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Abstract

We present here a decision-theoretic framework for the analysis of orga-

nizational change under risk. An algorithm is demonstrated which iden-

tifies optimal change paths given uncertainty involving execution time,

intervention cost, and payoffs resulting from particular structural config-

urations. An elaboration of the basic framework to accommodate exter-

nal structural perturbations is shown, and is applied to the problem of

organizational homeostasis. Finally, an extension of the decision model

is provided which admits multiple decision makers with divergent prefer-

ences and capacities for inducing organizational change.
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Organizations are not unitary, undifferentiated entities: each is composed
of an assortment of lower level components (human actors, physical resources,
tasks to be performed, etc.), components which are in some particular config-
uration with respect to one another at any given time. That organizational
performance is contingent (at least in part) on the configuration of its parts has
been understood at least since the work of Thompson (1967), and subsequent
research (e.g., Perrow (1970); Pfeffer and Salancik (1978)) has continued to de-
velop this theme. Given that organizational structures are relevant to concrete
questions of performance and survival, the objective of treating structure as an
explicit part of the organizational design process (Galbraith, 1977; Simon, 1973;
Marschak, 1986) is an important one for organization theory.
While past research in this area has focused on identifying optimal organi-

zational forms (Williamson, 1975; Duncan, 1979; Burton and Obel, 1984; Ba-
ligh et al., 1990; Crowston, 1994) or structural properties which correlate with
performance generally (Blau, 1972; Mackenzie, 1978; Lincoln et al., 1986; Lin,
1994), our focus is not on where organizations should be going (so to speak),
but rather on how they are to get there. In particular, we propose to consider
the process of organizational change from an explicitly decision-theoretic point
of view. Given a current form, a desired form, and a set of possible structural
interventions, what is the optimal means of reaching the latter state? By formu-
lating this question as a formal decision problem, we are able to obtain precise
solutions under a reasonably wide range of initial assumptions.
The ultimate purpose of this exercise is two-fold. First, by demonstrat-

ing how the optimal change problem may be formulated (and, in some cases,
solved) as a decision problem, we hope to contribute to the normative (i.e.,
social engineering) literature on the problem of organizational design. Given
the substantial economic, physical, and social resources consumed by modern
organizations, the difficult question of how they may be structured so as to meet
particular needs is of obvious importance. When it is necessary for organizations
to change form – as, indeed, occurs with considerable frequency – this process,
too, begs formal examination.
Our second purpose is to contribute to the descriptive (i.e., social scientific)

literature on change in organizations, by providing a baseline against which to
compare actual change processes. Just as the rational actor model has proven
consistently useful in the psychology of individual judgment and decision making
(Tversky and Kahneman, 1986; Dawes, 1996), so too have optimization-based
models contributed to the theory of organizations (Arrow, 1974; Williamson,
1975; Glance and Huberman, 1994). By examining deviations from optimal
change behavior, we may illuminate the sorts of processes which govern real
structural shifts; similarly, by means of our decision model, we may predict the
effects of heuristic decision processes on organizational performance.
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1 Concepts and Definitions

Before proceeding to the decision problem itself, we begin by setting out some
basic concepts which will prove useful in the discussion to follow. These consist
of representations for the organizational structures themselves, the transforma-
tions which will be used to take one structure into another (i.e., interventions),
and payoffs to the Organizational Designer, respectively. Throughout, our ap-
proach will be to emphasize generality over problem-specificity; by maintaining
a high level of abstraction, we hope to provide the widest possible scope for the
methods described herein.

1.1 Organizational Structure

In order to provide a decision-theoretic framework for organizational change,
we must first set forth a concrete representation of organizational structure.
Following prior research in this area (Carley and Krackhardt, 1998; 1999), we
take the structure of any given organization, ζ, as consisting of a collection of
graphs; we make no further assumptions about the nature of the structures in
question (e.g., whether the graphs are simple, directed, valued, etc.).1 Such a
structure is, in turn, taken to be a member of a much larger set of structures
which could in principle be occupied by ζ. More formally:

Definition 1. Given an organization ζ composed of graphs G1, . . . , Gn, we refer
to G = {G1, . . . , Gn} as the structure set of ζ. The set of all realizable G is in
turn represented by G, the structural universe of ζ.

Note that by “realizable” structure sets, we mean those which are in fact
available to the organization, subject to its definitional constraints. Thus, if
we defined organizational structure purely in terms of reporting and task as-
signment relations, then all elements of G would be constrained to have two
members. For convenience, we may also (without loss of generality)2 take all
G ∈ G to have the same vertex set (though vertex sets may of course vary with
G). Though this last is not a requirement for the framework considered here,
it does simplify matters considerably, and is recommended in practice.

1.2 Structural Transformations

Having established a set of potential structures from which the current state of
an organization may be drawn, we now require a generic means of describing
changes in that state. This is accomplished via the notion of the structural

transformation, which takes the set of structures into itself:

1In fact, even this assumption is not required for any of the formal results shown here;
these depend only on the properties of the constructs G, T, and π (see below). Our discussion
of potential structural payoff functions and our examples, however, do assume this.

2Vertices intrinsically uninvolved in a given relation (e.g., knowledge elements in a task
assignment network) can simply be regarded as isolates for that relation.
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Definition 2. Any T : G → G is said to be a structural transformation for the
structural universe G. The set of all realizable, distinct structural transforma-
tions is denoted by the transformation universe T.

Once again, the “realizability” of the elements of T is taken to refer to their
empirical feasibility in the context of the structural universe at hand. Thus, in a
typical case, realizable structural transformations might include the expansion
or contraction of the vertex set (e.g., hiring/acquisition or firing/liquidation),
edge addition or deletion (e.g., task or personnel reassignment), etc. For the
moment, we will consider T as unitary, in the sense that it represents the ca-
pability of a single abstract decision maker (the hypothetical “Organizational
Designer”) to alter organizational structure. Later, we shall complicate this
picture somewhat by assuming that transformations may arise from more than
one source, one of the most important being Chance.
The above gives us a means of discussing the transition from one organi-

zational form to another, but omits the important consideration of time. In
general, structural change is not instantaneous: between the instant at which a
change is decided upon and the moment at which it is realized, falls a period
of implementation. This delay is significant for organizational decision makers,
since time spent in a suboptimal configuration can result in lost earnings, higher
production costs, or worse. Taking this into account, we introduce a function
which takes as input a given transformation, returning the time required for
said transformation to be implemented. Formally:

Definition 3. The time interval between the initiation of a structural transfor-
mation T and its completion (i.e., the realization of T (G)) is referred to as the
implementation time of T , and is denoted ∆(T ).

