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Abstract

A key trend in (electronic) commerce is a demand for higher
levels of expressiveness in the mechanisms that mediate in-
teractions. We develop a theory that ties the expressiveness
of mechanisms to their efficiency in a domain-independent
manner. We introduce two new expressiveness measures, 1)
maximum impact dimension, which captures the number of
ways that an agent can impact the outcome, and 2)shatter-
able outcome dimension, which is based on the concept of
shatteringfrom computational learning theory. We derive an
upper bound on the expected efficiency of any mechanism
under its most efficient Nash equilibrium. Remarkably, it de-
pends only on the mechanism’s expressiveness. We prove
that the bound increases strictly as we allow more expres-
siveness. We also show that in some cases a small increase
in expressiveness yields an arbitrarily large increase in the
bound. Finally, we studychannel-basedmechanisms, which
subsume most combinatorial auctions, multi-attribute mech-
anisms, and the Vickrey-Clarke-Groves scheme. We show
that our domain-independent measures of expressiveness ap-
propriately relate to the natural measure of expressiveness of
channel-based mechanisms: the number of channels allowed.
Using this bridge, our general results yield interesting impli-
cations. For example, any (channel-based) multi-item auction
that does not allow rich combinatorial bids can be arbitrarily
inefficient—unless agents have no private information.

Introduction
Mechanism design is the science of generating rules of in-
teraction so that desirable outcomes result despite the par-
ticipating agents (human or computational) acting based on
rational self-interest. Amechanismtakes as input some ex-
pressions of preference from the agents, and based on that
information computes anoutcome(such as an allocation of
items and potentially also payments). By carefully craft-
ing mechanisms, it is possible to design better auctions, ex-
changes, catalog offers, voting systems, and so on.

A recent trend in the world—especially in electronic
commerce—is a demand for higher levels of expressiveness
in the mechanisms that mediate interactions such as the allo-
cation of resources, matching of peers, or elicitation of pri-
vacy and security preferences. This trend has already man-
ifested itself in combinatorial auctions, multi-attribute auc-
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tions, and generalizations thereof, which are used to trade
tens of billions of dollars worth of items annually (Sand-
holm 2007; Cramton, Shoham, & Steinberg 2006). It is also
reflected in the richness of preference expression offered by
businesses as diverse as matchmaking sites, sites like Ama-
zon and Netflix, and services like Google’s AdSense. In
Web 2.0 parlance, this demand for increasingly diverse of-
ferings is called the Long Tail (Anderson 2006).

The most famous expressive mechanism is acombinato-
rial auction (CA), which allows participants to express val-
uations overpackagesof items. CAs have the recognized
benefit of removing the “exposure” problems that bidders
face when they have preferences over packages but in tra-
ditional auctions are allowed to submit bids on individual
items only. They also have other acknowledged benefits,
and preference expression forms significantly more compact
and more natural than package bidding have been devel-
oped. Expressiveness also plays a key role inmulti-attribute
settings where the participants can express preferences over
vectors of attributes of the item—or, more generally, of the
outcome. Some market designs are both combinatorial and
multi-attribute (Sandholm & Suri 2006; Sandholm 2007;
Cramton, Shoham, & Steinberg 2006).

Intuitively, one would think that more expressiveness
would lead to higher efficiency (sum of the agents’ utilities)
of the mechanism’s outcome (e.g., due to better matching
of supply and demand). Efficiency improvements have in-
deed been reported from combinatorial and multi-attribute
auctions (e.g., (Sandholm 2002; 2007; Cramton, Shoham, &
Steinberg 2006)) and expressive auctions for banner adver-
tisement allocation (Boutilieret al. 2008). However, we
have lacked a general way of characterizing the expressive-
ness of different mechanisms, the impact that it has on the
agents’ strategies, and thereby ultimately the outcome. Until
now, it was not even known whether, in any settings, more
expressiveness can be used to design more efficient mecha-
nisms.1

In this paper, we develop a theory that ties the expres-
siveness of mechanisms to their efficiency in a domain-
independent manner. We begin by introducing two new

1In fact, on the contrary, it has been observed that in certainset-
tings additional expressiveness can give rise to additional equilibria
of poor efficiency (Milgrom 2007).



expressiveness measures, 1)maximum impact dimension,
which captures the number of ways that an agent can impact
the outcome, and 2)shatterable outcome dimension, which
is based on the concept ofshatteringfrom computational
learning theory.

