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Abstract 
 
 

This paper describes the Dynamic Information Flow Simulation (DIFS), an 
abstract model for analyzing the structure and function of intelligence support 
organizations and the activities of entities within them.  In order to do so, DIFS 
simulates the flow of tasks and reports between various units (decision makers, 
collectors, processors (analysts), databases, etc.) and agencies within an 
intelligence organization.  DIFS is a dynamic, discrete, multi-agent, networked 
simulation.  The structure of the simulation – i.e., the types and properties of 
entities, communication ties, agencies, and operating procedures - is described.  
The performance metrics used in, equations used in, and assumptions behind its 
design are discussed.  Methods of conducting a virtual experiment using the 
simulation, output generated, and a strategy for validating the results is given.  
DIFS is intended to provide a method of analysis of intelligence support 
effectiveness abstracted from sources, methods, and content.  Using this 
analysis, marginal performance change caused by change in organization 
structure or policy can be quantitatively modeled.  Over- and under-loaded units, 
units that are not re-tasked when intelligence requirements change, and changes 
in information flow can be identified and modeled.  Finally, the weaknesses, 
benefits, and additional applications of DIFS and areas where further research is 
desired are discussed. 
 



1.  Introduction 
 

A quotation of Lord Mountbatten that was once paraphrased to me reads 
(as my memory serves):  “Horatio Nelson once said that under the best of 
circumstances while at sea he could send a message to the Admiralty, by 
courier, and get a response back in about six weeks … Now, I can dictate a 
message to my orderly, and have it sent via radio to the Admiralty in minutes … 
and get a response back in about six weeks.”  Technological advancement has 
decreased the amount of time required to communicate with even the most 
distant parts of the globe.  But this technological progress – advancements in 
communication and computers – is of limited value if not accompanied by 
corresponding progress in techniques of command, control, and intelligence 
(Alberts, Garstka, and Stein, 1999). 

Decisions facing planners on how to facilitate needed progress in 
command, control and intelligence are complicated by the inherent difficulty to 
evaluate, predict, and compare intelligence support organizations (Berkowitz and 
Goodman, 1989, 2000).  This difficulty is rooted in the context and consumer 
dependent (subjective) nature of intelligence (Kent 1951), the need to protect 
sources and methods, and the uncertainty of validating information.  This paper 
will describe the Dynamic Information Flow Simulation (DIFS), an abstract, 
computational, discrete, dynamic, multi-agent, networked simulation of 
intelligence organizations (Law and Kelton 1991, Carley 2002).  DIFS attempts to 
address the problems described above by abstracting content- or context- 
dependent information from the consideration of the intelligence organization and 
instead focusing on communication, cooperation, and coordination between units 
(nodes) in the organization.  By doing so, DIFS can model the marginal effect of 
changes in organizational design and operating procedures upon information 
flow within the organization as a whole and through individual nodes in particular.  
This helps to identify and rank trade-offs between various factors of information 
flow, which is of particular use to those concerned with organizational design 
(Carley, 2002).  Additionally, simulations designed in DIFS using parameters 
modeled after actual organizations can help identify potential bottlenecks in 
information flow – from overused nodes (Law and Kelton, 1994), underutilized 
resources, and communication inefficiency – and criteria or threshold values that 
could lead to these bottlenecks. 

This model was informed by a combination of ideas from the organization 
theory and military theory literatures.  The concept of abstracted information flow 
is not new to either theoretical organization theory literature or computational 
organization simulations.  Concepts such as the meta-matrix (Carley 2000, 2001; 
Krackhardt and Carley, 1998) describe information flow and cognitive load in 
organizations in terms of agents, knowledge, tasks, and organizations.  Social 
network methods can be used to identify positions with similar importance based 
on correlation between meta-matrix values.  In computer simulation, the garbage 
can model (Cohen, March, and Olsen; 1972) simulate organizational operation 
as a black box (or garbage can…) that serves to combine input problems and 
solutions (knowledge) into organization decisions.  OrgAhead, by Kathleen 



Carley and Ju-Sung Lee, models organization structure as a self-organizing 
neural network that attempts to maximize prediction accuracy (organization 
output) based on an abstract binary block of perceived data (organization input).  
In military theory literature, abstracted military decision making models such as 
the O-O-D-A loop model concepts such as initiative and optempo in terms of 
organizational perception and response to random change and initiated change 
in the environment. 

 

 
Figure 1:  A depiction of a simple intelligence organization modeled in DIFS. 