(Note that we assume here that implementation time is a function of the
structural transformation, and not of the structure on which this transformation
operates.)
Before moving ahead to a consideration of payoffs, we pause to combine the

ideas of Definitions 1 and 2 into a single formalism. This formalism provides a
useful shorthand for discussing the structural changes – particularly sequences
of such changes – and will be used extensively in the discussion which follows.
Taking the set of possible structures (the structural universe) together with
the set of feasible transformations (the transformation universe), we form a
multigraph which encodes the complete set of changes which could be made by
the organization in question. By focusing on properties of this graph – rather
than on the details of the particular elements of G and T – we can more easily
study the properties of potential structural changes.

Definition 4. Given a transformation T and structural universe G, the change
graph (denoted GT ) of T on G is the graph formed by
(G, {(G, T (G)) ∀G ∈ G}). The collection of such graphs for all T ∈ T is then
the change multigraph of T on G, denoted GT. A walk from Gα to Gω in GT
is said to be a change walk, and if all vertices of such a walk are distinct, the
walk is further said to be a change path.
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To foreshadow what we shall see in the coming sections, it is the change walk
(or, ultimately, the change path) which will be at the center of our attention.
Intuitively, the change walk corresponds to a particular strategy for converting
an organization from an initial form (Gα) to a final one (Gω) by means of a
series of concrete interventions. Likewise, each such walk also corresponds to a
series of intermediate positions occupied by the organization during the change
process: observe that any change walk from Gα to Gω can be written either in
terms of a vertex sequence (i.e., Gα,Gβ , . . . ,Gω) or in terms of an initial point
together with a series of transformations (i.e., Gα, T1, . . . , Tn).

3 This follows
from the fact that Gα,Gβ , . . . ,Gω = Gα, T1(Gα), . . . , Tn(· · · (T1(Gα))) (itself
a consequence of the definition of GT). This simple duality will be of use for
the arguments which follow.

1.3 Payoff Functions

In the context of an organizational design problem, it is assumed that there
exists some decision maker who A) is able to act in altering organizational
structure, and B) possesses well-formed preferences regarding the structures
in question. While real-world organizations generally possess multiple stake-
holders whose preferences are not entirely consistent with one another, we will
initially limit ourselves to the simpler case. To represent this decision maker’s
preferences, we employ a payoff function whose value is to be maximized. This
function may be either of transformations or of structural configurations, as
indicated below:

Definition 5. Let π(T ) represent the payoff to the decision maker associated
with employing transformation T , and let π(G) be defined such that the total
payoff to the decision maker associated with the organization ζ occupying state
G for duration t is equal to tπ(G) for all t,G.

For the purposes of our analyses, we take all payoffs to be additive in trans-
formations and time: thus the payoff associated with employing transforma-
tions T1 and T2 is π (T1, T2) = π (T1) + π (T2), and the payoff resulting from
occupying states G1 and G2 for durations t1 and t2 (respectively) would be
t1π (G1) + t2π (G2). Such an assumption seems a plausible first approxima-
tion, and buys considerable economy in terms of the tractability of the decision
problem. Nonlinearly interacting payoff elements are left as a topic for future
research.
It should be noted that an important task in defining the change decision

problem is the identification of the payoff functions described above. Determi-
nation of π(G), in particular, may be nontrivial. One potential candidate for
such a payoff function may be derived as follows. Let f1, . . . , fm be a collection

3The astute reader will note that these representations are not precisely equivalent, in
the sense that there may be more than one transformation connecting each pair of adjacent
structures. That this discrepancy is of no consequence for the decision problem is shown
below.
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of structural indices such that fi : G → R ∀ G ∈ G. Then, let f∗1 , . . . , f∗m rep-
resent optimal values for these indices. Given this, a structural payoff function
could reasonably take the form

π(G) =

m
∑

i=1

βig
(

f∗i − fi (G)
)

(1)

where β is an á priori weight, and g is any decreasing even function (e.g.,
−x2, −|x|). Such a payoff function corresponds to the idea that there exists
an attribute space (provided by the indices) containing some point such that
distance from said point is associated with decreasing payoffs. A related – and
even simpler – family of functions is given by

π(G) =

m
∑

i=1

βig
(

fi (G)
)

(2)

which would be appropriate for linearly separable payoffs associated with
particular indices. Personnel and resource costs, for instance, could easily be
included in this manner (via vertex counting functions), as could certain types
of transaction costs (e.g., via edge counts). Estimation of such functions from
empirical performance data is fairly straightforward (provided such data are
available).
Alternately, π(G) can be determined by other means. Even in the absence

of comprehensive performance data on existing organizations, sufficient knowl-
edge of the organizational processes being assessed should permit estimation of
π(G) by means of simulation methods. (See, for instance, Lin (1994) for an
archetypical example.) Given a candidate structure, G, one can simulate said
structure’s performance (possibly averaged over uncertain environmental con-
ditions) in order to obtain an estimated payoff (see, e.g., Levitt et al. (1994)).
Finally, it should be noted that the remaining aspects of the decision problem
can still be treated in the absence of detailed specification of structural payoffs.
Where the decision maker is indifferent to organizational structure, π(G) can
be set identically equal to zero; in this case, the optimal change problem simply
becomes one of finding the least expensive transformations. Similarly, setting
π(G) = −c (for some positive constant c) provides a very simple way to model
costs due to implementation time.
Before moving on to the analysis of change decisions per se, a final note

is in order regarding the payoffs associated with potential structural changes.
Specifically, we require that no matter what the form of the payoff function, the
final end state of the change process be preferred above any alternate structural
position or series of transformations. While this may seem at first a non-obvious
requirement, the need for it follows quite simply from the fact that our purpose
is to identify the optimal walk from Gα to Gω. If there exists some third
structure, Gβ , such that Gβ Â Gω, then there is no such walk: we are better
off staying atGβ ! Similar logic applies in the case of transformation sequences.

4

4E.g., it may become optimal to travel in endless loops.
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We assume, by virtue of the fact that we have been asked to find the optimal
Gα, Gω walk, that our preferences are such that this is a sensible question. The
specific requirement is given by the following axiom:

Axiom 1. Given a decision to change organization ζ from structure Gα to

structure Gω, π(Gω) > π(G),∆(T )π(Gω) > ∆(T )π(G) + π(T ) ∀ T,G : T ∈
T,G ∈ G,G 6= Gω.