Next, we derive an upper bound on the expected efficiency
of any mechanism under its most efficient Nash equilib-
rium. We show that, remarkably, this bound depends only on
the mechanism’s expressiveness. This allows us to sidestep
two of the major roadblocks in analyzing the relationship
between expressiveness and efficiency: 1) the bound can
be studied without having to solve for any of the mecha-
nism’s equilibria (which tends to be extremely difficult for
inexpressive mechanisms (e.g., (Rosenthal & Wang 1996))),
and 2) since it bounds themost efficientequilibrium it can
be used to study mechanisms with multiple—or an infinite
number of—equilibria, e.g., first price CAs (Bernheim &
Whinston 1986). We show that in any setting the bound of
an optimally designed mechanism increasesstrictly as more
expressiveness is allowed, and in some settings the bound
can increase arbitrarily via a small increase in expressive-
ness.

Finally, we study a class of mechanisms which we call
channel based. They subsume most combinatorial auctions,
multi-attribute mechanisms, and anyVCG scheme (Vick-
rey 1961; Clarke 1971; Groves 1973). We show that our
domain-independent measures of expressiveness appropri-
ately relate to the natural measure of expressiveness of
channel-based mechanisms: the number of channels allowed
(which itself generalizes a classic measure of expressiveness
in CAs calledk-wise dependence (Conitzer, Sandholm, &
Santi 2005)). Using this bridge, our general results yield
interesting implications. For example, any (channel-based)
multi-item auction that does not allow rich combinatorial
bids can be arbitrarily inefficient—unless agents have no pri-
vate information.

Preliminaries

The setting we study is that of standard mechanism design.
In the model there aren agents. Each agenti has some pri-
vate information (not known by the mechanism or any other
agent) denoted by a type,ti, (e.g., the value of the item to
the agent in an auction; or, in a CA, a vector of values, po-
tentially one value for each package of items) from the space
of the agent’s possible types,Ti.

Settings where each agent has a utility function,ui(ti, O),
that depends only on its own type and the outcome,O ∈ O,
chosen by the mechanism (e.g., the allocation of items to
agents in a CA) are calledprivate valuessettings. We also
discuss more generalinterdependent valuessettings, where
ui = ui(t

n, O), i.e., an agent’s utility depends on the others’
private signals. In both settings, agents report expressions to
the mechanism, denotedθi, based only on their own types. A
mapping from types to expressions is called apure strategy.

Definition 1 (pure strategy). A pure strategyfor an agent
i is a mapping,hi : Ti → Θi, that is, it selects an ex-
pression for each ofi’s types. Apure strategy profileis a
list of pure strategies, one strategy per agent, i.e.,hI ≡

[

h1, h2, . . . , h|I|

]

. For shorthand, we often refer tohI as
a mapping from types of the agents inI to an expression for
each agent,hI(tI) =

[

θ1, θ2, . . . , θ|I|
]

.

Based on these expressions the mechanism computes the
value of an outcome function,f(θn), which chooses an out-
come fromO. The mechanism may also compute the value
of a payment function,π(θn), which determines how much
each agent must pay or get paid.2

For analysis purposes, we assume that the expression of
each agent in a Nash equilibrium can be described by a func-
tion that takes as input its type,mi(ti). We do not restrict
these equilibrium reports to be deterministic pure strategies:
we allow mi to be amixed strategy, i.e., a random vari-
able specifying a probability distribution over possible re-
ports. We also do not restrict our analysis to mechanisms
with truthful equilibria (i.e., where agents are incentivised
to report their true types in equilibrium).3

For convenience, we will letW (tn, o) denote the total so-
cial welfare of outcomeo when agents have private types
(or private signals)tn, W (tn, o) =

∑

i ui(t
n, o). Using this

formalism we can describe the expected efficiency,E(f, π),
of a mechanism (where expectation is taken over the types of
the agents, and their randomized equilibrium expressions),

E [E(f, π)] =

∫

tn

P (tn)

∫

θn

P (m(tn) = θn) W (tn, f(θn)).

