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Abstract

The Supply Chain Trading Agent Competition (TAC
SCM) was designed to explore approaches to dynamic
supply chain trading. During the course of each year’s
competition historical data is logged describing more
than 800 games played by different agents from around
the world. In this paper, we present analysis that is fo-
cused on determining which features of agent behavior,
such as average lead time or selling price, tend to differ-
entiate agents that win from those that don’t. We begin
with a visual inspection of games from one bracket of
the 2006 semi-final rounds. Plots from these games al-
low us to isolate behavioral features which do, in fact,
distinguish top performing agents in this bracket. We
introduce an information gain based metric that we use
to provide a more complete analysis of all the games
from the 2006 quarter-final, semi-final and final rounds.
The technique involves calculating the amount of infor-
mation gained about an agent’s performance by know-
ing its value for each of 20 different features. Our
analysis helps identify features that differentiated win-
ning agents. In particular we find that, in the final
rounds of the 2006 competition, winning agents dis-
tinguished themselves by their procurement decisions,
rather than their customer bidding decisions. We also
discuss how the information gain analysis could be ex-
tended by agent developers to identify potential weak-
nesses in their entry.

Introduction
As the Internet helps mediate an increasing number of sup-
ply chain transactions, there is a growing interest in investi-
gating the potential benefits of more dynamic supply chain
practices (Arunachalam & Sadeh 2005; Sadehet al. 1999).
Since its inception, the Supply Chain Trading Agent Com-
petition (TAC SCM) has served as a competitive test bed for
this purpose (Collinset al. 2006). TAC SCM pits against
one another trading agents developed by teams from around
the world, with each agent using its own unique strategy.
Agents are responsible for running the procurement, plan-
ning and bidding operations of a PC assembly company,
while competing with others for both customer orders and
supplies under varying market conditions.

During the course of each year’s competition more than
800 games are played. The logs of these games provide
ample data for evaluating the strengths and weaknesses of

more adaptive strategies than traditional supply chain man-
agement techniques (such as those described in (Chopra &
Meindl 2004)). The primary measure of an agent’s perfor-
mance in TAC SCM is its average overall profit. Using this
metric we are able to determine which agents perform best
across a wide variety of conditions. However, examining
only average profit does not tell us what differentiated win-
ning agents from the others. Answering this question is of
practical interest to agent designers, and may also help trans-
fer insights from the competition to real world supply chain
problems. In this paper, we investigate which features of
agent behavior were most able to distinguish top perform-
ing TAC SCM agents in data from the 2006 competition’s
quarter-final, semi-final and final rounds.

We begin with a close look at statistical features of 6 dif-
ferent agents in one bracket of the 2006 semi-final rounds,
such as the average quantity they requested on component
orders each day. Plots from these games reveal unique pat-
terns, or “fingerprints,” which allow us to isolate behav-
ioral features that distinguish top performing agents in this
bracket.

Then, using a quantitative analysis technique, we estimate
the ability of 20 different features to differentiate winners
over a large collection of games. Our technique involves cal-
culating the amount of information gained about an agent’s
performance by knowing its value for each feature. Our re-
sults on data from the 2006 final rounds include a ranking
of features based on their information gain, providing in-
sight into the collection of features that made winning agents
unique. In particular we find that, in the final rounds of
the 2006 competition, winning agents distinguished them-
selves by decisions related to the procurement of compo-
nents, rather than those related to bidding for customers.

The remainder of this paper is organized as follows: We
first provide a brief overview of the TAC SCM game. The
next section describes related efforts in analyzing and pre-
senting tools to analyze the TAC SCM games. Section 4 de-
scribes our visual inspection of feature plots from the 2006
semi-finals. In Section 5 we present our information gain-
based analysis and apply it to all of the games from the 2006
quarter-finals, semi-finals and finals. The final section dis-
cusses additional uses of our technique such as how it could
be extended by agent developers to identify potential weak-
nesses in their entry.