It should be emphasized that, in practice, Axiom 1 is quite easy to satisfy.
If nothing else, simply putting a sufficiently large positive payoff on Gω will
guarantee well-formed solutions; since the particular choice of optimal walk does
not otherwise depend on this value, the exact number is irrelevant. Indeed, for
most problems, it will suffice simply to declare π(Gω) = 0, and to take all other
payoffs in terms of losses relative to the destination state. So long as Axiom 1
is satisfied, the specific form of the payoff function may be chosen in accordance
with the problem at hand.5

2 Riskless Change Decisions

Having set forth the basic elements of our decision-theoretic framework, we now
proceed to put the pieces together in the context of a fairly simple problem:
given a transformation universe, what is the optimal change walk between an
initial structure set and some desired endpoint? In this simple case, we assume
that implementation times and payoffs are constant, and rule out any exogenous
perturbations to the organizational structure. As such, the decision is a riskless
one, and merely requires us to search the space of walks for the element with
the highest payoff.
We begin by computing total payoff associated with a change walk. Given

structural and transformation universes G and T, let W = (G1, . . . ,Gn) =
(G1, T1, . . . , Tn) represent a change walk in GT. From the above definitions, we
may write the total payoff associated with W as:

π (W) = ∆ (T1)π (G1) + π (T1) + · · ·+∆(Tn)π (Gn−1) + π (Tn) (3)

=

(

n
∑

i=1

π (Ti)

)

+

(

n
∑

i=1

∆(Ti)π
(

Ti−1
(

· · · (T1 (G1))
)

)

)

(4)

Observe that Equation 3 can be partitioned into two components: the “di-
rect” payoff associated with the application of structural transformations, and
the indirect “exposure” payoff associated with the occupancy of intermediate
states during the walk itself. Thus, it is not necessarily the case that a walk
which is “cheap” in terms of low-cost transformations will be optimal overall. If
a change walk causes the organization to spend long periods of time in a subop-
timal state, the accumulated costs of exposure may overwhelm the savings from

5And, again, if the seemingly appropriate payoff function does not satisfy Axiom 1, this
should suggest to the researcher that his or her problem may be improperly posed.
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cutting corners on transformations; similarly, this same principle implies that
the order in which changes are made may have a significant impact on the total
payoff. For instance, an individual can be replaced by a dismissal followed by a
new hire, or by a new hire followed by a dismissal of the original individual. The
transformations involved are the same in both cases, but the optimal order will
depend critically on the relative costs of duplicating versus being short on labor,
and on the implementation time associated with hiring and dismissal processes.
Where hiring is slow and the position in question is critical, it will often make
sense to follow the latter procedure.
To summarize, then, the procedure for making an optimal riskless change

decision is as follows:

1. Define G, T, ∆, π for the problem at hand (e.g., based on empirical data,
first principles, etc.);

2. Identify the starting and ending points for the change walk, Gα and Gω;

3. Search the space of all change paths with the appropriate endpoints for a
walk with the maximum payoff;

4. Any walk with the maximum payoff is an optimal change walk, and con-
stitutes a solution to the change decision problem.

2.1 Properties of Optimal Change Walks

Before turning to the question of how optimal change walks may be identified,
we pause momentarily to ask whether there are any more general statements
we can make about the properties of such walks. Without knowing any further
details of G, T, or π (beyond those already assumed), what can we say about
GT and W? As it happens, even these constraints are sufficient to allow for
some basic deductions regarding optimal change walks. These are interesting in
and of themselves, in addition to being useful for proving the correctness of the
algorithm which is to follow.
Our first result regards, in a sense, the “size” of the construct which is needed

to solve the optimal change walk problem. Given the tremendous multiplexity of
GT – that is, the potentially large number of edges between adjacent nodes – we
are immediately led to wonder whether this profusion of ties is really necessary.
Is there a way to “throw out” superfluous ties, so as to be left with a smaller
(and in some respects, simpler) structure? As it happens, the answer is in the
affirmative, as the following theorem demonstrates:

Theorem 1. Given a payoff function π, ∀ GT ∃ a digraph HT : HT contains

an optimal change walk ∀ (Gi,Gj) having an optimal change walk in GT, which
is of equal total payoff.

Proof. GivenGi,Gj ∈ G, define T ∗ (Gi,Gj) = T : T ∈ T, T (Gi) = Gj , π (T )+
∆ (T )π (Gi) = maxT ′:T ′(Gi)=Gj

(π (T ′) + ∆ (T ′)π (Gi)). Then let HT be a
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digraph whose vertex set is given by G and whose edge set is is given by
{T ∗ (Gi,Gj) : Gi,Gj ∈ G}.
We now show that all optimal change walks in GT are represented in HT.

Consider two vertices,Gα,Gω ∈ G, such that no (Gα,Gω) optimal change walk
inGT belongs toHT. For convenience, let us denote one of these walks byW∗ =
(Gα, T1, . . . , Tn) = (G1, . . . ,Gn). Since W

∗ 6⊆ HT, it follows that one of two
conditions holds: i) ∃ Ti ∈ W∗ : π(Ti) + ∆(Ti)π(Gi−1) <

maxT ′:T ′(Gi)=Gj
(π (T ′) + ∆ (T ′)π (Gi)), or ii) π(Ti) + ∆(Ti)π(Gi−1) =

maxT ′:T ′(Gi)=Gj
(π (T ′) + ∆ (T ′)π (Gi)) ∀ Ti ∈ W

∗. Let us consider each in
turn. If (i) is true, then it follows that π(W∗) can be increased by selecting an
alternate transformation; since this contradicts the assumed optimality of W∗,
it follows that (i) is false. If (ii) is true, then (by construction) every adjacent
vertex pair in is connected by an edge in HT which is of equal total value to the
corresponding edge in W∗ . This implies, however, that the total value of the
corresponding walk in HT is equal to π(W∗). Thus, this walk must be optimal,
and since HT ⊆ GT, it must also belong to GT. This contradicts our initial
assumption, and thus it must be the case that all optimal change walks in GT
are represented in HT.

Intuitively, when moving between two adjacent vertices, we can effectively
ignore any edges which are not of maximum local payoff; further, since any edges
which remain must be of the same payoff, any one of these will be as effective as
any other. Although we have focused on this result in its application to longer
walks, the logic obviously holds generically for any optimal move. Expressed as
a “rule,” the following corollary captures the key idea:

Corollary 1 (The “Local Domination” Rule). In making a one-transformation

move from Gi to Gj, it is always optimal to use a transformation with the high-

est immediate payoff.

Proof. By construction, every edge of HT is of maximum immediate payoff (i.e.,
π(T ) +∆(T )π(G) = maxT ′:T ′(Gi)=Gj

(π (T ′) + ∆ (T ′)π (Gi))). By Theorem 1,
HT also contains an optimal change walk for all pairs of vertices having a change
walk in GT, which is of equal total payoff to the optimal GT walks. Thus, it
follows that it is never necessary to employ a transformation which does not
have the highest immediate payoff.