Characterizing mechanism expressiveness
The primary goal of this paper is to better understand the
impact of making mechanisms more or less expressive. First
we must come up with meaningful (and general) definitions
of a mechanism’s expressiveness.

If we consider mechanisms that allow expressions from
the set of multi-dimensional real numbers, such as CAs
and combinatorial exchanges, one seemingly natural way
of characterizing their expressiveness is the dimensionality
of the expressions they allow (e.g., this is one difference
between CAs and auctions that only allow per-item-bids).
However, this notion does not adequately differentiate be-
tween expressive and inexpressive mechanisms.

Proposition 1. For any mechanism that allows multi-
dimensional real-valued expressions, (i.e.,Θi ⊆ R

d), there
exists anequivalentmechanism that only allows the expres-
sion of one real value (i.e.,Θi = R).4 (This follows im-
mediately from Cantor (1890): being able to losslessly map
between the spacesRd andR.)

2In this paper we only study the mechanism’s outcome function.
For our purposes this is basically without loss of generality as long
as agents do not care abouteach others’payments.

3The revelation principleof mechanism design states that any
outcome function that can be implemented by any mechanism un-
der a non-truthful equilibrium can also be implemented by some
mechanism under a truthful equilibrium. However, we do not re-
strict our analysis to mechanisms with truthful equilibriabecause in
inexpressive mechanisms it can be impossible for agents to express
their true types.

4A more detailed treatment of the work in this paper, includ-
ing proof of all technical claims, is available as a technical re-
port (Benisch, Sadeh, & Sandholm 2007).



Thus, it is not the number of real-valued questions that a
mechanism can ask that truly characterizes expressiveness,
it is how the answers are used!

Another natural way in which mechanisms can differ is
in the granularity of their outcome spaces. For example,
auction mechanisms that are restricted to allocating certain
items together (e.g., blocks of neighboring frequency bands)
have coarser outcome spaces than those which can allocate
them individually to different agents. Some prior work ad-
dresses the impact of a mechanism’soutcome spaceon its
efficiency. For example, it has been shown that in private
values settings VCG mechanisms with finer-grained out-
come spaces have more efficient dominant-strategy equilib-
ria (Holzmanet al. 2004; Nisan & Ronen 2007).

In contrast, we are interested in studying the impact of a
mechanism’sexpressivenesson its efficiency. We do this by
comparing more versus less expressive mechanisms with the
sameoutcome space (e.g., fully expressive CAs and multi-
item auctions that allow bids on individual items only). In
our approach the outcome space can be unrestricted or re-
stricted; thus our results can be used in conjunction with
those stating that larger outcome spaces beget greater effi-
ciency.

Impact-based expressiveness
In order to properly differentiate between expressive and in-
expressive mechanisms with the same outcome space, we
propose to measure the extent to which an agent can impact
the outcome that is chosen. We define animpact vectorto
capture the impact of a particular expression by an agent un-
der the different possible types of the other agents. (Given
a mechanism let the subscript−i refer to to all the agents
other than agenti.)
Definition 2 (impact vector). An impact vectorfor agenti
is a function,gi : T−i → O. To represent the function as a
vector of outcomes, we order the joint types inT−i from1 to
|T−i|; thengi can be represented as

[

o1, o2, . . . , o|T−i|

]

.
We say that agenti canexpressan impact vector if there is

some pure strategy profile of the other agents such that one
of i’s expressions causes each of the outcomes in the impact
vector to occur.
Definition 3 (express). Agenti canexpressan impact vec-
tor, gi, if ∃h−i, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i).

