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ABSTRACT   
 

Incremental Social Centrality Algorithms for Dynamic Networks 
 

Miray	
  Kas	
  
Electrical	
  and	
  Computer	
  Engineering	
  

Carnegie	
  Mellon	
  University	
  
	
  
	
  

The increasing availability of online resources such as digital libraries and social networking websites 

has led to an upsurge of interest in the analysis of social networks. To date, a wealth of social centrality 

measures have been designed for determining the importance of nodes in a social network from different 

aspects. A significant number of social centrality metrics depend on the shortest paths in the network, 

usually requiring solving the all-pairs shortest path problem. However, most of these metrics were designed 

for static snapshots of 20-30 node networks. Computing centrality metrics in dynamically changing, large 

networks is almost unfeasibly costly, especially if it involves repeatedly calculating centralities from 

scratch for each incremental change.  

This thesis proposes incremental algorithms for the two of the most popular shortest-path based social 

centrality metrics (e.g. closeness centrality and betweenness centrality) to avoid computations from scratch 

by performing early-pruning and achieving substantial performance improvements in dynamically 

changing networks. It explores the computational time savings and the memory requirements as the 

realistic social networks being analyzed scale to very large sizes. The key idea is to start with the old output 

of the algorithm and to modify/update only the affected values such that the changes in the network (e.g. 

edge/node insertions/deletions/modifications) are reflected in the centrality values as well. The approximate 

versions of incremental closeness and betweenness centralities through k-hop bounded computations are 

also designed where the shortest paths included in the computations should be less than or equal to k; 

forcing the centrality computations to remain within a k-hop subgraph of a node instead of the entire graph. 

The performance results obtained via experiments on a wide variety of synthetic and real-life dynamic 

networks suggest substantial improvements over the state of the art.  
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CHAPTER 1 INTRODUCTION 

1.1 PROBLEM DOMAIN AND RESEARCH FIELD 

Social network analysis has been considered to be an important tool for finding 

the structural holes in organizational structures, for analyzing the patterns of information 

dissemination, or for identifying the key actors that can influence/control others; all of 

which are very useful for answering several key business or organizational questions.  

As a result, determining the most influential, well connected, and prominent 

nodes in networks has been an important research area and, to date, several social 

centrality metrics have been designed. Some of these metrics are based on the number of 

immediate connections nodes have (e.g. degree centrality, eigenvector centrality) while 

others are based on the shortest communication paths in the network (e.g. closeness 

centrality, betweenness centrality).  

This dissertation examines networks that change dynamically and require 

reanalyzing centralities every time a network update is issued. Since updating degree-

based centralities for dynamically changing connections can be trivially achieved by 

maintaining a number of counters, they are not considered to be as challenging as 

updating the centrality metrics based on dynamic shortest paths. Overall, the goal of this 

dissertation is to propose and evaluate the effectiveness of incremental algorithms for 

closeness and betweenness centralities, while handling various network types (e.g. 

directed/undirected binary/positively weighted) and network updates (e.g. node/edge 

addition/removal, edge cost increase/decrease).  
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1.2 THESIS STATEMENT AND SUPPORT 

This dissertation explores and confirms the effectiveness of incremental algorithm 

design for computing the shortest path based social centrality metrics such as closeness 

centrality and betweenness centrality in dynamic networks. In particular: 

“Computations of the shortest path based centrality metrics such as 

betweenness centrality and closeness centrality are important and costly dynamic 

network analysis problems, and the solutions to these problems can greatly benefit 

from incremental algorithms which build on results from previous runs to perform 

early pruning and enable substantial performance improvements.” 

This thesis statement is supported experimentally by measuring the performances 

of the proposed incremental algorithms against their non-incremental counterparts, using 

both synthetic and real-life networks. In support of this thesis statement, several 

algorithms are developed and analyzed, which are further listed in detail in the summary 

of contributions. 

1.3 KEY IDEA AND APPROACH 

This thesis employs an incremental algorithm design approach in order to handle 

the special needs of rapidly changing, dynamic networks. An incremental algorithm uses 

information from earlier computations such that the changes in the input (e.g. network 

structure) are reflected on the output values (e.g. centrality values) as well.  

An incremental algorithm is different from its static counterpart that performs all 

computations from scratch. At one point, an initial run is performed by a static algorithm 
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that performs the desired computation from scratch. Then, the incremental algorithm is 

used in subsequent runs to handle changes in the input (e.g. network). The benefit of an 

incremental algorithm is that by being able to build on prior computations, an incremental 

algorithm is able to perform early pruning and update only the affected parts of the 

network while avoiding recomputations to the extent possible. The algorithms proposed 

in this dissertation are designed to handle various network updates such as node/edge 

insertions, node/edge deletions, and edge cost modifications in the case of weighted 

networks. Out of these network update types, node/edge insertions and edge cost 

decreases are grouped as growing network updates, while node/edge deletions and edge 

cost increases are grouped as shrinking network updates, which are further explained in 

Chapter 3.  

1.4 BROADER IMPACT AND INTENDED USES 

The study of networks, including social networks, biological networks, 

information networks, and many others has been a major topic in scientific research. 

Traditionally, social networks have been studied in social sciences such as sociology, 

psychology, and business administration [1]. The general features of these classical 

studies are that they are often restricted to small networks, and often consider the 

networks as static graphs, whose nodes represent individuals and whose links represent 

the social interactions among these individuals. Although it has been researched for 

almost sixty years, social network analysis has witnessed uses in other remote fields in 

the last two decades or so. This is primarily due to two reasons: abundance of data and 
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potentially broader impact. First, as more datasets become available online, the interest in 

social networks grows rapidly, especially in the area of longitudinal analysis of data 

accruing over time. Second, many of the obtained results are not only the solutions for 

problems in the field of social networks, but they are also applicable to other fields such 

as biological networks [2], statistical physics, physical/technological networking [3] [4], 

bibliometrics/scientometrics [5], or even remote fields like urban planning [6] and 

nuclear capabilities assessment [7].  

Among the classical and most commonly used techniques of social network 

analysis is the centrality analysis, which measures the relative importance of entities in a 

social structure that is modeled as a group of entities (represented as nodes) connected 

through links to model certain relationships or interactions. Most centrality metrics 

consider the immediate connections of the entities modeled or the features of the overall 

structure or network topology. This makes social network analysis techniques applicable 

to any concept or problem where the entities to be examined can be represented as nodes 

in a network that models their relationships or interactions. This is also the reason why 

social network analysis has such a demonstrated breadth of applicability in its use. 

Betweenness centrality and closeness centrality are metrics to measure the relative 

importance of nodes in a network, considering the overall structure (topology) of the 

network. This makes them applicable to various networks designed to model very 

different entities. The incremental centrality algorithms proposed in this dissertation are 

intended to be applied on over-time dynamic networks, regardless of the structure or the 

set of entities the network models, applicable to many other fields such as biological 
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networks (protein-protein interaction networks), physical/technological networking (e.g. 

wireless networking, P2P file sharing, the US power grid), bibliometrics/scientometrics 

(e.g. citation, coauthorship, collaboration analysis, expertise analysis), urban planning, or 

transportation networks. 

Unlike the early examples of datasets used in social network analysis, most of the 

abovementioned examples of over-time dynamic networks are obtained through 

automated data collection methods. Hence, they have the potential to be substantially 

larger (i.e. on the order of several thousands) than the early social network datasets used 

by traditional sociologists, which were mostly less than a hundred nodes. However, 

current technology also allows us to collect network data that would model millions and 

billions of users from the Internet. Since the incremental centrality algorithms build on 

the results from earlier runs, they usually need a large amount of data to be in the 

memory so that they can fetch and use related pieces of data quickly. Larger memory 

requirements restrain the use of incremental centrality algorithms to networks that are on 

the order of several thousands and tens of thousands of nodes and edges, but not 

necessarily to networks whose node counts are on the order of millions; unless they are 

combined with approximation algorithms. Hence, the datasets used in this dissertation are 

on the scale of thousands of nodes. Approximations required for applicability to larger 

networks through extensions for k-centrality metrics and potential application areas are 

further discussed in Chapter 6. 
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1.5 WHAT CAN OVER-TIME CENTRALITY METRICS SHOW? 

The most straightforward application area for the incremental centrality metrics is 

the computation of over-time centrality values for dynamically changing datasets. This 

section investigates what kind of additional information over-time centrality metrics are 

able to provide through a detailed examination of the over-time centrality values for the 

SocioPatterns social netwrok. SocioPatterns is a publicly available, dynamic social 

network dataset that models the interactions and face-to-face communication in real time 

among 113 attendees during the ACM Hypertext 2009 conference for 2.5 days [8].  

 
Figure 1 - Distribution of betweenness centrality values on SocioPatterns dataset. 

Figure 1 presents a histogram for the distribution of betweenness centrality values 

and Table 1 presents the basic statistics for the aggregate, static snapshot of the network 

that is formed after all the real-time updates during the conference are issued. The 

distribution presented in Figure 1 shows that a very high number of nodes in the network 

have zero betweenness (e.g. 44 nodes out of 113 nodes). Such behavior is in line with the 
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previous findings in the literature. For instance, [9] shows that the distributions of the 

betweenness values in many real-life, scale-free networks follow power laws where many 

nodes have zero betweenness centrality while only a few nodes have very high values of 

betweenness centrality. 

Table 1 - Basic statistic on betweenness centrality values obtained on SocioPatterns dataset. 

Statistics Value 
Mean 346.32 
Median 28 
Std. Err. 60.16 
Std. Dev. 639.51 
Sample Variance 408967.81 
Kurtosis 9.68 
Skewness 2.94 
Min. Value 0 
Max. Value 3570 

 
Considering the data presented in Figure 1, two interesting research questions are 

as follows: ‘Are all the attendees with zero betweenness value unimportant for the 

community?’ or ‘Can they really have the same level of importance?’. In an attempt to 

find answers to such questions, in Figure 2 and Figure 3, the evolutions of betweenness 

centrality values for two groups of attendees are traced: (i) top three nodes with highest 

betweenness centrality values, (ii) the nodes that have zero betweenness at the static, 

aggregate snapshot of the network. The results presented in Figure 2 and Figure 3 

indicate that temporal patterns of betweenness centrality values reveal interesting 

information and provide supplementary data for further ranking of nodes in a network. 
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Figure 2 - Over-time betweenness centrality values for the top-three nodes in Socio Patterns 
dataset. 

 Figure 2 presents the overtime betweenness centrality values for three attendees 

that are ranked as top-three in terms of betweenness centrality. Considering the results 

presented in Figure 2, it can be observed that the rankings of the top three attendees are 

not very stable, especially in the first half of the network lifetime, when the network was 

still in the growth phase. Up-to-date analysis for the over-time centrality values might 

enable phase shifts, detection of sudden jumps, similar to the jump observed around 

7813th update for the First attendee, or detection of declines similar to the decline that 

start around 9549th update for the Third attendee. 

Figure 3 investigates the second group of attendees and presents the temporal 

behaviors of the betweenness centrality values of four attendees that have zero 

betweenness centrality at the final snapshot of the network. Out of 44 attendees that have 

zero betweenness in the final snapshot, only 25 of them have zero betweenness across the 
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entire network lifetime, and 19 of them had non-zero betweenness values for some time 

during the conference. Since drawing 19 nodes’ temporal betweenness behavior is 

visually not comprehensible, Figure 3 presents information for only four nodes. 

 
Figure 3 - Over-time betweenness centrality values for four selected nodes that have zero 
betweenness centrality in the final, aggregated snapshot of the SocioPatterns social network. 

  Figure 3 depicts multiple attendees whose betweenness centralities are non-zero 

during various intervals, although they appear to have zero betweenness centrality at the 

final snapshot of the network due to formation of new, shorter paths over time. As 

attendees keep interacting, new communication paths are formed through introduction of 

people to one another. In such cases, new introductions may lead to new, shorter paths 

and an attendee that used to be a part of the shortest paths may not necessarily be on the 

shortest paths any more. However, such attendees are more central to the community than 

the attendees whose betweenness centralities remain as zero for the entire lifetime of the 
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network. For instance, the attendee shown in Attendee-1 (drawn in pink) is only active in 

the first half of the network’s lifetime, which indicates Attendee-1 as a prominent person 

in the field, who did not attend the second half of the conference while the other 

attendees continued communicating with one another. As another example, all other 

attendees shown in Figure 3 are more central than Attendee-2, who had a very low non-

zero betweenness centrality for a very short time period, around the 3861st – 6117th 

updates. Similarly, all attendees investigated in detail in Figure 3 are more central than all 

other nodes that have zero betweenness centrality for the entire lifetime of the network. 

  Considering only the betweenness values obtained at the final, static snapshot of a 

network, it is not possible to distinguish the entities that have the same final centrality 

values, potentially generating misleading results for dynamic networks that change over 

time. Hence, understanding the temporal behavior of centrality values is important, 

especially when there is need for further differentiation of entities’ importance. This 

makes the incremental algorithms proposed in this dissertation valuable especially for 

cases when it is very costly to compute the over-time behavior of centrality values.   

1.6 THESIS ORGANIZATION 

The first part of this thesis focuses on the problem of costly computation of the 

shortest path based social centrality metrics in dynamically changing networks and 

proposes incremental algorithms for computing closeness and betweenness centrality in 

less computational time while handling the different network types and updates. To make 

the algorithms proposed in this dissertation more generalizable to even larger networks, 
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the second part of this dissertation covers k-centrality extensions and potential 

applications of incremental centrality algorithms to clustering (e.g. modified Girvan-

Newman algorithm for finding groups) and wireless network analysis. The third and final 

part of this thesis reports experiments on a wide variety of synthetic and real-life dynamic 

networks to evaluate the behavior of algorithms on different network topologies and on 

networks with different sizes and densities.   

Towards this end, the remainder of this dissertation is structured as follows. 

Chapter 2 provides background information and reviews the related work available in the 

current literature. Chapter 3 discusses the algorithmic framework including the network 

types and updates supported by the algorithms developed in this dissertation. In Chapter 4 

and Chapter 5, the incremental closeness and the incremental betweenness algorithms are 

described, respectively. Chapter 6 discusses the k-centrality extensions and potential 

application of incremental centrality metrics on clustering and wireless networks 

vulnerability analysis and channel access scheduling. Chapter 7 describes the details of 

the synthetic and real-life networks used in the performance evaluations. Chapter 8 

reports the performance results obtained. Finally, Chapter 9 concludes the dissertation by 

highlighting the key findings and potential directions for future research. 

1.7 DYNAMIC NETWORK DATASETS USED 

In this dissertation, both synthetic and real-life datasets are used to measure the 

performance of incremental centrality algorithms. For synthetic networks, we use a 
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variety of topologies generated using preferential attachment [10], Erdos-Renyi [11], and 

small-world [12] network generation mechanisms.  

Real life networks to be examined in more detail are as listed follows: 

• Socio Patterns Dataset [8] 

• Facebook-like Online Student Forum Network [13] [14] 

• High-Energy Physics Scientific Co-Authorship Networks [15] 

• User-to-User Twitter network about news about sanctions on Iran [16] 

• Peer-2-Peer (P2P) File Sharing Network [17] 

1.8 SUMMARY OF CONTRIBUTIONS 

As mentioned above, the first part of this thesis designs incremental algorithms 

for closeness centrality and betweenness centrality to accommodate the needs of 

dynamically changing, streaming social networks. Hence, the contributions of the first 

part of this dissertation are the design, implementation, and the analysis of the 

algorithmic complexity of four incremental centrality computation algorithms in which 

the accuracies of the centrality values are perfectly maintained (i.e., no approximations 

are employed) across multiple updates: 

• Incremental closeness centrality algorithm (Growing network updates Chapter 4.3) 

• Incremental closeness centrality algorithm (Shrinking network updates Chapter 4.4) 

• Incremental betweenness centrality algorithm (Growing network updates Chapter 5.3) 

• Incremental betweenness centrality algorithm (Shrinking network updates Chapter 5.4) 
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The second part of this dissertation focuses on potential extensions and 

applications of the above mentioned algorithms. For the extensions, the plan is to adapt 

working principles of k-centralities into incremental centrality algorithms listed above 

and propose a new set of algorithms that can be applied to very large networks. The k-

centralities approximate and speed up shortest path based centralities by only considering 

the first k-hop neighborhoods of nodes, instead of considering the shortest paths across 

the entire network [18]. As far as the applications go, one particular application is to 

demonstrate the use of streaming social centrality metrics in designing faster grouping 

(clustering) algorithms and analyzing over-time behavior and evolution of social agent 

and content based networks. The contributions for this part include the design of the 

following additional algorithms: 

• Incremental k-closeness centrality algorithm (Chapter 6.2) 

• Incremental k-betweenness centrality algorithm (Chapter 6.3)  

• Incremental edge betweenness centrality that handles shrinking network 

updates and incorporation of incremental edge betweenness centrality into the 

Girvan-Newman clustering algorithm [19]. (Chapter 6.5.1) 
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CHAPTER 2 BACKGROUND AND RELATED WORK  

 This chapter reviews research available in the current literature that is closely 

related to the work presented in this dissertation. First, background information on social 

centrality metrics is presented, followed by a review of research done on closeness and 

betweenness centrality metrics. Then, background information and literature review on 

incremental algorithms, dynamic all-pairs shortest path algorithms, and clustering 

algorithms are presented. 

2.1 SOCIAL NETWORK ANALYSIS AND CENTRALITY METRICS 

A social network (SN) is a social structure consisting of a group of people that are 

connected by various relationships such as friendship, family ties or common interests 

and beliefs. Social networks are traditionally modeled and analyzed as graphs where the 

social actors (i.e., people) are represented as nodes while the relationships between the 

people are represented by the links drawn between the nodes on these social network 

graphs. 

Research on social networks in the past 60 years or so has led to a wealth of 

findings about the structure and evolution of these networks and a host of metrics and 

tools for assessing, forecasting, and visualizing network behavior more generally. The 

three major mathematical underpinnings of social network methods are graph theory, 

statistical and probability theory, and algebraic models [1]. Historically, much of the 

relevant work in social networks analysis (SNA) was applied to assessing the behavioral 
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patterns and social interactions among human beings using graph theoretic metrics. SNA 

centrality measures focus on finding the key actors in a social network. To date, hundreds 

of social centrality metrics have been designed and discussed in the literature for 

evaluating the prominence/importance of the actors in the network from different aspects 

[20] [21] [1] [22] [23] [24].  

However, a significant number of publications analyzing social networks consider 

only a handful of metrics: degree centrality, eigenvector centrality [25], closeness 

centrality [26], and betweenness centrality [27] [28]. Out of these four metrics, the former 

two focus on the connections of nodes while the latter two focus on the overall topology 

and the shortest path in the networks. Table 2 lists the meanings and common usages of 

these key metrics. Depending on the research question at hand, one centrality metric 

might become more important than the others because each metric provides insights into 

different aspects of the networks and has different implications and usages.  

Table 2 - Common centrality metrics used in social network analysis. 

Measure Definition Common Usage 
Degree Centrality Node with most 

connections 
Identifying sources for intel 

Betweenness 
Centrality 

Connection between 
disconnected groups 

Reducing/controlling/influencing 
activity by disconnecting groups 

Closeness Centrality Node that is closest to all 
other nodes 

Information spreading and rapid 
access to information 

Eigenvector Centrality Nodes connected to most 
highly connected nodes 

Identifying who can mobilize 
others in the network 

 
Degree based metrics consider the number of connections a node has. In binary 

networks, degree centrality of a node is simply defined as the number of its connections 

while in weighted networks this definition is extended to include the total weight of the 
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immediate connections a node has. Another degree based centrality measure, spectral 

centrality, is a recursively-calculated metric, which defines an actor/node as prominent if 

another prominent actor points to it. Eigenvector centrality is another metric used for key 

actor identification, which defines the centrality value of a node to be proportional to the 

sum of centrality values of all its neighbors. In other words, it is used for finding the node 

that is most connected to other highly connected nodes, indicating a stronger capital. 

Unlike degree-based metrics, geodesic distance based metrics focus on the 

network topology, the connections, and the distances between the nodes. Closeness 

centrality of a node evaluates its information propagation efficiency. For any node-X, 

closeness centrality is defined as the inverse of the sum of distances from node-X to all 

other actors in the network. Betweenness centrality is defined as the number/fraction of 

the best (shortest) paths that pass through a node-X. For instance, in a clustered network, 

a node that is high in betweenness is likely to be a node that connects two clusters. 

Another centrality metric derived from betweenness centrality is bridging centrality. 

Bridging centrality of a node-X is calculated by multiplying its betweenness centrality 

value by a bridging coefficient such that it indicates how well the node-X is positioned 

among nodes with high degree centralities. 

The initial design point for all of these centrality metrics, including betweenness, 

was static snapshots of small networks (e.g. 20-30 nodes) [27]. And the limiting 

algorithmic complexities and computation times of centrality measures were not a 

significant problem for such small, static networks. However, restricting the 

representation of social networks to static snapshots has been shown to result in 
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substantial information loss in several studies, especially when the dynamic nature of 

social relationships is of interest [29]. 

Currently, there is an increasing trend toward dynamic network analysis (DNA). 

Dynamic network analysis is useful for analyzing social networks that evolve over time 

and serves as a response to the concerns about the limitations of analyses performed on 

static snapshots of social networks. However, keeping the costly-to-compute centrality 

metrics up to date in dynamic networks that rapidly change/grow due to several 

thousands of updates becomes almost infeasibly costly from a computation time 

perspective. This is because many important centrality metrics such as betweenness 

require re-solving the all-pairs shortest path problem with every update/change made to 

the network. Expensive computation times inhibit many social network researchers from 

analyzing over-time variations of centrality values on time-variant networks. To maintain 

solutions to costly problems on continually changing networks, we propose using 

incremental algorithms that update the solution to a problem after an incremental change 

is made to the network structure [30]. Next, we discuss some of the research on dynamic 

network analysis, then review the literature on the centrality metrics for which 

incremental algorithms are discussed in this dissertation in more detail. 

2.1.1 Background on Dynamic Network Analysis 

Relations in social networks are often dynamic and changing over time. 

Longitudinal networks are studied by researchers in several fields (e.g. sociologists, 

anthropologists, computer scientists, statistical physicists, etc.) to understand network 
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evolution, belief formation, friendship formation, diffusion of innovations, acquisition and 

dissipation of power, spread of deviant behavior, emergence and evolution of communities 

etc. [31]. One traditional way of collecting longitudinal network data for analysis is to 

repeat the same information collection method (e.g. survey) over the same community at 

different points in time which results in two or more snapshots of the same network. 

Early research on longitudinal network analysis dates back to 1960’s. One of the first 

studies in longitudinal networks is that of Newcomb’s where he studied the evolution of 

friendship in US college fraternity, and published his research in 1961 [32]. Another 

famous example from 1969 is the Sampson’s monastery [33], where Sampson stayed 

with a group of monks as an experimenter on vision and collected data at three different 

points in time to capture changes within the group over time. With recording/archiving of 

more data, it is also possible to have detailed information certain events (e.g. birth/death) 

for several time periods (e.g. generations). 

Recently, automated online data collection techniques have brought a different 

dimension to dynamic network analysis by enabling collecting over-time data that has 

more than a handful of snapshots. In the ideal case, we would prefer to collect and 

analyze streaming network data where each update is recorded with a timestamp as soon 

as it takes place, which are the types of datasets that are under investigation in this 

dissertation. 

