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Validating Computational Models  

 

 

 

Abstract 

 

The use of computational models in the social sciences has grown quickly 

in the past decade.  For many these models represent a bewildering and 

possibly intimidating approach to examining data and developing social and 

organizational theory.  Few researchers have had courses or personal 

experience in the development and building of computational models and 

even fewer have an understanding of how to validate such models.  And while 

many papers extort the relative advantages and disadvantages of the 

computational approach, and many call for the validation of such models, few 

provide insight into how to validate such models and the issues involved in 

validation.  This paper represents an attempt at redressing this oversight.  

An overview is provided of computational modeling in the social sciences, 

types of validation, and some of the issues in doing model validation. 
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Validating Computational Models  

 

There is a growing trend in the social and organizational sciences to 

employ computational models1 in developing and testing theories.  Such 

models are uniquely valuable for addressing issues of learning, adaptation, 

and evolution.  The value of these models for theory building, however, will 

require an increased understanding of the potential of these models, and 

when and how they should be validated.  For researchers not trained in 

modeling or computational techniques such models may appear bewildering;  

i.e., it may be difficult to understand when to believe a model, and when not 

to, and how to interpret and use a model’s results.  Consequently, there are 

often well intentioned, but somewhat misplaced, calls for model validation 

without understanding what validation entails.  On the other hand, as noted 

by Richard Cyert (1994, p. viii), ‘‘[S]ocial scientists, particularly economists, 

have a fatal attraction for working on theoretical propositions with 

mathematical models or simulation models and avoiding the real world.’’  In 

other words, there are models that absolutely require validation that are 

never validated.  What then, is the happy median? 

This paper is a first step in locating this median.  The goal of this paper 

then, is not to teach programming or even how to build models;  rather, the 

goal is to provide information for the modeler and for the general reader 

about the process of model validation and techniques for performing such 

validation.  Part of the argument, as will be seen, is that not all models need 

to be validated and that the level of validation chosen depends on the model’s 

purpose.  In a sense, this paper can be thought of as a consumers guide to 

model validation.  One sense that the reader may emerge with is that 
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validation is a complex issue.  Another sense, may be, that more research 

needs to be done on how to validate computational models. 

What is Validation? 

Often formal models, including computational models, are evaluated in 

terms of their clarity, parsimony, generality, and testability (Mayhew, 1984).  

Herein, the focus is on only the last of these issues: testability or as it will be 

referred to in this paper ------ validity.  No claims are being made about the 

relative value of clarity, parsimony, and generality.  Rather, the point herein 

is simply that regardless of where a model falls on these other dimensions 

issues of validation will arise.  Moreover, as will be noted, the type and 

degree of validation needed will in some sense be dependent on the level of 

parsimony and generality claimed for the model. 

General discussions of validity for computational models point to one or 

more of the following six types of validation:  conceptual, internal, external, 

cross-model, data, and security (Knepell and Arangno, 1993).  Each type of 

validity is assessed in terms of whether or not there is an acceptable degree, 

where acceptable is defined based on the needs of the researcher or user.  

Conceptual or theoretical validity refers to the adequacy of the underlying 

conceptual or theoretical model in characterizing the real world.  Internal 

validity refers to whether the computer code is correct.  A model is internally 

valid if the underlying program is free of coding errors.  External or 

operational validity is concerned with the linkage between the simulated and 

the real.  External validity refers to the adequacy and accuracy of the 

computational model in matching real world data.  Another type of validation 

is cross-model validation or docking (Axtell, Axelrod, Epstein and Cohen, 

1996) where the goal is judge the degree to which two models match.  Data 
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validity refers to the accuracy of the data (real and computer generated) and 

the data’s adequacy for addressing the issue of concern.  And finally, with 

respect to security, the issue is one of providing adequate safe-guards or 

assurances that tampering with the model will be minimized or procedures 

for determining if the model has been tampered with or fundamentally 

altered through subsequent reconfigurations.  In this paper, the focus is 

largely on conceptual or theoretical validity and external or operational 

validity. 

In this paper, the focus is on external validation.  Thus, in the remainder 

of this paper,  the term validation will be used to refer to various processes 

and techniques for addressing the comparability between the simulated 

world of the computational model and the ‘‘real’’ world.  For simplicity of 

exposition in the remainder of this article I will use the term ‘‘real’’ data to 

refer to information gathered through experimental, field, archival, or survey 

analyses of actual human, animal, physical systems, groups, or 

organizations.  

The emphasis in this paper is on validation as the comparison of 

simulated and real data.  Sometimes, methods for exploring the predictions of 

models such as sensitivity analysis, response analysis, and response surface 

modeling are often described as validation techniques.  Such techniques, 

since they do not require the comparison with real data, will not be described 

herein.  However, they are important parts of the computational theorist's 

toolkit. 