We say that agenti candistinguishamong a set of impact
vectors if it can express each of them against the same pure
strategy profile of the other agents by changing only its own
expression.
Definition 4 (distinguish). Agenti candistinguishbetween
a set of impact vectors,Gi, if

∃h−i, ∀gi ∈ Gi, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i),

when this is the case, we writeDi(Gi) = ⊤.
Figure 1 illustrates how an agent can distinguish between

two different impact vectors against a pure strategy profile
of the other agents.

Intuitively, more expressive mechanisms allow agents to
distinguish among larger sets of impact vectors. Our first ex-
pressiveness measure captures this intuition; it measuresthe
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number of different impact vectors that an agent can distin-
guish among. Since this depends on what the others express,
we measure the best case, where the others submit expres-
sions that maximize the agent’s control. We call this the
agent’smaximum impact dimension.

Definition 5 (maximum impact dimension). Agent i has
maximum impact dimensiondi if the largest set of impact
vectors,G∗

i , that i can distinguish among has sizedi. For-
mally, di = maxGi

{

|Gi|
∣

∣ Di(Gi) = ⊤
}

.

Shattering-based expressiveness
We will now discuss a related measure of expressiveness,
which we callshatterable outcome dimension. As we will
show later, it has somewhat different uses than does the max-
imum impact dimension.

The shatterable outcome dimension is based on a notion
called shattering, which we have adapted from the field
of computational learning theory (Vapnik & Chervonenkis
1971; Blumeret al. 1989). Our adaptation captures an
agent’s ability to distinguish among each of the|O′||T−i| im-
pact vectors that include only outcomes from a given setO′.

Definition 6 (outcome shattering). A mechanism allows
agenti to shatter a set of outcomes,O′ ⊆ O, if Di(G

O′

i ),
where GO′

i =
{

gi

∣

∣gi =
[

o1, o2, . . . , o|T−i|

]

, oj ∈ O′
}

.

We also use a slightly weaker adaptation of shattering for
analyzing the more restricted setting where agents have pri-
vate values. It captures an agent’s ability to cause each of the
(

|O′|+1
2

)

unordered pairs of outcomes (with replacement) to
be chosen for every pair of types of the other agents, but
without being able to control theorderof the outcomes (i.e.,
which outcome happens for which type). We call thissemi-
shattering.

Definition 7 (outcome semi-shattering). A mechanism al-
lows agenti to semi-shatter a set of outcomes,O′, if i can
distinguish among a set of impact vectors,GO′

i , such that

∀{{x, y}|x, y ∈ T−i ∧ x 6= y}, ∀o1, o2 ∈ O′, ∃gi ∈ GO′

i ,

[gi (x) = o1 ∧ gi (y) = o2]∨ [gi (x) = o2 ∧ gi (y) = o1] .



Our second measure of expressiveness is based on the size
of the largest outcome space that an agent can shatter or
semi-shatter. We call it the(semi-)shatterable outcome di-
mension.

Definition 8 ((semi-)shatterable outcome dimension).
Agenti has (semi-)shatterable outcome dimensionki if the
largest set of outcomes thati can (semi-)shatter has sizeki.

The next two results illustrate the close relationship be-
tween the shatterable outcome dimension measures and the
maximum impact dimension measure.

Proposition 2. Increasing an agent’s shatterable or semi-
shatterable outcome dimension also increases its maximum
impact dimension.

Proposition 3. In order to shatterki outcomes agenti must
be able to distinguish among at least|T−i|

ki impact vectors.

The number of types that the other agents have can be
thought of as a support-based measure of agenti’s uncer-
tainty. Thus, the more uncertainty an agent has, the more
expressiveness it needs to shatter a given set of outcomes.

