System Sciences (HICSSÕ06)
(2006), p. 118a.

[21] DAFT, R. L., AND LENGEL, R. H. Organizational information requirements, media
richness and structural design.Management Science 32, 5 (1986), 554Ð571.

[22] DE VEN, A. H. V., AND DELBECQ, A. L. A task contingent model of Work-Unit
structure.Administrative Science Quarterly 19, 2 (1974), 183197.

[23] DEDRICK, J., AND WEST, J. Movement ideology vs. user pragmatism in the or-
ganizational adoption of open source software. InComputerization Movements and
Technology Diffusion: From Mainframes to Ubiquitous Computing, K. Kraemer and
M. Elliot, Eds. Information Today, Medford, NJ, 2007.

[24] DES RIVIERES, J.,AND WIEGAND, J. Eclipse: A platform for integrating develop-
ment tools.IBM Systems Journal 43, 2 (2004), 371Ð383.

191

CHAPTER 6. BIBLIOGRAPHY

[25] EICK, S. G., GRAVES, T. L., KARR, A. F., MARRON, J., AND MOCKUS, A.
Does code decay? assessing the evidence from change management data.IEEE
Transactions on Software Engineering 27, 1 (2001), 1Ð12.

[26] FELLER, J.,AND FITZGERALD, B. A framework analysis of the open source soft-
ware development paradigm. InProceedings of the twenty Þrst international confer-
ence on Information systems(Brisbane, Queensland, Australia, 2000), Association
for Information Systems, pp. 58Ð69.

[27] FIELDING, R. T. Shared leadership in the apache project.Commun. ACM 42, 4
(1999), 42Ð43.

[28] FINK , M. The Business and Economics of Linux and Open Source, 1st ed. Prentice
Hall PTR, Sept. 2002.

[29] FISHER, K. Microsoft antitrust Þnally over?
http://arstechnica.com/news.ars/post/20021102-1030.html, Nov. 2002.

[30] FOGEL, K. Producing Open Source Software. OÕReilly & Associates, Sebastapol,
CA, 2005.

[31] FRANKE, N., AND VON HIPPEL, E. Satisfying heterogeneous user needs via in-
novation toolkits: the case of apache security software.Research Policy 32, 7 (July
2003), 1199Ð1215.

[32] FREE SOFTWARE FOUNDATION. GNU general public license.
http://www.gnu.org/copyleft/gpl.html, June 1991. available at
http://www.gnu.org/copyleft/gpl.html Ð Visited April 28, 2007.

[33] FREE SOFTWARE FOUNDATION. Mailman, the GNU mailing list manager.
http://www.gnu.org/software/mailman/, Dec. 2008.

[34] GALBRAITH , J. Organization design: An information processing view.Interfaces
4, 5 (May 1974), 28Ð36.

[35] GALBRAITH , J. R.Designing Complex Organizations. Addison Wesley, Oct. 1973.

[36] GALL , H., HAJEK, K., AND JAZAYERI , M. Detection of logical coupling based on
product release history. In14th IEEE International Conference on Software Main-
tenance(Mar. 1998), IEEE Press.

[37] GEER, D. Eclipse becomes the dominant java IDE.IEEE Computer 38, 7 (2005),
16Ð18.

[38] GERMAN, D. The GNOME project: a case study of open source, global software
development.Software Process: Improvement and Practice 8, 4 (Sept. 2004), 201Ð
215.

[39] GERMAN, D. Software engineering practices in the GNOME project. InPerspec-
tives on Free and Open Source Software, J. Feller, B. Fitzgerald, S. A. Hissam, K. R.
Lakhani, and M. Cusumano, Eds. MIT Press, 2005, pp. 211Ð226.

192

CHAPTER 6. BIBLIOGRAPHY

[40] GHOSH, R. A., GLOTT, R., KRIEGER, B., AND ROBLES, G. Free/Libre and open
source software: Survey and study. Tech. rep., International Institute of Infonomics
University of Maastricht, The Netherlands, June 2002.

[41] GLYNN , E., FITZGERALD, B., AND EXTON, C. Commercial adoption of open
source software: an empirical study. InEmpirical Software Engineering, 2005. 2005
International Symposium on(2005), p. 10 pp.

[42] GOTH, G. Beware the march of this IDE: eclipse is overshadowing other tool tech-
nologies.IEEE Software 22, 4 (2005), 108Ð111.