TAC SCM Overview
The TAC SCM game is composed of 220 game days, and
on each day agents are required to make several decisions.
They are responsible for sending requests to suppliers, offers
to customers, and a production plan to their factory. Each re-
quest to a supplier for a specific component includes a quan-
tity, lead time (the number of days before the order is deliv-
ered), and reserve price (the maximum the agent is willing
to pay for the parts). Suppliers then respond with offers that
specify actual quantities, prices, and lead times. When an
agent places an order, parts are scheduled for delivery into
their stock. Agents can also respond to requests made by
customers for finished PCs. These requests specify a quan-
tity, due date, reserve price, and PC type. Agents compete
for each customer request by submitting offers with a spe-
cific price. The agent with the lowest price for each request
is awarded an order and upon delivery the revenue for the
transaction is placed in its bank account. For a more detailed
description of the game, readers are directed to (Collinset al.
2006).

Related Work
Several researchers in the Trading Agent Competition com-
munity have presented methods for analyzing competition
data to gain insights about agent performance.

In (Kiekintveld, Vorobeychik, & Wellman 2006)
and (Wellmanet al. 2006) the University of Michigan team
applied game theoretic analysis to abstracted versions of the
TAC games. The abstracted games were estimated empir-
ically from the results of repeated simulations with differ-
ent combinations of strategies. Their analysis revealed in-
teresting best response and equilibrium relationships. The
Michigan team also presented methods for estimating the
efficiency and power of different entities in the TAC SCM
market (Jordanet al. 2006).

In (Benisch et al. 2006) we analyzed data from the
seeding rounds of the 2005 competition to determine that
the strong performance of our agent, CMieux, was largely
attributable to significantly cheaper component purchase
prices than other agents.

Toolkits such as our Analysis Instrumentation
Toolkit (Benisch et al. 2005) and the Swedish Insti-
tute for Computer Science (SICS) Game Data Toolkit1

allow teams to analyze historical log files from a single TAC
SCM game. These tools provide an in-depth view of the
B2B and B2C interactions through graphical front-ends.

Several teams have also analyzed controlled experiments
using different configurations of their own agent and pub-
licly available agent binaries.

In (Borghettiet al. 2006) the team from the University
of Minnesota presented techniques to manipulate the market
environment of the simulator. By controlling various market
factors, such as aggregate demand and supply, they suggest
that TacTex, a top performing agent, loses its edge when
market pressure is high. In (Heet al. 2005) the Southamp-
ton team presented experiments with variants of their own
agent that are more or less risk seeking in choosing selling

1Available athttp://www.sics.se/tac/.

prices, and in (Heet al. 2006) they provide similar analysis
with respect to lead times on component orders. In (Pardoe
& Stone 2006) the University of Texas team evaluated vari-
ants of their own agent against publicly available binariesof
other agents. They used the results of their experiments to
fine-tune various parameters in their final agent and guide
future development.

The analysis methods presented in this paper differ from
existing techniques in the following two ways: i.) we sys-
tematically investigate the question of which behavioral fea-
tures are associated with successful performance across all
agents in the 2006 final rounds and ii.) we perform all of our
analysis on actual competition data, as opposed to offline
controlled experiments.

Feature Plot Analysis
Historical data from the TAC SCM competition provides a
large data source for studying the effectiveness of different
supply chain trading techniques. However, note that by an-
alyzing historical data we are limiting ourselves to consid-
ering only low-level actions taken by each agent, since this
data does not describe underlying algorithms or techniques.
In this section, we analyze plots of statistical features of
these actions for six different agents from the 2006 semi-
finals games containing our agent, CMieux. The data set
consists of 16 games with agents placing in the following
order: DeepMaize, Maxon, Botticelli, CMieux, Mertacor,
and SouthamptonSCM.

Out of all the feature plots we examined, the following
best illustrate how agents can be distinguished by featuresof
their low-level behavior. Each of the plots presented shows
qualitative differences between the six agents. By analyzing
these plots we are able to identify unique characteristics of
the agents, and gain insights into why some performed better
than others.

Lead time vs. Game day
Figure 1 shows plots of the average component order lead
time (Y axis) on each game day (X axis) of the different
agents2. These plots show that agents are easily distin-
guished by the extent to which they used long lead times
early in the game, the length of their maximum lead time,
and their most commonly used lead times.