While data collection is one aspect of dynamic network analysis that is different 

than conventional social network analysis, the analyses that can be performed, 

information to be extracted or inferred, and the scope of questions one can find answers 
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to are different as well. Dynamic network analysis provides a means for seeking answers 

to research questions from a broader perspective, through time. A few, questions that one 

can find answers to using dynamic network analysis over social network analysis can be 

listed as follows: 

• How do different contact sequences and interactions among the agents in a dynamic 

network influence dynamical processes? 

• How do the distributions of links in dynamic networks change over time? 

• How to control diffusion, spreading, contact, information, knowledge, money, and 

resource flow processes for networks over time? 

• How do the influence, prestige, and prominence of agents in a network change over 

time?  

The last one of these questions can be answered by investigation of centralities 

over time. This dissertation primarily designs new incremental algorithms for computing 

two of the most commonly used shortest path based centrality measures (e.g. 

betweenness centrality and closeness centrality), which are discussed in detail in the 

following sections. 

2.1.2 Literature Review on Closeness Centrality 

Closeness centrality is a commonly used social centrality metric and it can have 

different uses/meanings in different contexts. Closeness centrality is defined as the 

inverse of the sum of distance from a node x to all other nodes in the network. Closeness 

centrality of a social actor describes the actor’s efficiency for information propagation 
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across the entire network. In other words, social actors with high closeness centrality 

values are considered to be efficient at making contact with others in the network. High 

closeness centrality is also regarded as representing high potential for independent 

communication.  

In the context of technological networks, such as wireless networks, closeness 

centrality identifies nodes that have rapid access to information (e.g. nodes that are close 

to many other nodes on average). Since closeness centrality is inversely proportional to 

the sum of the distances to all other nodes, it also provides an estimate of how long it will 

take information to spread from a certain node to all other nodes in a network. Hence, it 

can also be used as a performance measure in technological networks [4]. For instance in 

[3], a channel access scheduling scheme (a resource allocation mechanism) is proposed 

where the nodes with higher closeness centralities are assigned a higher number of slots. 

In such a mechanism, the nodes that are “close” to all other nodes in the network (i.e. the 

nodes with high closeness centrality) get to deliver the majority of the messages, thus the 

end-to-end throughput the end users in the network experience is improved. Closeness 

centrality has also been used as a malware containment strategy in cellular mobile 

networks [34]. Nodes with high closeness centrality are used to dispatch rapid patches so 

that cellular resource consumption and associated costs due to malware spread are 

reduced. 

As another example, in [35], the authors discuss the use of closeness centrality for 

policy-making networks (e.g. drug policy making). In the context of policy-making 
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networks, the actors that have information that is crucial to all other actors in the network 

are expected to have high closeness centrality for the network to function effectively.  

An interesting observation about closeness centrality, that comes from research on 

citation networks, is that the papers that are high in closeness centrality are usually 

relatively recent papers, which have rapid access to information in other papers. Since 

citation networks are directed and acyclic, older papers cannot cite newer papers. In other 

words, the older papers do not have paths to access more recent papers while they are 

accessible by other, newer papers. Therefore, the distance from a newer to older paper is 

defined (e.g. a real number) while the distance from an older to a newer paper is 

undefined (e.g. set to infinity). Hence, closeness values of newer papers will be 

considerably higher than those of older papers and closeness rankings have been shown 

to be useful for identifying more recent papers when the citation network is provided 

without publication dates [15]. 

As we mentioned earlier, closeness centrality is one of the most commonly used 

metrics in social network analysis. Hence, it should be understood that there are several 

others papers that employ closeness centrality and that the preceding discussion simply 

provides a few examples of the applications of closeness centrality in social network 

analysis. There exist other studies that discuss the extensions of closeness centrality 

metrics for dynamic, complex networks [36]. There has also been research on new 

methods to select top-k nodes in terms of closeness in large-scale networks [37], 

algorithms for approximation of closeness [38], the robustness of closeness centrality in 
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terms of accuracy in the case of missing data [39], and incremental algorithms for 

network management and analysis based on closeness centrality [40]. 

2.1.3 Literature Review on Betweenness Centrality 

In the field of social network analysis, betweenness centrality is one of the most 

commonly used metrics. The original argument and the algorithm for calculating 

betweenness centrality were introduced by Freeman [27]. Currently, the majority of the 

implementations for betweenness centrality use Brandes’ algorithm or a variant of it [28]. 

Betweenness is critical in part because actors high in betweenness have social power to 

get things done [25], in scientific networks they are likely to be interdisciplinary [41] and 

have high mobility [15], and the removal of high betweenness nodes is likely to cripple 

network capability more than the removal of other nodes; e.g., nodes with high degree 

centrality [42]. Betweenness is often highly correlated with other network metrics; 

however, the degree of correlation depends on the network topology such that their 

correlation is lower in fractal networks [43]. Betweenness, however, is a fragile metric 

[44] that changes easily as the network structure changes [45]. 

 Therefore, the number of studies that focus on betweenness is significant.  A 

group of studies on betweenness centrality focus on its variants. One such work is that of 

Everett and Borgatti’s where the authors discuss betweenness centrality of the ego in an 

ego network [46]. Another work that specifically focuses on the variants of betweenness 

centrality is [47]. In [47], Brandes discusses several ways of generalizing betweenness 
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centrality including scaling of values with respect to length, inclusion of end-points in the 

path, computation of edge betweenness, group betweenness, and many others. 

 Another set of variants of betweenness centrality focus on incorporating over-time 

information into the definition of betweenness for dynamically changing graphs. To give 

a few examples, [48] proposes a model that reduces time-varying interactions in a 

network to directed flows on a static network to compute traditional, static centrality 

measures. On the other hand, [49] focuses on the general class of path-based metrics and 

introduces a new way of computing centrality measures by integrating time in the form of 

memory retention (i.e., aging/decaying of information over time) and accounting for the 

length of retention as well. The authors of [50] have a broader perspective, and propose 

temporal closeness and betweenness centrality metrics, which incorporate time into the 

computation of these metrics based on the temporal network model that is previously 

proposed in [51]. The temporal network idea in these two papers is based on reachability 

concept which emphasizes that not all nodes are reachable to one another right from the 

start as an aggregate form of the network suggests; they become reachable over time with 

the inclusion of new edges. In [52], the authors focus specifically on betweenness 

centrality and propose three different methods of incorporating time into the computation 

of betweenness centrality via explicit time-based ordering of edges. Similarly, [53] also 

uses time ordering to analyze centralities of nodes on complete worldwide airport 

transportation network, which results in design of new centrality measures (e.g. time-

dependent transfer centrality and time-dependent connection centrality) that incorporate 

sequence of event arrivals and time orderings in centrality measures.  
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  In contrast to these studies we do not change or extend the definition of 

betweenness; we rather focus on faster computation methods for the original betweenness 

metric in dynamically evolving networks. Another very recent study focuses on speeding 

up the exact computation of betweenness centrality using two different heuristics [54]. 

The first heuristic is used for identifying and contracting the structurally equivalent nodes 

that have the same centrality and the same contribution to the centrality of others. The 

second heuristic used focuses on partitioning the network into several smaller 

components and computing betweenness centrality on them. Although [54] focuses on 

speeding up betweenness computation, the suggested heuristics are geared towards 

handling static network snapshots; and does not focus on maintaining betweenness 

centrality across several network updates as it is done in this dissertation. In [55], the 

authors present a streaming betweenness algorithm for the fast computation of 

betweenness centrality in the case of edge insertions for binary networks. The main idea 

of [55] is based on modifying the breadth-first search tree that is built as a part of the 

shortest path search process in binary networks when computing betweenness centrality. 

In addition to binary networks, the algorithms proposed in this dissertation cover 

weighted networks while providing support for a wide variety of network update types 

including edge/node insertions and removals as well as edge cost modifications. 

Another approach that is closely related to our work is QuBE that focuses on 

quickly updating betweenness centralities without computing all-pairs shortest paths in 

the network [56]. The idea of QuBE depends on estimating the nodes whose betweenness 

values might change due to an update in a network and quickly restoring them while 
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avoiding computation of all-pairs shortest paths. Further comparisons against the QuBE 

algorithm are provided in Chapter 8.4.2.2.  

Other than the studies discussed so far, there are also other studies that investigate 

how betweenness centrality changes with time varying networks instead of proposing a 

new metric or computation method for it. For instance, in [45], the authors investigate 

how betweenness values change when the density and the structure of the network 

change dynamically.  

Betweenness is also commonly discussed within the concept of vulnerability of 

networks to different attacks since it is useful for identifying the nodes that might 

partition the network when they are removed. One such work, [42], notes that removal of 

the nodes with the highest betweenness values (i.e. remove the node with the highest 

betweenness value, recalculate betweenness values on the remaining network) is more 

harmful than the betweenness or degree centrality values computed on the initial, 

complete form of the network. 

There are also other papers on betweenness centrality discussing its properties 

from different perspectives. For instance, [41] investigates the meaning of betweenness 

centrality in the context of scientific networks and suggests that betweenness centrality is 

actually a good indicator of interdisciplinarity for authors that publish in different fields. 

In [15], it is further discussed that in scientific networks betweenness centrality can also 

indicate high-mobility for authors that have co-authors from different affiliations they 

have visited; connecting/bridging different communities. Apart from these studies, 

betweenness centrality has also become a topic of interest for more mathematical or 
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statistical physics based research such as [43], where the authors examine the correlation 

between degree and betweenness centrality and show that the correlation between these 

centrality measures is weaker in fractal models compared to non-fractal models.  

 Another line of research involves examining the studies done on the approximation 

of betweenness centrality. For instance, [57] approximates betweenness centrality by 

performing adaptive sampling that selects a number of source (seed) nodes to calculate 

the shortest paths from. As another example, [58], discusses scaling the betweenness 

contributions of nodes’ with respect to their distance from the sampled source (seed) 

nodes. In [59], a new metric called k-path centrality is defined which relies on the 

assumption that communication messages travel across k paths at most and a randomized 

algorithm for its computation is proposed.  

Approximation techniques are important for providing important tradeoffs 

between performance and accuracy and they are very important for larger networks. 

Hence, approximation algorithms for closeness and betweenness centralities are 

examined further in Chapter 6.  

 There are a number of techniques proposed for parallelization of betweenness 

centrality [60] [61] [62] [63] [64]. Out of these papers, [60] by Bader and Madduri is the 

one that proposed the first parallel implementations of betweenness centrality along with 

other parallel algorithms for the commonly used social network analysis techniques and 

centrality metrics. In [61], Madduri et al. propose a lock-free parallel algorithm for 

betweenness centrality and evaluate their algorithm on massive complex networks. The 

authors of [61] also provide optimized implementations designed for the massively 
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multithreaded Cray XMT system with the Threadstorm processor. In [62], the authors 

propose a parallel algorithm for computing betweenness centrality and the novelty of 

their algorithm lies within the handling of access conflicts for a CREW PRAM algorithm. 

CREW PRAM stands for Concurrent Read Exclusive Write (CREW) Parallel Random 

Access Machine (PRAM) where simultaneous reads of the same memory cell are allowed 

while only one process can write to an individual memory cell. The authors of [63] note 

the problem with the additional space requirements of the betweenness algorithm which 

requires quadratic space when parallelization is performed over the vertex set of the 

standard betweenness algorithm (Brandes’ algorithm [28]) and proposes a solution to 

reduce the space consumption of the parallel algorithm to O(|V| + |E|). The solution 

proposed in [63] is designed to work with Concurrent Read Concurrent Write (CRCW) 

PRAM systems where simultaneous reads and writes on the same memory cell are 

allowed. More recently, there is also work on computing betweenness centrality on 

systems such as IBM Cyclops64 [64] and GPUs [65]. There are also papers on specific 

applications of parallelized betweenness centrality computations on complex networks 

such as the US power grid and resilience and response in the case of an emergency [66]. 

2.2 INCREMENTAL ALGORITHMS 

 An incremental algorithm is an algorithm that updates the solution to a problem 

after an incremental change is made on its input [30]. Incremental algorithms arrive at 

solutions for computationally complex problems in an efficient manner without 

recomputing everything from scratch by preserving substantial information from prior 
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computations. They present a tradeoff between incremental computation time and 

additional storage requirements for intermediate results.  

An incremental algorithm is different from its static counterpart that performs all 

computations from scratch. The application of an incremental algorithm is as follows. At 

one point, an initial run is performed by a non-incremental algorithm that performs the 

desired computation from scratch. Despite their limited use in social network analysis so 

far, incremental algorithms have been used in several different areas: computer aided 

design, artificial intelligence, programming languages, database maintenance and data 

analysis, networked systems, and graph based computations. Next, I briefly review their 

uses in these above-mentioned areas to give a better understanding of what incremental 

algorithms mean to researchers from different fields. 

Incremental computation and optimization is very important for VLSI CAD tool 

development [67] [68]. For instance, assume that a researcher is building a circuit and 

changing the layout structure by adding new connections between two different blocks, 

which in turn changes the shortest paths and the associated wiring costs and delays at 

every step. In such a case, incremental algorithms, rather than computing the shortest 

paths from scratch, are used to provide reduced computation time for a smoother human-

computer interaction for the end user. Circuit-related incremental algorithms have been 

the topic of several research studies [68] [69] [70].  

In the early days of artificial intelligence, incremental algorithms have been used 

for truth maintenance systems [71] [72]. A truth maintenance system (TMS) is a problem 

solver subsystem for reasoning programs and it makes inferences based on the reasons 
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and beliefs that are recorded and maintained in the system. A TMS also allows agents to 

choose their actions based on their beliefs and assumptions and to revise those beliefs and 

assumptions when the assumptions held by the system contradict the discoveries made 

[71]. More recently, incremental algorithms are increasingly used for decision-making 

systems, especially in the field of robotics. To name a couple, various incremental 

algorithms have been proposed for deployment (i.e. using information on what has 

already been deployed when deploying a new instance) [73], or updating the solution 

after an incremental change is made on the training sample on learning procedures [74] 

[75].	
   

In the field of programming languages research, language processing algorithms 

for interactive of programming tools/systems, expression evaluation via function caching 

(memoization) [76], high-level programming language design [77], and the design of 

compilers that re-compile the code after an incremental change or provide loop 

optimizations especially benefit from incremental algorithm design as they need to 

handle changes in the background triggered by small changes in the input [78]. The 

POPL’93 paper, [79], provides a thorough categorized bibliography on incremental 

computation examples covering the literature until the date of its publication going 

beyond the field of programming languages. As an example to more recent studies in this 

field, in [80], the authors build on work on dynamic dependence graphs (e.g. [81], [82]) 

and discuss combining memorization with the computation of dynamic dependence 

graphs and present experimental performance results. 
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In the field of database management and data analysis, there are a number of 

problems that are discussed that need and benefit from solutions based on incremental 

algorithms. Algorithms for computing database queries incrementally are called 

incremental view maintenance techniques and such techniques have been studied in the 

context of propagation of changes in both relational [83] and nested data collections [84] 

[85] [86], mostly focusing on object additions and deletions, leaving attribute 

modifications out. Later, incremental computation of complex queries has been studied 

for object-oriented database (OODB) query languages that allow construction of 

composite objects and nested collections [87] [88] [89]. 

Other examples of incremental algorithms emerge from networked systems such 

as dynamic routing over the Internet [90], and analysis/monitoring of network anomalies 

or user pattern where new data arrives continuously. Analysis/monitoring of such data is 

usually performed in a sliding window fashion where a full recomputation is needed 

across the entire window every time the window slides. Sliding window analysis 

techniques can be improved by using incremental algorithms that efficiently update the 

output by reusing the old sub-computations, adding new data, and dropping the oldest 

data. In a recent study, [91], the authors discuss the performance of the incremental 

sliding-window analysis including URL propagation on Twitter and the 95th percentile 

distance between users using the data collected by Glasnost measurement servers [92].  

 There are also many other incremental algorithm studies done in the field of 

graph theory and algorithms, some of them date back to 1970s [93]. More recent 

studies done in this field focus on computing solutions for graph-based problems in 
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dynamically growing graphs. One such example is [94] where the authors propose an 

incremental algorithm for graph pattern matching with a focus on subgraph isomorphism 

that computes changes to the matches in response to the updates on large-scale graphs. 

Although pattern matching on graphs is one of the topics that are actively researched 

these days, I should point out that this is an active topic for almost thirty to forty years 

[95] and the use of incremental algorithms in this context has been discussed since early 

1980s [96]. Some of the other graph problems incremental algorithms are used include 

online updating of minimum spanning trees [97] [98], graph connectivity [99] [100], and 

maintenance of transitive closures and transitivity [101]. 

Although incremental algorithms are commonly used in other research fields, they 

are relatively under-explored in the field of social network analysis. This dissertation 

targets the problem of rapidly computing closeness and betweenness centralities of nodes 

for each snapshot of a dynamically updated network. In our case, the incremental 

algorithms use information from earlier computations such that the changes in the input 

(e.g. network structure) are reflected on the output values (e.g. centrality values) to 

handle various network updates such as edge cost modifications (in the case of weighted 

networks), node/edge insertions, and node/edge deletions. The benefit of an incremental 

algorithm is that by being able to build on prior computations, an incremental algorithm 

is able to perform early pruning and update only the affected parts of the network while 

avoiding recomputation to the extent possible.  
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2.3 DYNAMIC ALL-PAIRS SHORTEST PATH ALGORITHMS 

  The second set of studies related to our research is the set of studies on dynamic 

shortest path computations. As noted earlier, the computations of closeness and 

betweenness centrality are tightly coupled with solving the all-pairs shortest paths 

problem. In the literature, there are many different techniques proposed for solving the 

all-pairs shortest paths problem dynamically [102] [103] [104] [105]. However, some of 

these techniques come with a number of restrictions. For instance, [103] solves the all-

pairs shortest paths problem in networks that have positive integer edge costs that are less 

than a certain number, b, which is a serious limitation for networks whose edges are 

positive real valued. Another algorithm, the algorithm of Demetrescu and Italiano [102], 

depend on the notions of locally shortest paths and locally historical paths. A path is a 

locally shortest path if the paths obtained by deleting its first or last edge on the path are 

both shortest paths. According to this notion, empty paths and edges are considered to be 

locally shortest paths. While a shortest path is a locally shortest path by definition, a 

locally shortest path may not necessarily be a shortest path. A locally historic path is a 

path that has been identified as a shortest path at some point and has not been modified 

since then. The main idea is to maintain dynamically the set of locally historical paths 

including the shortest paths and the locally shortest paths as special cases. 

  In this dissertation, the Ramalingam and Reps dynamic all-pairs shortest path 

algorithm [104] is used as a basic building block for a number of reasons. First, the 

Ramalingam and Reps algorithm provides an easy to understand framework and clearly 
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distinguish between different network update types (e.g. growing versus shrinking 

network updates). Second, the Ramalingam and Reps algorithm is one of the most 

commonly used dynamic all-pairs shortest paths algorithms, and has been deployed 

practical industrial applications. For instance, the dynamic shortest path algorithms 

developed by Ramalingam and Reps have been used by AT&T to improve the 

performance of Open Shortest Path First (OSPF) [106], the most commonly used intra-

domain routing protocol on the Internet [107]. Third, it has good performance compared 

to other dynamic all-pair shortest path algorithms available in the literature. In 2006, 

Demetrescu and Italiano have published a study that performs an experimental analysis of 

the dynamic all-pairs shortest paths algorithms available in the literature [108]. As it has 

also been pointed out in Demetrescu and Italiano’s paper [108], the Ramalingam and 

Reps algorithm performs quite well on sparse, real-life networks and the compute times 

of Ramalingam and Reps’ algorithm and Demetrescu and Italiano’s algorithm are quite 

close.  

  The underlying computing platform plays a role in determining which dynamic 

all-pairs shortest path algorithm performs better. In experiments done with real life 

networks (presented in [108]), the Ramalingam and Reps algorithm has the lowest or one 

of the lowest compute times among all the dynamic all-pairs shortest paths algorithms 

compared in that paper. The authors state that Demetrescu and Italiano’s algorithm’s 

performance gets better with the increased cache size while the Reps and Ramalingam 

algorithm is likely to become faster as the number of nodes increases because 

Demetrescu and Italiano’s algorithm maintains more global structures and requires more 
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memory while the Ramalingam and Reps algorithm requires less space and exhibits 

better locality in the memory access pattern. Since supporting an increasing number of 

nodes is important for dynamically growing social networks and it has overall good 

performance, we have decided to use the Ramalingam and Reps dynamic all-pairs 

shortest path algorithm as a building block in the design of incremental centrality 

algorithms. 

2.3.1 Ramalingam and Reps Dynamic All Pairs Shortest Paths Algorithm 

 The incremental centrality algorithms proposed in this dissertation build on the 

Ramalingam and Reps dynamic all pairs shortest path algorithm presented in [104]. 

Hence, the working principles and the underlying key ideas of the Ramalingam and Reps 

algorithm are briefly reviewed here. In [104], the authors start by posing the dynamic 

single sink shortest path problem where the shortest path tree into a single sink 

(destination) node is maintained across incremental updates. In this context, the shortest 

path tree represents the shortest paths from every possible source node into the sink node, 

and the sink node is a distinguished node v in a network G, the shortest paths to which are 

calculated. A source node is a node that is the origin/starting point of a path. The working 

principles of the incremental single sink shortest path algorithm is similar those of the 

Dijkstra’s algorithm [109]. Thus, the edges in the studied networks are expected to have 

positive edge costs. 

In the following sections of their technical report [104], the authors extend the 

ideas and the algorithms designed for the single source shortest path problem into a 
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solution for the dynamic all-pairs shortest path problem. Both single-sink and all-pairs 

shortest path algorithms depend on identifying the set of nodes that are affected by an 

incremental network update. In the all-pairs shortest paths algorithms, the sets of affected 

sink and affected source nodes are identified and the rest of the computations are 

performed on these reduced subsets, which are mostly much smaller than the entire 

network size. The incremental all-pairs shortest paths algorithm designed by Ramalingam 

and Reps have two distinct pieces: (i) deleting an edge and (ii) inserting an edge, and a 

separate algorithm is designed for each case. The algorithms for edge deletion are the 

DELETEEDGE (Algorithm-1) and the DELETEUPDATE (Algorithm-2) while the algorithms 

for edge insertion are the INSERTEDGE (Algorithm-3) and the INSERTUPDATE (Algorithm-

4). The entry point for execution is the INSERTEDGE algorithm when a new edge is 

inserted and the DELETEEDGE algorithm when an existing edge is removed. 