Before continuing two important caveats need to be made.  The first 

concerns process and the second concerns presentation.  First, validation 

typically requires a team of researchers and is often a multi-year multi-

person endeavor. The argument here is based both on practical as well as 
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training issues.  Computational models are currently sufficiently complex 

that a single researcher in a single research period, e.g., 6 months to two 

years, generally can not build, analyze and validate a computational model.  

This is due, in large part, to the fact that even intellective models are today 

much more sophisticated than those presented even 15 years ago, often are 

built out of multiple sub-models, and often take multiple people-years to 

build and analyze.  A second reason is that the analysis of computational 

models, particularly stochastic, parameterized, or Monte Carlo models 

requires doing a series of virtual experiments.2  These virtual experiments 

may take less time than a  human experiment to run, but the results are 

empirically comparable.  Thus examination of the results often requires the 

same level of statistical training and analysis as human experiments, and 

the same amount of time.  This problem is exacerbated by the fact that 

computational models can easily be built, and often need to be built, to 

generate much larger quantities of empirical data than do human 

experiments.  Such massive amounts of data can, in and of themselves, 

generate particular analysis problems.  Thus, the amount of time and level of 

research needed to bring a computational model to fruition and to examine 

its predictions necessitates teaming with other researchers if model 

validation is to be done within a reasonable time frame.  Third, the level of 

training required of computational theorists is as detailed and specialized as 

that required of a field researcher or experimentalist and few scientists 

acquire all the requisite skills for both computational theorizing and field 

work (or laboratory experiments).  The skills and training needed to design 

and build simulation models goes well beyond programming (Salt, 1993), and 

includes a wide range of activities including, but certainly not limited to, 

historical analysis, data validation, use analysis, and requirements analysis 
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(Knepell and Arango, 1993).  Even as one would not expect a mathematician 

to do field work (or experiments) to validate their models (as few would 

expect mathematicians to have training in such endeavors), one should not 

expect the computational theorist to do so.  In other words, the set of research 

skills and knowledge necessary for building and validating models are 

sufficiently distinct that teaming with other researchers is often necessary 

for validation.  Finally, validation is only a small, though significant, 

component of computational analysis.  Computational modeling involves 

many considerations including providing an appropriate user interface, 

determining the optimal level of simulation complexity (what should be 

included in the model, defining a tutorial strategy; selecting a tool for 

building the simulation, assessing the hardware requirements, identifying 

the needs of the user, determining the pedagogical goals, validation and 

verification, and system evaluation (Bergeron and Greenes, 1988).  Of these 

aspects of computational modeling, verification and validation is in many 

ways the most doable by individuals other than the computational theorist.  

Indeed, it can be argued that computational theories should in fact be tested 

by others than the creator as the creator may be biased (albeit 

unintentionally) in interpreting the results.  In summary, teams are 

necessary for doing model validation, at least given the currently available 

technology for model development and validation.   

The second caveat is that computational models and their output should 

generally be described and presented independent of, and generally prior to, 

external validation.  Clearly, researchers should take every precaution to 

ensure that the results they are presenting are produced by error free code; in 

other words, the models should be internally validated.  However, external 

validation should be presented separately from the model.  From a purely 
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presentational point of view, most models can not be adequately explained, 

results presented, and validation technique and results described within the 

pages appropriate to a single journal article.  For example, in presenting a 

computational model the researcher should explain the representation 

scheme, the information flow, the modular decomposition of the model, and 

the (where appropriate) underlying parameters.  In presenting the results of, 

e.g., a Monte Carlo model the virtual experiment, the variables, and the 

method of analysis should be described.  The detail required to present a 

model and the analysis of its results often precludes providing additional 

information on validation.  Further, the provision of validation material in 

addition to model details and results can often defocus the article and lead to 

confusion. From a practical point of view, as noted the time required to build 

and analyze a computational model is quite substantial and validation may 

require teams.  To delay model presentation until validation has occurred 

retards the development of the scientific field.  Finally, many computational 

models are formal representations of theory and as such require multiple 

tests.  The predictions of many computational models can be thought of as 

theoretical propositions or hypotheses. In a sense, a computational model can 

be thought of as a hypothesis generation machine.  For computational 

theories as with most theories, the researchers who test the theory are 

generally not those who propose the theory.  Rather, the computational 

theory as with non-computational theories may require many different tests, 

in many different venues.  In this sense, validation can become a process of 

theory verification and extension (Hanneman, 1988).  In summary, validation 

should not be held up as a pre-requisite for the presentation of a 

computational model and its predictions. 
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An important interlude here is to discuss the role of Turing tests in the 

validation of computational models.  The essential goal behind a Turing test, 

as it is generally applied, is to see whether or not the observer can 

distinguish between results generated in two fashions.  These results may be 

generated by two alternative computational models, by a computational 

model and an analytical model, by a computational model and an experiment, 

and so on.  Turing tests may or may not be rigorous, may or may not employ 

the use of quantitative data, and may or may not be carried out statistically.  