The two best performing-agents from this round, Deep-
Maize and Maxon, feature substantially longer early-game
lead times. They also both reduce their lead times well be-
fore Mertacor, CMieux, and Botticelli. The latter three ap-
pear to maintain long lead times until absolutely necessary.
SouthamptonSCM takes a hybrid of these two approaches,
reducing lead times before necessary but still much later in
the game.

Maxon and Mertacor take very different approaches to the
mid-game, with Mertacor almost exclusively using longer
lead times, and Maxon primarily relying on short ones.

2Plots presented in this section examine behavior with respect
to one specific component. Aggregating data across multiplecom-
ponents washed out potentially interesting details, and plots for
other components were not noticeably different.



Maxon also seems to exhibit a single mid-game ’spike’ in
lead times, placing orders with uncharacteristically longlead
times near day 120. This is either a fixed restock point or an
attempt to disrupt the procurement of other agents. Merta-
cor’s, and, to a lesser extent, SouthamptonSCM’s plots show
’bands,’ which most likely correspond to specific long-term
order lead times that are chosen to simplify their decision
processes.

Lead time vs. Order quantity
Figure 2 shows plots of the average lead time of compo-
nent orders (Y axis) against their average quantity (X axis).
These plots illustrate that agents differ in the extent to which
they place large orders with long lead times.

Placing component orders with long lead times and large
quantities corresponds to increased risk. Thus, the extentto
which an agent is willing to increase both can be seen as
a reflection of its attitude towards risk. The lead time vs.
order quantity plots showcase the different approaches of
the agents: Maxon, Mertacor, CMieux and DeepMaize each
appear reluctant to place orders with long lead times and
large quantities. The trade-off is less pronounced for Bot-
ticelli and SouthamptonSCM. Maxon, Mertacor and Deep-
Maize each show unique ’bands,’ with DeepMaize consid-
ering only a handful of fixed order quantities, Mertacor con-
sidering only fixed lead times, and Maxon fixing a combina-
tion of the two attributes.

Reserve price vs. Order price
Figure 9 in the Appendix shows a plot of each agent’s av-
erage component order price (Y axis) against that agent’s
average offered reserve price (X axis). This plot illustrates
that agents employed variations of three different strategies
for choosing their reserve prices: fixed reserve prices, dy-
namic reserve prices, and reserve prices equal to purchase
prices.

Maxon and Mertacor appear to choose from a few fixed
reserve prices. SouthamptonSCM and Botticelli appear to
use their reserve prices to more aggressively limit their or-
der prices, since they are consistently close to their purchase
prices. CMieux and DeepMaize have more dynamic strate-
gies for choosing reserve prices, although a few ‘bands’ of
fixed reserve price do appear in the DeepMaize plot.

Order quantity vs. Game day
Figure 10 in the Appendix shows a plot of each agent’s av-
erage order quantity (Y axis) on each game day (X axis).
Agents demonstrate unique choices for maximum order
quantity, minimum order quantity, and the specific quanti-
ties they ordered repeatedly.

Mertacor, DeepMaize, and, to a lesser extent, Maxon
each appear to favor orders greater than roughly 100 com-
ponents at the beginning of the game. Maxon chose a max-
imum order quantity of about 200 units after the beginning
of the game, while SouthamptonSCM and CMieux appear
to consider at most about 400. Botticelli, Mertacor, and
DeepMaize are all willing to go above 800 units on occa-
sion. Bands on the graphs of DeepMaize and Southamp-

tonSCM suggest these agents were frequently choosing the
same quantity on their orders.

Order price advantage vs. Lead time
Figure 11 in the Appendix shows a plot of each agent’s aver-
age order lead time (Y axis) against the average order price
“advantage,” or the difference between the their price and
the best price (X axis). In these plots, agents can be dis-
tinguished by the extent to which they require better price
advantages to consider long lead times.

Maxon and DeepMaize, for example, have a clear ’tri-
angle’ structure to their graphs, implying that they were
only willing to accept orders with long lead times when
they could get them at relatively good prices. Mertacor,
SouthamptonSCM and Botticelli’s plots have almost rectan-
gular shapes, implying a more general acceptance of long
lead times. CMieux appears to have a hybrid approach,
with the triangle structure only being apparent for lead times
above about 25 days.