 
 
2. Dynamic Information Flow Simulation 
 

The DIFS model defines intelligence organizations as a collection of 
entities (nodes) and communication links (ties), collected within agencies, that 
support a number of designated decision makers  (which are in themselves 
entities within the organization).  Figure 1, above, depicts a very simple 
intelligence organization modeled using DIFS.  The nodes are depicted as 5 
types of geometric shapes, indicating actors, decision makers, databases, 
processors, and collectors.  DIFS is a multi-agent model insofar as all of the 
separate nodes have individual rule behavior and aggregate rule behavior 
(agency rules), and simulation output is a product of the report and task handling 
of the various individual units (Schelling, 1978).  It describes networked agents in 
terms of various, finite, communication ties.  All nodes in the model are 
connected to some other node, which allows the model to be of use in describing 
intelligence organization assets in relation to each other (Carley, 2002).   

DIFS is primarily concerned with the flow of tasks and reports through the 
organization.  Tasks represent collection or information requirements sent to 
units in the intelligence organization.  Reports indicate intelligence or information 
collected by certain units in the organization and sent between units.  Reports 
have a generic, randomly determined ‘quality’ value that determines the amount 
of information contained therein.  Simulation rules would require decision makers 
to receive a certain amount of information of various types in order to make 
decisions.  Communication ties represent tasking or reporting authority, 
communicated along certain channels.  All nodes, ties, and phenomena (tasks 
and reports) are coded with additional attributes – criteria, sensitivity, priority, etc.  
These attributes affect phenomenon routing (a decision maker who needs a 
certain criteria of report will not send the task to a different criteria collector), 
queuing, and certain performance metrics.  Reports are routed according to rule 
sets, which are defined in agency objects.  Agencies determine how phenomena 
are handled within the agency and between other agencies, which allows the 
simulation to model organizational command and control differently for various 
subunits of the organization. 

Decision makers are the most important node type in the model.  ‘Decision 
maker’ nodes are responsible for tasking intelligence organization assets to 
collect needed information.  In the figure above, each agency has a decision 
maker responsible for tasking actors, processors, databases, and collectors 
controlled by its agency or another agency.  Decision makers can also be 
intelligence consumers, insofar as they ‘read’ intelligence reports generated by 
the intelligence organization and plan tasking requirements accordingly.  This 
intelligence consumption function can be used as a simple metric for intelligence 
organization effectiveness.  As designated in Figure 1, the decision maker in 
agency 2 is the ‘primary’ decision maker.  If we are concerned with intelligence 
organization effectiveness in supporting the primary decision maker, we can 
model this in terms of the number of reports he receives. 



Collectors represent the input stream of data into the organization.  
Collectors can respond to specific tasks or generate random reports (to represent 
organization perception of environmental events) corresponding to their criteria 
parameter.  Information reports generated by collectors are routed according to 
agency rules to either processors, databases, or directly to decision makers.  
Processors represent the analytic functions of intelligence organizations.  In the 
simulation, processors condense various reports into single reports that contain 
more information (and are thus more valuable for decision makers to read).  
Databases represent organizational memory – processors or decision makers 
can task databases to send stored or outdated reports should organizational 
parameters, routing rules, or interagency cooperation rules require.  Actor nodes 
exist simply as a method of modeling decision maker effectiveness, and are not 
necessary to the simulation itself.  Decision makers nodes can generate and 
send tasks to actors if they get enough information, and organization 
effectiveness can be modeled in terms of the number of tasks completed by 
actors in the organization. 

When the simulation is first run at time 0 all of the nodes, communication 
ties, outputs, etc. are initialized.  Decision maker nodes begin making tasks, and 
other nodes are queried for responses to idle behavior (primarily in order to 
determine random report generation by collectors).  Random report generation is 
normally distributed with a mean and variance determined by input parameters 
and a uniformly distributed inter-arrival time with user-input mean.  As the 
simulation progresses, the timer advances itself between each subsequent event 
generated by some unit in the organization, determined by timing values for node 
functions and communication links.  Reports and tasks move along 
communication ties between nodes according to routing rules in and between 
agencies (for example, reports shared between agencies may be incremented or 
decremented in priority determined by rules existing in the agency.).  The 
simulation ends at a user-defined stopping condition – for example, after a 
predetermined amount of time, a predetermined number of reports, or a set 
number of actions by actor nodes. 
 