Thus, as a practical matter, Corollary 1 contains the idea that an organiza-
tion need never concern itself with local moves which are (locally) dominated.
This is appealing, in that it suggests that a potentially large class of actions
can be eliminated very quickly from consideration. As it turns out, there are
other conceivable sets of actions which can be similarly ignored in attempting
to make optimal changes. One such set is the set of transformation sequences
which result in cycles, as is demonstrated by the following lemma:

Lemma 1. All optimal change walks are change paths.
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Proof. Assume that there exists an optimal change walk from Gα to Gω in HT,
denoted W∗, which is not a change path. Then W∗ contains at least one cycle,
C, and at least one embedded (Gα,Gω) path, P; without loss of generality,
choose P and C to be of maximum payoff. Since W∗ is optimal, it follows that

π (P ∪ C) ≥ π(P) + ∆(C)π(Gω),

and hence that

π(C) ≥ ∆(C)π(Gω),

which, finally, implies

|{T :T∈C}|
∑

i=1

(π (Ti) + ∆ (Ti)π (Gi−1)) ≥

|{T :T∈C}|
∑

i=1

∆(Ti)π (Gω) .

This is only possible if ∃ G 6= Gω, T : π(T ) + ∆(T )π(G) ≥ ∆(T )π(Gω), which
contradicts Axiom 1. It therefore follows that all optimal change walks are
change paths.

As before, the intuition is fairly straightforward. Given that (by Axiom 1) we
would rather be at our destination than anywhere else, actions that artificially
prolong our journey cannot be optimal. Clearly, walks which are not paths have
this property, since they necessarily contain shorter sub-walks which still reach
the desired goal. This observation, like that of Theorem 1, lends itself to a
simple behavioral rule, namely:

Corollary 2 (The “No-Backsies” Rule). It is never optimal for an organiza-

tion which is changing from form Gα to Gω to revert to a previous intermediate

form.

Proof. This follows immediately from Lemma 1, as any vertex sequence which
contains repeated elements cannot (by definition) constitute a path, and since
optimal change walks are always paths.

Simple as it is, the “no-backsies” rule does have some interesting implica-
tions. For instance, it suggests that firms which are observed to “churn” per-
sonnel via repeated cycles of hiring and firing are most likely not following an
optimal change path. (Although this behavior may also be the result of external
perturbations; see below regarding this point.) In general, intendedly cyclical
behavior is diagnostic of suboptimality, and looking for the former may prove a
useful heuristic for locating examples of the latter in the field.

2.2 Finding an Optimal Change Path

As we established with Theorem 1 and Lemma 1, the problem of finding an
optimal change walk can be reduced to that of finding a maximum payoff path

10



on HT. As it happens, this problem is itself simply an alternate form of the
shortest-path problem, a well-known problem of combinatorial optimization. To
see that this is so, one must merely reframe the payoff associated with the change
walk in terms of the cost of the path relative to spending the entire traversal
time at the destination state. (Recall that, by Axiom 1, the latter payoff must
be strictly greater than that of any walk on GT.) Then it follows that the path
of minimum cost is that of maximum payoff, and an algorithm which solves the
former problem can also be used to solve the latter.
Although, in principle, any shortest-path algorithm could be modified to

solve the optimal change path problem (see Ahuja et al. (1993) and Cook et al.
(1998) for in-depth discussions of shortest-path algorithms) we present here a
variant of Dijkstra’s well-known label-setting algorithm (Dijkstra, 1959).6 This
is shown in Algorithm 1. Although fairly typical in form, Algorithm 1 does
contain some features which relate specifically to the optimal change problem.
First, and most trivially, we exploit the fact that we are interested only in the
(Gα,Gω) path by terminating execution as soon as the shortest such path is
found (see line 19). Second, as already noted, we have reversed the usual sense
of the optimization by seeking a maximum payoff path instead of a path of
minimum cost; this is operationalized by line 13, and is rendered feasible by
Axiom 1. Third, we deal with the multiplexity of GT via the loop in lines 9-
18, which ensures that only the maximum payoff (minimum cost) arc is used.
Although this is presented here as a runtime calculation in order to conserve
memory, it is also in principle possible to discard all but the least expensive
edges in an initial step, thereby operating directly on HT. This seems unlikely
to be practical in most situations, but some performance gains may still be pos-
sible (depending on π and |GT|) if some transformations could be eliminated
ex ante. This leads us to our fourth significant modification to the basic algo-
rithm: because it will rarely if ever be feasible to store distances to all members
of G, we attempt to minimize memory usage by storing distances only for those
vertices we have visited. (Note that the default distance set by line 1 can be
implemented via implicit storage (i.e., as a default value), with explicit storage
only of visited vertices.) Indeed, storage is dominated by the distance and pre-
decessor lists, and will be on the order of the number of vertices visited prior
to finding the shortest path. Algorithm 1 is constructed so as to minimize the
number of vertices visited, and hence should require as little storage as possible.
When executed, Algorithm 1 will yield the payoff of the optimal (Gα,Gω)

path as d(Gω). The specific path followed may be reconstructed via the pre-
decessor list, pred, which indicates both the predecessor and transformation
employed for every visited vertex other than Gα. (One simply starts with
pred(Gω) and works backwards.) If pred is stored as a tree rather than a list,
this operation can be performed linearly in the length of the optimal path. As a
minor note, we have tacitly assumed throughout this discussion that a (Gα,Gω)
path actually exists; were this not so, the optimization question would be mean-

6The performance of Dijkstra’s algorithm is close to optimal for dense graphs (Ahuja et al.,
1993), and thus it serves as an obvious starting point for the present application.
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Algorithm 1 Identification of Optimal Change Paths

1: d (G) := −∞ ∀ G ∈ GT
2: d (Gα) := 0
3: vis := {Gα}
4: pred (Gα) := ∅
5: flag := False

6: while ¬flag , |vis| > 0 do
7: G := Gi ∈ vis : d (Gi) = maxGj∈vis d (Gj)
8: vis := vis \G
9: for all T ∈ T do
10: if d

(

T (G)
)

= −∞ then

11: vis := vis ∪ T (G)
12: end if
13: δ := d (G) + π (T ) + ∆ (T )

(

π (G)− π (Gω)
)

14: if δ > d
(

T (G)
)

then

15: d
(

T (G)
)

:= δ

16: pred (Gα) := (G, T )
17: end if
18: end for
19: if d (Gω) > maxGi∈vis d (Gi) then
20: flag := True

21: end if
22: end while

12



ingless! Still, in case the possibility of attaining an optimal solution should be in
question, a check for the size of the “to visit” stack (vis) is performed at line 6.
Should vis become empty while d(Gω) = −∞, this indicates that no (Gα,Gω)
exists, and that the optimization problem is ill-posed.
We conclude our discussion of the optimal change algorithm with a proof of

its correctness:

Theorem 2. Algorithm 1 terminates with a solution to the optimal change

problem, if such a solution exists.