Information Gain Analysis
In order to extend our analysis to a larger data set, we op-
erationalize our notion of agent differentiation with a quan-
titative technique. Our technique considers the correspon-
dence of particular features with top performance, or their
information gain, and provides insight into the collection of
features that made winning agents unique. By using a metric
for comparing several different features at once, we are able
to rank more than 20 different features across all 80 games
from the 2006 final rounds.

Measuring information gain
In this analysis we calculate the amount of information
gained about an agent’s performance by knowing its value
for different features. Information gain is a popular measure
of association in data mining applications. The information
gained about an outcomeO from an attributeA is defined
as the expected decrease in entropy ofO conditioned onA.
The following equations can be used to calculate the infor-
mation gained about a discrete outcomeO from a discrete
attributeA, which we denote asIG(O, A). We useH(O) to
denote the entropy ofO, H(O | A) to denote the entropy of
O givenA, andP (a) to denote the probability that attribute
A takes on valuea in the data.

IG(O, A) = H(O) − H(O | A)

H(O) = −
∑

o∈O

P (o) log
2
(P (o))

H(O | A) =
∑

a∈A

P (a)H(O | A = a)

H(O | A = a) = −
∑

o∈O

P (o | a) log
2
(P (o | a))

Intuitively, IG(O, A) is how much better the value ofO
can be predicted by knowing the value ofA. For a more
detailed explanation of information gain as used in this paper
see, for example, (Mitchell 1997) pp 57–60.
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Figure 1: A plot showing the average lead time and game day of component orders placed by six different agents during the
2006 semi-finals.

Lead time vs. Order quantity (Pintel 2 Ghz)
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Figure 2: A plot showing the average lead time and average order quantity per day of component orders placed by six different
agents during the 2006 semi-finals.



In our analysis we use the information gain metric to de-
termine how much better we can predict an agent’s success
by knowing features of its behavior. For our dataset, we
construct a collection ofperformance observations, with one
observation for each agent in each game. Performance ob-
servations include an outcome value, indicating whether or
not the agent placed first3 and 20 different real-valued at-
tributes of its behavior.

Before we can calculate the information gain of the at-
tributes, we must discretize them. This is accomplished by
splitting the space between the minimum and maximum val-
ues of each attribute evenly into2k partitions, for a positive
integerk. In our results we present the information gain of
all different features withk varied between 1 and 6. For
a particular attribute, using larger values ofk will tend to
increase (andcannot decrease) its information gain4. There-
fore, using values ofk that are too large can lead to a kind of
“over-fitting,” where every attribute can uniquely distinguish
every outcome. However, smaller values ofk may overlook
the ability of an attribute to distinguish winning agents from
losing ones. Nonetheless, we observe that for allk ≥ 4
(yielding 16 or more partitions) we can extract a consistent
ranking.

Information gain example

To illustrate our use of information gain we will walk
through the following short example. As in our primary
analysis, we will consider the outcome value of a perfor-
mance to be whether or not an agent placed first. In our ex-
ample we will evaluate the information gained by knowing
the maximum lead time an agent requested on any compo-
nent order in the game. We will only consider the feature us-
ing 2 partitions: one for less than 50 and one for greater than
or equal to 50. From 6 games we will create 36 performance
observations (assuming 6 agents in each game). Note that
6

36
are first place performances, giving the outcome variable

over our dataset an entropy of:

H(O) = −

[

6

36
log

(

6

36

)

+
30

36
log

(

30

36

)]

≈ 0.65

Now assume that 8 of the 36 performances had lead times
greater than 50, including 5 of the 6 winning performances.
In other words, the probability of observing a long lead time
is 8

36
, the probability of an agent winning given that it had

a long lead time is5

8
, and the probability of observing a

winning performance without a long lead time is6−5

36−8
= 1

28
.

We can now calculate the conditional entropy of the out-
come variable in the case where the maximum lead time at-
tribute is greater than or equal to 50 (“long”) and when it is
less than 50 (“short”),

3We later extend this technique to consider other outcomes:
specifically, whether or not an agent finished in the top 3 positions.