3.  Virtual Experimentation of Intelligence Organizations Using DIFS 
 
 Virtual experiments in DIFS can be used to answer a number of questions 
regarding information flow and efficiency within the organization.  For example, 
one could ask what the effect would be on organization performance if the 
number of randomly generated reports was varied; if interagency rules governing 
the priority of extra-agency taskings were varied, or if intra-agency rules 
governing the handling of high priority reports were varied.  Organization 
performance would be evaluated in terms of three different output measures – 
intelligence flow to the primary decision maker, overloaded resources, and 
underused resources. 
 Intelligence flow to the primary decision maker can be modeled as percent 
of total information generated sent to decision maker: 
 



Where n is the total number of reports generated, xinfo 
is the amount of information contained in the particular 
report, and Ω is the set of all reports received by the 
primary decision maker. 
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 Unused resources are trivially easy to identify – simply compute the 
percentage of time nodes spend working on tasks over the total simulation time.  
Unused or underutilized resources will have low values.  Overloaded resources 
are more difficult to identify (as opposed to fully utilized resources, which is 
desired).  Possible metrics for overloaded resources include average queue 
length: 

Where Q0 – Qk equals time spent with 
queue of length 0 – k. 
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Some possible simulation configurations: 

 

High Medium Low

Random report 
inter-arrival rate 

Inter-arrival rate 
less than 
processing time 

Inter-arrival rate 
greater than 
processing time 

Infrequent or no 
random report 
generation 

Interagency task 
priority 

Extra-agency task 
priority increased 

No change in task 
priority between 
agencies 

Extra-agency task 
priority decreased 

Intra-agency 
priority report 
handling 

High and medium 
priority reports are 
sent directly to 
decision makers 

High priority 
reports are sent 
directly to decision 
maker 

No reports are 
sent directly to 
decision maker (all 
go through 
processor) 

 
The various simulation configurations described above could lead to 

interesting conclusions for organization design and management.  Using 
standard report routing procedures, as the rate of random report generation 
increases, past a certain threshold intelligence flow to the primary decision maker 
could decrease or stay constant as processors get backlogged.  However, 
greater marginal gains in intelligence flow at high random report inter-arrival rates 
would be experienced for increases in the amounts of reports sent directly to 
decision makers as cognitive load is shifted from collectors and processors to the 
decision makers themselves.  Similarly, for high inter-arrival rate conditions 
decreasing interagency task priority might lead to greater intelligence flow within 
agency 2 by forcing decision makers in agency 1 to query database assets 
instead of getting reports directly.  Multiple simulations can be compared holding 
different simulation variables constant to model marginal tradeoffs and 
multicollinearity between various simulation parameters. 



4.  Validation Strategy, Strengths, Weaknesses, and Conclusion 
 

 The DIFS model provides a powerful framework for the analysis of 
tradeoffs in simulated intelligence flows; however the level of abstraction used in 
making the model makes some direct application to extant intelligence 
organizations difficult to model with certainty.   DIFS uses many assumptions 
about report handling, bounds of processor and decision maker rational 
capability, and organization/environment interface (Lawrence and Lorsch, 1969).  
Though all of these assumptions lend themselves to sensitivity analysis over 
multiple simulation runs (DIFS saves random number seeds to be saved with 
other state/simulation constructor variables), actually modeling corresponding 
attributes of real-world organizations in terms of the DIFS state variables within 
the sensitive ranges requires detailed case study and analysis. 

In order to provide an initial framework to validate DIFS simulations, case 
studies of relatively small (or automated) organizations with formalized report 
contents would allow for convincing practical validation of DIFS.  Simulations 
composed of linked, small, elements validated above could then be compared to 
historical logs and records of larger real-world agencies to validate the model for 
larger intelligence organizations.  In the end, some difficulty will remain in 
validating DIFS for certain organizations merely because of the unavailability of 
validating information or the need to protect methods. 

The fact that DIFS does not concretely model decision quality is its 
primary weakness.  DIFS cannot be used to predict whether intelligence 
organizations will allow decision makers to make correct decisions; nor whether 
intelligence organizations will provide complete and reliable information.  On the 
other hand, it is not intended to – DIFS instead provides a model for comparison 
between different intelligence organizations based on their ability to efficiently 
handle the information with them; not the information itself.  Modeling information 
or decision accuracy would require another wide range of assumptions, would be 
very difficult to validate, highly uncertain, and possibly even impossible to 
quantify. 
 Keeping this in mind, however, one of the main strengths this allows for 
DIFS is its ability to model information flow through a wide variety of 
organizations.  Careful determination of time, node, and agency parameters can 
allow DIFS simulations to model information flows between organizations as 
large as the UK Royal Navy to as small as ad-hoc computer or radio networks.  A 
perfect example is field artillery fire direction – local commanders (subordinate 
decision makers) task forward observers (collectors) to send information to fire 
direction centers (processors), which in turn send information to field artillery 
commanders (decision makers) to task fire missions to gun batteries (actors).  
Combining this with the ability to compute trade-offs between information 
policies, DIFS provides a potentially powerful tool for the analysis and 
understanding of many different types of intelligence support organization, and 
useful metrics of information flow in any organization. 
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