Proof. We begin our proof of the correctness of the algorithm by demonstrating
that, at each iteration, G is chosen so as to be “closest” (i.e., connected by a
path of maximum payoff) to Gα. (By Lemma 1, we may ignore any non-path
walks.) Consider the first iteration, in which G = Gα: by definition, Gα is
closest to itself. Now, consider the nth iteration, under the assumption that all
vertices chosen so far have met the closeness condition. By step 7, the G which
is chosen is closest to Gα. Further, by the finite loop of lines 9-18, all vertices
which are adjacent to G are placed at distance d(G) plus their distance from
G. Plainly, this is an upper bound on their distances (a lower bound on the
path of maximum payoff). If it is not also a lower bound for a given vertex,
then it follows from the criterion of line 7 that there exists some other vertex
which will be visited first, and which will lower the distance (raise the payoff)
for said vertex (by line 14). Because every vertex adjacent to G is added to vis,
every such vertex is visited; from the forgoing, it follows that when this vertex
is visited, it will be of maximum closeness/payoff. Therefore, it follows that the
condition will be satisfied for these vertices as well, and, by induction, that the
condition is satisfied for all vertices.
Given that every vertex adjacent to a visited vertex is visited (unless the

termination condition has been met), the above implies that every vertex con-
nected to Gα is visited in descending order of payoff. To complete the proof,
we note that the terminating conditions of lines 19 and 6 can only be met if
every other path is of strictly lower payoff than an already uncovered (Gα,Gω)
path, and/or if no vertices remain to be visited. If the latter is true, then there
can exist no higher-payoff path than that which has been uncovered (if any):
if and only if π(Gω) > −∞, such a path must exist. (Otherwise, there is no
solution to find.) If the latter is false, then the observed (Gα,Gω) path is of
higher value than any other path (by the induction argument above), and we
may terminate the algorithm. The optimal change path may be derived by
following the predecessors of Gω backwards until Gα is reached.

3 Risky Change Decisions

In our discussion so far, we have mercifully avoided the vagueness and uncer-
tainty associated with real-world decisions: we have presumed that everything
from implementation times to the payoffs associated with particular structural
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forms are fixed and known. Here, we generalize our earlier results to decisions
in which implementation times and payoffs are uncertain.
Under an uncertainty assumption, implementation time and payoffs (espe-

cially the structural payoff) are taken to be random variables rather than con-
stants. Thus, one cannot be sure precisely how long it will take to hire someone
(for instance), or exactly what the effects will be of having lost the manager
of a particular division. Introducing such uncertainty provides for one obvious
source of risk in organizational design, and allows for decisions which are robust
to unexpected delays.
For ∆, π random, the obvious optimization criterion is the expected payoff;

applying the expectation operator to Equation 3 gives us

E
(

π (W)
)

= E
(

∆(T1)π (G1)
)

+ E
(

π (T1)
)

+ · · ·

+ E
(

∆(Tn)π (Gn−1)
)

+ E
(

π (Tn)
) (5)

=

(

n
∑

i=1

E
(

π (Ti)
)

)

+

(

n
∑

i=1

E
(

∆(Ti)π
(

Ti−1
(

· · · (T1 (G1))
)

))

)

(6)

Note that this result does not assume independence. If we are willing to
take durations and payoffs as independent, we may obtain variances in the
same manner:

V ar
(

π (W)
)

= V ar
(

∆(T1)π (G1)
)

+ V ar
(

π (T1)
)

+ · · ·

+ V ar
(

∆(Tn)π (Gn−1)
)

+ V ar
(

π (Tn)
) (7)

=

(

n
∑

i=1

V ar
(

π (Ti)
)

)

+

(

n
∑

i=1

V ar
(

∆(Ti)π
(

Ti−1
(

· · · (T1 (G1))
)

))

)

(8)

These may be used to assess the level of risk associated with each change
path. Although we assume risk-neutrality for the moment, the generalization
of the approach to incorporate non-risk neutral preferences is an important
direction for future development.

3.1 Finding an Optimal Change Path Under Risk

Finding an optimal change path under risk is not qualitatively distinct from the
riskless case. By replacing transformation payoffs by their expectations, we may
use a slightly modified version of Algorithm 1 (using Equation 5) to identify a
change path which maximizes the expected path payoff. As before, simulation
steps may need to be added to estimate expectations for payoffs associated with
structural positions, the implementation of which will obviously be problem-
specific. In general, however, the change from riskless to risky change decisions
is fairly transparent in terms of the procedures involved.
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4 Structural Perturbations

The foregoing has treated the problem of optimal change decisions in an en-
vironment in which the only source of structural change is the application of
interventions by the Organizational Designer. While we may have been uncer-
tain regarding actual payoffs and implementation times, we were nevertheless
able to rely on the fact that the organizational structure itself was never in
question. Although reasonable as a first approximation, we are naturally led to
ask how things might differ if this constraint were relaxed. What if, in addition
to our own interventions, organizational structure were subject to perturbations
arising from other sources?
The core of our perturbation framework is as follows. Assume that, in ad-

dition to the Organizational Designer, Chance may attempt to modify organi-
zational structure by applying transformations from the set TC ; TC need not
be equal to T. For the purposes of our analyses, we shall further presume that
each player may elect to apply only one transformation at a time (i.e., before a
response from the other player is possible), and that any transformation applied
by the other player begins implementation immediately following the completion
of the transformation which is already in progress (assuming one has already
been applied). Thus, if the Designer applies transformation T1 at time t, then
Chance may respond with any transformation TC ∈ TC from time t to t+∆(T1).
If Chance has not applied a transformation by time t+∆(T1), then the Designer
may do so; otherwise, the Designer must wait until t + ∆(T1) + ∆(TC) for his
or her opportunity. If no transformation is “in play,” neither player is obligated
to act, and either may wait for any length of time before attempting to apply a
new transformation.
With respect to payoffs, we follow game-theoretic convention in presum-

ing that Chance does not behave strategically; although its behaviors could
conceivably depend in some way on those of the Organizational Designer,7 we
obviously do not endow it with putative reasoning capability! Payoffs for the
Designer are assumed to follow the same form as previously specified, without
regard to whether the transformations employed were played by the Designer
or by Chance. Since it is not required that TC = T, this is without loss of
generality.

4.1 Homeostasis: the Cost of Staying in Place

Homeostasis – in the sense of maintaining a fairly constant structural form – is an
important element of organizational survival. An organization which is unable to
maintain a state of homeostasis for long periods of time runs the risk of incurring
sufficient costs to induce mortality (Hannan and Freeman, 1977), and simulation
studies of organizations which are in constant flux suggest that survivors may
still suffer from serious degradation in performance (Carley and Svoboda, 1996).