4This is because performances in separate partitions remain
separated ask increases.

H(O | “long”) = −

[

5

8
log

(

5

8

)

+
3

8
log

(

3

8

)]

≈ 0.95

H(O | “short”) = −

[

1

28
log

(

1

28

)

+
27

28
log

(

27

28

)]

≈ 0.22

Using the conditional entropies we can calculate the average
entropy of the outcome variable conditioned on the lead time
attribute,A,

H(O | A) = P (“long”)H(O | “long”)

+ P (“short”)H(O | “short”)

≈ 0.38

Finally, the information gain of the outcome,O, from the
attributeA, is the difference between the entropy ofO inde-
pendent ofA, and its average entropy conditioned onA,

IG(O, A) = H(O) − H(O | A)

≈ 0.27

Note that, because the initial entropy of the “first place” fea-
ture is about 0.65, the maximum possible information gain
for any feature is also 0.65.

Information gain results

We now present the information gain of 20 different features
across 6 values ofk (representing 2, 4, 8, 16, 32, and 64 par-
titions). Our data set included all of the 80 games from the
2006 final rounds. Figure 3 shows the information gain of 6
different features at each level of discretization. It illustrates
that upon reaching 16 or more partitions, features that pro-
vide more information tend to do so at finer discretization
levels as well. Therefore, despite the potential drawbacks
associated with the discretization process, we are still able
to extract a fairly consistent ranking of features based on
their ability to differentiate winning agents.

Figure 4 shows the information gain for all 20 different
features ranked into 8 categories that are consistent from
16 partitions on. The ranking illustrates that the two fea-
tures providing the most information about an agent’s per-
formance were both related to its decisions about lead times
on component orders. Additionally, 8 of the top 10 features
in the ranking were related to decisions about component
orders, such as their average quantity and reserve prices.
Notably absent from the top distinguishing features were
all demand-oriented features: the highest of these, total sell
quantity (in revenue), tied with four other features for rank
7. This suggests that top agents were able to distinguish
themselves primarily based on the collection of features that
composed their procurement strategy (which is consistent
with previous findings in (Benischet al. 2006) regarding
the 2005 seeding rounds).



Rank Feature 2 partitions 4 partitions 8 partitions 16 partitions 32 partitions 64 partitions

1 Maximum lead time (supply) 0.217 0.257 0.277 0.347 0.385 0.418

2 Average lead time (supply) 0.225 0.245 0.310 0.339 0.368 0.404

3 Average early component order quantity (sent before day 25) 0.249 0.274 0.309 0.324 0.354 0.391

4 Average reserve price (supply) 0.218 0.257 0.286 0.304 0.314 0.345

Small component order percentage (quantity≤ 100) 0.211 0.212 0.239 0.286 0.316 0.341

Average reserve price slacka (supply) 0.217 0.251 0.269 0.294 0.312 0.334

7 Last-minute component order percentage (lead time≤ 3) 0.199 0.207 0.224 0.262 0.285 0.324

Short lead time component order percentage (lead time≤ 10) 0.220 0.227 0.259 0.277 0.289 0.309

Total revenue (demand) 0.217 0.260 0.261 0.274 0.287 0.304

Total quantity sold (demand) 0.212 0.245 0.259 0.262 0.275 0.302

11 Average quantity ordered per day (supply) 0.210 0.239 0.252 0.259 0.271 0.300

12 Average RFQ due date (demand) 0.201 0.209 0.232 0.243 0.265 0.291

13 Average factory utilization 0.201 0.204 0.209 0.222 0.230 0.274

Average selling price (demand) 0.198 0.202 0.220 0.225 0.233 0.246

Average purchase price (supply) 0.200 0.202 0.211 0.217 0.240 0.244

Minimum bank account value 0.194 0.196 0.200 0.220 0.222 0.241

Purchase price standard deviation (supply) 0.200 0.201 0.204 0.206 0.215 0.239

Average stock value 0.195 0.200 0.201 0.223 0.229 0.238

Average order price advantage (supply) 0.200 0.201 0.205 0.226 0.234 0.236

Unsold stock at end of game 0.196 0.202 0.216 0.216 0.217 0.227

aThe difference between reserve price specified and actual price paid.