[43] GRIMM , K. Software technology in an automotive company - major challenges. In
Software Engineering, 2003. Proceedings. 25th International Conference on(2003),
pp. 498Ð503.

[44] HALLORAN , T., AND SCHERLIS, W. High quality and open source practices. In
2nd Workshop on Open Source Software Engineering(Orlando, Florida, May 2002).

[45] HARDIN, G. The tragedy of the commons.Science 162, 3859 (Dec. 1968), 1243Ð
1248.

[46] HARS, A., AND OU, S. Working for free? motivations for participating in Open-
Source projects.International Journal of Electronic Commerce 6, 3 (2002), 25Ð39.

[47] HECKER, F. Setting up shop: The business of open-source software.IEEE Software
16, 1 (1999), 45Ð51.

[48] HENDERSON, R. M., AND CLARK , K. B. Architectural innovation: The reconÞg-
uration of existing product technologies and the failure of established Þrms.Admin-
istrative Science Quarterly 35, 1 (Mar. 1990), 9Ð30.

[49] HERBSLEB, J., AND MOCKUS, A. An empirical study of speed and communica-
tion in globally distributed software development.IEEE Transactions on Software
Engineering 29, 6 (June 2003), 1Ð14.

[50] HERBSLEB, J. D., MOCKUS, A., FINHOLT, T. A., AND GRINTER, R. E. An
empirical study of global software development: distance and speed. InProceedings
of the 23rd International Conference on Software Engineering(Toronto, Ontario,
Canada, 2001), IEEE Computer Society, pp. 81Ð90.

[51] HERTEL, G., NIEDNER, S.,AND HERMANN, S. Motivation of software developers
in open source projects: An internet-based survey of contributors to the linux kernel.
Research Policy 32, 7 (July 2003), 1159Ð1177.

[52] HORMBY, T. VisiCalc and the rise of the apple II.
http://lowendmac.com/orchard/06/visicalc-origin-bricklin.html, Sept. 2006.

[53] IBM. IBM press room - 1998-06-22 IBM enhances and expands WebSphere prod-
uct line in collaboration with apache and NetObjects - united states. http://www-
03.ibm.com/press/us/en/pressrelease/2587.wss, June 1998.

193

CHAPTER 6. BIBLIOGRAPHY

[54] JOHNSON, J. P. Open source software: Private provision of a public good.Journal
of Economics & Management Strategy 11, 4 (2002), 637Ð662.

[55] KERSTEN, M., AND MURPHY, G. C. Mylar: a degree-of-interest model for IDEs.
In Proceedings of the 4th international conference on Aspect-oriented software de-
velopment(Chicago, Illinois, 2005), ACM, pp. 159Ð168.

[56] KLEIDMAN , R. Volunteer activism and professionalism in social movement organi-
zations.Social Problems 41, 2 (May 1994), 257Ð276.

[57] KOCH, S.,AND SCHNEIDER, G. Effort, co-operation and co-ordination in an open
source software project: GNOME.Information Systems Journal 12, 1 (2002), 27Ð
42.

[58] KOGUT, B., AND MEITU, A. Open-Source software development and distributed
innovation.Oxford Review of Economic Policy 17, 2 (2001), 248Ñ264.

[59] KRISHNAMURTHY, S. Cave or community? an empirical examination of 100 ma-
ture open source projects.First Monday 7, 6 (June 2002).

[60] KRISHNAMURTHY, S. An analysis of open source business models. InPerspectives
on Free and Open Source Software, J. Feller, B. Fitzgerald, S. Hissam, and K. R.
Lakhani, Eds. MIT Press, Cambridge, MA, June 2005.

[61] KUWABARA , K. Linux: A bazaar at the edge of chaos.First Monday 5, 3 (Mar.
2000).

[62] LAKHANI , K., AND WOLF, R. Why hackers do what they do: Understanding
motivation and effort in Free/Open source software projects. InPerspectives on Free
and Open Source Software, J. Feller, B. Fitzgerald, S. Hissam, and K. R. Lakhani,
Eds. MIT Press, Cambridge, MA, 2005.

[63] LATTIX , INC. Lattix - software for architecture management.
http://www.lattix.com/, Feb. 2009.

[64] LERNER, J., AND TIROLE, J. Some simple economics of open source.Journal of
Industrial Economics 50, 2 (June 2002), 197Ð234.