Expressiveness and efficiency
We will now present an upper bound on the expected effi-
ciency of a mechanism’smost efficientequilibrium. We will
also show that the upper bound for an optimally designed
mechanism is tied directly to its expressiveness.

We derive the bound by making the optimistic assumption
that the agents play strategies which, taken together, attempt
to maximize social welfare. This allows us to avoid the dif-
ficulty involved in calculating equilibrium strategies. Italso
implies that we can restrict our analysis topure strategies
because a pure strategy always exists that achieves at least
as much expected efficiency as any mixed strategy.

Proposition 4. The following quantity,E [E(f)]
+, is an up-

per bound on the expected efficiency of the most efficient
equilibrium in any mechanism with outcome functionf ,

E [E(f)]
+

= max
ĥ(·)

∫

tn

P (tn) W
(

tn, f(ĥ(tn))
)

. (1)

The maximum is taken overĥ(·), a pure strategy profile that
maps every joint type to an expression for each agent.5

To see how this bound is tied to our notions of expressive-
ness, consider calculating the bound from the fixed perspec-
tive of a particular agenti. Based on our assumption, the
other agents will choose whatever pure strategies are best
for maximizing the mechanism’s expected efficiency. Thus,
from agenti’s perspective, the maximization problem comes
down to finding the set of expressible impact vectors that
lead to the highest expected efficiency.

Conditions under which the bound is fully efficient
Observe that there is an impact vector for each of agenti’s
types that represents the vector of efficient outcomes when it

5Recall that an agent’s strategy can only depend on its own pri-
vate type, even if its utility depends on the private signalsof others.

is matched with each of the non-zero probability joint types
of the other agents. We call a set that contains such vectors
for each ofi’s types afully efficient set. Such a set must be
distinguishable for the bound to reach full efficiency.

Definition 9 (fully efficient set). G∗
i is a fully efficient setif

∀ti, ∃gi ∈ G∗
i , ∀{t−i | P (ti, t−i) > 0},

W ([ti, t−i], gi(t−i)) = max
o∈O

W ([ti, t−i], o).

Proposition 5. The upper bound,E[E(f)]+, reaches full
expected efficiency iff each agent can distinguish among the
impact vectors in at least one of its fully efficient sets.

In full information settings, where upon learning its own
type an agent knows the types of the other agents for sure,
the agent is guaranteed to have a fully efficient set of size
≤ |O|.

Proposition 6. Let G∗
i be agenti’s smallest fully efficient

set,
(

∀ti, ∃t−i

∣

∣ P (ti, t−i) = 1
)

⇒ |G∗
i | ≤ |O|.

This implies that in such settings an agent requires less
expressiveness to bring the bound to full efficiency.

Corollary 1. If agenti has full information then there ex-
ists an outcome function for which the upper bound reaches
full efficiency while limitingi to maximum impact dimension
di ≤ |O|.

One important takeaway of this is that perfect information
about the other agents’ types basically does away with the
need for expressiveness. Thus, in prior research that shows
that in certain settings even quite inexpressive mechanisms
yield full efficiency (e.g., (Abrams, Ghosh, & Vee 2007)),
the assumption that the agents have no private information
is essential.

The efficiency bound increases strictly with
expressiveness
Our main result demonstrates that a mechanism designer
canstrictly increase the upper bound on expected efficiency
by giving any agent more expressiveness (until the bound
reaches full efficiency). The result applies to the outcome
function that maximizes the bound subject to the constraint
that agenti’s expressiveness be less than or equal to a par-
ticular level. The bound attained by such an outcome func-
tion also serves as an upper bound for any outcome function
which allows that expressiveness level toi.

Theorem 1. For any setting and any distribution over agent
preferences, the upper bound on expected efficiency for the
best outcome function limiting agenti to maximum impact
dimensiondi increasesstrictly monotonically asdi goes
from 1 to d∗i , whered∗i is the size of agenti’s smallest fully
efficient set.