Turing tests have typically been employed in simulations of machines or of 

single humans.  Carley and Newell (1994) suggest that when the 

computational model is meant to act as a social agent or a group of social 

agents it is more appropriate to use a revised version of the Turing test which 

they refer to as the social Turing test.  In a sense, the various types and 

levels of validation discussed in this paper can be thought of as ways of 

clarifying what is meant by the phrase "whether or not the observer can 

distinguish between results."  The issue is not doing a Turing test, but 

defining what is meant by a Turing test, and determining what level of test 

results will be acceptable. 

Types of Models 

A wide array of computational models have been, and are being, used in 

the social and organizational sciences.  These models can be, and have been, 

classified on a number of dimensions.  For example, models can be thought of 

as: intellective3 or emulation based, stochastic or deterministic, 

parameterized or heuristic, enumerative or Monte Carlo.  Illustrative models 

in each of these categories are presented in Table 1.  The categories in table 1 

are neither exhaustive nor exclusive of each other.  Other classifications are 
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assuredly possible and the foregoing typologies are given, in part, for 

illustrative purposes.  The main point at this juncture is that computational 

models with different characteristics require different evaluation and 

validation schemes.  Further, no single approach to validation is universally 

applicable to all types of computational models. 

 

Table 1:  Illustrative Models by Category 

Intellective  Garbage Can Model (Cohen March 

and Olsen, 1972) 

Emulation  Virtual Design Team (Levitt et al. 

1994) 

Stochastic Social Exchange (Macy, 1991) 

Deterministic Diffusion (Krackhardt, forthcoming) 

Parameterized Cultural Transmission (Harrison 

and Carrol, 1991) 

Heuristic AAIS (Masuch and LaPotin, 1989)   

Enumerative CORP (Lin, 1994)4 

Monte Carlo ELM (Carley, 1992) 

 

Descriptions of the types and levels of validation will be provided later, 

but for now, a single example will serve to illustrate the relation between 

model type and validation.  Specifically, engineering or emulation models 

(also called wind tunnel and kitchen sink models) require high levels of 

validation as they are typically built with the purpose of providing explicit 

advice to a particular corporation or on specific problem.  The essential motto 

of such models can be thought of as ‘‘everything critical in the model and 

model everything that is critical.’’  These models are characterized by a large 
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number of parameters, many modules, and often a detailed user interface.  

The high level of detail in these models makes it possible to capture the 

nuances of various trends, technologies, management styles, etc. within the 

area of concern.  Validation is extremely critical as the intent is to provide 

practical and detailed advice.  In contrast, intellective models are 

characterized by being smaller, modular, and often simplistic in their 

assumptions.   These models require less and lower levels of validation as 

their purpose is generally to show proof of concept or to illustrate the relative 

impact of basic explanatory mechanisms.  The essential motto of such models 

can be thought of as ‘‘keep it simple."  These models are characterized by few, 

if any, parameters and simplistic user interfaces.  The lack of detail in these 

models increases their generalizability but decreases their ability to generate 

specific predictions in applied settings.  For intellective models, validation is 

somewhat less critical. 

In a sense, the underlying issue here is balance.  It is generally recognized 

in building computational models that it is important to keep a balance 

between keeping a model simple and attaining veridicality; however, the 

balance point must depend on the purpose of the model.  It is important to 

realize that the balance point between simplicity and veridicality depends on 

purpose (Burton and Obel, 1995).  For example, intellective models with the 

purpose of demonstrating the theoretical adequacy or inadequacy of some 

assumption, or concerned with the impact of a specific principle, have the 

balance point shifted away from veridicality and towards simplicity.  

Whereas, engineering or emulation models with the purpose of 

demonstrating the feasibility of a specific approach or measuring the impact 

of a specific change on an actual system have the balance point shifted away 

from simplicity and toward veridicality.  Again, the approach for validating 
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such models, and the need for validation, varies somewhat with the type of 

computational model.  Essentially, the higher the claimed veridicality, the 

greater the need for more in-depth and higher levels of validation.  As the 

validation approaches are described, when there are specific requirements of 

certain types of models those requirements will be described.  

Levels of Validation 

Model validity can be assessed at various levels and through a series of 

techniques.  At least eight different levels of external validity can be 

distinguished:  face, parameter, process, pattern, point, distributional, value, 

and theoretical.  Face validity requires that the computational model has an 

appearance such that taken at face value the model seems to jive with 

reality.  Parameter validity occurs when the parameters of the model match 

reality ------ values observed for parameters in field, survey, archival or 

experimental settings.  Process validity occurs when the process described by 

the computational model corresponds to real processes.  Pattern validity 

requires that the pattern of results generated by the computational model 

matches real patterns of results.  Point validity requires that the behavior of 

the model on each dependent variable, taken one at a time, has the same 

mean as the real data.  In contrast, distributional validity requires that the 

distribution of results generated by the computational model has the same 

distributional characteristics as the real data; e.g., means, standard 

deviations, and shape of results are the same.  Whereas, value validity 

requires that the specific results from the computational model match on a 

point by point basis the real data.  Finally, theoretical validity occurs when 

the underlying theoretical constructs in the computational model provide a 

better predictive indicator of real data than does a linear model.  
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Face, pattern and process validity form a hierarchy of stringency in terms 

of validation with respect to validating the internal workings of the model.  