[65] LJUNGBERG, J. Open source movements as a model for organising.European
Journal of Information Systems 9, 4 (Dec. 2000), 208Ð216.

[66] MACCORMACK, A., RUSNAK, J., AND BALDWIN , C. Y. Exploring the structure
of complex software designs: An empirical study of open source and proprietary
code.Management Science 52, 7 (July 2006), 1015Ð1030.

[67] MADEY, G., FREEH, V., AND TYNAN , R. The open source software development
phenomenon: An analysis based on social network theory. InAmericas Conference
on Information Systems(2002).

[68] MALCOM, J. Problems in open source licensing. In2003 Australian Linux Confer-
ence(2003).

194

CHAPTER 6. BIBLIOGRAPHY

[69] MANCHESTER, P. Eclipse kills open-source SOA projects.The Register(Nov.
2008).

[70] MARCH, J.,AND SIMON, H. Organizations. Wiley, New York, NY, 1958.

[71] MARKUS, M. L., MANVILLE , B., AND AGRES, C. E. What makes a virtual orga-
nization work?Sloan Management Review 42, 1 (2000), 13Ð26.

[72] MCGREW, J. F., BILOTTA , J. G.,AND DEENEY, J. M. Software team formation
and decay: Extending the standard model for small groups.Small Group Research
30, 2 (Apr. 1999), 209Ð234.

[73] MCKUSICK, M. K. Twenty years of berkeley unix: From AT&T-Owned to freely
redistributable. InOpen Sources: Voices from the Open Source Revolution, C. Di-
Bona, S. Ockman, and M. Stone, Eds. OÕReilly Media, Inc., Sebastapol, CA, 1999,
pp. 19Ð30.

[74] MELLOR, C. Aperi dies on its arse.The Register(2009).

[75] MOCKUS, A., FIELDING, R., AND HERBSLEB, J. Two case studies of open source
software development: Apache and mozilla.ACM Transactions on Software Engi-
neering and Methodology 11, 3 (July 2002), 309Ð346.

[76] MOODY, G. Rebel Code: Linux and the Open Source Revolution. Basic Books,
2001.

[77] MOON, S., KIM , J., BAE, K., LEE, J.,AND SEO, D. Embedded linux implementa-
tion on a commercial digital TV system.Consumer Electronics, IEEE Transactions
on 49, 4 (2003), 1402Ð1407.

[78] MUSTONEN, M. CopyleftÐthe economics of linux and other open source software.
Information Economics and Policy 15, 1 (Mar. 2003), 99Ð121.

[79] NEWMAN, M. Detecting community structure in networks.The European Physical
Journal B 38, 2 (Mar. 2004), 321Ð330.

[80] OAKES, C. Netscape browser guru: We failed.Wired(Apr. 1999).

[81] OHLSSON, M. C., VON MAYRHAUSER, A., MCGUIRE, B., AND WOHLIN, C.
Code decay analysis of legacy software through successive releases. InProceedings
of the 1999 IEEE Aerospace Conference(1999), vol. 5, pp. 69Ð81 vol.5.

[82] OÕMAHONY, S. Guarding the commons: how community managed software
projects protect their work.Research Policy 32, 7 (July 2003), 1179Ð1198.

[83] OÕMAHONY, S. Non-ProÞt foundations and their role in Community-Firm software
collaboration. InProceedings of the HBS-MIT Sloan Free/Open Source Software
Workshop(Cambridge, MA, 2003).

[84] OMII-UK. Welcome to OMII-UK. http://www.omii.ac.uk/, Feb. 2009.

[85] OÕREILLY , T. Lessons from open-source software development.Commun. ACM

195

CHAPTER 6. BIBLIOGRAPHY

42, 4 (1999), 32Ð37.

[86] OSTERLOH, M., AND ROTA, S. Open source software developmentÐJust another
case of collective invention?Research Policy 36, 2 (Mar. 2007), 157Ð171.

[87] PARNAS, D. On the criteria to be used in decomposing systems into modules.Com-
munications of the ACM 15, 12 (Dec. 1972), 1053Ð1058.

[88] PAUL , R. OpenOfÞce.org community conßict leads to fragmentation - ars technica.
ArsTechnica(Oct. 2007).