To process edge deletions, at a very high level, the idea is to look for affected 

nodes whose distances to a particular sink node have now increased and to update those 

distances accordingly. The proposed all-pairs shortest path algorithm idea depends on the 

solution for the single-sink shortest path problem: the same graph is traversed twice, once 

in forward direction, once in backward direction. When the edges are traversed in a 

backward fashion the sink nodes that are identified to be affected would actually be the 

affected source nodes if the graph were to be processed in a forward fashion in all 

directions. This is an attempt to restrict the traversal complexity, which may become 

unbounded if it were not forced stick with the shortest paths only, either processed 

forward or backward. Once the affected sink nodes are identified, then the algorithm 
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Algorithm–2: DELETEUPDATE (G, src, dest, z) 
1.   AffectedVertices ← ∅ 
2.   if there does not exist x ∈  Succ(src) such that SP(src, x, z) 
3.    Workset ← {src};  
4.    while Workset ≠ ∅ 
5.                u ← pop (Workset) 
6.                Add u to AffectedVertices 
7.                for x ∈  Pred(u) such that SP(x, u, z)  
8.                 if (all y ∈  Succ(x) such that SP(x, y, z) and y ∈  AffectedVertices) 
9.          push x into Workset 
10. PriorityQueue ← ∅ 
11. for a  ∈  AffectedVertices 
12.                minDst ←  min({C(a, b) + D(b, z) | {a →b} ∈ E(N) & b  ∉ AffectedVertices}, {∞}) 
13.                D(a, z) ← minDst 
14.                if D(a, z)  ≠ ∞ 
15.         Insert (PriorityQueue, a, D(a, z)) 
16. while PriorityQueue ≠ ∅  
17.         a  ←  extractMin(PriorityQueue) 
18.         for c ∈  Pred(a) such that C(c, a) + D(a, z) < D(c, z) 
19.                  D(c, z) ← C(c, a) + D(a, z)  
20.   if c ∈ PriorityQueue 
21.          DecreaseKey (PriorityQueue, c, D(c, z)) 
22.  else  
23.          Insert (PriorityQueue, c, D(c, z)) 
24.  return AffectedVertices 
 

attempts to find a new path to every sink node starting from the modified or removed 

edges head and tail nodes. This part of the problem is handled by the DELETEUPDATE 

algorithm (Algorithm-2). 

 

 

Algorithm–1:  DELETEEDGE (G, src, dest, c) 
1. C(src, dest) ← c;  𝐶!(dest, src) ← c 
2. AffectedSinks            ←    DELETEUPDATE (𝐺!, dest, src, src) 
3. AffectedSources   ←   DELETEUPDATE (G, src, dest, dest) 
4. for s ∈ AffectedSinks 
5.       DELETEUPDATE (G, src, dest, s) 
6. for s ∈ AffectedSources 
7.       DELETEUPDATE (𝐺!, dest, src, s) 
 



 37 

 

 

2.4 CLUSTERING ALGORITHMS 

This dissertation investigates clustering algorithms as one potential application area 

for the proposed incremental centrality algorithms. Clustering is defined as the process of 

organizing objects into groups whose members are similar in some way [110] [111]. 

Clustering is a very widely studied research area, and to date, several clustering 

algorithms have been proposed, which can be classified in various ways [112]. 

Algorithm–3: INSERTEDGE (G, src, dest, c) 
1. C (src, dest) ← c;   𝐶!(dest, src) ← c 
2. AffectedSinks            ←   INSERTUPDATE (𝐺!, dest, src, src) 
3. AffectedSources  ←   INSERTUPDATE (G, src, dest, dest) 
4. for s ∈ AffectedSinks 
5.       INSERTUPDATE (G, src, dest, s) 
6. for s ∈ AffectedSources 
7.       INSERTUPDATE (𝐺!, dest, src, s) 
 

Algorithm–4:  INSERTUPDATE (G, src, dest, z) 
1.   Workset ← {src →  dest} 
2.   VisitedVertices  ← src 
3.   AffectedVertices  ← ∅ 
4.   while Workset ≠ ∅ 
5.         {x → y} ← pop (Workset) 
6.         if C (x, y) + D (y, z) < D (x, z) 
7.               Add x to AffectedVertices 
8.       D (x, z) ← C (x, y) + D (y, z) 
9.       for u ∈ Pred(x)  
10.              if SP (u, x, src) and u ∉ VisitedVertices  
11.                         push {u → x} into Workset 
12.                    Insert u into VisitedVertices 
13.   return AffectedVertices 
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One plausible way of classifying clustering algorithms is to consider how 

different groups are formed: partitional or hierarchical.  

Partitional clustering algorithms (e.g. k-means, DBSCAN [113]) produce 

unnested grouping, which simply divides data into several groups based on a clustering 

criterion. These kinds of algorithms usually try to minimize a cost function or optimality 

criteria where a cost is associated to each cluster instance. Some of these algorithms are 

probabilistic where the input is a number of observations from a set of k unknown 

distributions. Each data point is assumed to belong to a single distribution and several 

efficient Expectation-Maximization schemes exist to perform the optimization iteratively 

[114]. Due to its simplicity, the k-means algorithm is one of the first clustering algorithms 

that were proposed. In the k-means algorithm, each point is assigned to one of the k 

clusters initially. Then, the center of each cluster is replaced by the mean of that cluster. 

These two steps are repeated until convergence. A point is assigned to a cluster that is 

close to it in terms of the distance function that is being used (e.g. Euclidian distance). 

Although the idea is simple, the outcome is very much dependent on the distance 

function (Euclidian distance or some other specially defined function), and can get stuck 

in local minima, which is an effect of the sensitivity to the initial assignments. In 

addition, obtaining meaningful clusters with such algorithms usually involves 

assumptions and/or prior knowledge about the data to assign correct parameters for the 

algorithm of choice [115]. 

On the other hand, hierarchical clustering algorithms produce dendrograms by 

splitting or merging groups based on similarity criteria. A dendrogram is a hierarchical 
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tree formed of nested series of partitions. Hierarchical clustering algorithms can be 

further grouped as agglomerative and divisive clustering algorithms. Agglomerative 

clustering algorithms form clusters by merging subgroups (e.g. single link clustering 

[116], group-averaging clustering, complete link clustering [117] [118]). In 

agglomerative clustering, initially, each object is a unique cluster on its own and the 

closest clusters are successively merged in a bottom-up fashion until a single cluster 

remains and the output is usually represented in the form of a dendrogram. In contrast, 

divisive clustering algorithms form a dendrogram by splitting larger groups into smaller 

groups in a top-down fashion (e.g. Girvan-Newman [19] [119], DIVCLUST-T [120], 

DHSCAN [121]). The divisive clustering algorithms start with one, all-inclusive cluster 

and keep splitting until only singleton clusters of individual points remain. The 

differences between different divisive algorithms stem from how the algorithms decide to 

split the clusters at each step and how the actual splitting is done [122].  

In addition to classifying them as partitional or hierarchical, it is also possible to 

categorize clustering algorithms in other ways. One plausible way of classifying 

clustering algorithms is to classify them based on their outputs. The output of a clustering 

algorithm can be (i) hard (strict) or (ii) fuzzy (overlapping) clusters. In strict partitioning 

algorithms, an object is assigned to only one cluster [123]. In fuzzy clustering, objects 

have varying degrees of membership in different groups and can be members of several 

of different clusters to different extents. Hence, an object is allowed to belong to multiple 

clusters with certain degrees of membership [124]. Given the additional computations 

required for calculating the degrees of memberships for each object, fuzzy clustering 
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algorithms are computationally more complex and incur higher overhead compared to 

their hard (strict) clustering counterparts. Fuzzy clustering algorithms are particularly 

useful when the boundaries among different clusters in the data are not well defined and 

separated. Fuzzy clustering algorithms also enable the discovery of potentially more 

sophisticated relationships among objects and the clusters they belong to. 

To date, hundreds of clustering algorithms have been proposed. Herein, we only 

briefly review how this huge body of work can be categorized at a very high level. The 

references regarding the literature on clustering algorithms have been collected in a 

number of survey papers and books [111] [112] [115] [122] [123] [125].  

One algorithm of interest for this dissertation is the Girvan-Newman clustering 

algorithm [19]. The Girvan-Newman clustering algorithm is a hierarchical, divisive 

clustering algorithm that removes the edges in a graph based on the betweenness values 

of the edges. Chapter 6.5.1 discusses the details of the Girvan-Newman clustering 

algorithm and the proposed variations of it available in the literature, along with the 

modifications proposed to make it work with the incremental centrality algorithms 

proposed in this dissertation. 
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CHAPTER 3 ALGORITHMIC FRAMEWORK AND NOTATION 

3.1 NETWORK TYPES 

The algorithms proposed in this dissertation are designed to work on single-mode, 

dynamic networks with positive edge weights/costs, including directed/undirected and 

binary/weighted networks. The algorithms proposed in this dissertation have similar 

working principles to those underlying Dijkstra’s algorithm so they are not designed to 

handle negative edge costs.  

Undirected (bidirectional) networks model relationships that are mutually 

maintained.  Undirected (bidirectional) networks can be considered as a special case of 

directed networks. Undirected networks can be represented as directed networks where 

the edge {x − y} is represented using two directed edges {x → y} and {y → x}.  

Similarly, binary networks can also be represented as a special case of weighted 

networks where the existing edges’ weights/costs are always equal to 1. Therefore, 

directed, weighted networks provide the most generalized coverage of different network 

types. Thus, throughout this dissertation, the pseudocodes of algorithms designed to 

handle positively weighted, directed networks are presented. 

3.2 NETWORK UPDATE TYPES 

For each centrality metric examined in this dissertation, two sets of algorithms 

will be designed to handle two separate classes of network updates. Broadly, network 
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updates can be classified into two: (i) growing network updates, and (ii) shrinking 

network updates. These two classes of network updates interact differently with the 

structure of the shortest paths in the network. Growing network updates may result in 

shorter paths or new shortest paths of equivalent length while shrinking network updates 

may result in longer paths. Since they interact differently with the structure of the shortest 

paths in a network, there is need for designing two sub-algorithms for each centrality 

metric; one for each class of network updates. For both classes of network updates, the 

proposed algorithms focus on unit changes, handling each modification in the network 

one at a time. 

3.2.1 Growing Network Updates 

The first group of updates, the growing network updates, includes (i) inserting a 

new node, (ii) inserting a new edge, and (iii) decreasing the cost of an existing edge. We 

call them ‘growing network updates’ because networks usually grow by new 

agents/actors joining the network (e.g. inserting a new node), new relationships or 

interactions observed among agents in a network (e.g. inserting a new edge), or existing 

relationships becoming stronger due to increased communication/interaction levels.  

The growing network updates may result in new shorter paths or additional 

shortest paths of equal length. Consider the following scenario. Assume that a new edge 

{x→ y} is incrementally inserted into network G. However, the node x did not exist 

before this update. Then, this update will result in the insertion of a new node x and the 

discovery of a number of shortest path that start from node x and reach out to the rest of 
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the network through node y. Or, consider a different scenario. An edge {u→ z} is inserted 

where both nodes u and z existed before the update and node u was able to reach to node 

z following a number of edges. Now, with the insertion of the edge {u→ z}, there might 

be new paths that are shorter, using the edge that has just been inserted. Or, it may result 

in the formation of additional shortest paths without changing the shortest distance, just 

increasing the redundancy in terms of the number of available shortest paths. However, it 

is not necessarily guaranteed that growing network updates will result in new shortest 

paths. They may not have any effect on the shortest paths in the network and do not 

propagate far in the network. However, they cannot result in any longer paths. 

The growing network updates can be handled by a single algorithm. Insertion of a 

new node with no edges (e.g. an isolated node) has no effect on the shortest paths in the 

network, requiring no further action for the update. Insertion of a new node with one or 

more edges is equivalent to inserting one or more edges to or from the new node. 

Therefore, an algorithm designed to handle inserting new edges into a network can also 

be used to handle inserting new nodes into the network. Inserting a new edge can indeed 

be represented as a special case of the network update that decreases the cost of an edge. 

Because inserting a new edge corresponds to decreasing the cost of an edge from infinity 

to a real, positive value in the adjacency matrix. Hence, a single algorithm will be 

sufficient to cover all three sub-types of growing network updates. 
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3.2.2 Shrinking Network Updates 

Similar reasoning is also applicable for the second class of updates, the shrinking 

network updates. Shrinking network updates include (i) deleting an existing node, (ii) 

deleting an existing edge, and (iii) increasing the cost of an existing edge. We call them 

‘shrinking network updates’ because they are usually observed due to existing 

actors/agents departing from the network or broken/weakening relationships among 

agents.  

The shrinking network updates may result in longer paths or have no effect on the 

construction of the shortest paths in the network. However, they cannot result in any 

shorter paths. For instance, when a node x is removed from the network, the shortest 

paths to and from node x should be removed as well. Assume another scenario. There is 

an edge that has a very high edge cost and it is not used by any of the shortest paths in the 

network. When this edge is deleted, then there are no changes in the shortest paths. 

However, when an edge {x→ y} that lies on the shortest paths is removed or its cost 

increased, then we may need to look for new shortest paths (which will have to be longer 

than what we had before the network update) or eliminate the shortest paths that pass 

through {x→ y}. 

Handling the deletion of a node with several edges reduces to several edge 

deletions to handle the deletion of each edge emanating from and/or entering into the 

deleted node. Similarly, deleting an existing edge can be represented as a special case of 

the network update that increases the cost of an edge. This is because deleting an existing 

edge corresponds to increasing the cost of an edge from a real, positive value to infinity 
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in the adjacency matrix. Hence, a single algorithm will be sufficient to cover all three 

sub-types of shrinking network updates. 

3.3 NOTATION 

This section discusses the terminology and notation used in this dissertation. A 

directed network G consists of a set of nodes 𝑉(𝐺) and edges 𝐸(𝐺) where n is the 

number of nodes, and m is the number of edges in the network. The number of nodes and 

edges can also be represented as    |𝑉 𝐺 | and  |𝐸 𝐺 |, respectively. {x → y} ∈ 𝐸(𝐺) 

represents an edge directed from node x to node y, where x ∈ 𝑉(𝐺) is a predecessor of y, 

and y ∈ 𝑉(𝐺) is a successor of x. 𝑃𝑟𝑒𝑑(𝑥) is used to denote all predecessors of node x in 

the network 𝐺. 𝑃! 𝑦  denotes the set of predecessors of node y on the shortest paths from 

node x. In other words, 𝑃!(𝑦) is a subset of 𝑃𝑟𝑒𝑑(𝑦); 𝑃! 𝑦 ⊆ 𝑃𝑟𝑒𝑑(𝑦). 𝐺 is the 

transpose (reverse) of network 𝐺 where all edges in network 𝐺 are reversed in direction. 

Similar to network 𝐺, the set of edges, nodes, and edge costs are defined for network 𝐺 as 

well. 

In weighted networks, each edge e in the network has a weight 𝑊 𝑒  associated 

with the edge, which might denote the strength of the relationship between two actors in a 

social network. However, the weight of an edge should not be confused with the cost of 

the edge, 𝐶 𝑒 .  In this framework, the weight and cost of edges are interpreted as the 

inverse of one another such that having a stronger, closer relationship (i.e. higher weight) 

is inversely proportional to the effort to communicate (i.e. lower communication cost). 
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To be more precise, if the weight of an edge 𝑒 is 2 (𝑊 𝑒  = 2), then, the cost of 

traversing the edge e is 0.5 (𝐶 𝑒  = 0.5). We assume that C (𝑒) > 0 for  𝑒 ∈ 𝐸(𝐺). The 

length of a path Path is defined as the sum of the costs of the edges on Path. The distance 

from node 𝑥 to node 𝑦 is the length of the minimum length path from node 𝑥 to node 𝑦, 

which is also called the shortest path. 

The algorithms proposed in this dissertation maintain additional information. D(x, 

y) denotes the shortest distance while σ(x, y) denotes the number of distinct shortest paths 

from node x to node y. 𝐶! and 𝐶!   are vectors of length n, holding the betweenness and 

closeness centrality value of each node in the network, respectively. BE is a vector of 

length m that holds the edge betweenness values of the edges in the network. 

I(a, z) denotes the set of intermediate nodes on the shortest paths from node a to 

node z. Similarly, IE(a, z) denotes the set of edges that are on the shortest paths from node 

a to node z. SP(x, y, z) is true if the edge {x → y} ∈ 𝐸(𝐺) is on a shortest path from node 

x to node z, satisfying the two conditions: (i) there is a path from node x to node z (i.e. the 

distance from node x to node z is D(x, z) ≠ ∞) and (ii) D(x, z) = C(x, y) + D(y, z). SP is 

false otherwise [104].  

Finally, as a part of the related work, single source shortest path based algorithms, 

the Dijkstra’s algorithm [109] and the Brandes’ betweenness algorithm [28], are also 

discussed. In these algorithms, single source shortest distance information is stored in 

vector d. The d[v] holds the shortest distance to the destination node v where the source 

node is implicit. Similarly, P[v] indicates the predecessors on the shortest paths to the 

destination node v where the source node is again implicit.   
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CHAPTER 4 INCREMENTAL CLOSENESS ALGORITHM 

This chapter presents the design of an incremental algorithm for closeness 

centrality that handles various types of network updates including addition, removal, and 

modification of nodes and edges. Closeness centrality was selected as the focus for this 

chapter for two reasons. The definition of closeness centrality depends entirely on the 

shortest distances across all pairs of nodes in the network. The information on the 

shortest distance between pairs of nodes is inherently required by all shortest path based 

metrics. This means that the incremental methods discussed in this chapter are 

generalizable to other metrics with shortest path computation as their core speed 

limitation. Most other shortest path based centrality metrics are not as generic as 

closeness centrality and require additional information such as the number of shortest 

paths between nodes, the predecessors and/or successors on these shortest paths. 

Therefore, we start incremental algorithm design for social centrality measures with the 

closeness centrality. 

4.1 DEFINITION & COMPUTATION OF CLOSENESS CENTRALITY 

Closeness centrality 𝐶! 𝑥  of node 𝑥  is defined as the inverse of the sum of the 

distances between  𝑥  and all other nodes in the network as formulated in Eq(1). In Eq(1), 

𝐷 𝑥,𝑦  denotes the shortest distance from node x to node y. 

𝐶! 𝑥 = !
! !,!!!!

          Eq(1) 
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Figure 4 - Example network. 

Figure 4 depicts a sample network and we walk through the computation of the 

closeness centrality,  𝐶! , for each node in the network as laid out in Table 3. Each edge is 

label with its cost. In Table 3, each row represents a node x, and each column in the table 

represents a node to which node x’s shortest distance is calculated. The rightmost 

column, ‘Total’, represents the sum of all the defined distances from node x to all other 

nodes in the network. 

Table 3 - Computation of closeness centralities for the network depicted in Figure 4. 

                         Distance To  
Node 

1 2 3 4 Total 

1 0 1 2 3 6 

2 ∞ 0 1 2 3 

3 ∞ 2 0 1 3 

4 ∞ 1 2 0 3 
 

The closeness centrality,  𝐶! , of each node is calculated by inverting the total value 

at its corresponding row: 𝐶! 1 = 1/6;   𝐶! 2 = 1/3;   𝐶! 3 = 1/3;   and  𝐶! 4 = 1/3.   

Computation of closeness centrality can be performed by running an all-pair shortest 

paths algorithm (e.g. Floyd-Warshall algorithm [126]), which directly results in O(n3) 

time complexity.  
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Closeness centrality is traditionally best computed by running a single-source 

shortest path algorithm (e.g. the Dijkstra’s algorithm [109]) using each node as the source 

node once. At each iteration, the distances found are summed up to obtain the total 

distance from a given source node, and the total distance is then inverted to obtain the 

closeness value of the source node. In directed networks, the Dijkstra’s algorithm [109] 

has O((n + m)logn) complexity, where n denotes the number of nodes, m denotes the 

number of edges in the network. This complexity is achieved when a binary min-heap is 

used in the implementation of the priority queue. A faster run-time of O(m + nlogn) can 

be achieved by implementing the priority queue using a Fibonacci heap [127]. When 

Dijsktra’s algorithm is invoked using every node in the network once as the source node 

to compute all-pairs shortest paths, the overall complexity is O(mn + n2logn). The 

algorithmic complexities of both the Floyd-Warshall algorithm and the Dijkstra’s 

Algorithm–5: DIJKSTRA’S SINGLE-SOURCE SHORTEST PATH ALGORITHM (G, src) 
Input: A network G(V, E) and source node src. 
Output: Shortest path distances from src to all nodes n V(G) are computed.  
1. for v ∈ V(G) 
2.  d [v]← ∞ 
3. P[v]  ←  empty list 
4. d [s]  ← 0 
5. Q  ←  w  ∈  V(G) 
6. while Q ≠ ∅ 
7.  dequeue u ← Q 
8. if d [u] = ∞ 
9. break; 
10.  for neighbor v of u 
11.  alt ←  d [u] + C (u, v) 
12.  if alt <  d [v]  
13.  d [v] ← alt 
14. P[v]    ←  u 
15. decrease-key v in Q 
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algorithm are sufficiently high that they are very costly to re-execute for keeping 

centrality values up-to-date in dynamically changing, large networks every time the 

network is updated. Hence, this dissertation proposes incremental centrality algorithms to 

address this problem and avoid the cost of recomputing all the shortest paths from scratch 

for keeping centrality values up to date at every network update.  

4.2 INCREMENTAL CLOSENESS ALGORITHM: HIGH-LEVEL OVERVIEW 

To compute closeness centrality incrementally for streaming, dynamically 

changing social networks, the incremental all-pairs shortest paths algorithm proposed by 

Ramalingam and Reps [104] [105] is extended such that closeness values are 

incrementally updated in line with the changing shortest path distances in the network.  

 

Figure 5 - Abstract figure describing that the entire network is not affected by an update or 
modification done on the network. 

At each network update, there is only a subset of the network that is affected; the 

entire network is not affected. Assume that there are two nodes called 𝑠𝑟𝑐  and 𝑑𝑒𝑠𝑡  in a 

network, and an edge from 𝑠𝑟𝑐  to 𝑑𝑒𝑠𝑡, {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}, is inserted as shown in the 

abstract Figure 5.  

In such a scenario, there will be a subset of nodes that are affected by this change. 

For instance, with the insertion of the edge  {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}, the paths from node 𝑠𝑟𝑐 to 
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node 𝑑𝑒𝑠𝑡 and to some of the AffectedSinks might now be using a new path that passes 

through the newly inserted edge    {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}. Similarly, there will be a number of 

AffectedSource nodes that will now access the node 𝑑𝑒𝑠𝑡 and/or some of the 

AffectedSink nodes using the newly inserted edge  {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}. In most real life 

networks, we usually do not encounter edges that lie on all the shortest paths between all 

pairs of nodes and that are being continuously updated. Therefore, there is usually a fairly 

large portion of the network that is not necessarily affected by a network update. 

 

 
Figure 6 - Abstract figure describing how affected sink and source nodes are selected and how 
early pruning is done. 

Before moving on to the low level details of how the shortest path distances and 

closeness centrality values are updated, I describe (i) how affected sink and source nodes 

are identified and (ii) how early pruning of shortest paths is performed at a high level.  

Consider the case when the edge 𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡   is inserted to a network as 

depicted in Figure 6. Updating the shortest paths and closeness centralities starts with the 

inserted edge. The edges that are on the shortest paths are followed to ensure propagation 

of the shortest path updates as far as needed. In Figure 6, the edges that are drawn with 

solid lines are the edges on the shortest paths, and they are considered for subsequent 

processing later in the execution to see if the update should propagate any further. The 
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edges that are drawn with dashed lines are not on the shortest paths. The gray nodes that 

are accessible from those edges represent the nodes are not affected by the incoming 

network update; hence, they are pruned early from recomputation. The set of black nodes, 

which are either the head or the tail of one of the shortest path edges, form the set of the 

affected sink and source nodes.  

The following sections (Chapter 4.3 and Chapter 4.4) describe how to find the 

affected set of nodes, and how to update the closeness centralities while updating the 

shortest paths to/from the affected nodes.  