That is, models which have process validity typically have parameter validity 

and those which have process and parameter validity have face validity 

Pattern, point, distributional, and value validity form a hierarchy of 

stringency in terms of validation with respect to validating the model’s 

results.  In this case, models which have value validity have distributional 

validity.  Having distributional validity guarantees point validity.  And point 

validity guarantees pattern validity.  Theoretical validation is a joint 

approach to simultaneously addressing validity of the internal workings of 

the model and the results that it generates. 

Types of Validation 

A variety of validation techniques have been used by researchers in 

various scientific fields.  Roughly, these techniques fall in to the following 

categories:  grounding, calibrating, verifying, and harmonizing.  Each of 

these techniques will be described in turn.  Many of these techniques can be 

used at one or more levels of validation. 

Grounding 

Grounding involves establishing the reasonableness of a computational 

model.  This approach is generally used for establishing the face validity of a 

model and sometimes its parameter or process validity.  This approach is 

more often used with intellective than with emulation models.  Grounding 

involves the use of story telling, initialization, and evaluation techniques.  

When the focus is on initialization grounding provides face validity, and may 

establish partial parameter or process validity.  When the focus is on 

evaluation, grounding generally only establishes the validity of results at the 
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pattern level.  For examples of grounding see Cohen, March and Olsen 

(1972), Glance and Huberman (1993), Kaufer and Carley (1993); Levinthal 

and March (1991); and Carley and Svoboda (1996). 

The basic goal of grounding is to establish that the simplifications made 

in designing the model do not seriously detract from its credibility and the 

likelihood that it will provide important insights.  At one level, grounding is 

largely a matter of story telling.  That is, the author sets forth a claim for 

why the proposed model is reasonable.  This claim is enhanced by not over-

claiming the applicability of the model and by discussing the models 

limitations and scope conditions.  Grounding can be enhanced by 

demonstrating that other researchers have made similar or identical 

assumptions in their models.  Thus, explaining how the proposed model 

extends, is a special case of, is a generalization of, or competes with one or 

more other computational or mathematical models is a rhetorical technique 

for increasing a models grounding.  Finally, the grounding claim is enhanced 

by demonstrating, typically through some type of ethnographic analysis, that 

the proposed computational model captures the key elements of a specific 

group, organizational, or social process, or the core ideas in a verbal theory. 

Another type of grounding is provided through initialization.  

Initialization is the process of setting the initial or starting parameters or 

procedures for the model.  This technique is typically used with stochastic, 

parameterized, and Monte Carlo models.  On the initialization front, 

grounding requires setting the various parameters and procedures so that 

they match real data.  For example, if a computational model is concerned 

with the impact of advice networks on organizational performance, then 

setting the range of initial densities for the simulated organizations to 

include those observed by other researchers who collected network data 
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within organizations grounds the model.  Grounding can also be achieved by 

establishing the boundaries on a process.  For example, if empirical studies 

have shown that individual learning tends to follow logarithmic rather than 

exponential growth, then setting the growth equation in a model to be 

logarithmic grounds the model. 

Finally, grounding involves simple performance evaluation.  Simple 

performance evaluation is the process of determining whether the 

computational model generates the stylized results or behavior expected of 

the underlying processes.  First the researcher locates one or more 

stereotypical facts or stylized behaviors.  These facts or behaviors might be 

thought of as general empirical regularities that have been repeatedly 

observed with real data.  An example is that most studies of populations of 

organizations exhibit a liability of newness, that is young organizations are 

more likely to perish than are older organizations. Another example, is that 

most studies of diffusion show an S-shaped adoption curve.  Second the 

researcher demonstrates that the proposed model generates data or exhibits 

behavior consistent with the stereotypical fact or stylized behavior.  The 

ability of the computational model to generate these stylized results is prima 

facie evidence for grounding.  Such results from the computational model 

generally are not, and should not be, the only results that can be generated 

from the model.  The point is simply that establishing such non-surprising 

results first is a form of model validation. 

Calibrating  

Calibrating is the process of tuning a model to fit detailed real data (see 

Figure 1).  This is a multi-step, often iterative, process in which the model’s 

processes are altered so that the model’s predictions come to fit, with 
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reasonable tolerance, a set of detailed real data. This approach is generally 

used for establishing the feasibility of the computational model; i.e., for 

showing that it is possible for the model to generate results that match the 

real data.  This approach is more often used with emulation than with 

intellective models.  Calibrating a model may require the researcher to both 

set and reset parameters and to alter the fundamental programming, 

procedures, algorithms, or rules in the computational model.  Calibrating 

establishes, to an extent the validity of the internal workings of the model 

and its results (at least in a single case).  The researcher may choose to halt 

calibration after achieving either a parameter or process level of validation.  