[89] PAUL , R. Nokia to buy trolltech, will become a patron of KDE - ars tech-
nica. http://arstechnica.com/open-source/news/2008/01/nokia-buys-trolltech-will-
become-a-patron-of-kde.ars, 2008.

[90] PELLED, L. H., EISENHARDT, K. M., AND XIN, K. R. Exploring the black box:
An analysis of work group diversity, conßict, and performance.Administrative Sci-
ence Quarterly 44, 1 (Mar. 1999), 1Ð28.

[91] PENNINGTON, H. Proposed release process/plans.
http://mail.gnome.org/archives/gnome-hackers/2002-June/msg00041.html, June
2002.

[92] RAYMOND , E. S. A brief history of hackerdom. InOpen Sources: Voices from
the Open Source Revolution, C. DiBona, S. Ockman, and M. Stone, Eds. OÕReilly
Media, Inc., Sebastapol, CA, 1999, pp. 19Ð30.

[93] RAYMOND , E. S. The Cathedral and the Bazaar. OÕReilly & Associates, Se-
bastapol, CA, Oct. 1999.

[94] RAYMOND , E. S. The Art of UNIX Programming, 1 ed. Addison-Wesley Profes-
sional, Oct. 2003.

[95] RICHARDS, J. Sun buys MySQL for $1 billion - times online.Times Online(2008).

[96] ROBERTS, J. A., HANN, I., AND SLAUGHTER, S. A. Understanding the motiva-
tions, participation, and performance of open source software developers: A longitu-
dinal study of the apache projects.Management Science 52, 7 (July 2006), 984Ð999.

[97] ROONEY, P. Microsoft to publish 385 windows APIs, protocols to make antitrust
case go away.Computer Reseller News(Aug. 2002).

[98] ROSEN, L. Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall PTR, Aug. 2004.

[99] SARMA , A., MACCHERONE, L., WAGSTROM, P., AND HERBSLEB, J. Tesseract:
Interactive visual exploration of Socio-Technical relationships in software develop-
ment. InProceedings of the 2009 International Conference on Software Engineering
(Vancouver, BC, May 2009).

[100] SCACCHI, W. Free and open source development practices in the game community.
IEEE Software 21, 1 (2004), 59Ð66.

196

CHAPTER 6. BIBLIOGRAPHY

[101] SENYARD, A., AND MICHLMAYR , M. How to have a successful free software
project. In11th Asia-PaciÞc Software Engineering Conference(2004), pp. 84Ð91.

[102] SPJUTH, O., HELMUS, T., WILLIGHAGEN , E. L., KUHN, S., EKLUND , M., WA-
GENER, J., MURRAY-RUST, P., STEINBECK, C., AND WIKBERG, J. E. Bioclipse:
An open source workbench for chemo- and bioinformatics.BMC Bioinformatics 8,
59 (Feb. 2007).

[103] STALLMAN , R. M. EMACS the extensible, customizable self-documenting display
editor. SIGPLAN Notices 16, 6 (1981), 147Ð156.

[104] STALLMAN , R. M. Using GCC: The GNU Compiler Collection Reference Manual
for GCC 3.3.1. Free Software Foundation, Oct. 2003.

[105] STEWART, K. J., AMMETER, A. P., AND MAURPING, L. M. Impacts of license
choice and organizational sponsorship on users interst and development activity in
open source software projects.Information Systems Research 17, 2 (June 2006),
126Ð144.

[106] STEWART, K. J.,AND GOSAIN, S. The impact of ideology on effectiveness in open
source software development teams.MIS Quarterly 30, 2 (June 2006), 291Ð314.

[107] TEASLEY, S. D., COVI, L. A., KRISHNAN, M., AND OLSON, J. S. Rapid software
development through team collocation.IEEE Transactions on Software Engineering
28, 7 (July 2002), 671Ð683.

[108] THE ECLIPSE FOUNDATION. Eclipse public license - version 1.0.
http://www.eclipse.org/legal/epl-v10.html, 2006.

[109] THE ECLIPSE FOUNDATION. Intellectual property policy.
http://www.eclipse.org/org/documents/EclipseIP Policy.pdf, Sept. 2008.

[110] THE ECLIPSE FOUNDATION. About the eclipse foundation.
http://www.eclipse.org/org/, 2009.

[111] THE ECLIPSE FOUNDATION. BIRT home. http://www.eclipse.org/birt/phoenix/,
2009.