Finally, for generalization purposes, Figure 6 depicts a directed graph. However, 

an undirected graph can simply be handled by converting each undirected edge {a — b} 

into two edges in opposite directions {a→b} and {b→a}. 

4.3 INCREMENTAL CLOSENESS ALGORITHM: GROWING NETWORK 

UPDATES 

When a growing network update is issued (e.g. insertion of a new node/edge or 

edge cost decrease), the incremental computation of closeness centrality is handled by 

two sub-algorithms: INSERTCLOSENESS and INSERTUPDATECLOSENESS. The main entry 

point for execution is the INSERTCLOSENESS algorithm. 

4.3.1 INSERTCLOSENESS  

The INSERTCLOSENESS algorithm invokes the INSERTUPDATECLOSENESS algorithm 

several times to ensure identification of all affected source and sink nodes and to 
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maintain closeness centrality values and the shortest distances to/from those nodes 

accurately. INSERTCLOSENESS first invokes INSERTUPDATECLOSENESS to find the set of 

AffectedSink and AffectedSource nodes, passing once the source, once the destination of 

the inserted edge as a parameter to it (Lines 2–3 of INSERTCLOSENESS). Then, 

INSERTUPDATECLOSENESS is invoked for each AffectedSink and AffectedSource (Lines 4–

7 of INSERTCLOSENESS) to update the information required for accurate maintenance of 

closeness values in line with the newly discovered, shortest paths (e.g. D for the shortest 

distance between each node pair). 

 

4.3.2 INSERTUPDATECLOSENESS  

In the INSERTUPDATECLOSENESS algorithm, the list Workset holds the set of edges 

that should be processed to detect formation of new shortest paths or existing paths 

becoming shorter. Since closeness centrality is computed as the inverse of sum of the 

distances from a node to all other nodes in a network, the only information needed is the 

Algorithm–6: INSERTCLOSENESS (G, src, dest, c) 
Input: A network G(V, E) for which shortest distances between all nodes (D) and 
closeness values of all nodes (Cc) are pre-computed. A newly inserted or modified 
edge {src→dest}, with a cost of c where c < C (src, dest). 
Output: Network G(V, E) updated with the edge {src →  dest}. The shortest path 
distances between all nodes (D) and closeness values of all nodes (Cc) updated.  
1. C (src, dest) ← c;   𝐶!(dest, src) ← c 
2. AffectedSinks            ←   INSERTUPDATECLOSENESS (𝐺!, dest, src, src) 
3. AffectedSources  ←   INSERTUPDATECLOSENESS (G, src, dest, dest) 
4. for s ∈ AffectedSinks 
5.       INSERTUPDATECLOSENESS (G, src, dest, s) 
6. for s ∈ AffectedSources 
7.       INSERTUPDATECLOSENESS (𝐺!, dest, src, s) 
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shortest distances between all pairs of nodes (represented as D). It is not necessary to 

know the number of shortest paths, the predecessors on these shortest paths, etc.  

Assume that the shortest path distances and closeness centralities of nodes are 

already computed for a given network. In the case of a network update, we only need to 

update the closeness centrality of a node x if the shortest distance from node x to any 

other node in the network changes. We check for the changes in the shortest distances 

using the condition given in Line-6 of the INSERTUPDATECLOSENESS algorithm. If this 

condition holds, it means that there is now a path from node x to node z which is strictly 

shorter than the previously known shortest path from x to node z and this new path uses 

the edge {x → y}. Hence, the distance from node x to node z (i.e. D(x, z)) should be 

updated to hold the cost of this newly discovered path (i.e. C(x, y) + D(y, z)) (Line–14 of 

INSERTUPDATECLOSENESS).  

Before the previous value of D(x, z) is overridden with the new value, Lines 8–13 

of the INSERTUPDATECLOSENESS algorithm handle the accurate maintenance of closeness 

centrality. To update closeness centrality value of node x accurately, it is first necessary 

to check if node z was previously reachable from node x (e.g. D(x, z)  ≠ ∞). If it was 

reachable before, then it means the distance from node x to node z had a contribution to 

the closeness centrality of node x. In this case, it is necessary to first subtract the 

previously known shortest distance from node x to node z (e.g. D(x, z)), and then add the 

new shortest distance (e.g. C(x, y) + D(y, z)) to the sum of distances to all other nodes 

from node x. Otherwise, nothing is subtracted, only the new shortest distance is added to 
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the sum of distances from node x. Finally, closeness centrality of node x is obtained by 

inverting the total distance (INSERTUPDATECLOSENESS, Line 13). 

 
The final part of the INSERTUPDATECLOSENESS algorithm (Lines 15–17) performs 

checks for subsequent processing. This part of the algorithm also prunes the portions of 

the network that are not affected by the changes in the shortest paths. For each edge {u → 

x} entering into the affected node x, it is checked to see if the edge {u → x} is on the 

inspected shortest paths. If SP returns true, and if the other end of the edge (node u) is not 

Algorithm–7:  INSERTUPDATECLOSENESS (G, src, dest, z) 
Input: A network G(V, E), a newly inserted or modified edge {src  →  dest}, and an 
affected node z. 
Output: The shortest distances (D) to the affected node z are updated, and closeness 
values (Cc) of the sources of the updated distances are also updated. 
1.   Workset ← {src →  dest} 
2.   VisitedVertices  ← src 
3.   AffectedVertices  ← ∅ 
4.   while Workset ≠ ∅ 
5.         {x → y} ← pop (Workset) 
6.         if C (x, y) + D (y, z) < D (x, z) 
7.               Add x to AffectedVertices 
8.               TotDist(x) ← 1

𝐶𝑐(𝑥)
 

9.         if D (x, z)  ≠ ∞ 
10.              TotDist(x) ← TotDist(x) – D (x, z) + C (x, y) + D (y, z)  
11.       else 
12.            TotDist(x) ← TotDist(x) + C (x, y) + D (y, z)  
13.             𝐶!(𝑥) ←

!  
!"#$%&#(!)

 
14.       D (x, z) ← C (x, y) + D (y, z) 
15.       for u ∈ Pred(x)  
16.              if SP (u, x, src) and u ∉ VisitedVertices  
17.                         push {u → x} into Workset 
18.                    Insert u into VisitedVertices 
19.   return AffectedVertices 
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in the list of already processed nodes, the edge {u → x} is inserted in the set of edges that 

would need subsequent processing. 

4.4 INCREMENTAL CLOSENESS ALGORITHM: SHRINKING NETWORK 
UPDATES 

Next, the algorithms for incremental maintenance of closeness values in the case 

of shrinking network updates (e.g. node/edge deletions or edge cost increases) are 

presented. Following an approach similar to that of Chapter 4.3, shrinking network 

updates are handled by two sub-algorithms: DELETECLOSENESS (Algorithm–3) and 

DELETEUPDATECLOSENESS (Algorithm–4).  

4.4.1 DELETECLOSENESS  

The DELETECLOSENESS (Algorithm–8) follows a very similar logic to that of the 

INSERTCLOSENESS (Algorithm–6).  

 
After updating the edge cost matrix for the modified/deleted edge (Line-1 of 

Algorithm–8), the DELETEUPDATECLOSENESS algorithm (Algorithm–9) is invoked several 

Algorithm–8:  DELETECLOSENESS  (G, src, dest, c) 
Input: Network G(V, E) for which shortest distances between all nodes (D) and 
closeness values of all nodes (Cc) are pre-computed. A modified edge {src →  dest} 
with a cost of c, where c > C(src, dest).  
Output: Network G(V, E) updated with the changes on the edge {src →  dest}. The 
shortest distances between all nodes (D) and closeness values of all nodes (Cc) are 
also updated.  
1. C(src, dest) ← c;  𝐶!(dest, src) ← c 
2. AffectedSinks            ←    DELETEUPDATECLOSENESS (𝐺!, dest, src, src) 
3. AffectedSources   ←   DELETEUPDATECLOSENESS (G, src, dest, dest) 
4. for s ∈ AffectedSinks 
5.       DELETEUPDATECLOSENESS (G, src, dest, s) 
6. for s ∈ AffectedSources 
7.       DELETEUPDATECLOSENESS (𝐺!, dest, src, s) 
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times: first, to identify affected sink and source nodes and then, to process each affected 

sink and source node separately. 

4.4.2 DELETEUPDATECLOSENESS  

The DELETEUPDATECLOSENESS algorithm (Algorithm–9) has two distinct phases. 

The first phase of the DELETEUPDATECLOSENESS algorithm is between Lines 1–14 while 

the second phase is between Lines 15–39. The first phase of the algorithm identifies the 

set of affected nodes. In this case, affected nodes are the nodes whose shortest distances 

to node z (the third parameter of the algorithm) have increased. The shortest path distance 

from node x to node z may only increase if the network update is made on an edge which 

used to lie on all the shortest paths from node x to z and all the available shortest paths 

from node x to node z pass through the modified/deleted edge (i.e. when there is no 

alternative shortest paths which would still be shorter). The check for this condition is 

performed in Lines 12–13 of the DELETEUPDATECLOSENESS algorithm.  

The second phase of the DELETEUPDATECLOSENESS algorithm determines the new 

shortest path distance from all affected nodes identified in the first phase of the algorithm 

to node z (the third parameter of the algorithm). The new shortest path distances to node z 

are kept in a min-key priority queue where the priority of a node corresponds to its 

distance to node z.  

Nodes’ closeness centralities are also updated in the second phase of the 

DELETEUPDATECLOSENESS algorithm. To be more precise, closeness centrality values are 

updated whenever a D value is changed (Lines 18–25 and Lines 29–35). The idea behind 

the closeness updates is similar to the idea described in Chapter 4.3. However, in this 
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case additional checks are performed to avoid updating closeness values with a distance 

that was just set to infinity. Because, shrinking network updates might disconnect two 

nodes that were previously connected, causing the distance between them to be set as 

infinity. Line 19 of Algorithm–9 checks if node z was previously reachable from node a 

(e.g. D(a, z)  ≠ ∞). If it was reachable before, then it means the distance from node a to 

node z had a contribution to the closeness centrality of node x. In this case, it is necessary 

to first subtract the previously known shortest distance from node a to node z (e.g. D(a, 

z)). Next, we update D(a, z) with the new shortest path distance. Since the shortest paths 

in the network have changed due to a shrinking network update, it might have resulted in 

disconnecting the two nodes a and z, making node z unreachable from node a. In such a 

case, there would be no b nodes that would satisfy the condition on Line 17, and the 

value of minDst has to be chosen as infinity. Before, updating the total distance from 

node a and the closeness centrality of node a, we again need to check whether the current 

distance from node a to z, D(a, z), is infinity (Line 22 of DELETEUPDATECLOSENESS) and 

if it would contribute to the closeness centrality value of node a (Line 25 of 

DELETEUPDATECLOSENESS). 

In Line 24, node a is inserted into the priority queue that holds the distances to 

node z in ascending fashion. A node is inserted into this priority queue only if its shortest 

distance to node z is changed and if it is still able to reach to node z. 
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Algorithm–9:   DELETEUPDATECLOSENESS (G, src, dest, z) 
Input: Network G(V, E), deleted or modified edge {src→dest}, and an affected node z. 
Output: The shortest distances (D) to the affected node z are updated, and closeness values (Cc) of the 
sources of the updated distances are also updated. 
1.   AffectedVertices ← ∅ 
2.   atLeastOneExists ← false; 
3.   for x ∈  Succ(src) 
4.  if SP(src, x, z) 
5.        atLeastOneExists  ←  true; 
6.       break; 
7.   if atLeastOneExists = false 
8.    Workset ← {src};  
9.    while Workset ≠ ∅ 
10.                u ← pop (Workset) 
11.                Add u to AffectedVertices 
12.                for x ∈  Pred(u) such that SP(x, u, z)  
13.                 if (all y ∈  Succ(x) such that SP(x, y, z) and y ∈  AffectedVertices) 
14.          push x into Workset 
15. PriorityQueue ← ∅ 
16. for a  ∈  AffectedVertices 
17.                minDst ←  min({C(a, b) + D(b, z) | {a →b} ∈ E(N) & b  ∉ AffectedVertices}, {∞}) 
18.                TotDist(a) ← !

!!(!)
 

19.                if D(a, z)  ≠ ∞ 
20.              TotDist(a) ← TotDist(a) – D(a, z)  
21.                D(a, z) ← minDst 
22.                if D(a, z)  ≠ ∞ 
23.            TotDist(a) ←  TotDist(a) + D(a, z) 
24.         Insert (PriorityQueue, a, D(a, z)) 
25.                𝐶!(𝑎) ←

!  
!"#$%&#(!)

 
26. while PriorityQueue ≠ ∅  
27.         a  ←  extractMin(PriorityQueue) 
28.         for c ∈  Pred(a) such that C(c, a) + D(a, z) < D(c, z) 
29.                 TotDist(c) ← !

!!(!)
 

30.                 if D (c, z)  ≠ ∞ 
31.                      TotDist(c) ← TotDist(c) – D(c, z)  
32.                  D(c, z) ← C(c, a) + D(a, z)  
33.                 if D (c, z)  ≠ ∞ 
34.                    TotDist(c) ← TotDist(c) + D(c, z) 
35.                     𝐶!(𝑐) ←

!  
!"#$%&#(!)

 
36.   if c ∈ PriorityQueue 
37.          DecreaseKey (PriorityQueue, c, D(c, z)) 
38.  else  
39.          Insert (PriorityQueue, c, D(c, z)) 
40.  return AffectedVertices 
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The final part of the DELETEUPDATECLOSENESS algorithm processes this priority 

queue to see if the shortest distances can be further updated. In Line 17, if no b nodes that 

would satisfy the update condition were found, then the shortest distance of the node a to 

node z was forced to be infinity. Starting with Line 26 of the DELETEUPDATECLOSENESS 

algorithm, the shortest paths that are properly discovered earlier in the algorithm are 

examined to see if shorter paths that would use them as their sub-paths can be discovered.  

The process of searching for new shortest paths is carried out in the form of 

ripples expanding outwards. For each node a in the priority queue, we check its 

predecessor nodes (c ∈  Pred(a)) and see if the newly discovered shortest distance from 

node a to node z is useful in finding a shorter path from node c to node z. When D(c, z) is 

successfully updated to a smaller value, the closeness value of node c is also updated in 

Lines 29–35, similar to the operations performed earlier in Lines 18–25. In addition, the 

priority queue is also updated to hold the new distance of node c to node z as there might 

be some other nodes that use D(c, z) as their sub-paths to reach node z. If node c is 

already an element of the priority queue its priority is updated with the new shortest 

distance, otherwise it is inserted into the priority queue with D(c, z) as its priority.  

4.5 COMMENTS ON ALGORITHMIC COMPLEXITY  

4.5.1 Run Time Analysis 

In this final section of Chapter 4, the algorithmic complexities of the algorithms 

proposed in Chapter 4.3 and Chapter 4.4 are discussed. There are different perspectives 
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on how to evaluate the complexities of incremental algorithms. In some cases, it has been 

demonstrated that, in the worst case, no incremental algorithm can perform 

asymptotically better than the algorithm that computes everything from scratch [128] 

[129]. Because, in the worst case, everything will be updated and the incremental 

algorithm will not be able to perform any early pruning. Hence, the worst-case upper 

bound time complexity is usually not descriptive enough to discuss the performance 

benefits of an incremental algorithm observed in practice over the performance of a non-

incremental algorithm solving the same problem from scratch. 

Such research has led to discussions on what is the best way to evaluate the 

complexities of incremental algorithms. Complexity analysis for incremental algorithms 

usually incorporates the complexity of changes for expressing the time complexity of the 

incremental function. For incremental algorithms, a preferred way of discussing their 

computational complexity is through the sum of the sizes of the input (e.g. the modified 

graph/network) and the output (e.g. modified distance and closeness centrality values). 

Next, we discuss the computational complexities of the INSERTCLOSENESS and the 

DELETECLOSENESS algorithms in terms of the changes made in the input and output. 

The INSERTCLOSENESS algorithm calls the INSERTUPDATECLOSENESS algorithm for 

every AffectedSink and AffectedSource node. The INSERTUPDATECLOSENESS algorithm 

essentially performs a traversal in the neighborhood of every AffectedSink and 

AffectedSource node, respectively. Hence, the complexity of each of these operations is 

on the order of O(||Affected||) where ||Affected|| is used to denote the sum of the number 
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of edges and the nodes in the subgraph formed by the AffectedSource and AffectedSink 

nodes’ neighborhoods.  

Similar complexity analysis can be performed for the DELETECLOSENESS 

algorithm. The DELETECLOSENESS algorithm invokes the DELETEUPDATECLOSENESS 

algorithm for every AffectedSink and AffectedSource node. However, the 

DELETEUPDATECLOSENESS algorithm is more complicated than the 

INSERTUPDATECLOSENESS algorithm. The DELETEUPDATECLOSENESS algorithm has two 

distinct phases with different algorithmic complexities. Phase–1 continues until Line–14 

and Phase–2 starts with Line–15. Phase–2 makes use of a priority queue, whose time 

complexity must be taken into account separately.  

In Phase–1, the SP conditions in Lines 12–13 of the DELETEUPDATECLOSENESS 

algorithm check the existence of the shortest paths between a predecessor (e.g. x) and a 

successor (e.g. y) of node u. This makes the time complexity of Phase–1 to be limited by 

O(||Affected||2,z) where the subscript 2 denotes the size of two-hop neighborhood of all 

affected nodes and z refers to the last parameter of the algorithm (i.e. the node to which 

the shortest path distances are updated). The complexity of Phase–2 is dominated by the 

complexity of priority queue, which is denoted by O(|Affectedz| log |Affectedz|). Hence, 

the overall time complexity of the DELETECLOSENESS algorithm is bounded by 

O(||Affected||2 + |Affected| log |Affected|) where the set of affected nodes is given by the 

combination of AffectedSink and AffectedSource nodes. 

In terms of time complexity, an advantage of the INSERTUPDATECLOSENESS 

algorithm over the DELETEUPDATECLOSENESS algorithm is that the 



 63 

INSERTUPDATECLOSENESS algorithm does not maintain a priority queue. Since the 

growing network updates result in potentially shorter paths, and the shortest distance that 

is previously known is the minimum of all, the information we would need is directly 

available without needing to maintain a min-first priority queue. All the changes that are 

made to update closeness centrality incrementally are of O(1) time complexity. 

Therefore, computing closeness centrality along with the dynamic maintenance of the 

shortest paths does not increase the overall time complexity.  

4.5.2 Memory Consumption and Overhead Analysis 

Next, we discuss the theoretical scaling argument of how the memory usage 

scales with the problem size for the incremental closeness centrality algorithm. For 

solving the single-source shortest path problem, the Dijkstra’s algorithm has O(m+n) 

space complexity. This space requirement increases to O(mn+n2) when the Dijsktra’s 

single-source shortest path algorithm is run once from each node in the network to 

compute and maintain the shortest paths across all node pairs.  

The incremental closeness algorithm maintains the original graph and its 

transpose (reverse) simultaneously. This duality is of critical importance for achieving a 

bounded incremental update algorithm. Hence, the memory requirement increases to 

2m+2n for graph representation (i.e. the representation of nodes and edges). The duality 

is an algorithmic property inherited from the incremental all-pairs shortest paths 

algorithm designed by Ramalingam and Reps. The incremental closeness centrality 

algorithm also needs an additional memory space of O(n) for storing the closeness 
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centrality value of each node. However, the closeness attributes or other attributes do not 

need to be maintained for the transpose network; they only need to be maintained for the 

original version of the graph. Hence, the closeness centrality values need to be stored 

only once in the memory.  

The space the incremental closeness centrality algorithm needs to hold the 

shortest distance values across all pairs of nodes is O(n2) in the worst case (i.e. O(n2) 

distance matrix). To be more precise, for each node, there are 𝑛 − 1  other nodes in the 

network it can reach out to. Hence, the precise upper bound for the number of node pairs 

for whose distances are defined is  𝑛 𝑛 − 1 = 𝑛2, which is represented as O(n2) in the 

worst case in the Big-O notation. We do not need to hold the information for  𝐷 𝑖, 𝑖 , 𝑖 ∈ 𝐺 

as 𝐷 𝑖, 𝑖  is always equal to 0 by default. However, a lot of real life networks are very 

sparse and the distance matrix does not even need to be stored as an O(n2) matrix; the 

sparse representations are preferable. In sparse networks, not every node is reachable 

from every other node in the network. More precisely, the data structure that holds the 

shortest distance information has Conn(G) entries where Conn(G) represents the number 

of node pairs in the network that have a finite shortest distance defined. The only piece of 

information that needs to be maintained for the transpose of the graph is the shortest 

distances defined on that version of the graph. This adds another Conn(G) entries to the 

memory consumption. 

Overall, the space complexity of the incremental closeness centrality algorithm is 

(2n + 2m + n + 2Conn(G)) which reduces to O(n2 +m). The space complexity of O(n2 +m) 
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can also be represented as O(n2) given that the worst case value of m (i.e. the maximum 

possible number of edges) is O(n2) as well.  

In addition to the amount of data that needs to be stored permanently across 

several different iterations of the incremental closeness centrality algorithm, another 

aspect of the memory consumption is the overhead: the amount of data that is temporarily 

stored during the execution of a single incremental network update, and not maintained 

across different updates.  

There are two sub-algorithms that handle the growing network updates: the 

INSERTCLOSENESS algorithm and the INSERTUPDATECLOSENESS algorithm. In the 

INSERTUPDATECLOSENESS algorithm, lists of AffectedVertices and VisitedVertices are 

maintained as well as a working set of edges (e.g. Workset). Both the AffectedVertices 

and VisitedVertices might be of order O(n) while the Workset might be of order O(m) in 

the worst case. Hence, the memory overhead per iteration in the worst case is (2n + m), 

which can be represented as O(n + m). These data structures are only maintained during 

the execution of the INSERTUPDATECLOSENESS algorithm and cleared once the execution 

of the algorithm is complete. The INSERTCLOSENESS algorithm maintains two sets of 

nodes: AffectedSinks and AffectedSources, which are of order O(n) each. These two 

objects are stored during the entire lifetime of an incremental update and cleared once the 

network update completes successfully. 

Similar memory overhead analysis can be performed for temporarily stored data 

for the algorithms that handle the shrinking network updates. There are two sub-

algorithms that handle the shrinking network updates: the DELETECLOSENESS algorithm 
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and the DELETEUPDATECLOSENESS algorithm. In the DELETEUPDATECLOSENESS algorithm, 

lists of AffectedVertices and VisitedVertices are maintained and a set working nodes 

(e.g. Workset). The AffectedVertices, VisitedVertices, and Workset are of order O(n)  in 

the worst case. Hence, the memory overhead per iteration in the worst case is 3n, which 

can be represented as O(n). These data structures are only maintained during the 

execution of the DELETEUPDATECLOSENESS algorithm and cleared once the execution of 

the algorithm is complete. Similar to the INSERTCLOSENESS algorithm, the 

DELETECLOSENESS algorithm maintains two sets of nodes: AffectedSinks and 

AffectedSources, which are of order O(n) each. These two objects are stored during the 

entire lifetime of an incremental update and cleared once the network update completes 

successfully. 