Further, in terms of results, calibration may halt at any level ------ pattern, 

point, distribution or value.  For examples of calibration on an emulation 

model see Levitt et al. (1994) and on an intellective model see Carley (1990). 

*** Place Figure 1 About Here *** 

To calibrate a model the researcher begins with the uncalibrated model.  

Then a trace of the model’s predictions and the processes that generated 

them is generated.  This information is then checked against real data.  If the 

simulated predictions of the dependent variable(s) matches the real 

dependent variable the model is considered to be calibrated.  Otherwise, first 

the parameters and then the processes are checked for accuracy.  This check 

may involve going back and talking to experts at doing the task the model 

seeks to simulate or collecting new observational detail to fill in details or to 

check the accuracy of the original real data.  Once both parameters and 

processes are accurate, if the model predictions are still not matching the real 

data, the modeler typically moves to adding additional lower level or 

auxiliary processes that were originally thought to be less important.   
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Calibration occurs at two levels.  At one level, the models predictions are 

compared against real data.  This can be characterized as analysis of the 

dependent variable(s).  At another level, the processes and parameters within 

the model are compared with data about the processes and parameters that 

produced the behavior of concern.  This can be characterized as analysis of 

the independent (and control) variable(s).  To calibrate a model it is 

important to have access to detailed data on one or more cases.  Participant 

observation or other ethnographic data is often the best possible data for 

calibrating as typically only such data provides the level of detail needed by 

the modeler at both the process and outcome level.  Calibrating models of 

subject matter experts typically requires interacting with an expert and 

discussing whether or not the model matches in its reasons and its results 

the behavior of the expert, and if not, why not. 

In calibrating a model, the level of match required between the model and 

the real data depends in part on the research goals.   The level of match also 

depends on the quality of the real data and the degree to which that data 

does not represent a pathologic or extreme data point.  How should the cases 

for calibrating the computational model be chosen?  The ideal is to use a set 

of cases that span the key categories across which the model is expected to 

operate.  The next best option is to choose two to four cases that represent 

typical behavior and one to two that represent important extremes.  The 

basic idea here is that by looking at both the typical and the extreme the 

boundaries on processes, parameters and outcomes can be set with some 

degree of confidence.  In practice, however, the researcher who wishes to 

calibrate a model is often lucky to even have one case with sufficient detail.  

That case, moreover, is often more a matter of opportunity than plan. 
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Critics of calibration often argue that any model with sufficient 

parameters can always be adjusted so that some combination of parameters 

generates the observed data.  Thus, the argument proceeds, calibration does 

not establish the validity of a model in a meaningful way.  At one level, this 

criticism has some truth in it for some models.  In particular, large multi-

parameter models often run the risk of having so many parameters that 

there is no guarantee that the model is doing anything more than curve 

fitting.  However, for many computational models this criticism is less 

appropriate.  In particular, for models where the process is represented not 

by parameterized equations but by rules, interactive processes, or a 

combination of procedures and heuristics there are often few if any 

parameters.  There is no guarantee that a sufficiently large set of procedure 

and heuristics, that often interact in complex and non-linear ways, can be 

altered so that they will generate the observed data.  For procedural models, 

calibration becomes a process of altering ‘‘how things are done’’ rather than 

‘‘how things are weighted.’’  This distinction is critical as it separates process 

matching from curve fitting. 

Verification 

Verification is a set of techniques for determining the validity of a 

computational model’s predictions relative to a set of real data.  To verify a 

model, the model’s predictions are compared graphically or statistically with 

the real data (Kleijnen, 1995b).  Verification, though rarely used, is a 

necessary step in moving a model from the theoretical to the applied realm 

and is a necessary step in establishing the accuracy of the theory embodied in 

the model.  Verification demonstrates that a model’s predictions match real 

data.  During verification the focus is on validating the model’s results not its 
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internal workings.  Verification can be done on any type of computational 

model.  In the verification process, unlike calibration, the model is not 

altered.  Further, the level of detail needed in the real data for verification is 

less than the level of detail needed for calibration.  The type of real data 

available will determine whether the models is validated at the pattern, 

point, distribution, or value level, or some combination of these.  Further, 

verification is sometimes done on uncalibrated models, particularly for 

intellective models.  For examples of verification see Cyert and March (1963), 

Carley (1990, forthcoming), Gibson and Plaut (1995). 

The type of statistical analysis used for verification depends on the nature 

of the data being examined.  For example, Gibson and Plaut (1995) use 

graphical techniques for demonstrating pattern level verification for their 

connectionist based dynamic learning model.  Whereas, in Gibson, Fichman, 

and Plaut (1996),  show the real and predicted data side-by-side in graphs, 

but base their conclusions on statistical hypothesis tests.  These tests are at 

both the pattern level (e.g., is the linear trend predicted by the computational 

model present in the real data?) and the point level (e.g., is the level of real 

results significantly different from that predicted by the model?). 

Verification can be done in one or more stages (see Figure 2).  The basic 

idea, is that a particular set of real data may have some type of bias or 

pathology in it.  Thus, verification against multiple data sets is an even 

stronger validation of a model than verification against a single data set.  