Figure 4: The information gain of the 20 different features we tested at each level of discretization. The features are sorted
by information gain at 64 partitions and ranked into groups that are distinguishable at each discretization level from 16 to 64
partitions.
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Figure 3: A plot showing the information gain for 6 different
features at varying levels of discretization (k ∈ {1, . . . , 6}).
The maximum possible information gain of any feature is
≈ 0.65.

When calculating information gain for a feature, we de-
termine the percentage of 1st place performances which oc-
cupy each partition for each feature, and likewise for the per-
centage of 2nd-6th place performances. Once we’ve identi-
fied an interesting feature, we can examine this information
more directly with a histogram, showing us where exactly
the distinctions between agents could be made. Figure 5,
for example, shows a histogram comparing the percentage
of 1st place performances in each of 16 partitions with the
percentage of 2nd-6th place performances in those partitions
for maximum component order lead times.
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Figure 5: A histogram comparing the percentage of 1st place
performances in each of 16 partitions with the percentage of
2nd-6th place performances in those partitions for maximum
component order lead times. Our performance observations
include all games from the 2006 final rounds.

We can see from this plot that a striking plurality of the
winning performances used very long maximum lead times
– from 190 to 204 days – while the second most prominent
winning performance tended to keep maximum lead times at
only 27 to 40 days. This clues us in to two strong strategies
from the 2006 final rounds: winning agents tended to either
order components almost to the end of the game at the very
beginning, or they were more conservative and did not risk
long lead times. Agents who restricted themselves to even
shorter time ranges, or who took the large middle ground
between 40 and 190 days, did not tend to be as successful.



Figure 6 shows a similar histogram examining the second
most distinguishing feature: mean component order lead
time. In this plot we see that, although a large maximum
lead time was beneficial, agents who used long lead times
excessively did not tend to perform well. Very few wins
are observed for mean lead times greater than 40, while the
plurality of lead times for winning performances sits at the
relatively low range of 13 to 18. Finally we can see that for
both wins and losses, the lower average lead times were a
more popular choice.
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Figure 6: A histogram comparing the percentage of 1st place
performances in each of 16 partitions with the percentage of
2nd-6th place performances in those partitions for average
component order lead times. Our performance observations
include all games from the 2006 final rounds.

Note that this analysis, by examining what distinguishes
first place agents, focuses on a relatively small set of the
agents, since many of the agents never, or rarely, placed
first. For example, the very long maximum lead times which
were strongly associated with first place performances were
only used by 2 different agents. So while the results so far
provide interesting clues about what may have set the few
exceptionally successful agents apart from the rest, we also
want to examine what more widely used behaviors were as-
sociated with success. To do so, we re-define our measure
of success from “the agent placed first” to “the agent placed
at least third.”

The results of this extension are shown in Figure 7 and a
graphical version for the top 6 features is shown in Figure 8.
These figures illustrate that the relative ordering of features
is less consistent than before. Nonetheless, we are still able
to extract 6 distinct levels of informativeness across 32 and
64 partitions. Many of our observations about first place
agents hold true in this new ranking: decisions about com-
ponent ordering continue to dominate the ranking, taking 9
of the 12 top spots. If we rank on the information gained
at 64 partitions, all features in the top 10 previously remain
in the top 10. There are certainly differences in the ranking
– maximum lead time, for example, has fallen from being
the most important feature to being third most important –
but features which differentiated first place agents appearto
continue to differentiate successful agents more generally.
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Figure 8: A plot showing the information gained about
whether or not an agent placed 3rd or better for 6 different
features at varying levels of discretization (k ∈ {1, . . . , 6}).

Discussion
This paper presented an investigation into which collec-
tion of behavioral features differentiated winning TAC SCM
agents during the 2006 final rounds. We began with a
visual inspection of games from one bracket of the 2006
semi-finals. Plots from these games revealed unique pat-
terns, or “fingerprints,” which allowed us to isolate behav-
ioral features that distinguished top performing agents inthis
bracket.