As the analyses done on the performance and memory usage suggest, different 

network features have different effects on both the performance and memory 

consumption. For instance, if a network has several small, disconnected components, 

then the network’s diameter and average shortest path length are likely to be smaller than 

they would be otherwise. In addition, Conn(G) is also likely to be smaller, which is one 

of the main values that make up the memory consumption of the incremental centrality 

algorithms. Another effect this would have is that the number of nodes that are affected 

by the incremental network update is likely to be smaller, which reflects as increased 

performance as the percentage of the affected nodes decreases.  

Another feature that might affect the level of connectivity, Conn(G), which 

represents the number of node pairs that are connected, is whether a network is directed 
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or undirected (bidirectional). When a network is undirected, if a node x can reach to 

another node y, then node y can reach to node x as well. However, this is not necessarily 

true when the edges in a network are directed. Hence, when a network is undirected 

(bidirectional), Conn(G) is likely to be higher, which reflects as a potential increase in the 

memory consumption and the percentage of nodes affected by an incremental network 

update as well as a potential decrease in the performance speedup that can be obtained. 

4.5.3 Comments on Accuracy 

The algorithms presented in this chapter are the modified versions of the dynamic 

shortest path algorithms proposed in [104] to incorporate the accurate computation of 

closeness centrality. In other words, the incremental closeness centrality algorithms 

presented in this chapter has no loss in the accuracy of closeness centrality values. Both 

in the INSERTUPDATECLOSENESS algorithm and the DELETEUPDATECLOSENESS algorithm, 

the closeness centrality of a node x is updated only when the shortest distance from x to 

another node is updated. Hence, accurate maintenance of closeness centrality values 

depends strictly on the accurate maintenance of the shortest distances, whose correctness 

was proved in [104]. The reader is referred to [104] for more details on the proof of 

correctness regarding the shortest path updates.  

One important point to watch out while implementing these incremental 

algorithms is how the floating-point numbers are handled. If the intention is to match the 

results produced by the non-incremental algorithms that compute closeness centrality, 

then both the incremental and the non-incremental closeness centrality algorithms should 
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handle the floating-point numbers using the same epsilon value, 𝜀. Two real numbers 𝑎 

and 𝑏 are considered equal if 𝑎 − 𝑏 <   𝜀, where 𝑎 − 𝑏  denotes the absolute value of 

(𝑎 − 𝑏). The conditions that test whether a path is a shortest path compare the length of 

the path against the shortest distance to look for equality. Such conditional checks lie at 

the heart of both the incremental and non-incremental algorithms and govern how the rest 

of the network update propagates in the network and how the rest of the shortest path 

trees are built. Hence, the conditional checks that test the equality/inequality of the 

shortest path distances should be supported by an epsilon range. The epsilon value used 

in our implementations was 10-7. 

For verification, every time the incremental algorithm was run, the standard non-

incremental algorithm was also run and the results compared. Once we took the same 

epsilon into account in both, the results of both the incremental algorithm and the 

standard algorithm were identical in every case. Further comments on verification can be 

found in Chapter 8.7. 
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CHAPTER 5 INCREMENTAL BETWEENNESS 

This chapter presents the design of an incremental algorithm for betweenness 

centrality that handles various types of network updates including addition, removal, and 

modification of nodes and edges. First, we provide the formulation of betweenness 

centrality for weighted, directed networks and discuss traditional algorithms for 

computing betweenness centrality. Then, the proposed incremental betweenness 

algorithm is presented, along with the details of the sub-algorithms designed FOR 

handling growing and shrinking network updates. Finally, the algorithmic complexities 

and generalization to other shortest path based problems are discussed. 

5.1 DEFINITION & COMPUTATION OF BETWEENNESS CENTRALITY 

Betweenness centrality of a node 𝑖 is defined as the fraction of the shortest paths 

that pass through node  𝑖 across all pairs of nodes. Let 𝜎(!,!) be the number of shortest 

paths from 𝑗 to 𝑘 and 𝜎(!,!)(𝑖) be the number of shortest paths from 𝑗 to 𝑘 that contain 

node  𝑖, where  𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘. 

𝐶! 𝑖 =   
! !,! !

! !,!

  
!!!!!∈! !   𝑤ℎ𝑒𝑟𝑒  𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘  

The value of 𝐶!(𝑖) depends on the number of nodes in the network G. To 

calculate the betweenness centrality of node  𝑖,𝐶!(𝑖) is then normalized by the number of 

possible node pairs that do not involve  𝑖: Betweenness(𝑖) = 𝐶!(𝑖)/((𝑛 − 1)(𝑛 − 2))       
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As a centrality metric based on the shortest paths between nodes, betweenness 

centrality requires information on the number of shortest paths between any node 𝑖 and 𝑗 

where 𝑖 ≠  𝑗, and the intermediate nodes on each shortest path.  

 

Figure 7 - Example network. 

Figure 7 depicts a sample network with edge costs as indicated on the edges. We 

walk through the computation of the 𝐶!   value of each node in the network as laid out in 

Table 4. Each column in Table 4 represents a node pair (i, j) where i ≠ j, while rows 

represent the nodes in the network.  

Table 4 - Computation of betweenness centralities for the network depicted in Figure 7. 

 1,2 1,3 1,4 2,1 2,3 2,4 3,1 3,2 3,4 4,1 4,2 4,3 

1 -- -- -- -- 0 0 -- 0 0 -- 0 0 

2 -- 1 2 1 2 -- -- -- 0 -- 0 0 -- 1 

3 0 -- 1 0 -- 1 -- -- -- 0 0 -- 

4 0 0 -- 0 0 -- 0 1 -- -- -- -- 

  

 Consider the computation of 𝐶! 2 . From node 1 to node 3, there are two shortest 

paths: one of them follows the edge {1 → 3}; the other one follows the edges {1  →  2}, 

{2  →  3}. Out of these two paths, node 2 appears on only one of them. Hence, the 

contribution of pair (1, 3) to 𝐶! 2  is 1/2. This notion is called ‘pair dependency’. In this 
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case, the dependency of the node pair (1, 3), δ!,!, on node 2 is δ!,!   2 = 0.5. Next, 

consider the computation of 𝐶! 3 . When the shortest paths from node 1 to 4 are 

considered, there are again two different shortest paths: {1  →  2, 2  →  3, 3  →  4} and {1  →

  3, 3  →  4}. However, node 3 appears on both paths. Therefore, the contribution of pair (1, 

4) to 𝐶! 3  is 2/2 = 1. The 𝐶! value of each node is calculated as the sum of values at its 

corresponding row:  𝐶! 1 = 0;   𝐶! 2 = 2;𝐶! 3 = 2;𝐶! 4 = 1.   The normalized 

betweenness centrality value of each node is then calculated by dividing 𝐶!   values by (3 

× 2) = 6, which is equal to the total number of pairs that do not involve the node whose 

betweenness value is computed. 

5.2 TRADITIONAL ALGORITHMS FOR COMPUTING BETWEENNESS 

CENTRALITY 

In its most naïve form, betweenness can be computed by augmenting an all-pairs 

shortest paths algorithm (e.g. Floyd-Warshall [126]) with path counting. Having obtained 

the information on the number of shortest paths between each node pair and the 

intermediate nodes on these shortest paths, a O(n3) nested for loop (e.g. O(n) invocations 

of a O(n2) loop to sum up  dependencies for each node) is then run to compute the 𝐶!(𝑖) 

of each node 𝑖, where n is the number of nodes in the network. 

In 2001, Brandes published his research on faster computation of betweenness 

centrality which yields O(nm + n2logn) performance for a weighted network where n is 

the number of nodes in the network and m is the number of edges [28]. Brandes’ 
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algorithm has become the most commonly used implementation of betweenness 

centrality. 

 

The idea of Brandes’ algorithm is to exploit the sparseness of large, real life 

networks, hence to avoid some of the superfluous work done in O(n3) algorithms. To 

exploit sparseness, path counting is performed by running the Dijkstra’s single-source 

shortest path algorithm [109] once for each node, which also naturally discovers all the 

Algorithm–10:  BRANDES’ BETWEENNESS ALGORITHM (G) 
Input: A network G(V, E). 
Output: Betweenness values of all nodes n V(G) are computed.  
1. CB [ ]  ←  0, v  ∈  V(G) 
2. for s ∈ V(G) 
3. S ←  empty stack  
4.  P[w]  ←  empty list, w  ∈  V(G) 
5.  σ [t]  ← 0,  t ∈ V(G); σ [s]  ← 1 
6.  d [t]  ← -1, t ∈ V(G); d [s]  ← 0 
7.  Q  ←  empty queue 
8.  enqueue s into Q  
9.  while Q ≠ ∅ 
10.   dequeue v ← Q 
11.   push v into S 
12.   for neighbor w of v 
13.    if d [w] < 0 
14.     enqueue w into Q 
15.     d [w] ← d [v] + 1 
16.   if d [w] = d [v] + 1 
17.      σ [w]  ← σ [w] + σ [v] 
18.     append v into P[w] 
19. δ [v]  ←  0, v  ∈  V(G) 
20. while S ≠ ∅ 
21.  pop w ← S 
22.  for v  ∈  P[w] 
23. δ [v]  ← δ [v] + !  [!]

!  [!]
 .(1 + δ [w]) 

24.  if w ≠ s 
25. CB [w]  ← CB [w] + δ [w] 
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shortest paths from the selected source node and the predecessors on these paths. Thus, 

the Brandes’ algorithm benefits from avoiding the computation of unrelated pair 

dependencies in the network by only focusing on the nodes in the predecessor lists on the 

shortest paths discovered by the Dijsktra’s shortest path algorithm. 

The pseudocode for the Brandes’ betweenness algorithm provided in Algorithm–

10 is the original version of the algorithm as discussed in his paper [28]. This version of 

the algorithm is designed for computing betweenness centrality in unweighted graphs. 

This is why in Lines 15 and 16 of Algorithm–10, we use increments of distance by 1, 

instead of using the cost of the corresponding edges between w and v. To make it work 

for weighted networks, d [v] + 1 should be replaced with d [v] + C(v, w) where d [v] 

denotes the distance of from the source node s to node v and C(v, w) denotes the cost of 

the edge {v  →  w}. In addition, this version of the algorithm makes it more suitable for 

undirected edges because in Line 12, all neighbors of node v are considered without 

considering the edge orientation. In directed networks, only the successors of node v 

should be considered: ‘for neighbor w of v’ should be replaced with ‘for w ∈  Succ(v)’. 

However, the most important difference in converting the Brandes’ algorithm presented 

above for the weighted, directed networks comes from the implementation of the queue 

Q, which is implemented as a higher complexity, min-key priority queue data structure to 

handle the differences in distances introduced by the differences in edge weights. The 

current distance of a node from the current source node is used as its priority for the 

priority queue. 
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5.3 INCREMENTAL BETWEENNESS ALGORITHM: GROWING NETWORK 

UPDATES 

This chapter discusses the details of the incremental betweenness algorithm for 

handling growing network updates (e.g. edge/node insertion or edge cost decrease). There 

are four sub-algorithms we make use of to incrementally maintain betweenness centrality 

values: INSERTBETWEENNESS, INSERTUPDATEBETWEENNESS, REDUCEBETWEENNESS, and 

INCREASEBETWEENNESS. Next, each sub-algorithm is discussed respectively. 

5.3.1 INSERTBETWEENNESS  

In the event of a supported network update (e.g. node/edge insertion or edge cost 

decrease), the entry point of execution is the INSERTBETWEENNESS algorithm. The 

INSERTBETWEENNESS algorithm calls the INSERTUPDATEBETWEENNESS algorithm several 

times; first, to find the complete set of affected sink and source nodes, then, to update the 

shortest paths to/from each affected sink/source node.  

The data structures initialized in Line 2 of the INSERTBETWEENNESS algorithm are 

initialized as data structures that are visible to all the algorithms used for handling the 

growing network updates.  

The Dold and σold are implemented as hash maps whose keys are composed of the 

related <x, y> node identifiers. The Dold holds the original D(x, y) values and the σold 

values hold the original σ(x, y) values before the network update has been issued. The 

data structure used for trackLost is also a hash map whose keys are again constructed as 
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2-tuples composed of the identifiers of the related nodes <x, y>. The values held in 

trackLost are also implemented as hash set, holding the identifiers of the nodes that were 

previously intermediates on the shortest paths from node x to node y, and that are not on 

the shortest paths any more. Finally, to avoid reprocessing the same pair of nodes several 

times, the PairsDone holds a set of node pairs <x, y> that are already processed. 

 

In the INSERTBETWEENNESS algorithm, the INSERTUPDATEBETWEENNESS algorithm 

is initially invoked twice (Lines 3–4 of INSERTBETWEENNESS) to determine the sets of 

affected sinks and affected sources; passing once the source, once the destination of the 

inserted edge as a parameter to it. The INSERTUPDATEBETWEENNESS algorithm is then 

invoked for each affected sink and source node (Lines 5–8 of INSERTBETWEENNESS) to 

modify the information required for accurate maintenance of betweenness values. The 

modified information includes the shortest distances (D), the number of distinct shortest 

paths (σ), and the predecessors on these shortest paths (𝑃). After all the shortest 

Algorithm–11: INSERTBETWEENNESS (G, src, dest, c) 
Input: Network G(V, E) for which shortest distances between all nodes (D) and 
betweenness values of all nodes are pre-computed. A newly inserted or modified 
edge {src  →  dest} with a cost of c where c < C (src, dest). 
Output: Network G(V, E) updated with the edge {src  →  dest}. The shortest path 
distances (D), the number of shortest paths (σ), the predecessors on the shortest 
paths (P), and the betweenness values of all nodes are updated.  
1. C (src, dest) ← c;   𝐶!(dest, src) ← c 
2. σold ← [ ]; Dold   ←  [ ]; trackLost   ←  [ ]; PairsDone ← [ ] 
3. AffectedSinks           ←   INSERTUPDATEBETWEENNESS (𝐺!, dest, src, src, PairsDone) 
4. AffectedSources  ←  INSERTUPDATEBETWEENNESS (G, src, dest, dest, PairsDone) 
5. for s ∈ AffectedSinks 
6.       INSERTUPDATEBETWEENNESS (G, src, dest, s) 
7. for s ∈ AffectedSources 
8.       INSERTUPDATEBETWEENNESS (𝐺!, dest, src, s) 
9. INCREASEBETWEENNESS( ) 
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distances, predecessors, and the shortest path counts are updated accurately for all the 

affected nodes, betweenness values of the intermediate nodes that lie on the affected 

paths are adjusted (Line 9 of INSERTBETWEENNESS). The second line of the 

INSERTBETWEENNESS algorithm initializes auxiliary data that are only used during the 

current update, and are not maintained across different updates. 

5.3.2 INSERTUPDATEBETWEENNESS  

The INSERTUPDATEBETWEENNESS algorithm examines the impact of the updated 

edge {src → dest} on the network, for each affected sink or affected source node z. The 

update process continues until there are no edges that were on the shortest paths that 

would propagate the update further. The INSERTUPDATEBETWEENNESS algorithm consists 

of three phases:  

(i) If a strictly shorter path is found, the shortest path distance is updated. The 

predecessors and the number of shortest paths are cleared. Betweenness values for the 

intermediate nodes on the cleared paths are also reduced opportunistically. (Lines 7–14 of 

INSERTUPDATEBETWEENNESS). 

(ii) If the shortest paths have changed in any way (number or length), the predecessors 

and the number of shortest paths are adjusted accordingly (Lines 15–25 of 

INSERTUPDATEBETWEENNESS). 

(iii) Propagation of the update across the network is continued if appropriate (Lines 26–

29 of INSERTUPDATEBETWEENNESS). 
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Consider the case where the edge {x → y} is updated and we examine the impact 

of this update on the network. In the first phase of the INSERTUPDATEBETWEENNESS 

algorithm, assume that there is now a new shortest path from node x to node z passing 

through the edge {x  →  y}, which is strictly shorter than the previously known shortest 

path(s) from node x to node z (Lines 7–14 of INSERTUPDATEBETWEENNESS).  

In this case, since a strictly shorter path from node x to node z is found, the 

previously known shortest paths are not the shortest paths from node x to node z 

anymore. Hence, the previously known number of shortest paths and the predecessors on 

the shortest paths from node x to node z should be cleared (Line 11 of 

INSERTUPDATEBETWEENNESS). Before we clear the number of shortest paths (σ (x, z)) and 

update the distance from node x to node z (D (x, z)) to be equal to the new distance (alt), 

we temporarily record their values in σold (x, z) and Dold (x, z) in Line 9 of the 

INSERTUPDATEBETWEENNESS algorithm. In addition, the betweenness values of the old 

predecessors because these intermediates do not have any contribution from (x, z) pair 

anymore are reduced as well (Line 10 of INSERTUPDATEBETWEENNESS). This operation 

should be performed before clearing the number of shortest paths and the predecessors on 

the shortest paths from node x to node z, because once they are cleared, all the previously 

known information about them is lost. Attempting to retrieve σold and Dold values returns 

the temporarily stored values if they are stored and returns the current σ and D values 

otherwise. The algorithm for the reduction of betweenness centrality values 

(REDUCEBETWEENNESS) will be explained later in Chapter 5.3.3.  
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 At the beginning of the first phase, we check if it is the first time a strictly shorter 

path is found from node x to node z by checking if σold contains any information on the 

pair (x, z) (Line 8 of INSERTUPDATEBETWEENNESS). We check σold because a change in 

betweenness centrality values is required if the number of shortest paths from node x to 

node z change even if the shortest distance from node x to node z does not necessarily 

change. For every updated pair, we record the original number of shortest paths from 

node x to node z known before the update started only once. This check ensures that 

original information is not overridden by invalid, temporary information because during 

the time the network update propagates the algorithm might go through states that 

temporarily contain invalid information. 

  Additional temporary information is kept to ensure accurate reduction of 

betweenness centrality values for the nodes that were once on the shortest paths before 

the network is updated. This is because such nodes are not on the shortest paths anymore 

and cannot be reached by following the shortest paths in the network. Hence, information 

should be kept about them temporarily until the network update is complete. 

Since the original Ramalingam and Reps algorithm is concerned with only 

updating the D values, in their algorithm, the AffectedVertices set only covers the nodes 

with lower-cost paths to/from node z that pass through the modified edge {src → dest}. 

However, for computing the betweenness centrality, we need to maintain the number of 

shortest paths (σ) and the predecessors on the shortest paths (𝑃) accurately as well. 

Hence, the alternative shortest paths of equal length should be accounted for and the 
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AffectedVertices should be expanded to include the nodes that have new alternative 

shortest path(s) to/from node z passing through the modified edge {src → dest}.  

In the second phase of the INSERTUPDATEBETWEENNESS algorithm (Lines 15–25), 

we check if the new shortest distance from node x to node z is now equal to the cost of 

the alternative shortest path passing through the edge {x → y} (Line 15). If they are equal, 

then we need to update the number of shortest paths from x to z and the predecessors on 

these shortest paths. This part of the algorithm is completely new and is not covered in 

the original Ramalingam and Reps algorithm, which focuses on finding strictly shorter 

paths and excludes the shortest paths of equivalent length. 

When updating the number of shortest paths from node x to node z, we increase 

the number of shortest paths only by the number of shortest paths that are newly formed 

due to the incremental update made on the network. Since this is an incremental 

algorithm, the old set of shortest paths is already accounted for; we should not double 

count them. To obtain the number of newly formed shortest paths from node x to node z, 

only the number of shortest paths that use the modified or inserted edge {src → dest} 

should be counted. The number of newly discovered paths is calculated as σ(x, src) * 1 * 

σ(dest, z), and then added to the σ(x, z) to calculate the total number of shortest paths 

from x to z. From src to dest, there may be other shortest paths that might already be 

counted in. Hence, to avoid double counting, we only consider the modified edge, which 

is represented with the ‘1’ in the above given formulation (Line 21 of 

INSERTUPDATEBETWEENNESS). 
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 In this phase of the algorithm, the predecessors on the shortest paths from node x 

to node z are also updated due to formation of the new shortest paths that pass through 

the edge {x →  y}; which is the edge under investigation, retrieved from Workset. Hence, 

Algorithm–12:  INSERTUPDATEBETWEENNESS (G, src, dest, z, PairsDone) 
Input: Network G(V, E), a newly inserted or modified edge {src →  dest}, and an 
affected node z. 
Output: The shortest distances to z. The number of shortest paths and the 
predecessors on these shortest paths are also updated.  
1. Workset ←{src →  dest} //Min-key priority queue w.r.t the distance of the head of the edge to src 
2. VisitedVertices    ← src  
3. AffectedVertices  ← ∅ 
4. while Workset ≠ ∅ 
5. {x → y} ← pop (Workset) 
6. alt ← C (x, y) + D (y, z) 
7. if alt < D (x, z) 
8. if <x, z>  ∉ σold 
9. Dold (x, z) ←  D (x, z); σold (x, z) ← σ(x, z) 
10. REDUCEBETWEENNESS (x, z) 
11. σ(x, z) ← 0; 𝑃!(𝑧) ← ∅ 
12. if [u, z] ∈ PairsDone 
13. Remove [x, z] from PairsDone 
14. D (x, z) ← alt  
15. if alt = D (x, z) and D (x, z) ≠ ∞ 
16. if [x, z] ∉  PairsDone 
17. if <x, z>∉ σold 
18. REDUCEBETWEENNESS (x, z) 
19. if σ (x, z) ≠ 0 
20. σold (x, z) ← σ (x, z) 
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z)) 
22. Append x to 𝑃!(𝑦)  
23. Append  𝑃!(𝑧) to 𝑃!(𝑧) 
24. Insert [x, z] into PairsDone 
25. Insert x into AffectedVertices 
26. for u ∈ Pred (x) sorted w.r.t. edge costs in ascending order 
27. if SP (u, x, src) and  u ∉ VisitedVertices  
28. push {u → x} into Workset 
29. Insert u into VisitedVertices 
30. return Affected Vertices 
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the new shortest paths can be represented in the following form: x → y  → vi…→…vn → z. 

In this case, node x becomes a predecessor of node y, and the predecessors on the shortest 

path(s) from node y to node z become the predecessors on the shortest path(s) from node 

x to node z. The predecessors on the shortest path(s) denote the set of nodes that serve as 

the last stop(s) before the final destination node, which is node z in this case. The 

predecessors on the shortest paths are updated in Lines 22–23 of the 

INSERTUPDATEBETWEENNESS algorithm.  

It should be noted that the entry condition for the second phase of the 

INSERTUPDATEBETWEENNESS algorithm (Line 15) is not a condition that is tied to the if 

block between Lines 7–14. Once the condition in Line 7 (alt < D(x, z)) is satisfied (i.e. a 

strictly shorter path is found), the value of D(x, z) is updated in Line 9 to be equal to the 

newly found alternative distance alt. Therefore, the condition in Line 15 of the 

INSERTUPDATEBETWEENNESS algorithm (alt = D(x, z)) is satisfied for all cases that 

originally satisfied the conditional check at Line 7 (alt < D(x, z)).  