These multiple verifications can be done on data sets drawn for different 

purposes or at different times, or if the sample of real data is large enough on 

two mutually exclusive subsets of a single data set.  Sometimes, verification 

is combined with calibration.  That is, some of the data used for calibration is 

re-used as part of the first data set the model is verified against.  It should be 
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noted, that this type of re-verification is useful mainly if the model is to be 

used in an applied setting or if the point of the verification is to test the 

theory embodied in the computational model. Baligh, Burton and Obel (1994; 

see also 1990) employ a similar multi-stage approach in their validation of 

the Organizational Consultant which is a heuristic model. 

*** Place Figure 2 About Here *** 

A special issue in verification occurs with respect to multi-agent models.  

Multi-agent models can potentially undergo dual level verification; i.e., 

verification at both the individual and group level.  To wit, does the model 

accurately predict group level behavior, individual level behavior, or both?  In 

this case, the purpose of the model determines the requisite level of 

verification.  If the purpose of the model is to explain group level phenomena 

based on the actions of generic agents, then the model should be verified at 

the group level.  In this case, the researcher would verify the model by 

collecting data on multiple groups about the phenomena of interest and then 

statistically compare model predictions to actual data on groups.  

Alternatively, if the purpose of the model is to examine what group level 

phenomena might emerge given the specific actions of particular agents and 

the known variation in individual behavior, then the model should be verified 

at the individual level. In this case, the researcher would verify the model by 

collecting data on individuals about the actions of interest and various 

characteristics and then statistically compare changes in individual behavior 

predicted by the model over time with the actual data on individuals.   

Dual level verification is rarely done; i.e., rarely are models verified at 

both the individual and the group level.  In fact, there are ongoing debates 

about whether verification should be done at both levels.  There are several 
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arguments against dual-level verification.  The first is that group level 

behavior is an emergent phenomena that requires only on-average 

understanding of individuals and not specific behavior and that individual 

differences get averaged out and are not important at the group level.  The 

second line of reasoning is that group level behavior is more than the 

aggregate of individual behavior and that holistic effects come into play over 

and above individual actions.  In contrast, those arguing for dual-level 

verification argue that group level behavior is an aggregate of individual 

level behavior and correct group level behavior can only emerge from correct 

individual level behavior. 

Verification is a rigorous statistically based approach to validation.  A 

potential error in verification is the use of non-comparable data.  That is, for 

comparability the results of the computational model and the real data 

should be obtained under comparable situations and environmental 

conditions (Kleijnen, 1995a).  Such comparability can be enhanced by setting 

input data and parameters in the computational model to resemble as closely 

as possible those in the real situation.  When the situation conditions are not 

known, the researcher should run a sensitivity analysis in order to determine 

whether variations in the model’s inputs generate variations in the model’s 

outputs that correspond with the expert’s intuition. 

Harmonization 

Harmonization is a set of techniques for determining the theoretical 

adequacy of a verified computational model relative to a linear model and a 

set of non-computational data (Kaplan, Miller and Carley; 1996).  The goal of 

harmonizing is to show that the theoretical assumptions embodied in the 

computational model are well grounded, or in harmony with the real world.   
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This is done through a multi-step validation process and two sets of real data 

(see Figure 3).  First the computational model is calibrated against detailed 

data and then verified against the first set of real data.  Then the model is re-

verified against a second set of real data.  Next, a linear model is estimated 

on the first set of real data. The linear model serves as a benchmark5 and is 

used to generate well understood and robust results which are not 

constrained by the theoretical assumptions embodied in the computational 

model.  Rather, these results from the linear model are simply designed to 

provide the best fit of the data given the constraints of linearity.  The next 

step is cross-validation.  Cross-validation involves using the first set of real 

data, estimating the parameters for a simple linear model on that data, and 

then, given those parameters, predicting the behavior of a second set of real 

data (Stone, 1994).  The final step involves statistically contrasting the 

computational model’s predictions  and the linear model’s predictions for the 

second set of real data. 

*** Place Figure 3 About Here *** 

Linear models have been characterized as the best understood and most 

robust set of models that are statistically sound but without contextual 

theoretical assumptions. For linear models, the cross-validated models should 

have good predictive power Hammond, 1955; Hoffman, 1960; Slovic and 

Lichtenstein, 1971; Dawes 1979).  Computational models are often developed 

to take into account known non-linearities and are based on, often quite 

strong, contextual theoretical assumptions.  Comparison of the predictions of 

the computational model with the predictions of a linear model is a way of 

statistically addressing the adequacy of these theoretical assumptions and 

their predictive value over and above that achievable through a simple linear 
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benchmark model.  In this sense, one might argue that harmonization allows 

the researcher to explore both the predictive and theoretical adequacy of the 

computational model.  How the actual comparisons should be made, however, 

depends on the type of data.  Harmonizing can be a valuable step in changing 

a computational model from an intellective or normative device into a 

prescriptive device.    