[112] THE ECLIPSE FOUNDATION. Eclipse foundation councils.
http://www.eclipse.org/org/foundation/council.php, 2009.

[113] THE ECLIPSE FOUNDATION. Eclipse platform. http://www.eclipse.org/platform/,
2009.

[114] THE ECLIPSE FOUNDATION. Eclipse platform overview.
http://www.eclipse.org/eclipse/eclipse-charter.php, 2009.

[115] THE ECLIPSEFOUNDATION. Higgins home. http://www.eclipse.org/higgins/, 2009.

[116] TIEMANN , M. Future of cygnus solutions: An entrepreneurÕs account. InOpen
Sources: Voices from the Open Source Revolution, C. DiBona, S. Ockman, and
M. Stone, Eds. OÕReilly Media, Inc., Sebastapol, CA, 1999, pp. 71Ð91.

197

CHAPTER 6. BIBLIOGRAPHY

[117] TIEMANN , M. History of the OSI. http://www.opensource.org/history, Sept. 2006.

[118] TOULME, A. Eclipse and the lone developer at lunar ocean. http://www.lunar-
ocean.com/eclipse-and-the-lone-developer/, 2009.

[119] VALETTO, G., HELANDER, M., EHRLICH, K., CHULANI , S., WEGMAN, M.,
AND WILLIAMS , C. Using software repositories to investigate Socio-Technical
congruence in development projects. InMining Software Repositories 2007(Min-
neapolis, MN, USA, May 2007).

[120] VAN WENDEL DE JOODE, R., DE BRUIJN, J. A., AND VAN EETEN, M. J. G.
Protecting the Virtual Commons. Asser Press, Aug. 2003.

[121] VANCE, A. A software populist who doesnt do windows.The New York Times
(2009).

[122] VON HIPPEL, E. Innovation by user communities: Learning from Open-Source
software.MIT Sloan Management Review 42, 4 (2001), 82Ð86.

[123] VON HIPPEL, E. Democratizing Innovation. The MIT Press, Apr. 2005.

[124] VON HIPPEL, E., AND VON KROGH, G. Open source software and the ÓPrivate col-
lectiveÓ innovation model: Issues for organizational science.Organization Science
14, 2 (Apr. 2003), 209Ð223.

[125] VON KROGH, G., SPAETH, S., AND LAKHANI , K. R. Community, joining, and
specialization in open source software innovation: a case study.Research Policy 32,
7 (July 2003), 1217Ð1241.

[126] WATERS, J. K. EclipseÕs third ÕRelease trainÕ on schedule.Application Development
trends(June 2008).

[127] WEBER, S. The Success of Open Source. Harvard University Press, Cambridge,
MA, Apr. 2004.

[128] WEST, J., AND OÕMAHONY, S. Contrasting community building in sponsored
and community founded open source projects. InSystem Sciences, 2005. HICSS
Õ05. Proceedings of the 38th Annual Hawaii International Conference on(2005),
p. 196c.

[129] WILLIAMS , K., AND OÕREILLY , C. Demography and diversity in organizations:
A review of 40 years of research.Research in Organizational Behavior 20(1998),
77Ð140.

[130] WILLIAMS , S. Free as in Freedom: Richard StallmanÕs Crusade for Free Software.
OÕReilly Media, Inc., Mar. 2002.

[131] WOLFE, A. Eclipse: A platform becomes an Open-Source woodstock.Queue 1, 8
(2003), 14Ð16.

[132] YAMAUCHI , Y., YOKOZAWA, M., SHINOHARA, T., AND ISHIDA, T. Collaboration
with lean media: how open-source software succeeds. InProceedings of the 2000

198

CHAPTER 6. BIBLIOGRAPHY

ACM conference on Computer supported cooperative work(Philadelphia, Pennsyl-
vania, United States, 2000), ACM, pp. 329Ð338.

[133] YE, Y., AND KISHIDA, K. Toward an understanding of the motivation of open
source software developers. InProceedings of the 25th International Conference on
Software Engineering(Portland, OR, USA, 2003), pp. 419Ð429.

[134] YOUNG, R. Giving it away: How red hat software stumbled across a new economic
model and helped improve an industry. InOpen Sources: Voices from the Open
Source Revolution, C. DiBona, S. Ockman, and M. Stone, Eds. OÕReilly Media,
Inc., Sebastapol, CA, 1999, pp. 113Ð126.

199