7For instance, applying a transformation which removes personnel may increase the prob-
ability that Chance will apply a transformation resulting in further personnel loss, thus pro-
viding a model for the “snowballing” of turnover processes (Krackhardt, 1986).
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In any event, presuming a relatively stable environment, failure of homeostasis
will almost always entail8 that an organization spend relatively large periods of
time in sub-optimal structural states, and we may thus realistically expect it to
impact performance.
In the context of our present study, an obvious question to ask regarding

homeostasis is the cost associated with maintaining a particular form in the
presence of external perturbations. This, of course, presumes that circum-
stances allow homeostasis to be maintained at all; depending on the extent
of environmental disruption, this may or may not be the case. We thus begin
our discussion of organizational homeostasis with the latter issue.

4.1.1 The Possibility of Homeostasis

Before moving to the question of homeostasis costs, we begin with an even more
basic question: under what conditions can an Organizational Designer hope to
maintain homeostasis at all? Consider an organization which is in structural
equilibrium at state G∗, and which is faced by structural perturbations which
arrive as independent Poisson events. In particular, let us assume that Chance
attempts to apply transformations via a Poisson process with constant intensity
λ, with the particular transformation T ∈ TC being selected by an independent
multinomial draw with probability pT ; if Chance already has a transformation
“pending” or in the process of implementation, assume that the attempt is
abandoned. Assuming thatG∗ is the preferred organizational state, the optimal
response from the Designer is to respond to any perturbation by attempting to
restore equilibrium, i.e., to return to G∗ by the optimal change path. (We will
consider here only cases in which such a return is possible; we assume that
there exists no T ∈ TC ,G ∈ G such that a

(

TC (G) ,G
∗
)

path does not exist in
GT.) Given such a baseline scenario, what can be said about the possibility of
maintaining homeostasis?
To get a sense of this, we begin by considering an upper bound on the

perturbation rate (λ) compatible with homeostasis. Consider the set of trans-
formations available to the Designer, T. Clearly, no matter what perturbation
Chance applies9, the Designer cannot restore equilibrium faster than ∆min =
minT∈T∆(T ). Thus, if λ is sufficiently large for the inter-perturbation time to
be small relative to ∆min, homeostasis becomes impossible. Given that pertur-
bations occur as a Poisson process, this implies the condition

1

λ
À ∆min (9)

8The exception being when there are sufficient numbers of optimal forms that the organi-
zation may constantly shift between them; this seems unlikely in practice, however.

9Other than the identity transformation; since including this within TC would be equivalent
to a reduction in λ, we can safely ignore this possibility.
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or, alternately,

λ¿
1

∆min
. (10)

To refine this constraint somewhat, we can also consider the expected time
spent in homeostasis; that is, the expected time spent in state G∗ between
perturbations. Following the above argument, a firm lower bound on the total
re-equilibration time of the organization following a perturbation is given by
∆min. For convenience, let us refer to the inter-perturbation time as tC , with
tC ∼ exp(λ). Then a lower bound on the expected time spent in homeostasis
must be given by

ε = 0p (tC ≤ ∆min) +

∫ ∞

∆min

(

tC −∆min
)

λe−λtCdtC (11)

= −

(

tC +
1

λ

)

e−λtC
∣

∣

∣

∣

∞

∆min

+∆mine
−λtC

∣

∣

∣

∣

∞

∆min

(12)

=

(

0 +

(

∆min +
1

λ

)

e−λ∆min

)

+
(

0−∆mine
−λ∆min

)

(13)

=
1

λ
e−λ∆min . (14)

For a given bound, we can then identify the associated maximum λ by

λ ≤
1

∆min
W

(

∆min
ε

)

, (15)

where W is the Lambert-W function.10 One obvious value of interest is the
λ bound associated with ε = ∆min, i.e., the upper bound for the point at which
the expected time in homeostasis is equal to the expected time spent out of
equilibrium. In that case we have

λ ≤
1

∆min
W

(

∆min
ε

)

(16)

=
1

∆min
W

(

∆min
∆min

)

(17)

=
W (1)

∆min
(18)

≈
0.567143209

∆min
. (19)

Thus, a somewhat more refined bound is given by approximately 57% of
the reciprocal of the minimum re-equilibration time. For perturbation rates in

10The Lambert-W function is defined as the principal solution to the inverse of f(W ) =
WeW .
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excess of this, no organization can reliably maintain homeostasis – regardless of
the other properties of the structures or transformations involved.
The above provides a fairly general result, which gives us some intuition

about the maximum perturbation rate at which an arbitrary organization can
potentially maintain its form. Of course, the maximum rate for any particular

organization may be quite a bit lower than this, depending on the properties of
T, TC , the pT s, and G

∗. While no simple expression exists for this quantity,
we can nevertheless obtain numerical estimates using the procedures already
developed for optimal change paths. Let P∗(Gi,Gj) be the optimal change
path from Gi to Gj in GT, and let ∆ (P∗ (Gi,Gj)) =

∑

T∈P∗(Gi,Gj)
∆(T ) be

the total duration of P∗. Then an approximation to the expected time spent in
homeostasis for an organization at G∗ is given by

ε ≈
∑

T∈TC

pT [0p (tC ≤ ∆(P
∗ (T (G∗) ,G∗)))

+

∫ ∞

∆(P∗(T (G∗),G∗))

(tC −∆(P
∗ (T (G∗) ,G∗)))λe−λtC

] (20)

=
∑

T∈TC

pT

[

−

(

tC +
1

λ

)

e−λtC
∣

∣

∣

∣

∞

∆(P∗(T (G∗),G∗))

+∆(P∗ (T (G∗) ,G∗)) e−λtC
∣

∣

∣

∣

∞

∆(P∗(T (G∗),G∗))

]
(21)

=
∑

T∈TC

pT

[

1

λ
e−λ∆(P

∗(T (G∗),G∗))

]

. (22)

This value is an approximation of the true ε in that it does not consider
any additional disruptive effect of perturbations which occur during the re-
equilibration process. This effect will be small whenever
∑

T∈TC
pT∆(P

∗ (T (G∗) ,G∗))¿ 1
λ
, or (more generally) when the duration of

the average perturbed optimal path is approximately equal to
∑

T∈TC
pT∆(P

∗ (T (G∗) ,G∗)). In any event, since additional perturbations
should, on average, increase the re-equilibration time, Equation 22 serves as an
upper bound on ε.
Numerical estimation is necessary to obtain the λ corresponding to ε =

∑

T∈TC
pT∆(P

∗ (T (G∗) ,G∗)), since Equation 22 cannot be solved directly.
For small |TC |, this can reasonably be accomplished by using Algorithm 1 to find
the duration of each perturbed path, and then solving for λ using an iterative
search procedure (since the ∆s are independent of λ). Standard methods for
such estimation can be found in any numerical methods text, e.g. Press et al.
(1986).
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4.1.2 Homeostasis Costs