Harmonization is certainly a valuable empirical technique for locating 

areas or assumptions of the model that need to be improved.  The classical, 

more common, but non-empirical approach, for locating areas of a 

computational model that need to be improved, is the Delphi test.  Delphi 

tests are non-rigorous holistic tests of a computational model’s adequacy with 

the real world.  In a Delphi test a panel of experts on the item being modeled 

evaluate the adequacy of the computational model.  Basically, the panel of 

experts  look for areas in the computational model that in their judgment are 

not sufficiently comparable to the real world.  Delphi tests generate a series 

of  areas in which the computational model should be improved.  Delphi tests 

are often used for large or emulation style models.   

In doing harmonization, the researcher should have available two samples 

of real data both sufficient in size for statistical analysis.  Note, these two 

samples can be two halves of the same data set.  One approach to 

harmonization (Kaplan, Miller, and Carley, 1996) requires there to be a set of 

dependent variables, and then for each dependent variable multiple sets of 

predictions, multiple R2s, for both the computational and linear models.  The 

actual comparison between the computational and linear model can be made 

by running a Pearson correlation on the R2s reported by both the 

computational and the cross-validated linear model across a set of conditions.   

In this approach, a positive correlation suggests that both models are doing 
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well and poorly in the same areas; whereas, a negative correlation suggests 

that the models mirror each other and so a strong prediction for one model 

translates into a weak prediction for the other.  A correlation near zero 

suggests that the models have different strengths and weaknesses.   

A key aspect of harmonization is that it requires there to be a reasonable 

linear model.  There are many sources for such model.  One option is to use 

the inputs to the computational model as the elements of a linear model.  A 

second option is to use data that may or may not be used in the 

computational model but that is easily, and typically, collected in order to 

predict the dependent variable (such as age, education, and parent’s 

education in predicting a person’s income) by the user.  A third option is to 

use as the linear model, a model that has been presented in the literature by 

other researchers.  Regardless of the option chosen for generating the linear 

model, the researcher should then cross-validate that model against real 

data. 

Discussion  

Researchers have long called for the validation of computational models. 

Indeed, early modelers themselves called for validation (e.g. Cyert and 

March, 1963).  The importance of model validation for scientific advancement 

cannot be denied.  But, what is the state of model validation in the social and 

organizational sciences?  Further, under what conditions should models be 

validated?   

To begin with, few computational models are validated.  Indeed model 

validation within the social and organizational sciences is in its infancy in 

many ways (Andreoni and Miller, 1995).  Within computer science, validation 

is also an emerging concern.  For example, recent work on RISC processors 
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(Bose, 1995) points out that verification is becoming increasingly important 

as the single-chip processors are becoming sufficiently complex that designer 

intuition is no longer sufficient for ensuring performance bugs.  Most 

artificial intelligence models, for example, are typically only validated using 

calibration techniques.  The state of validation is somewhat more advanced 

within engineering and operations research (Knepell and Arangno, 1993; 

Gass 1980; Kleijnen, 1995a).  Indeed, much of the work on the validation and 

verification of computational models has occurred in the engineering, 

operations research, and in military contexts (see for example, Naylor and 

Finger, 1963, Gass 1983 or Gados, 1989).  For additional reviews on models 

outside of the social and organizational sciences see Banks, Gerstein and 

Searles (1987, 1990) and Balci (1987). 

Within the social and organizational sciences when validation is done, the 

type of validation typically done depends on the nature of the model.  For 

example, calibration is generally done only for emulation models and 

grounding is generally done only for intellective models.  Rarely are other 

types of validation used.  In a sense, grounding and calibration serve similar 

functions; i.e., they both establish the reasonableness of a model and its 

potential for predictive accuracy.  Grounding is uniquely suited to the 

intellective model where the goal is to examine general principles and not to 

provide detailed guidance on a specific example.  For intellective models, 

calibration may be neither feasible nor warranted.  In contrast, calibration is 

particularly appropriate and necessary for emulation models whether the 

goal is to provide detailed guidance in a specific situation as calibration 

establishes the particularity of the results.  Neither validation technique 

establishes the general accuracy and overall performance of the 

computational model.  To move computational models into the applied realm, 
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particularly into the realm where they will be repeatedly applied, other 

validation techniques such as verification are needed. 

A review was provided of the basic nature of computational models in the 

social and organizational sciences, types of validation, and some of the issues 

in doing model validation.  Both specific validation techniques and levels of 

validation were described.  In the foregoing discussion, for the sake of clarity, 

validity was often discussed as an all or none proposition.  That is, a model 

either is or is not valid.  However, as Law and Kelton (1991) argue, validity is 

more a matter of degree.  A model is not simply valid or not valid;  rather, it 

has a certain degree of validity.  The reader should keep this caveat in mind 

in interpreting and applying the foregoing discussion to any particular model. 

In the foregoing discussion, it was suggested that the validation of 

computational models typically is best done by teams of researchers and 

separate from the development and analysis of the computational model. 