Proof intuition. The proof is by induction ondi. Briefly, if
agenti’s maximum impact dimension is less thand∗i , then
there is at least one impact vector in any of its fully efficient
sets that it cannot express. Increasingi’s maximum impact
dimension by one will allow it to express at least one addi-
tional fully efficient impact vector and thus strictly increase
the efficiency bound. �



From Proposition 2 we know that any increase in shat-
terable or semi-shatterable outcome dimension implies an
increase in maximum impact dimension; thus Theorem 1
implies that strict monotonicity holds for these measures as
well.

Inadequate expressiveness can lead to arbitrarily
low efficiency in any setting
In addition to strict monotonicity, we find that inanysetting
there exist distributions over agent preferences under which
a small increase in allowed expressiveness leads to an arbi-
trary improvement in the upper bound.

Theorem 2. For any setting there exists a distribution over
agent preferences such that the upper bound on expected ef-
ficiency for the best outcome function limiting agenti to

• shatterableoutcome dimension,ki < |O|, in an interde-
pendent values setting, or

• semi-shatterableoutcome dimension,ki < |O|, in a pri-
vate values setting

is arbitrarily less than that of the best outcome function lim-
iting agenti to (semi-)shatterable outcome dimensionki+1.

Proof intuition. Construct preference distributions for any
setting that require (semi-)shatteringki +1 outcomes. In in-
terdependent values settings this is trivial, since preferences
can depend arbitrarily on the private types of others. In pri-
vate values settings our construction ensures that at leastone
of agenti’s types makes every pair of outcomes arbitrar-
ily more efficient than others, under each pair of the other
agents’ joint types. �

This implies that a mechanism must allow every agent to
shatter (in interdependent values settings) or semi-shatter (in
private values settings) its entire outcome space in order to
guarantee that it will not be arbitrarily inefficient under some
preference distribution.

An application of our expressiveness theory
We will now instantiate our theory of expressiveness for
an important class of mechanisms, which we callchannel
based. Channel-based mechanisms are defined by the fol-
lowing (a small example is also presented in Figure 2),

Definition 10 (channel-based mechanism). Each outcome is
assigned a set of channels potentially coming from a number
of different agents (e.g., outcomeA may be assigned chan-
nelsx1 and y1 from Agent1 and x2 from Agent2). Each
agent, simultaneously with the other agents, reports real val-
ues on each of its channels to the mechanism. The mecha-
nism chooses the outcome whose channels have the largest
sum.6

Many different mechanisms for trading goods, informa-
tion, and services, such as CAs, multi-attribute mechanisms,
and any VCG-based mechanism, can be cast as channel-
based mechanisms. (This class is even more general than

6We assume that ties are broken consistently according to some
strict ordering on the outcomes. This prevents an agent fromusing
the mechanism’s tie breaking behavior as artificial expressiveness.

{a}{o} {o}{a} {ao}{} {}{ao}

x1

x2 y2

y1

A B C D

z2

z1

{a}{o} {o}{a} {ao}{} {}{ao}

x1

x2 y2

y1

A B C D

Combinatorial auction. Per-item bid auction.

Figure 2: Channel-based representations of two auctions. The
items auctioned are an apple (a) and an orange (o). The channels
for each agenti are denotedxi, yi, andzi. The possible allocations
are A, B, C, and D. In each one, the items that agent 1 gets are in
the first braces, and the items agent 2 gets are in the second braces.

CAs because it can model settings where agents care about
how the items that they do not win get allocated across the
other agents.)

A natural measure of expressiveness in channel-based
mechanisms is the number of channels allowed. In CAs, it is
able to capture the difference between fully expressive CAs,
multi-item auctions that allow bids on individual items only
(Fig. 2), and an entire spectrum in between. In fact, it gen-
eralizes a classic measure of expressiveness in CAs called
k-wise dependence (Conitzer, Sandholm, & Santi 2005).

First, we will demonstrate that our domain-independent
expressiveness measures relate appropriately to the number
of channels allowed in a channel-based mechanism.