As we have shown, the task of maintaining homeostasis is nontrivial; indeed,
if perturbations occur with sufficient frequency, it may be difficult or impos-
sible. Where perturbations are less frequent, the ability of the Designer to
maintain equilibrium is not in question. The cost of maintaining equilibrium,
however, is another matter entirely. If a high-performing structural configu-
ration is surrounded (in the change multigraph formed by TC on G) largely
by low-performing configurations, the long-run average payoff associated with
attempting to maintain this position may be severely reduced.
Here, we provide an expression for the approximate expected payoff associ-

ated with attempting to maintain an equilibrium position, G∗. For convenience,
we take all payoffs to be given relative to π (G∗); thus, the expression can be
directly interpreted as the cost associated with homeostasis. As before, we
assume Chance to apply transformations as Poisson events, with the transfor-
mation type selected via a multinomial process. Applying these assumptions
then yields, for the expected homeostasis cost per unit time,

E (π∗ (G∗)) ≈ λ
∑

T∈TC

pT (π (T ) + π (P∗ (T (G∗) ,G∗))) , (23)

which converges almost surely to E (π∗ (G∗)) in the small-λ limit. (In prac-
tice, the approximation will be valid so long as

∑

T∈TC
pT∆(P

∗ (T (G∗) ,G∗))¿
1
λ
.) For small |TC |, Equation 23 can be calculateed very straightforwardly using
Algorithm 1. If |TC | is large, it may be necessary to resort to a more restricted
sampling strategy; where the distribution of transformation probabilities (pT ) is
extremely concentrated, one such option is to sample from TC using the trans-
formation probabilities. This will tend to omit low-probability transformations,
while still resulting in an unbiased estimate.

4.2 Optimal Changes Under Perturbation Risk

We have already considered the question of optimal change decisions in the
context of perfect information, and of uncertainty regarding implementation
time and payoffs. A far deeper challenge confronts us in facing the problem
of finding an optimal change path under the risk of structural perturbations.
Unlike the case of homeostasis, where our attention was focused primarily on
small deviations from a steady state, we have now to consider the effect of such
perturbations at any point along the change path. A complete solution to the
optimal change problem under perturbation risk thus requires a change strategy,
i.e., an algorithm which provides directions on how to proceed from each possible
state towards the final objective. Unfortunately, such an algorithm is likely to
be infeasible for any but the very smallest organizations. Thus, instead, we
provide here some comments regarding a heuristic approach to this problem.
First, we note that while a complete solution is particularly difficult, it is

nonetheless possible to obtain results regarding the robustness of various heuris-
tics via simulation methods. The most obvious such heuristic is simply the
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direct application of the standard optimal change path result; should the exe-
cution of this path be interrupted by a perturbation, then a new optimal path
is computed based on the perturbed location, and this path is followed until
the destination is reached or another perturbation ensues. To estimate the total
payoff of such a strategy under structural perturbations, one would simply run
a series of simulations in which the algorithm was applied, together with the
perturbation process, to the problem. It is then a standard result (see e.g.,
Kalos and Whitlock (1986)) that the distribution of payoffs obtained will then
converge to the true distribution. While this obviously does not improve upon
the standard approach, it can nevertheless offer a test of the robustness of the
basic strategy to external interference of various kinds.
Another variation on the above theme is the evaluation of alternative heuris-

tics such as hill climbing, simulated annealing, and the like. Annealing processes,
in particular, have been applied to the descriptive modeling of structural change
in the past (Carley and Svoboda, 1996), and it may be useful to compare their
performance to that of simple optimization. A more exotic alternative may be
the use of genetic programs (Koza, 1992) to search the space of potential strate-
gies for high-performing heuristics. Genetic programs have proven reasonably
successful in finding solutions within large search spaces with complex corre-
lation structures; thus, there is some reason to believe that they may perform
here as well.

5 Structural Changes with Multiple Decision Mak-

ers

Thus far (with the rather mindless exception of Chance), our analyses have been
confined to the decision problem faced by a single Organizational Designer who
wishes to identify an optimal means of moving ζ fromGα toGω. One important
extension of these ideas is to contexts in which multiple decision makers are
involved in the change decision; these “structural games” include strategic issues
which are absent in the “lone Designer” scenario. While there are many ways in
which multiple decision makers could enter into the change process, we will here
focus on two: a basic principal-agent game, and a simple bargaining problem.
Although each is treated with some brevity, our aim is to highlight a few basic
results which may be of reasonably broad applicability. Further investigation
into the properties of structural games is doubtless a fruitful area for further
research.

5.1 Optimal Changes in a Principal-Agent Game

One of the simplest was in which multiple decision makers can be incorporated
into the present problem is via a principal-agent framework.11 In particular,
let us assume that associated with the organization, ζ, there exists a Principal,

11We are indebted to David Rode for this suggestion.
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whose payoffs are given by πP , and a set of Agents, A, each with individual
payoff function πa and transformation universe Ta. It is assumed that (under
conditions of perfect information) the Principal wishes to take ζ from Gα to
Gω, but is unable to do so directly. The problem facing the Principal, then, is
to select the Agent (would-be Designer) whose solution to the optimal change
path problem is most highly valued.
To solve this problem, we begin by denoting by P∗

πT (Gα,Gω) the optimal
change path from Gα to Gω in the change multigraph GT under payoff function
π. Then, the solution for the Principal is to find an agent a ∈ A such that one
of the following is satisfied:

πP
(

P∗
πaTa

(Gα,Gω)
)

= max
a′∈A

πP

(

P∗
πa′Ta′

(Gα,Gω)
)

(24)

πP
(

P∗
πTa
(Gα,Gω)

)

= max
a′∈A

πP

(

P∗
πTa′

(Gα,Gω)
)

(25)

πP
(

P∗
πaT (Gα,Gω)

)

= max
a′∈A

πP

(

P∗
πa′T (Gα,Gω)

)

(26)

Each of these criteria corresponds to the subgame-perfect Nash equilibrium
for a different potential game.12 Equation 24 reflects a game with unenforceable
commitments and differing individual capabilities. That is, the Principal cannot
enforce his or her preferences on the Agent (who, it is assumed, will maximize
his or her own payoffs), and each Agent has a potentially unique set of transfor-
mations which may be applied to the optimal change problem.13 In this case,
then, the Principal examines the solutions which each agent is anticipated to
produce, and selects an agent whose solution produces the highest payoff under
πP .
The second criterion, Equation 25, provides the strategy for a game with

enforceable commitments and differing individual capabilities. Here, it is as-
sumed, the Principal can credibly enforce his or her own preferences vis à vis

the Agent; for simplicity, we assume here that this enforcement is perfect, and
thus that each Agent acts as if he or she had preference function πP . While
each Agent will then attempt to maximize πP , the fact that each possesses a
distinct transformation universe means that not every Agent will necessarily
be successful in the attempt. As before, the Principal selects an Agent whose
anticipated solution maximizes πP .
Finally, Equation 26 gives the equilibrium strategy for a Principal-Agent

game in which the Principal’s preferences are unenforceable, but in which all
Agents have the same capabilities. Here, while each Agent has the same ability
to match πP , each may differ on the extent that they prefer to do so. Given
this, the Principal selects an Agent whose personally optimal solution he or she
most values.