Further it was suggested that not all models should be validated.  Often 

computational model are built to show proof of concept or to show that the 

predictions made from a verbal theory cannot follow from, or are inconsistent 

with, that specific theory.  In these cases, validation is not of essence as the 

model itself is not serving as a new theory.  Whereas, if the computational 

model is thought to embody a new theory, then validation is important as it 

is with any theory.  In this case, however, the process of validation is, as with 

any theory, a drawn out process, often requiring the collecting of new types of 

data in new ways, and involving multiple researchers, over a period of years.   

Many times the designing and building of a computational model requires 

the researcher to move well beyond extant knowledge of the system being 

simulated.  For example, to model population ecology requires 

operationalizing concepts such as performance.  In cases such as this, the 
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modeler proceeds by making reasonable assumptions about how the system 

works.  These assumptions, have the same epistemological standing as 

axioms in a mathematical theory.  Validation helps to determine the 

theoretical adequacy of these assumptions. 

A final question centers around, what factors facilitate model validation?  

As was noted, validation may often be done by researchers other than the 

modeler and often long after the model was developed.  To date, most 

successful validations seem to have been done by teams of researchers which 

include both the modeler(s), and other researchers over a period of multiple 

years.  Examples here include the work on the virtual design team (Cohen, 

1992; Levitt, Cohen, Kunz, Nass, Christiansen, and Jin, 1994), soar (Laird, 

Newell and Rosenbloom, 1987; Rosenbloom, Laird, Newell and McCarl. 

1991), the organizational consultant (Baligh, Burton and Obel, 1990; 1994, 

Burton, and Obel, 1984, 1995), and on the models building off of ELM 

(Carley, 1992; forthcoming; Ye and Carley, 1995; Carley and Lin, 1995, 

forthcoming; Carley, Prietula and Lin, forthcoming).  Nevertheless, there are 

several things that can be done more generally to facilitate validation.  First, 

models that have a flexible user-interface are generally easier to validate.  

That is, models where the user-interface has been designed so that the user 

can easily alter the basic parameters, input data, and types of output without 

having to recode or recompile the underlying software admit validation by 

researchers other than the modeler.  The reason, is that such a flexible user-

interface makes it easier for these other researchers to simply rerun the 

model with the specific required parameters, inputs and outputs.  Second, it 

is easier to validate models that have been adequately described in terms of 

the basic components ------ input, output, internal mechanism or processes, 

initial conditions, parameters, boundary conditions, and limitations of the 
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model.  Without such description, at least in a manual for the model, other 

researchers cannot engage in any but the simplest of validation approaches 

unless they work with the modeler.  Third, it is easier to validate models 

where virtual experiments based on the model are adequately described in 

terms of experimental design, variable definitions, n-size, basic parameters, 

and possible biases.  A virtual experiment is an experiment run using a 

computational model.  The resultant data, like that from a laboratory 

experiment, can be meta-analyzed and used by subsequent researchers if 

sufficient information is provided.  Fourth, if the modeler retains archives of 

model results or maintains a record of the parameters and input data and 

program version used to generate particular results future researchers can 

validate these results first by regenerating them and then contrasting them 

with real data.  Finally, models that have been developed recently are more 

likely to be validated as the code is still likely to be available and runnable 

with minimal overhead. 

The process of validating computational models and techniques for 

performing such validation that have been and are being used in the social 

and organizational sciences have been described.  There are other possible 

techniques and more will assuredly be developed over time, particularly as 

researchers in this area begin to import techniques standard in engineering.  

The attempt here was not to provide a comprehensive review.  Rather, the 

goal was to show the range of techniques, to present some guidelines for 

when what techniques are appropriate, and an understanding of how these 

techniques are currently applied.  As has been described, validation is a 

complex and multi-faceted process; however, it is a critical process in the 

testing and development of general computational theories and specialized 

applications. 
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1  The term computational model is used rather than simulation model as it is the more 

general term and encompasses both enumeration based models, Monte-Carlo models, and 

symbolic models (such as expert systems).  Whereas, the term simulation model has 

frequently been employed either just for Monte Carlo models or to include human-in-the-loop 

or gaming models.  In this paper, the focus is on all formal models that can be operationalized 

as a set of computer code. 

2 The term virtual experiment refers to an experiment in which the  "thing" or "agent" 

whose performance is being monitored is modeled computationally.  Even as virtual reality is 

a computationally generated computational analog of reality, the virtual experiment is a 

computationally generated computational analog of a human (laboratory) experiment or a 

human field experiment (natural experiment). 

3 Cohen and Cyert (1965; p. 308) additionally talk about human-in-the-loop or gaming 

simulations.  Such simulations are not discussed herein as they are not completely 

computational. 

4 Actually in this model, enumeration is used only when there are no information 

distortions and the task has nine pieces of information.  See also  Carley and Lin, 

forthcoming. 

5  These linear models can also be thought of, and may indeed represent, baseline models.  

Although, they are rarely Mayhewian style baseline models (Mayhew, 1984). 
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