We then extended this analysis by applying a quantitative
technique to all of the 80 games in the 2006 final rounds.
This technique involved calculating the amount of informa-
tion gained about an agent’s performance by knowing its
value for each of 20 different features. The most informative
features turned out to be related to direct decisions regard-
ing component orders, such as the lead times and reserve
prices used. These features differentiated winning agentsin
the 2006 final rounds significantly more than those related
to costs and revenues.

Our information gain-based analysis technique was lim-
ited to examining the informativeness of individual features.
Extending our technique to consider the effects of combina-
tions of features may provide additional insight. For exam-
ple, knowing an agent’s average selling price and average
buying price together would probably be very informative.
However, this raises additional concerns about over-fitting:
using several features at once may uniquely identify each
agent, instead of their shared characteristics.

As previously mentioned, our information gain-based
technique can also be extended to consider other outcomes.
For example, it may be interesting to investigate which fea-
tures distinguish theworst agents. This can be accomplished
by simply changing the outcome variable associated with
each performance observation.

Finally, an agent designer may wish to answer the ques-
tion, “what features differentiate games her agent wins from
games it doesn’t?” This can be accomplished by modifying
the information gain technique in the following ways. First,



Rank Feature 2 partitions 4 partitions 8 partitions 16 partitions 32 partitions 64 partitions

1 Average lead time (supply) 0.232 0.281 0.343 0.368 0.406 0.458

Average reserve price (supply) 0.254 0.280 0.291 0.333 0.408 0.441

3 Maximum lead time (supply) 0.253 0.253 0.286 0.325 0.392 0.431

4 Small component order percentage (quantity≤ 100) 0.225 0.233 0.274 0.293 0.329 0.400

Short lead time component order percentage (lead time≤ 10) 0.266 0.279 0.316 0.350 0.370 0.396

Average reserve price slack (supply) 0.251 0.269 0.291 0.320 0.336 0.394

Last-minute component order percentage (lead time≤ 3) 0.234 0.257 0.306 0.328 0.337 0.387

Total revenue (demand) 0.246 0.303 0.310 0.350 0.358 0.379

Average early component order quantity (sent before day 25) 0.283 0.309 0.321 0.330 0.339 0.377

Total quantity sold (demand) 0.239 0.308 0.323 0.327 0.343 0.363

Average quantity ordered per day (supply) 0.239 0.295 0.309 0.319 0.334 0.355

Average order price advantage (supply) 0.225 0.231 0.244 0.318 0.334 0.340

13 Average order price (supply) 0.225 0.233 0.283 0.290 0.316 0.330

14 Average RFQ due date (demand) 0.215 0.217 0.233 0.243 0.268 0.299

Average stock value 0.206 0.217 0.221 0.262 0.271 0.285

16 Average factory utilization 0.194 0.194 0.195 0.207 0.236 0.284

Minimum bank account value 0.204 0.210 0.222 0.229 0.248 0.270

Average selling price (demand) 0.220 0.228 0.235 0.243 0.249 0.260

Unsold stock at end of game 0.211 0.233 0.243 0.248 0.252 0.260

Purchase price standard deviation (supply) 0.225 0.226 0.236 0.240 0.240 0.254

Figure 7: The information gain of the 20 different features we tested at each level of discretization, with respect to 3rd-place or
better performances. The features are sorted by information gain at 64 partitions and ranked into groups that are distinguishable
with 32 and 64 partitions. The maximum possible informationgain of any feature is 1.

only consider performance observations of the agent in ques-
tion. Second, use features related to the game overall, such
as its average customer demand, rather than features of a
specific agent’s behavior.
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Appendix
This appendix includes several graphs that were omitted
from the main text due to space constraints.



Order price vs. Reserve price (Pintel 2Ghz)
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Figure 9: A plot showing the reserve price and order price of component orders placed by six different agents during the 2006
semi-finals.

Order quantity vs. Game day (Pintel 2Ghz)
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Figure 10: A plot showing the order quantity (clamped to 1000to show detail) and game day of component orders placed by
six different agents during the 2006 semi-finals.



Order price advantage vs. Lead time (Pintel 2Ghz)
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Figure 11: A plot showing the order price advantage and lead time of component orders placed by six different agents during
the 2006 semi-finals.