12We omit the case in which commitments are enforceable and all Agents have the same
capabilities, since this is merely the standard optimal change problem.

13We further assume that the Principal’s preferences over all such potential transformations
are well-formed.
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With respect to all of the above, it should be noted that actual solutions to
the Principal-Agent change game for particular parameter choices can be ob-
tained straightforwardly via a combination of the appropriate strategy (Equa-
tions 24-26) and the solutions generated by Algorithm 1. In cases where a
solution to the optimal path problem does not exist for one or more Agents,
this should be treated as a distinct outcome and evaluated accordingly (i.e.,
this should be given a payoff in πP ). Note that since some agents may not
prefer Gω to all other states, it is not unreasonable that such defections will
occur without enforcement! Thus, this approach manages to implicitly include
enforcement problems related to disagreements regarding goals, as well as those
which relate strictly to plans of implementation.

5.2 Pareto-Optimal Change Walks

A second simple scenario involving multiple decision makers arises from a sit-
uation in which the (ostensibly singular) Organizational Designer is actually
a committee. If multiple individuals with divergent payoffs set out to plan
an organizational change, what can we say regarding their eventual solution?
Without delving too deeply into the context of the bargaining game played by
these actors, we can still place some bounds on their decision by noting that
any change walk they select must be Pareto-optimal. In terms of the present
problem, Pareto-optimality is defined as follows:

Definition 6. Given a set of actors, A, each with payoff function πa and
common transformation universe T, let W (Gα,Gω) be the set of all (Gα,Gω)
walks inGT. Then, for two walksWi,Wj ∈ W (Gα,Gω),Wi is said to (strongly)
Pareto-dominate Wj (denoted Wi BWj) iff ∃ a ∈ A : πa (Wi) > πa (Wj) and
@ b ∈ A : πb (Wi) < πb (Wj). A walk W ∈ W (Gα,Gω) is said to be Pareto-
optimal iff @ Wi ∈ W (Gα,Gω) :Wi BW.

Thus, it stands to reason that any change walk which is Pareto-dominated
will not be selected, since there is at least one actor who would benefit from
an alternative, and none who would suffer. Given this, which walks are Pareto-
optimal? While this is difficult to determine in the general case, we can iden-
tify some Pareto-optimal walks which are particularly salient. Optimal change
paths, for instance, are likely candidates, as is demonstrated by the following
theorem:

Theorem 3. Let P∗
πa
(Gα,Gω) ⊆ GT be the set of optimal change paths for

some actor a ∈ A. Then ∃ P∗ ∈ P∗
πa
(Gα,Gω) : P

∗ is Pareto-optimal.

Proof. Assume that @ P∗ ∈ P∗
πa
(Gα,Gω) : P

∗ is Pareto-optimal. Then it
follows that ∃ W ∈ W (Gα,Gω) : W B P∗ ∀ P∗ ∈ P∗

πa
(Gα,Gω). Further,

we know that W 6∈ P∗
πa
(Gα,Gω), since otherwise P∗

πa
(Gα,Gω) would have

a Pareto-optimal member. However, if W 6∈ P∗
πa
(Gα,Gω), then by definition

πa (W) < πa (P
∗) ∀ P∗ ∈ P∗

πa
(Gα,Gω), and hence W cannot Pareto-dominate

any member of P∗
πa
(Gα,Gω). This contradicts our initial assumption, and

hence P∗
πa
(Gα,Gω) must contain some P

∗ which is Pareto-optimal.
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A trivial corollary of Theorem 3 is that unique optimal change paths are
necessarily Pareto-optimal. Another obvious implication of this result is a simple
procedure for finding Pareto-optimal walks: we pick an actor, find P∗

πa
(Gα,Gω)

using standard methods, and check each member against the others until we find
one which is not dominated. Since the set of optimal change paths is likely to
be small, the computational burden of this procedure will not be appreciably
greater than the optimal path problem. While this does not allow us to generate
the full set of Pareto-optimal walks, then, it does at least give us a fairly easy
way to identify certain key candidates. Since these paths also have the property
of being optimal for at least one actor, we assume that they will be of particular
interest to the Organizational Designers.

6 Conclusion

As we have shown, a decision-theoretic approach to the problem of structural
change in organizations offers a number of potentially useful insights for the the-
ory of organizations. Normatively, this perspective has allowed us to identify
optimal change paths for organizations under a range of assumptions (including
uncertainty in implementation times and/or payoffs), to compute relative ex-
pected costs for the maintenance of homeostasis under external perturbations, to
solve simple principal-agent problems involving the selection of Designers, and
to find Pareto-optimal change paths for scenarios involving multiple decision
makers with conflicting interests. Descriptively, we have been able to demon-
strate minimal conditions for structural homeostasis in organizations, and to
provide bounds on the expected time spent in equilibrium for various perturba-
tion regimes. More importantly, by supplying a normative model for organiza-
tional change, we have also provided a descriptive baseline from which to assess
the change behavior of real organizations.
While our theorizing has covered a fair amount of ground, there are numer-

ous important directions which here go unconsidered. We have, for instance,
given somewhat short shrift to the problem of decisions under uncertainty for
Designers who are not risk neutral; this is certainly an issue which should be
considered more deeply in future work. Another important assumption whose
relaxation is of great interest is that of destination certainty. While we have
quite explicitly presumed framed our analysis in terms of a well-defined change
problem, it seems probable that, in many situations, the Designer will not be
certain as to which destination is optimal. The identification of paths which are
optimal under destination uncertainty is then complicated by the need to value
the embedded options associated with each path (i.e., the payoff associated with
the opportunity to change destination during the change process). This is a wor-
thy topic for further development. Above all, we naturally recognize that theory
alone can only take us so far. Measurement of structural and transformation
payoffs, techniques for the identification of minimal transformation universes,
and the like are essential for the practical application of these techniques. It is
our hope that, by providing a formal decision-theoretic framework in which the
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problem of organizational change can be analyzed, we will contribute to further
advances in the field.
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