The conditional check at Line 15 (alt = D(x, z)) covers additional cases where 

there are newly formed alternative shortest paths whose lengths are equal to what is 

already known. Such cases would not satisfy the condition on Line 7 which checks for 

strictly shorter paths, but would still satisfy condition at Line 15 (alt = D(x, z)). This is a 

part of the incremental betweenness algorithm that is not handled by the original 

Ramalingam and Reps algorithm at all, and it is required for accurate maintenance of 

betweenness centrality values. Since the second phase of the INSERTUPDATEBETWEENNESS 

algorithm is satisfied by both strictly shorter paths and the shortest paths of equal length, 
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in Line 25, we mark node x as one of the AffectedVertices whose predecessors should be 

further checked in the third phase of the algorithm to understand if the incremental 

network update has a wider impact on the network. In order not to reprocess the same 

pair of nodes multiple times –which would inflate the number of shortest paths between 

them otherwise–, we process only the node pairs that are not already processed and 

inserted in PairsDone (Line 16 and Line 24 of INSERTUPDATEBETWEENNESS)  

The third and final phase of the INSERTUPDATEBETWEENNESS algorithm (Lines 26–

29) is responsible for propagating updates further when required and pruning the parts of 

the network that are not affected by the changes. An update in the network propagates in 

the form of ripples that expand outwards as much as required starting at the modified or 

inserted edge in the center. For each of the edges to/from the affected node x, it is 

checked to see if they are on the shortest paths. In addition, a set of VisitedVertices is 

held to ensure that no node is processed more than once due to the potential existence of 

multiple paths that lead to the same node following different routes. Assume that node u 

is a predecessor of node x. With SP(u, x, z), we test if the edge {u → x} is on the shortest 

path(s) from node u to node z. If SP is true, and if the other end of the edge (node u) is 

not in the list of already processed nodes, the edge {u → x} is inserted in the set of edges 

that would need inspection for subsequent processing. In this case, the edge {u → x} 

would carry the network update to the next ripple level and it is identified as an edge that 

needs further processing. Therefore, the edge {u → x} is inserted into Workset in Line 28 

of the INSERTUPDATEBETWEENNESS algorithm for subsequent processing. 
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5.3.3 REDUCEBETWEENNESS  

Within the INSERTUPDATEBETWEENNESS algorithm, the REDUCEBETWEENNESS 

algorithm is invoked when the shortest path(s) from a node x to another node z change. 

For each node pair whose shortest paths change, the REDUCEBETWEENNESS algorithm is 

invoked only once and it opportunistically reduces the betweenness centrality values of 

the intermediate nodes on the old set of shortest paths from node x to node z that no 

longer qualify to be the shortest paths. To be able to construct the shortest paths, we only 

store predecessors; we do not store the entire set of intermediate nodes on these paths, as 

it would be prohibitively memory intensive.  

The shortest paths from node x to node z are constructed on demand by following 

the predecessors when the betweenness centrality values of the intermediate nodes on the 

shortest path(s) from x to z are updated. However, since these shortest paths are 

constructed on demand, there might be some parts of the shortest paths that might have 

already been updated before the network update propagation reaches the shortest 

paths/distance from x to z. In such cases, there will be some intermediate nodes that are 

already cleared and that are not reachable anymore when we follow the predecessor 

nodes to adjust the betweenness centrality values of the intermediates nodes on the old set 

of shortest paths. The intermediate nodes that are deleted from the shortest paths are 

temporarily stored in trackLost until the network update is complete. 
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In the first phase of the REDUCEBETWEENNESS algorithm (Lines 1–23), first, the 

betweenness value of each intermediate node v that still appears as an intermediate from 

node x to node z is reduced and the contribution of the node pair (x, z) is removed from 

Algorithm–13:  REDUCEBETWEENNESS (x, z) 
Input: A source node x and a destination node z whose intermediates on the shortest 
paths from node x to node z will be cleared.  
Output: The betweenness values of the original set of intermediate nodes on the 
shortest paths from x to z are reduced.  
1. if σold (x, z) = 0 
2. return; 
3. Known ← ∅ //A set of nodes 
4. Stack ← ∅ 
5. for n  ∈ 𝑃!(𝑧)   
6. if D (x, z) ≠ Dold (x, n) + Dold (n, z) 
7. continue; 
8. else if x ≠ n & n ≠ z 
9.    𝐶!(n) ← 𝐶!(n) – (σold (x, n) * σold (n, z) / σold (x, z)) 
10. Add <x, z, n> to trackLost  
11. Add 𝑛 to Stack 
12. Add 𝑛 to Known 
13. while Stack ≠ ∅ 
14. 𝑝 ← pop (Stack) 
15. Add 𝑝 to Known 
16. for 𝑛 ∈ 𝑃!(𝑝)   
17. if D (x, z) ≠ Dold (x, n) + Dold (n, z) 
18. continue; 
19. else if x ≠ 𝑛 & 𝑛 ≠ z &  𝑛 ∉ Known 
20. 𝐶!(n)  ← 𝐶!(n) – (σold (x, 𝑛) * σold (𝑛, z) / σold (x, z)) 
21. Add <x, z, n> to trackLost  
22. Add 𝑛 to Stack 
23. Add 𝑛 to Known 
24. AlreadyDone ← (Known ∪ x) 
25. if D (v, z) = Dold (x, v) + Dold (v, z) s.t. v1, v2  ∈ Known and <v1, v2, v>  ∈ trackLost  
26. if 𝑣 ∉ AlreadyDone 
27. 𝐶!(v) ← 𝐶!(v) – (σold (x, v) * σold (v, z) / σold (x, z)) 
28. Add 𝑣 to AlreadyDone 
29. Add <x, z, 𝑣> to trackLost  
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the betweenness value of node v. In Lines 5–12, the immediate predecessors of node z on 

the shortest paths from node x (𝑃!(𝑧)) are processed, and in Lines 13–23, the 

intermediates that are found on the paths from node x to node z are processed. 

When tracing intermediates on the shortest paths to construct the shortest paths on 

demand, we start with the destination node. The first batch of nodes we find as the 

intermediates on the shortest paths from node x to node z are the predecessors of node 

z:  𝑃!(𝑧). Then for each node n  ∈ 𝑃!(𝑧), we find the next level of precessors on the 

shortest paths from node x to node n: 𝑃!(𝑛). The search for a shortest paths ends when we 

hit the source node x itself. This way, the full path from node x to node z is constructed 

on demand. Hence, when are about to update the betweenness centrality of an 

intermediate node n, it should be checked that node n is an intermediate node, it is neither 

the source, nor the destination node.  

In the second phase of the REDUCEBETWEENNESS algorithm (Lines 24–29), the 

intermediate nodes that are currently unreachable but originally belonged to the shortest 

paths from node x to node z are processed. Their betweenness values are reduced as 

required as well (Lines 27).  

An intermediate node n might appear on multiple shortest paths from the same 

source and destination pair and its betweenness value should not be reduced every time it 

is encountered, it should be reduced once for a single source and destination pair (e.g. x 

and z). Therefore, a set of intermediate nodes that are already processed is temporarily 

stored to avoid processing such nodes several times.  
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5.3.4 INCREASEBETWEENNESS  

The INCREASEBETWEENNESS algorithm is the final step of the INSERTBETWEENNESS 

algorithm. The INCREASEBETWEENNESS algorithm is responsible from finalizing the 

adjustment of betweenness centrality values. By the time the INCREASEBETWEENNESS is 

called from the INSERTBETWEENNESS algorithm (Line 10 of INSERTBETWEENNESS), all the 

shortest paths, the number of distinct shortest paths, and the predecessors affected by the 

incremental network update are accurately adjusted, and ready for being used for 

updating the betweenness centrality values. By calling the REDUCEBETWEENNESS 

algorithm, we have also reduced the betweenness centrality values of the intermediate 

nodes on the invalidated shortest paths. Therefore, the only remaining action is to update 

the betweenness centrality values for the new set of intermediate nodes on the updated 

shortest paths that reach from the affected source nodes to the affected sink nodes. 

During a network update, a node pair (x, z) is added to the σold set if their shortest 

paths change in any way (length or number). For each node pair (x, z) that is recorded in 

the σold set, there are a number of intermediate nodes that lie on the shortest paths from 

node x to node z. For each intermediate node n that lies on the shortest paths from node x 

to node z, we first compute how many of these paths pass through node n. Out of all the 

shortest paths from node x to node z, (σ (𝑥, 𝑛) * σ (𝑛, 𝑧)) of them pass through node n. 

Then, we increase the betweenness centrality value of node n by (σ (𝑥, 𝑛) * σ (𝑛, 𝑧) / σ (𝑥, 

𝑧)); the fraction of shortest paths from node x to node z that pass through node n over the 

total number of shortest paths from node x to node z (Line 8 and 16). Similar to the 

REDUCEBETWEENNESS algorithm, again a set of already processed intermediates (e.g. 
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Known) is stored temporarily. With the execution of INCREASEBETWEENNESS, incremental 

update of betweenness centrality values is complete. 

 

5.4 INCREMENTAL BETWEENNESS ALGORITHM: SHRINKING NETWORK 

UPDATES 

Next, the details of the part of the incremental betweenness algorithm that handles 

the shrinking network updates (e.g. edge/node deletion or edge cost increase) are 

discussed. There are five sub-algorithms that are used to achieve accurate maintenance 

and incremental update of betweenness centrality values: DELETEBETWEENNESS, 

Algorithm–14:  INCREASEBETWEENNESS (σold ) 
Input: The set of affected node pairs whose shortest paths have changed.  
Output: The betweenness values of the current intermediate nodes on the affected 
paths are increased in accordance with the fraction of shortest paths they are on.  
1. for (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) ∈  σold 
2. Known  ← ∅ 
3. Stack  ← ∅ 
4. for 𝑛 ∈ 𝑃!"#(𝑑𝑒𝑠𝑡)   
5. Add 𝑛 to Stack 
6. Add 𝑛 to Known 
7. if 𝑠𝑟𝑐 ≠ 𝑛 & 𝑛 ≠ 𝑑𝑒𝑠𝑡 
8. 𝐶!(n) = 𝐶! (𝑛) + (σ (𝑠𝑟𝑐, 𝑛) * σ (𝑛, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)) 
9. while Stack ≠ ∅ 
10. 𝑛 ← pop (Stack) 
11. Add 𝑛 to Known 
12. for 𝑝 ∈ 𝑃!"#(𝑛)   
13. if 𝑝 ≠ 𝑠𝑟𝑐 & 𝑝 ≠ 𝑑𝑒𝑠𝑡 & 𝑝 ∉ Known 
14. Add 𝑝 to Stack 
15. Add 𝑝 to Known 
16. 𝐶! (𝑝) = 𝐶! (𝑝) + (σ (𝑠𝑟𝑐, 𝑝) * σ (𝑝, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)) 
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DELETEUPDATEBETWEENNESS, CLEARBETWEENNESS, ADJUSTNPS, and ADJUSTBETWEENNESS. 

In the rest of this section, each sub-algorithm is discussed, respectively. 

5.4.1 DELETEBETWEENNESS  

When a shrinking network update is issued (e.g. edge/node deletion or edge cost 

increase), the entry point of execution is the DELETEBETWEENNESS algorithm. The 

DELETEBETWEENNESS algorithm calls the DELETEUPDATEBETWEENNESS algorithm several 

times; first, to find the complete set of affected sink and source nodes, then, to update the 

shortest paths to/from each affected sink/source node. 

The DELETEBETWEENNESS algorithm resembles the INSERTBETWEENNESS algorithm. 

However, it has minor differences. The most important difference is the call for an 

algorithm called ADJUSTNPS, which is used to calculate the number of shortest paths 

accurately. After all the shortest distances and the predecessors on the shortest paths are 

updated accurately, the call to the ADJUSTNPS algorithm (Line 9 of DELETEBETWEENNESS) 

finalizes the computation of the number of shortest paths and the call to the 

ADJUSTBETWEENNESS algorithm (Line 10 of DELETEBETWEENNESS) completes the 

computation of betweenness centrality values.  

The data structures initialized in Line 2 of the DELETEBETWEENNESS algorithm are 

initialized as data structures that are visible to all the algorithms used for handling the 

shrinking network updates. The data structures initialized in Line 2 of the 

DELETEBETWEENNESS algorithm have similar structures and usages similar to those in the 

INSERTBETWEENNESS algorithm. The Dold and σold are implemented as hash maps. The keys 
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for the data structure Dold are composed of the related <x, y> node identifiers, which holds 

the original D(x, y) value before the network update has been issued. Similarly, the keys 

for the data structure σold are composed of the related <x, y> node identifiers, which holds 

the original σ(x, y) value before the network update has been issued. The data structure 

used for trackLost is also a hash map whose keys are again constructed as the identifiers 

of the related nodes <x, y>.  The values held in trackLost are implemented as hash set, 

holding the identifiers of the nodes that were previously intermediates on the shortest 

paths from node x to node y, and that are not on the shortest paths any more. 

 

5.4.2 DELETEUPDATEBETWEENNESS  

The core of the incremental betweenness algorithm for handling the shrinking 

network updates is the DELETEUPDATEBETWEENNESS algorithm. 

Algorithm–15:  DELETEBETWEENNESS  (G, src, dest, c) 
Input: Network G(V, E) for which betweenness values of all nodes (CB) are pre-
computed. A modified edge {src →  dest} with a cost of c, where c > C(src, dest). The 
cost parameter c is optional. If it is not provided in the argument list, it is set to ∞  by 
default and the edge is deleted.  
Output: Network G(V, E) updated with the changes on the edge {src  →  dest}. The 
shortest distances between all nodes (D), the number of shortest paths, the predecessors 
on the shortest paths and betweenness values of all nodes (CB) are also updated.  
1.  C(src, dest) ←  c;  𝐶!(dest, src) ←  c 
2.  σold ← [ ]; Dold   ←  [ ]; trackLost   ←  [ ] 
3.  AffectedSinks            ←    DELETEUPDATEBETWEENNESS (𝐺!, dest, src, src) 
4.  AffectedSources   ←   DELETEUPDATEBETWEENNESS (G, src, dest, dest) 
5.  for s ∈ AffectedSinks 
6.       DELETEUPDATEBETWEENNESS (G, src, dest, s) 
7.  for s ∈ AffectedSources 
8.       DELETEUPDATEBETWEENNESS (𝐺!, dest, src, s) 
9.	
  	
  ADJUSTNPS ( )	
  
10. ADJUSTBETWEENNESS ( )	
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Similar to the DELETEUPDATECLOSENESS algorithm, there are two distinct phases 

of the DELETEUPDATEBETWEENNESS algorithm. The first phase of the 

DELETEUPDATEBETWEENNESS algorithm is between Lines 2 – 7 while the second phase is 

between Lines 8 – 40. The first phase of the algorithm identifies the set of affected nodes. 

For betweenness centrality, the affected nodes are the nodes whose shortest paths to node 

z have changed in terms of number or length. The shortest paths from a node x to another 

node z may change only if the deleted/modified edge is an edge that used to lie on the 

shortest path(s) from node x to node z. Such nodes are inserted into the AffectedVertices 

set for further processing to find the new shortest paths from each node x to node z.  

The second phase of the DELETEUPDATEBETWEENNESS algorithm determines the 

new shortest path distances from all affected nodes to node z as well as the predecessors 

on the shortest paths. In the second phase of the DELETEUPDATEBETWEENNESS algorithm, 

the betweenness centrality values are also opportunistically updated for the node pairs 

whose previously known shortest paths are invalidated.  

In Line – 11, one of the AffectedVertices, node a, is removed from the 

AffectedVertices for finding the new shortest path(s) from it to node z. If this is the first 

time, the shortest paths from node a to node z are examined, we insert the node pair <a, 

z> into σold and Dold to keep a record of their previously known shortest distance and 

shortest path counts before any update is made on them. In Line – 14, by setting myMin 

to infinity, we start with the assumption that we do not have a shortest path from node a 

to node z anymore. Since a shrinking network update might result in disconnecting the 

two nodes a and z and making node z unreachable from node a. In order for node a to 
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reach to node z, there needs to be at least one immediate neighbor of node a that connects 

node a to node z. Therefore, each successor b of node a is examined one by one to see 

which node or nodes provide the shortest path(s) to node z and a running min is kept to 

identify the minimum shortest path distance. If we are unable to find a new shortest path 

that would pass from at least one of the successor nodes of node a, then there would be 

no node b that would satisfy the condition on Line 16, and the value of myMin has to be 

chosen as infinity. This process of discovering the new shortest path(s) from node a to 

node z incrementally builds on the previous knowledge on the shortest paths as we would 

need to know the shortest path distance from each successor node b to node z. Every time 

we find a node b that satisfies one of the ‘shorter path’ (Line 19) or ‘equivalent to the 

shortest path(s)’ (Line 21) conditions, the predecessors on the shortest paths from node a 

to node z need to be updated. When a new path from node a to node z that is strictly 

shorter than the currently known shortest paths is found (Line 19), the set of predecessors 

on the shortest paths from node a to node z is cleared (Line 18), and the set of 

predecessors from node b to node z is inserted instead. However, if node b is equal to 

node z in Line 21 (i.e. node a can reach to node z in one hop and the shortest path is 

actually the edge from node a to node z), only node a is inserted into the set of 

predecessors on the shortest paths from node a to node z. 

After all the successor nodes are examined, in Line 22, the shortest path distance 

from node a to node z, D(a, z), is updated to hold  the value of the running min, myMin. 

In Line 24, node a is inserted into the priority queue that holds the distances to node z in 

ascending fashion. A node is inserted into this priority queue only if its shortest distance 
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to node z is changed and if it is still able to reach to node z with the possibility of 

discovering a shorter path from node a to node z as the update continues to propagate in 

the network. 

The rest of the DELETEUPDATEBETWEENNESS algorithm, Lines 25 – 40, processes 

this priority queue to see if the shortest distances can be further updated. In the first part 

of the algorithm, if there is no node b that would satisfy the condition in Line 16 or Line 

20, then no shortest paths from node a to node z were found and the shortest distance 

from node a to node z is forced to be infinity. Starting with Line 25 of the 

DELETEUPDATEBETWEENNESS algorithm, the shortest paths that are properly discovered 

earlier in the algorithm are examined to see if new shortest paths that are even shorter can 

be discovered. The impact of an incremental network update propagates in the form of 

ripples expanding outward from the modification point of the update.  Hence, it may be 

possible to find shorter paths in the outer levels of these update ripples that use shorter 

paths from earlier levels. 

For each node a inserted in the priority queue Q_inc, we check the predecessors 

of node a (c ∈  Pred(a)) and see if the newly discovered shortest distance from node a to 

node z is useful in finding a shorter path from node c to node z. For each node c, we 

check if the path from node c to node z which uses the edge {c →  a} is shorter than or 

equal to the currently known shortest paths from node c to node z. 
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Algorithm–16:   DELETEUPDATEBETWEENNESS (G, src, dest, z) 
Input: Network G(V, E), deleted or modified edge {src  →  dest}, and an affected node z. 
Output: The shortest distances (D) to the affected node z and the predecessors are updated.  
1. AffectedVertices ← ∅ 
2.  Workset ←{src};  
3.  while Workset ≠ ∅ 
4.      u ←pop (Workset) 
5.     if u ∉ AffectedVertices then add u to AffectedVertices 
6.      for x ∈  Pred(u) such that SP(x, u, z)  
7.     add x into Workset 
8. AffVert  ←  AffectedVertices.copy() 
9.  Q_inc ← ∅ 
10.  while AffVert ≠ ∅ 
11.  a ←  extractMin(AffVert) 
12. if(< 𝑎, 𝑧 >  ∉  σold )   then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) >  into σold  and CLEARBETWEENNESS (a, z) 
13.  if (< 𝑎, 𝑧 >  ∉  Dold ) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) >  into Dold 
14.  myMin ← ∞ 
15.   for b ∈  Succ(a) 
16.   if (C(a, b) + D(b, z) < myMin) 
17.   myMin←  C(a, b) + D(b, z) 
18.    𝑃!(𝑧) ← ∅ 
19.    if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
20.   else if (C(a, b) + D(b, z) = myMin & myMin ≠  ∞ & b ∉  AffectedVertices) 
21.   if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
22. 𝐷(𝑎, 𝑧) ←  myMin 
23. if myMin ≠  ∞ & a ∉  Q_inc 
24. add a into Q_inc 
25.  while Q_inc ≠ ∅ 
26.  a ←  extractMin(Q_inc) 
27.   for c ∈  Pred(a) 
28.   if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices) 
29. if(< 𝑐, 𝑧 >  ∉  σold )   then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) >  into σold  and CLEARBETWEENNESS (c, z) 
30.  if (< 𝑐, 𝑧 >  ∉  Dold ) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) >  into Dold 

31.    𝑃!(𝑧) ← ∅ 
32.   if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
33.  D(c, z) ←  C(c, a) + D(a, z) 
34.  if c ∉  Q_inc 
35. add c into Q_inc 
36.   else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices) 
37. if(< 𝑐, 𝑧 >  ∉  σold )   then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) >  into σold  and CLEARBETWEENNESS (c, z) 
38.  if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
39.  if c ∉  Q_inc 
40. add c into Q_inc 
41.  return AffectedVertices 
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When a shorter path from node c to node z is found (Line 28), we also check if the 

node c is not in the list of affected nodes (AffVert). If node c is not an element of 

AffVert, we check if the node pair < c, z > has been updated before during the 

propagation of the current network update. If it is the first time the shortest paths from 

node c to node z are to be updated, to keep track of the original values known before the 

network update started, the previously known shortest distance from node c to node z and 

the shortest path count from node c to node z are inserted into Dold and σold, respectively. 

In addition, the betweenness centrality values of the predecessors on the shortest paths 

from node c to node z are reduced as required by the CLEARBETWEENNESS algorithm in 

Line 29 of the DELETEUPDATEBETWEENNESS algorithm, and then cleared in Line 31. Lines 

32 of the DELETEUPDATEBETWEENNESS algorithm updates the predecessors on the shortest 

paths from node c to node z to include the predecessors on the shortest paths from node c 

to node z that pass through node a while Line 33 updates D(c, z), the shortest distance 

from node c to node z, to be the new shortest distance discovered through node a. 

Following a similar reasoning to the first part of the algorithm, in Lines 34 – 35, node c is 

inserted into the priority queue Q_inc to see if there are any shortest paths that might use 

the shortest paths from node c to node z as their subpaths to reach to node z. 

When an equivalent shortest path from node c to node z is found (Line 36) and 

node c is not an element of AffVert, we go through steps that are similar to those we go 

through when a new shorter path is found. First, we check if the node pair < c, z > has 

been updated before during the propagation of the current network update. If it is the first 

time the shortest paths from node c to node z are to be updated, to keep track of the 
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original values, the previously known shortest path count from node c to node z is 

inserted into σold. In addition, the betweenness values of the predecessors on the shortest 

paths from node c to node z are reduced as required by calling the CLEARBETWEENNESS 

algorithm in Line 37 of the DELETEUPDATEBETWEENNESS algorithm. However, different 

from the case when a strictly shorter path is found, we do not clear the previously known 

predecessors on the shortest paths from node c to node z. Following a similar reasoning to 

the earlier parts of the algorithm, in Lines 39 – 40, node c is inserted into the priority 

queue Q_inc to see if there are any shortest paths that might use the shortest paths from 

node c to node z as their subpaths to reach to node z. 