Proposition 7. For any agenti, its semi-shatterable out-
come dimension,ki, in the most expressive channel-based
mechanism strictly increases (untilki = |O|) as the number
of channels assigned to the agent increases.

From Theorem 2 we know that this increase in expressive-
ness can lead to an arbitrary increase in our efficiency bound,
even in private values settings. However, if an agent has full
information it only needs a logarithmic number of channels
to bring the bound to full efficiency. (This also happens to be
the number of channels in any multi-item auction that allows
item bids only.)

Proposition 8. If agent i has full information about the
other agents, in a channel-based mechanism it needs only
⌈log2(|O|)⌉ channels to shatter the entire outcome space.

On the other hand, an agent with less than full information
cannotfully shatter any set of two or more outcomes in a
channel-based mechanism.

Proposition 9. No channel-based mechanism allows any
agent toshatterany set of two or more outcomes when the
other agents have two or more types.

Since channel-based mechanisms do not allow full shat-
tering, our results from the previous section imply that
in some interdependent values settings any channel-based
mechanism, even one that emulates the VCG mechanism,
will be arbitrarily inefficient. (That such mechanisms cannot
always get full efficiency in interdependent values settings is
already known (Jehiel & Moldovanu 2001).)



However, full efficiency can be achieved in any private
values setting—despite agent uncertainty—by a channel-
based mechanism with|O| − 1 channels per agent that em-
ulates the VCG mechanism.

Proposition 10. A channel-based mechanism can emulate
the VCG mechanism iff it provides each agent with at least
|O| − 1 channels.

Our next result deals with a configuration of channels that
prevents an agent from being able to evensemi-shatter a set
that contains two particular pairs of outcomes.

Theorem 3. Consider a set of outcomes,{A, B, C, D},
connected to different sets of channels for agenti,
{SA

i , SB
i , SC

i , SD
i }, respectively. Agenti cannot semi-

shatterboth pairs of outcomes{A, B} and{C, D} if,
(

SA
i \ SC

i = SD
i \ SB

i

)

and
(

SC
i \ SA

i = SB
i \ SD

i

)

.

Proof intuition. Let the sum of the reported channels under
the first (second) profile for the other agents connected to
outcomeA bea1 (a2), to outcomeB beb1 (b2), and so on.
The assumption that agenti can semi-shatter both pairs of
outcomes leads to the following contradiction,

(b2−d2 < c1−a1 < b2−d2)∨(a1−d1 < c2−b2 < a1−d1).

�

This channel configuration generalizes one that appears in
any channel-based multi-item auction that considers some
agent’s bid for a bundle to be the sum of its bids on two
other (non-overlapping) bundles. This fact, along with our
previous results, implies that if any agent has less than full
information, such auctions can be arbitrarily inefficient.

Corollary 2. Any multi-item auction that

• can be represented as a channel-based mechanism, and
• treats some agenti’s bid for some bundleb to be the sum

of i’s bids on some other two (non-overlapping) bundles,

can be (i.e., for some prior) arbitrarily inefficient in any set-
ting (even a private values setting).

Other related work, briefly
Mount and Reiter (1974) and Hurwicz (1972) asked the
question: how many real-valued dimensions must a mech-
anism’s message space have in order to accomplish some
design goal? To get around Cantor’s theorem that begets our
Proposition 1, they relied on certain technical assumptions
that precluded a general mapping betweenR

n andR
m.

Another thread of related work tries to characterize the
equilibrium in inexpressive mechanisms in specific settings
(e.g., (Rosenthal & Wang 1996)). The challenge here is that
determining equilibrium behavior is usually prohibitively
difficult even for the simplest non-trivial mechanisms. Fur-
thermore, when a particular equilibrium is found to have cer-
tain properties, one often cannot rule out the possibility of
additional equilibria that do not share those properties.