5.4.3 CLEARBETWEENNESS  

The next algorithm we discuss is the CLEARBETWEENNESS algorithm which is 

invoked from the DELETEUPDATEBETWEENNESS algorithm when a shortest path is 

invalidated. The betweenness values of the intermediates on the invalidated path(s) 

should be reduced before their relationships with the previously known shortest paths 

become intractable. In other words, the main functionality of the CLEARBETWEENNESS 

algorithm is to reduce the betweenness values of the intermediates that lie on the old set 

of shortest paths from node a to node z, where nodes a and z are given as the input 

parameters to the algorithm. The CLEARBETWEENNESS algorithm is invoked only once for 

each node pair <a, z> when it is first discovered that the shortest path(s) from node a to 

node z need to be updated during the propagation of the current shrinking network 

update. 
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The first part of the CLEARBETWEENNESS algorithm (Lines 1–7) processes the old 

set of intermediate nodes that are currently accessible when the shortest path(s) from 

node a to node z are traced. The betweenness centrality value of each intermediate node v 

is reduced by the contribution of the shortest path(s) from node a to node z (Line 6) and 

inserted into trackLost. Before their betweenness centrality values are modified, we do 

check if the intermediate node v belongs to the original set of intermediates that existed 

before the network update or if it is one of the new intermediates that became accessible 

due to currently partially updated shortest paths from node a to node z. If node v is a new 

intermediate node, it is skipped without further processing (Line 4). An intermediate node 

v satisfies the following equality if it is an old intermediate:  

Dold (a, v) + Dold (v, z) ?= Dold (a, z).    

Other than the nodes that are still accessible by following the currently known 

predecessors, there might be some other nodes that were once on the shortest paths from 

node a to node z, but cannot be accessed now because some of the pointers are broken 

when the current shrinking network update started propagating in the network. Such 

nodes are processed in the second half of the CLEARBETWEENNESS algorithm (Lines 8–15). 

These nodes are inserted into trackLost before they are cleared later in the 

DELETEUPDATEBETWEENNESS algorithm when the predecessors of the invalidated shortest 

paths are cleared. Lines 9–15 of the CLEARBETWEENNESS algorithm go through the entries 

of trackLost to find the previously existing intermediates that cannot be found otherwise. 
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Such intermediates are usually lost as a part of a subpath that is lost before the current 

network update propagated this far. 

 

Assume that there is a path in the following form: a....  →….x.…  →.... interm 

…→….y…→…..z. By the time the propagation of the shrinking network update reaches 

the level of the shortest paths from node a to node z, the subpath(s) from node x to y 

might have already been updated and the node interm may not necessarily be an 

intermediate on the shortest path(s) from node x to node y anymore. Hence, we cannot 

find the node interm as an intermediate for the shortest path(s) from node a to node z 

although the node pair <a, z> still has a contribution on the betweenness centrality value 

of the node interm. This is why we keep track of such cases in a separate data structure 

(e.g. trackLost) and the betweenness values of such nodes are reduced later as required 

Algorithm–17:  CLEARBETWEENNESS (a, z) 
Input: A source node a and a destination node z. The old set of shortest paths from a 
to z need to be invalidated.  
Output: Betweenness values of the intermediates on the previously known shortest 
paths are reduced. The previous intermediates whose connections need to be broken 
are maintained in trackLost. 
1.  if σ(a, z) ≠ 0 
2.    for v ∈  I(a, z)  
3. if (Dold (a, v) + Dold (v, z) ≠ Dold (a, z)) 
4.  continue 
5.  else if (a ≠ v & v ≠ z) 
6. 𝐶!(𝑣) ←   𝐶𝐵(𝑣) – (σold (a, 𝑣) * σold (𝑣, z) / σold (a, z)) 
7. add <<a, z>, v> into trackLost 
8. AlreadyDone ←  I(a, z) 
9.  for (<x, y>  ∈ trackLost.KeySet())  
10.  if (Dold (a, x) + Dold (x, y) + Dold (y, z) = Dold (a, z))  
11. for interm ∈  trackLost<x, y> 
12. if (interm ∉  AlreadyDone & Dold (a, interm) + Dold (interm, z) = Dold (a, z)) 
13.   𝐶!(interm) ←   𝐶𝐵(interm) – (σold (a, interm) * σold (interm, z) / σold (x, z)) 
14.    add <<a, z>, interm> into trackLost 
15.    add interm into AlreadyDone 
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(Line 13 of CLEARBETWEENNESS). In this example, we had the information that node 

interm was an intermediate on the shortest path(s) from node x to node y. However, we 

did not have direct information about node interm being an intermediate from node a to 

node z. In Line 14 of the CLEARBETWEENNESS algorithm, we add the information that 

interm is a lost intermediate of the shortest path(s) from node a to node z by inserting a 

tuple of <<a, z>, interm> into trackLost. To avoid processing the same node multiple 

times, we keep track of the intermediates that are already processed in the AlreadyDone 

set. 

5.4.4 ADJUSTNPS 

The next algorithm that is discussed is the ADJUSTNPS algorithm. The ADJUSTNPS 

algorithm is called from the DELETEBETWEENNESS algorithm after all the shortest path 

distances and the predecessors on the shortest paths are updated accurately. The main 

functionality of the ADJUSTNPS algorithm is to accurately update the number of shortest 

for all modified shortest paths, either by length or number. 

The ADJUSTNPS algorithm loops through the list of node pairs < a, z > whose 

shortest paths changed in terms of length or number. Such node pairs are stored in σold 

during the course of a shrinking network update propagation (Line 1). 

There are two corner cases for the number of shortest paths. If the nodes a and z 

are the same, then σ (𝑎, 𝑧) = 1 by definition. If the distance from node a to node z is 

undefined (e.g. ∞), then there is no shortest path from a to z, and σ (𝑎,  𝑧) = 0. Lines 2 – 5 

of the ADJUSTNPS algorithm handle these two conditions.  
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The rest of the algorithm is the core of the ADJUSTNPS algorithm and handles the 

common case. The key idea is the following. If, in a network, it is possible to reach from 

node a to node z via multiple paths, then each path can be reconstructed separately 

following the predecessors on the shortest paths. Hence, starting with the destination 

node z, we push each of the predecessors on a stack at every level until the source node a 

is reached. The number of times we hit the source node a is equal to the number of 

distinct routes one can take, which is represented as the number of shortest paths from 

Algorithm–18: ADJUSTNPS ( ) 
Input: The list of source and destination nodes for the set of affected shortest paths.  
Output: The numbers of shortest paths for all affected paths are updated. 
1. for (𝑎, 𝑧) ∈  σold 
2. if (a = z) 
3. σ (𝑎, 𝑧) ←1 
4. else if (D(a, z) = ∞) 
5. σ (𝑎, 𝑧) ←0 
6. else 
7. Known ← ∅;  Stack ← ∅ 
8. for 𝑛 ∈ 𝑃!(𝑧)   
9. push 𝑛 to Stack 
10. add 𝑛 to Known 
11. counter ←  0 
12. while Stack ≠ ∅ 
13. 𝑛 ←  pop (Stack) 
14. add 𝑛 to Known 
15. if (n = a) 
16. counter ←  counter + 1 
17. for 𝑝 ∈ 𝑃!(𝑛)   
18. if (𝑝 ≠ 𝑎 & 𝑝 ≠ 𝑧) 
19. push 𝑝 to Stack 
20. if (𝑝 = 𝑎) 
21. counter ←  counter + 1 
22. σ (𝑎, 𝑧) ←  counter 
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node a to node z. Every time an intermediate node is processed, we check if we hit node 

a. If it is true, then the counter is incremented (Lines 15 – 16; Lines 20 – 21).   

5.4.5 ADJUSTBETWEENNESS 

The final step required for completing a shrinking network update is the 

ADJUSTBETWEENNESS algorithm. It loops through the list of node pairs < a, z > where the 

shortest paths from node a to node z changed in terms of length or number. For every 

node pair, the shortest path distances, the intermediates on the shortest paths, and the 

number of shortest paths are already computed before the ADJUSTBETWEENNESS algorithm 

is called. The ADJUSTBETWEENNESS algorithm increments the betweenness value of each 

intermediate node n by the fraction of the shortest paths from node a to node z that it lies 

on. With this step, the incremental update of betweenness centralities for the shrinking 

network updates is complete. 

 

Algorithm–19: ADJUSTBETWEENNESS ( ) 
Input: The list of node pairs between which the shortest paths are updated.  
Output: Betweenness values of the intermediates on the affected shortest paths are 
increased by the fraction of shortest paths they lie on.  
1. for (𝑎, 𝑧) ∈  σold  
2. for n ∈  I(𝑎, 𝑧) 
3. if 𝑛 ≠ 𝑎 & 𝑛 ≠ 𝑧 
4. 𝐶!(n) ←   𝐶𝐵(n) + (σ (a, n) * σ (n, z) / σ (a, z)) 
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5.5 DISCUSSION ON ALGORITHMIC COMPLEXITY 

5.5.1 Run Time Analysis 

Next, we discuss the time complexities of the algorithms proposed earlier in 

Chapter 5.3 and Chapter 5.4, respectively.  

Starting with the REDUCEBETWEENNESS and INCREASEBETWEENNESS algorithms, the 

INCREASEBETWEENNESS algorithm runs a for-loop for σold many iterations and inside the 

outer for loop, there is one for loop, and one while loop. These two loops should be 

considered in combination because the intermediate nodes on the shortest paths from the 

source to the destination are handled by one or the other loop and the distinction is 

irrelevant. The complexity of the bodies of these loops are O(1), and they are executed 

once for each intermediate node. So, the overall complexity of the procedure is O(|σold| I) 

where I represents the total number of intermediates processed for all node pairs listed in 

σold. In the REDUCEBETWEENNESS algorithm, the run time is dominated by the if-block at 

the end (Lines 25 – 29 of REDUCEBETWEENNESS). This block performs a search over the 

map of all known intermediate nodes on the shortest paths from node x to node z and uses 

two intermediates at a time to form the key to the map. Hence, and its complexity is 

O(I(x, z)2) where I(x, z) represents the number of intermediates on the on the shortest 

paths from node x to node z. 

The overall run-time complexity of the INSERTUPDATEBETWEENNESS algorithm is 

dominated by the complexity of the priority queue Workset. The Workset is used to track 

all the affected nodes as the shrinking network update keeps propagating. The 
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INSERTUPDATEBETWEENNESS algorithm essentially performs a traversal in the 

neighborhood of every AffectedSink and AffectedSource, respectively. The work 

performed inside the while loop is O(||Affected|| log ||Affected||) + I2) where ||Affected|| is 

used to denote the sum of the number of the edges and the nodes in the subgraph formed 

by AffectedSource and AffectedSink nodes’ neighborhoods. Finally, the 

INSERTBETWEENNESS algorithm invokes the INSERTUPDATEBETWEENNESS algorithm for 

each AffectedSink and AffectedSource node once, followed by a call for the 

INCREASEBETWEENNESS algorithm, yielding O((|AffectedSink|+|AffectedSource|) 

||Affected|| log ||Affected||) + I2 + |σold| I) time complexity overall. 

For handling the shrinking network updates, the DELETEBETWEENNESS algorithm 

is the entry point for execution. It has multiple invocations of 

DELETEUPDATEBETWEENNESS and at the end; it also calls the ADJUSTNPS and 

ADJUSTBETWEENNESS algorithms. The DELETEUPDATEBETWEENNESS algorithm calls the 

CLEARBETWEENNESS algorithm, which as a result, has a contribution to the overall time 

complexity of the DELETEUPDATEBETWEENNESS algorithm. Hence, the ADJUSTNPS, the 

ADJUSTBETWEENNESS, and the CLEARBETWEENNESS algorithms’ time complexities are 

independent of the other algorithms’ time complexities. 

For the ADJUSTBETWEENNESS algorithm, the overall complexity of the procedure is 

O(|σold| I) where I represents the total number of intermediates processed for all node 

pairs listed in σold.  

For the ADJUSTNPS algorithm, the time complexity analysis resembles that of the 

INCREASEBETWEENNESS algorithm presented in Chapter 5.3. The ADJUSTNPS algorithm 
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runs a for-loop for σold many iterations. Inside this outer for loop, there is one for loop and 

one while loop. These two loops should be considered in combination because the 

intermediate nodes on the shortest paths from the source to the destination are handled by 

one or the other loop and the distinction is irrelevant. The complexity of the bodies of 

these loops are O(1), and they are executed once for each intermediate node. Therefore, 

the overall complexity of the procedure is O(|σold| I) where I represents the total number 

of intermediates processed for all node pairs <a, z> listed in σold. 

Similarly, the time complexity analysis of the CLEARBETWEENNESS algorithm is in 

line with the time complexity analysis of the REDUCEBETWEENNESS algorithm presented 

in Chapter 5.3. The run time of the CLEARBETWEENNESS algorithm is dominated by the if-

block at the end (Lines 9 – 15 of CLEARBETWEENNESS). This block performs a search over 

the map of all known intermediate nodes on the shortest paths from node a to node z 

(nodes a and z are the two parameters given as input to the algorithm) and uses two 

intermediates at a time to form the key to the map. Hence, and its complexity is O(I(a, 

z)2) where I(a, z) represents the number of intermediates on the on the shortest paths from 

node a to node z. 

The time complexity analysis for the DELETEUPDATEBETWEENNESS algorithm can 

take the time complexity analysis of the DELETEUPDATECLOSENESS algorithm, presented 

in Chapter 4.4.2. However, since the DELETEUPDATECLOSENESS algorithm makes calls to 

the CLEARBETWEENNESS algorithm, its overall time complexity is different than that of the 

DELETEUPDATECLOSENESS algorithm. 
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In the DELETEUPDATEBETWEENNESS algorithm, the time complexity of the second 

phase of the algorithm dominates the time complexity of the first phase of the algorithm. 

The time complexity of the second phase of the algorithm is governed by the time 

complexity of the AffVert and Q_inc priority queues maintained by the algorithm. The 

Q_inc priority queue is a subset of the AffVert as only certain elements are added into it 

conditionally in Line 24 of the DELETEUPDATEBETWEENNESS algorithm. The operations 

performed on the while block starting on Line – 10 and the while starting on Line – 25 

are similar in terms of time complexity. However, in the worst case, all the elements in 

the AffVert are added into Q_inc. In the first while block the successors of each element, 

and in the second while block, the predecessors of each element is checked, which results 

in probing of the two hop neighborhood of the affected vertices with a time complexity of 

O(||AffectedVertices||2,z) where the subscript 2 denotes the size of two-hop neighborhood 

of all affected nodes and z refers to the last parameter of the algorithm (i.e. the node to 

which the shortest path distances are updated). The insertions into and extractions from a 

priority queue are on the order of logn for a priority queue of size n. Hence, these 

operations will take O(|AffectedVertices| log|AffectedVertices|) time in total. The 

CLEARBETWEENNESS algorithm, in the worst case, might be called for all the elements in 

the AffectedVertices, covering all possible AffectedSource – AffectedSink node pairs, 

which would result in O(I2) time complexity where I represents the total number of 

intermediates processed for all node pairs listed in σold. Hence, the overall time 

complexity of the DELETEUPDATEBETWEENNESS algorithm is O(||Affected||2,z + |Affected| 

(log |Affected| + I2)+ I2 + |σold| I) where the set of affected nodes (Affected) is given by 
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the combination of AffectedSink and AffectedSource nodes. Although the complexity of 

each sub-algorithm can be precisely computed in terms of the changes made, in terms of 

the upper bound worst-case time complexity, the incremental betweenness algorithm 

does not do better than the Brandes’ betweenness algorithm. This is because, in the worst 

case, the size of the Affected set can be as large as the entire node set of the network, and 

σold can be on the order of O(n2).  

5.5.2 Memory Consumption and Overhead Analysis 

Next, we discuss the theoretical scaling argument of how the memory usage 

scales with the problem size for the incremental betweenness centrality algorithm. The 

Brandes’ betweenness algorithm takes O(n + m) space. The Brandes’ betweenness 

algorithm finds the shortest paths from a certain source node and can reuse that space 

while discovering the shortest path tree from another node. However, the incremental 

betweenness centrality algorithm would not override such data as it needs the information 

on all-pairs shortest paths and the predecessors readily available for issuing the 

incremental network updates quickly. Hence, the incremental betweenness algorithm has 

larger space requirements as discussed in detail below.  

Similar to the incremental closeness algorithm, the incremental betweenness 

centrality algorithm maintains the original graph and its transpose (reverse) 

simultaneously. This duality is of critical importance for achieving a bounded 

incremental update algorithm. Hence, the memory requirement increases to O(2m+2n) for 

graph representation (i.e. the representation of nodes and edges). The duality is an 
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algorithmic property inherited from the incremental all-pairs shortest paths algorithm 

designed by Ramalingam and Reps.  

The incremental betweenness centrality algorithm also needs an additional 

memory space of O(n) for storing the betweenness centrality value of each node. 

However, the betweenness attributes or other attributes do not need to be maintained for 

the transpose network; they only need to be maintained for the original version of the 

graph. Hence, the betweenness centrality values need to be stored only once in the 

memory. The betweenness centrality is very costly to compute and needs several pieces 

of additional information by definition. Betweenness centrality requires the number of 

shortest paths and the predecessors on the shortest paths, which reflect as additional 

memory space required by the betweenness algorithms.   

Similar to the space the incremental closeness centrality algorithm needs to hold 

the shortest distance values across all pairs of nodes, the space required for storing the 

shortest path distances for the betweenness centrality is O(n2) in the worst case (i.e. O(n2) 

distance matrix). To be more precise, for each node, there are 𝑛 − 1  other nodes in the 

network it can reach out to. Hence, the precise upper bound for the number of node pairs 

for whose distances are defined is  𝑛 𝑛 − 1 = 𝑛2, which is represented as O(n2) in the 

worst case in the Big-O notation. We do not need to hold the information for  𝐷 𝑖, 𝑖 , 𝑖 ∈ 𝐺 

as 𝐷 𝑖, 𝑖  is always equal to 0 by default. However, a lot of real life networks are very 

sparse and the distance matrix does not even need to be stored as an O(n2) matrix; the 

sparse representations are more preferable. In sparse networks, not every node is 

reachable from every other node in the network. More precisely, the data structure that 
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holds the shortest distance information has Conn(G) entries where Conn(G) represents 

the number of node pairs in the network that have a finite shortest distance defined. This 

analysis is valid for the number of shortest paths in the network. For the number of 

shortest paths, we do not need to hold the information for  𝜎 𝑖, 𝑖 , 𝑖 ∈ 𝐺 as 𝜎 𝑖, 𝑖  is always 

equal to 1 by default. In total, (2 * Conn(G)) entries are required to hold the shortest 

distances and the number of shortest paths across all node pairs. The only piece of 

information that needs to be maintained for the transpose of the graph is the shortest 

distances defined on that version of the graph. This adds another Conn(G) entries to the 

memory consumption. 

Another piece of information the computation of betweenness centrality needs is 

the predecessor nodes on the shortest paths (i.e. the information on the intermediate 

nodes on a path) so that it can find the fraction of the shortest paths a node lies on. This 

information only needs to be maintained for the original version of the graph. The 

shortest path tree stemming from a node i can at most have n nodes and m edges in it. 

This is the case where a node can access all other nodes in a network, and all the edges in 

the network are used as parts of the shortest paths stemming from node i. The shortest 

path tree stemming from a single node takes O(n + m) space. The incremental 

betweenness centrality algorithm needs to maintain the predecessors on the shortest paths 

from all nodes, which takes O(n2 + nm) space in the worst case. However, in most cases, 

the information required for holding the shortest path trees requires less space. On 

average, the number of predecessors on the shortest paths can be calculated as the 

multiplication of the average shortest path length (in terms of number of hops), the 
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average number of shortest paths, and Conn(G). Considering the information presented 

on the network topologies in Chapter 7, for instance, the average shortest path lengths for 

networks with 1000-5000 nodes remain in the range of 3.45 – 20.26, mostly staying less 

than 13.0, which are values that are much smaller than the total number of nodes in the 

network.  

Overall, the worst-case space complexity of the incremental betweenness 

centrality algorithm is (2n + 2m + n + 3Conn(G) + n2 + nm) which is represented as O(n + 

m + Conn(G) + n2 + nm) in the Big-O notation. This space complexity can also be 

represented as O(n2+ nm) given that (i) the worst case value of Conn(G) is O(n2)  and (ii) 

both n and m are of lower degree from n2 and nm. 

In addition to the amount of data that needs to be stored permanently across 

several different iterations of the incremental betweenness centrality algorithm, another 

aspect of the memory consumption is the overhead: the amount of data that is temporarily 

stored during the execution of a single incremental network update, and not maintained 

across different updates.  

There are four sub-algorithms that handle the growing network updates: the 

INSERTBETWEENNESS, the INSERTUPDATEBETWEEENNESS, the REDUCEBETWEENNESS, and the 

INCREASEBETWEENNESS algorithms. 

The INSERTBETWEENNESS algorithm maintains four data structures that are 

initialized at the beginning of the INSERTBETWEENNESS algorithm, created once, and 

accessed by all other sub-algorithms of the incremental betweenness centrality that 

handle the growing network updates: σold, Dold, trackLost, and PairsDone. The σold, Dold, 
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and PairsDone are O(Conn(G)) in the worst case, however, in reality they are much 

smaller. For their sizes, |AffectedSinks| × |AffectedSources| is a more realistic upper 

bound. In addition, the Dold is likely to be smaller than σold because σold contains a key for 

all pairs of nodes whose number of shortest paths or distances change while the Dold 

contains only the pairs of nodes whose shortest distances change. The trackLost data 

structure holds the information for the predecessors that were on the invalidated shortest 

paths. If there are too many changes in the network, this data structure can potentially 

become large. Its size can be described as O(I) where I represents the total number of 

intermediates processed for all node pairs listed in σold.  

In addition, the INSERTBETWEENNESS algorithm maintains two sets of nodes: 

AffectedSinks and AffectedSources, which are of order O(n) each. These two objects are 

stored during the entire lifetime of an incremental update and cleared once the network 

update completes successfully. 

In the INSERTUPDATEBETWEENNESS algorithm, lists of AffectedVertices and 

VisitedVertices are maintained as well as a working set of edges (e.g. Workset). Both the 

AffectedVertices and VisitedVertices might be of order O(n) while the Workset might be 

of order O(m) in the worst case. Hence, the memory overhead per iteration in the worst 

case is (2n + m), which can be represented as O(n + m). These data structures are only 

maintained during the execution of the INSERTUPDATEBETWEENNESS algorithm and cleared 

once the execution of the algorithm is complete.  

The REDUCEBETWEENNESS algorithm utilizes information from σold, Dold, trackLost, 

and PairsDone, and grows trackLost as needed, which are already discussed as a part of 
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the INSERTBETWEENNESS algorithm. There are two data structures Known and Stack, and 

they are used together: an item popped out of Stack is inserted into Known. The total size 

of Known and Stack is on the order of O(n). However, the maximum size of these data 

structures is the number of intermediates on the shortest paths from node x to node z, 

which are the two input parameters given to the algorithm. On average, the number of 

predecessors on the shortest paths from node x to node z can be calculated as the 

multiplication of the average shortest path length (in terms of number of hops) and the 

average number of shortest paths. 

Finally, the INCREASEBETWEENNESS algorithm utilizes information from σold and its 

execution is very similar to that of the REDUCEBETWEENNESS algorithm. Hence, their 

analysis will be similar as well. For each node pair <a, b> in σold, there are two data 

structures Known and Stack that are used together: an item popped out of Stack is inserted 

into Known. The total size of Known and Stack is on the order of O(n). However, the 

maximum size of these data structures is the number of intermediates on the shortest 

paths from node a to node b, which are the two input parameters given to the algorithm. 