There has been some research related to expressiveness
issues in dominant-strategy mechanisms. Blumrosen and
Feldman (2006) showed a tradeoff between the efficiency of

the best possible mechanism and the number of discrete ac-
tions available to the designer. Similarly, Ronen (2001) de-
scribed methods for achieving near efficiency with limited
bidding languages. The restriction to studying dominant-
strategy mechanisms imposes severe limitations on which
questions about expressiveness arise. In particular, uncer-
tainty about others’ private information becomes an issue
only when considering mechanisms that do not have domi-
nant strategies. As we showed, the larger the possible type
space of others, the more expressiveness an agent may need
for efficiency. Our results apply to settings where agents do,
or do not, have dominant strategies. Also, our results are not
specific to any application, such as a CA.

One of the first applications to benefit from expressive-
ness was strategic sourcing. Sandholm (2007) described
how building more expressive mechanisms—that generalize
both CAs and multi-attribute auctions—for supply chains
has saved billions of dollars through increased efficiency.
Some work on expressiveness has begun to appear in the
context of search keyword auctions (aka sponsored search)
as well. Even-Daret al. (2007) examined auctions where
bidders can purchase keywords associated with specific con-
texts. Under certain probabilistic assumptions they are able
to prove that the system becomes more efficient when this
extra level of expressiveness is allowed.

Conclusions and future work
A recent trend in (electronic) commerce is a demand for
higher levels of expressiveness in mechanisms. We pro-
vided the first general model of expressiveness for mecha-
nisms. Our model included a new expressiveness measure,
maximum impact dimension, that captures the number of
different ways that an agent can impact the outcome of a
mechanism. We also introduced two related measures of ex-
pressiveness based on the concept of shattering from com-
putational learning theory.

We then described how these measures relate to effi-
ciency. We derived an upper bound on the expected effi-
ciency of a mechanism’s most efficient Nash equilibrium.
The bound depends only on the extent to which agents can
impact the mechanism’s outcome. This bound enables one
to study the relationship between expressiveness and effi-
ciency by avoiding two classic hurdles: 1) our bound can
be analyzed without having to solve for equilibrium, and 2)
our bound applies to the most efficient equilibrium so it can
be used to analyze mechanisms with multiple (or an infi-
nite number of) equilibria. We proved that this bound in-
creasesstrictly monotonically for the best mechanism that
can be designed as the limit on any agent’s expressiveness
increases (until the bound reaches full efficiency). In addi-
tion, we proved that a small increase in expressiveness can
potentially lead to arbitrarily large increases in the efficiency
bound, depending on the prior over agents’ preferences.

Finally, we applied our model of expressiveness to a
class of mechanisms which we call channel based. This
class involves mechanisms that take expressions of value
through channels from agents to outcomes, and select
the outcome with the largest sum. Many mechanisms—
such as combinatorial auctions, multi-attribute mechanisms,



and any Vickrey-Clarke-Groves scheme—can be cast as
channel-based mechanisms. We showed that our domain-
independent measures of expressiveness appropriately re-
late to a natural notion of expressiveness in channel-based
mechanisms, the number of channels allowed (which al-
ready generalizes a traditional measure of expressiveness
in CAs calledk-wise dependence (Conitzer, Sandholm, &
Santi 2005)). Our general measures of expressiveness and
our results on how they relate to efficiency then yield in-
teresting results for channel-based mechanisms: 1) allowing
one additional channel can yield an arbitrarily large increase
in the bound, and 2) any (channel-based) multi-item auction
that assumes additivity anywhere in any agent’s bids (e.g.,
auctions where bids can be submitted on individual items
only) can be arbitrarily inefficient—unless agents have no
private information.

The framework we developed enables one to understand
mechanisms from a new perspective. This opens the door
for a possible new avenue of research within mechanism
design. On the practical side, we already see two uses of
our expressiveness measures. They can be used to bound
the efficiency—and therefore provide a lower bound on
inefficiency—of existing mechanisms. They can also po-
tentially be used to design new mechanisms, either by hand
or by computer (Conitzer & Sandholm 2002).
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