On average, the number of predecessors on the shortest paths from node a to node b can 

be calculated as the multiplication of the average shortest path length (in terms of number 

of hops) and the average number of shortest paths. 

Overall, the data structures initialized at the beginning of the INSERTBETWEENNESS 

algorithm are maintained during the entire lifetime of an incremental network update, 

which can be stated as the memory overhead of the incremental betweenness centrality 

algorithm. The total upper bound for the space these data structures consume is 
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((3*|AffectedSinks| × |AffectedSources|) + I), which can be represented as 

O(|AffectedSinks| × |AffectedSources|) + I) in the Big-O notation. 

Similar memory overhead analysis can be performed for temporarily stored data 

for the algorithms that handle the shrinking network updates. The analysis done for the 

components of the incremental betweenness centrality algorithm that handle the growing 

network updates mostly holds for the sub-algorithm that handle the shrinking network 

updates. There are five sub-algorithms that handle the shrinking network updates: the 

DELETEBETWEENNESS, the DELETEUPDATEBETWEEENNESS, the CLEARBETWEENNESS, the 

ADJUSTNPS, and the ADJUSTBETWEENNESS algorithms. The analysis done for the 

DELETEBETWEENNESS algorithm is valid for the DELETEBETWEENNESS algorithm as well. 

Similarly, the analysis done for the INCREASEBETWEENNESS algorithm holds for the 

ADJUSTBETWEENNESS algorithm. The CLEARBETWEENNESS and the ADJUSTNPS, have 

working principles and analyses that follow the same approach as the 

REDUCEBETWEENNESS algorithm. Hence, they are not discussed separately here.  

In the DELETEUPDATEBETWEENNESS algorithm, lists of AffectedVertices and 

VisitedVertices are maintained and a set working nodes (e.g. Workset). The 

AffectedVertices, VisitedVertices, and Workset are of order O(n) while in the worst case. 

Hence, the memory overhead per iteration in the worst case is 3n, which can be 

represented as O(n). These data structures are only maintained during the execution of the 

DELETEUPDATEBETWEENNESS algorithm and cleared once the execution of the algorithm 

is complete. 
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As the analyses done on the performance and memory use suggest, different 

network features have different effects on both the performance and memory 

consumption. For instance, betweenness centrality needs the information on the 

predecessors that lie on the shortest paths, which are actually the nodes on a shortest path 

tree. If a network has low diameter and average shortest path length, this causes the 

average and maximum depth of shortest path trees stemming from the each node in the 

network to be short and the tree might potentially contain fewer nodes. Or, if a network 

has several small, disconnected components, if a network its diameter and average 

shortest path length are likely to be smaller than they would be otherwise. In addition, 

Conn(G) is also likely to be smaller, which is one of the main values that make up the 

memory consumption of the incremental centrality algorithms. Another effect this would 

have is that the number of nodes that are affected by the incremental network update is 

likely to be smaller, which reflects as increased performance as the percentage of the 

affected nodes decreases.  

Another feature that might affect the level of connectivity, Conn(G), which 

represents the number of node pairs that are connected, is whether a network is directed 

or undirected (bidirectional). When a network is undirected, if a node x can reach to 

another node y, then node y can reach to node x as well. However, this is not necessarily 

true when the edges in a network are directed. Hence, when a network is undirected 

(bidirectional), Conn(G) is likely to be higher, which reflects as a potential increase in the 

memory consumption and the percentage of nodes affected by an incremental network 

update as well as a potential decrease in the performance speedup that can be obtained. 
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5.5.3 Comments on Accuracy 

The algorithms presented in this chapter build on the Ramalingam and Reps 

dynamic shortest path algorithms proposed in [104] to incorporate the accurate 

computation of betweenness centrality. In other words, the incremental betweenness 

centrality algorithms presented in this chapter are designed to incur no loss in the 

accuracy of betweenness centrality values.  

A discussion that is similar to the discussion on the implementation of the 

incremental closeness centrality also holds for the incremental betweenness centrality 

implementation. It is important to handle the floating-point numbers with caution. In 

order to ensure that the results produced by the incremental betweenness centrality 

algorithm match the results produced by the non-incremental betweenness algorithms, 

both the incremental and the non-incremental betweenness centrality algorithms should 

handle the floating-point numbers using the same epsilon value, 𝜀. Two real numbers 𝑎 

and 𝑏 are considered equal if 𝑎 − 𝑏 <   𝜀, where 𝑎 − 𝑏  denotes the absolute value of 

(𝑎 − 𝑏). The conditions that test whether a path is a shortest path compare the length of 

the path against the shortest distance to look for equality. Such conditional checks lie at 

the heart of both the incremental and non-incremental algorithms and govern how the rest 

of the network update propagates in the network and how the rest of the shortest path 

trees are built. Hence, the conditional checks that test the equality/inequality of the 

shortest path distances should be supported by an epsilon range. The epsilon value used 

in our implementations was 10-7. 
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For verification, every time the incremental algorithm was run, the standard non-

incremental algorithm (e.g. the Brandes’ algorithm) was also run and the results 

compared. Once we took the same epsilon into account in both, the results of both the 

incremental algorithm and the standard algorithm were identical in every case. Further 

comments on verification can be found in Chapter 8.7. 

5.6 DISCUSSION ON GENERALIZATION TO OTHER CENTRALITY METRICS 

AND SHORTEST-PATH BASED PROBLEMS 

 As described earlier, most social centrality metrics can be loosely classified into 

two types: (i) social centrality metrics based on shortest-paths, and (ii) social centrality 

metrics based on degree of nodes. The incremental centrality algorithms proposed in this 

dissertation dynamically maintain the all-pairs shortest path information and auxiliary 

data related to the centrality metrics. The proposed incremental betweenness algorithm 

performs accurate maintenance of dynamic all-pair shortest paths along with the shortest 

path counts and predecessor tracking. With modest extensions, the proposed algorithms 

can be generalized to calculate other shortest-path based social centrality metrics such as 

stress centrality [20], and flow-betweenness centrality [130].  

There are other problem domains that benefit from information on the number of 

shortest paths or predecessor tracking. Redundant path planning for fault tolerant 

networks (whether they be communication or transportation networks), and analyzing 

optimal game state transitions in artificial intelligence or game theory are among such 

examples. In transportation/communication networks, the number of shortest paths 
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represents the number of redundant but optimal routes between a pair of nodes, and 

predecessors represent routing points. In game state analysis, the number of shortest paths 

to a winning state represents the number of optimal winning strategies not foreclosed by 

an opponent's moves, and predecessors indicate intermediate states as the game 

progresses.  
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CHAPTER 6 EXTENSIONS AND APPLICATIONS 

The first part of this chapter describes extensions of incremental centrality metrics 

to provide support for their approximations. The approximations discussed in this chapter 

are in the form of k-centrality metrics where the shortest paths in a network are calculated 

within k-hops of each node. In the second part of this chapter, a number of potential 

applications (i.e. use cases) of the incremental centrality metrics are described including 

clustering, vulnerability analysis, and resource allocation. 

6.1 WHAT IS K-CENTRALITY? 

The standard shortest path based centrality metrics consider all the shortest paths 

in a network topology irrespective of the lengths of the shortest paths. When computing 

local approximations for the shortest path based centrality metrics, one alternative is to 

consider the shortest paths within a bounded distance. Consider the following scenario 

where a social agent in a social network needs help to solve a problem. The social agent 

is more likely to contact one of its friends, a friend of a friend, maybe someone those 

people can introduce; but most likely it will not search for help beyond the first couple of 

hops of its connections. In most cases, social agents are not even aware of the set of 

contacts they can reach out to if they were to follow communication paths along multiple 

hops. Such social behavior motivates the use of local approximations of the shortest paths 

bounded within first k-hops instead of using global metrics that are computed across the 
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entire network topology. This is also in line with the other findings available in the 

current literature, which discuss that very long connections are not considered to be 

realistic for friendship-like networks.  

We name the approximations of the betweenness and closeness centrality that are 

computed using the shortest paths within k-hops as k-betweenness and k-closeness, 

respectively. 

 
Figure 8 - Example network for k-centrality discussion. 

Consider the example network depicted in Figure 8. Figure 8 represents a binary, 

undirected (bidirectional) network where all existing edges’ costs and weights are equal 

to 1. Assume that we need to compute k-closeness and k-betweenness for k = 3. In this 

case, the shortest paths are computed within the first three hops of each node. The 

shortest paths whose total costs are more than three hops are dropped from the 

computations. Hence, when k = 3, not all the shortest paths across the entire network are 

included in the computations of centrality metrics.  

Next, the computations of k-closeness and k-betweenness for k = 3 are described 

using node-B in Figure 8 as an example.  
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To compute the k-closeness centrality of node-B for k = 3, the nodes that are 

reachable from node-B in less than or equal to three hops are considered. In this case, the 

following nodes contribute to the closeness centrality of node-B: A, D, C, E, and F. 

To compute the k-betweenness centrality of node-B, the node pairs that contribute 

to the k-betweenness centrality of node-B are as follows:   

< A, D >    < A, C >    < C, D >    < A, E >    < D, E > 

The node pairs listed above are the only node pairs that can reach to one another 

in less than or equal to three hops and have node-B as an intermediate node on their 

shortest paths. For instance, the shortest path between node-A and node-F is not included 

even though node-F is within three hops of node-B. This is because it takes four hops in 

total to reach from node-A to node-F and vice versa. Such paths would not be included in 

the final computations of k-betweenness centrality for k = 3 where the computations are 

restricted to include the shortest paths that are three hops or less. The shortest path 

between node-B and node-F is also excluded from the computation of betweenness 

centrality for node-B as node-B is an end node, not an intermediate node.   

Similar to the examples discussed above, the k-centrality metrics traditionally 

focus on the number of hops, where the networks are treated as binary networks, and the 

edge costs are ignored. Using the edge weights becomes especially tricky (or even 

misleading) when the edge costs can be fractional, using values that are less than 1. In 

such networks, setting the k value to a commonly used, small value such as k = 2 or k = 3 

might become confusing and problematic; potentially leading to unintended results. This 

is because, the cost of a shortest path composed of several hundreds of edges with edge 
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cost, say, 0.0001 would still satisfy the requirement that the shortest path distance should 

be less than or equal to k. In such a case, the attempt to obtain an approximate value for 

the centrality metrics would result in almost no approximation. Therefore, although we 

provide generic pseudocodes that would work with both weighted and binary networks, 

we recommend using k-centralities with the binary versions of networks.     

As one last point, the longest possible shortest path in a network is observed in the 

form of a chain, which can have at most n – 1 hops. When k = n – 1, the k-centrality 

version of a shortest path based centrality metric corresponds to the standard version of 

that shortest path based centrality.  

In the current literature, there exist papers that specifically focus on k-centralities 

(e.g. [18]). In [18], the authors combine the k-centrality computation for closeness and 

betweenness centrality metrics in a single algorithmic framework and comment on the 

details like normalization, implementation, and algorithmic complexity. As one example, 

closeness centrality 𝐶! is normalized by the maximum possible closeness value 

𝐶!!"# =   1 (𝑛 − 1), which belongs to the central node in a star-topology network of n 

nodes. In [18], a normalization criterion is proposed for k-closeness centrality. In the case 

of k-closeness, the number of nodes that can reach within k hops, 𝑛!, tends to be smaller 

than the case where the number of hops on the shortest paths is not bounded. For k-

closeness, 𝐶!
!"#,! is adjusted as 𝐶!

!"#,! = 1 𝑛! and the raw k-closeness value is 

normalized by 𝑛! (𝑛 − 1). Similar criteria are discussed for k-betweenness as well. 
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In the context of k-centralities, there is more work on k-betweenness centrality 

than there is on k-closeness centrality. Other studies that focus on k-betweenness 

centrality and not mentioned so far in this dissertation in detail include [131], [132], 

[133], and [134]. 

In [131], the authors deviate from the traditional interpretation of k-betweenness 

centrality and define k-betweenness as a centrality metric that captures the additional 

information provided by paths whose length is within k units of the shortest path length. 

In other words, the authors extend and generalize the definition of betweenness centrality 

to include additional, non-shortest paths according to an input parameter k and present a 

new parallel algorithm to calculate this variant of betweenness centrality. In [132], the 

authors from the same group as [131], build on the work presented in [131] and discuss 

its application on social network data (e.g. Twitter). 

In [133], the authors focus on two methods for approximating betweenness 

centrality. One approximation method that is discussed in [133] specifically targets scale-

free networks and their topological properties. In scale-free networks, incoming new 

nodes prefer attaching to the nodes with a high number of connections, which play the 

role of “hubs”. The authors observed that centrality rankings tend not to change 

dramatically unless the node a new edge emanates from is one of the central nodes. This 

brings along a way of enabling lazy updates in dynamic networks while providing fairly 

accurate centrality rankings. The second approximation method discussed in [133] is k-

betweenness centrality. In [134], the authors integrate these approximation methods into 

an Internet Deployed P2P Reputation System and conclude that it is easier to 
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approximate betweenness centralities in scale-free networks than it is in random networks 

due to their topological properties. One of the real life datasets used in the evaluations in 

this dissertation is also a real life P2P dataset.  

6.2 K-CLOSENESS 

This section discusses the algorithms designed for the incremental computation of 

k-closeness centrality. The algorithms that are discussed in this section, Chapter 6.2.1 and 

Chapter 6.2.2, are variants of the algorithms discussed in Chapter 4.3 and Chapter 4.4, 

respectively. For completeness reasons, the pseudocodes that are modified from the 

incremental closeness centrality algorithm for the incremental k-closeness centrality 

algorithm are provided. The changes that are specifically made for the incremental 

computation of k-closeness centrality are pointed out as well.  

As mentioned in earlier chapters, the most commonly used way of computing 

closeness centrality is to compute the all pairs shortest paths by running a single source 

shortest path algorithm such as the Dijkstra’s algorithm using every node in the network 

as the source node. Hence, before we start our discussion for converting the incremental 

closeness centrality algorithm into incremental k-closeness centrality algorithm, we 

briefly discuss how to convert the Dijkstra’s algorithm to work with k-hop shortest path 

bounds. 
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6.2.1 Dijkstra’s k-hop Shortest Path 

Algorithm–20 provides the algorithm for k-hop single source shortest path 

algorithm (e.g. the Dijkstra’s algorithm). To ensure that only the shortest paths that are 

less than or equal to k are processed, Line – 12 of Algorithm–20 is modified to include a 

condition which checks if the newly found shortest path is less than or equal to k. The 

modification done is highlighted with bold font in Line – 12. 

 

6.2.2 Incremental k-Closeness Centrality: Growing Network Updates 

The changes required for converting incremental closeness centrality into 

incremental k-closeness centrality are primarily about bounding the discovery of the 

shortest paths to remain within k hops. Although the incremental closeness centrality 

algorithm is composed of two sub algorithms, INSERTCLOSENESS and 

Algorithm–20: SINGLE-SOURCE K-SHORTEST PATH (DIJKSTRA’S) ALGORITHM (G, src)  
Input: A network G(V, E) and source node src. 
Output: Shortest path distances from src to all nodes n V(G) are computed.  
1. for v ∈ V(G) 
2.  d [v]← ∞ 
3. P[v]  ←  empty list 
4. d [s]  ← 0 
5. Q  ←  w  ∈  V(G) 
6. while Q ≠ ∅ 
7.  dequeue u ← Q 
8. if d [u] = ∞ 
9. break; 
10.  for neighbor v of u 
11.  alt ←  d [u] + C [u, v] 
12.  if alt <  d [v] && alt ≤  k 
13.  d [v] ← alt 
14. P[v]    ←  u 
15. decrease-key v in Q 
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INSERTUPDATECLOSENESS, the changes required for k-closeness centrality are made on the 

INSERTUPDATECLOSENESS algorithm only.  

 

Algorithm–21 provides the related pseudocode for the INSERTUPDATEKCLOSENESS 

algorithm. The change required for converting incremental closeness centrality into 

incremental k-closeness centrality to handle growing network updates is only at Line – 6 

of Algorithm–21. In Line – 6 of the INSERTUPDATECLOSENESS algorithm, we check for 

changes in the shortest path distances to see if there are any newly formed shorter paths. 

In Line – 6 of the INSERTUPDATEKCLOSENESS algorithm, this check is performed along 

Algorithm–21:  INSERTUPDATEKCLOSENESS (G, src, dest, z) 
Input: A network G(V, E), a newly inserted or modified edge {src  →  dest}, and an 
affected node z. 
Output: The shortest distances (D) to the affected node z are updated, and closeness 
values (Cc) of the sources of the updated distances are also updated. 
1.   Workset ←{src →  dest} 
2.   VisitedVertices  ←src 
3.   AffectedVertices  ← ∅ 
4.   while Workset ≠ ∅ 
5.         {x →y} ←  pop (Workset) 
6.         if C (x, y) + D (y, z) < D (x, z) && C (x, y) + D (y, z) ≤  k 
7.               Add x to AffectedVertices 
8.               TotDist(x) ← 1

𝐶𝑐(𝑥)
 

9.         if D (x, z)  ≠ ∞ 
10.              TotDist(x) ←  TotDist(x) – D (x, z) + C (x, y) + D (y, z)  
11.       else 
12.            TotDist(x) ←  TotDist(x) + C (x, y) + D (y, z)  
13.             𝐶!(𝑥) ←

!  
!"#$%&#(!)

 
14.       D (x, z) ←  C (x, y) + D (y, z) 
15.       for u ∈ Pred(x)  
16.              if SP (u, x, src) and u ∉ VisitedVertices  
17.                         push {u →x} into Workset 
18.                    Insert u into VisitedVertices 
19.   return AffectedVertices 
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with an additional check to ensure that only the shortest paths that are less than or equal 

to k hops are included in the computations. The remainder of the 

INSERTUPDATEKCLOSENESS algorithm is the same as the INSERTUPDATECLOSENESS 

algorithm. 

6.2.3 Incremental k-Closeness Centrality: Shrinking Network Updates 

Next, we discuss the changes required for converting the part of the incremental 

closeness algorithm that handles shrinking network updates to work with k-hop bounded 

shortest paths. Similar to the modifications required to handle growing network updates, 

to handle shrinking network updates in incremental k-closeness centrality, we modify 

only the DELETEUPDATECLOSENESS algorithm. Algorithm–22 presents the pseudocode for 

DELETEUPDATEKCLOSENESS algorithm. To arrive at the DELETEUPDATEKCLOSENESS 

algorithm, there are two changes that need to be made on the DELETEUPDATECLOSENESS 

algorithm: Line – 17 and Line – 28. These two lines are the points where a new shortest 

path is discovered after an edge on a shortest path has been removed or modified and 

there is now the possibility of finding a new shortest path. In both of the modified lines, 

additional conditional checks are inserted to ensure that the sum of the cost of the 

examined edge and the cost of the rest of the path remains within k hops if this shortest 

path is to be included in the rest of the computations.  
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Algorithm–22:  DELETEUPDATEKCLOSENESS (G, src, dest, z) 
Input: Network G(V, E), deleted or modified edge {src  →  dest}, and an affected node z. 
Output: The shortest distances (D) to the affected node z and the closeness values of the sources of the 
updated distances are updated. 
1.   AffectedVertices ← ∅ 
2.   atLeastOneExists ←false 
3.   for x ∈  Succ(src) 
4.  if SP(src, x, z) 
5.        atLeastOneExists ←true 
6.       break; 
7.   if atLeastOneExists = false 
8.    Workset ←  {src};  
9.    while Workset ≠ ∅ 
10.                u ←  pop (Workset) 
11.                Add u to AffectedVertices 
12.                for x ∈  Pred(u) such that SP(x, u, z)  
13.                 if (all y ∈  Succ(x) such that SP(x, y, z) and y ∈  AffectedVertices) 
14.          push x into Workset 
15. PriorityQueue ← ∅ 
16. for a  ∈  AffectedVertices 
17.                minDst ←min({C(a, b) + D(b, z) | {a →  b} ∈ E(N) & b  ∉ AffectedVertices & C(a, b) + D(b, z)  ≤ k}, {∞}) 
18.                TotDist(a) ← !

!!(!)
 

19.                if D(a, z)  ≠ ∞ 
20.              TotDist(a) ←  TotDist(a) – D(a, z)  
21.                D(a, z) ←  minDst 
22.                if D(a, z)  ≠ ∞ 
23.            TotDist(a) ←  TotDist(a) + D(a, z) 
24.         Insert (PriorityQueue, a, D(a, z)) 

25.                𝐶!(𝑎) ←
!  

!"#$%&#(!)
 

26. while PriorityQueue ≠ ∅  
27.         a ←  extractMin(PriorityQueue) 
28.         for c ∈  Pred(a) such that C(c, a) + D(a, z) < D(c, z) & C(c, a) + D(a, z)  ≤  k 
29.                 TotDist(c) ← !

!!(!)
 

30.                 if D (c, z)  ≠ ∞ 
31.                      TotDist(c) ←  TotDist(c) – D(c, z)  
32.                  D(c, z) ←C(c, a) + D(a, z)  
33.                 if D (c, z)  ≠ ∞ 
34.                    TotDist(c) ←  TotDist(c) + D(c, z) 
35.                     𝐶!(𝑐) ←

!  
!"#$%&#(!)

 
36.   if c ∈ PriorityQueue 
37.          DecreaseKey (PriorityQueue, c, D(c, z)) 
38.  else  
39.          Insert (PriorityQueue, c, D(c, z)) 
40.  return AffectedVertices 
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The INSERTCLOSENESS and the DELETECLOSENESS algorithms remain unchanged 

except for calling the INSERTUPDATEKCLOSENESS and the DELETEUPDATEKCLOSENESS 

algorithms instead of the INSERTUPDATECLOSENESS and the DELETEUPDATECLOSENESS 

algorithms, respectively. Hence, their pseudocodes are not included in this chapter. 

6.3 K-BETWEENNESS 

This section discusses the algorithms designed for the incremental computation of 

k-betweenness centrality. The term “k-betweenness centrality” was introduced by 

Borgatti and Everett [23]. The k-betweenness centrality of a node is defined as the sum of 

the dependencies of pairs that are at most k hops apart from one another [23]. In [47], 

Brandes provides the pseudocode for computing k-betweenness centrality, which is 

presented as a modification of the original Brandes’ algorithm. Chapter 6.3.1 presents the 

k-betweenness algorithm as discussed by Brandes in [47]. 

The algorithms that are discussed in Chapter 6.3.2 and Chapter 6.3.3 are 

variations of the algorithms discussed in Chapter 5.3 and Chapter 5.4, respectively. For 

completeness reasons, we provide the full pseudocode for the modified incremental k-

betweenness centrality algorithms and point out the specific changes made for the 

incremental computation of k-betweenness centrality.  

6.3.1 Brandes’ k-Betweenness Algorithm 

In [47], Brandes provides the pseudocode for computing k-betweenness centrality 

by modifying his original algorithm that is published in [28]. The only change made to 
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the original betweenness algorithm of Brandes is the inclusion of the check for the 

distance being less than or equal to k. In Line – 15 of the Brandes’ k-betweenness 

algorithm (Algorithm–23), we need to check that the distance to node w is less than k 

before we insert it into the queue for further processing as a part of the path discovery. 

Since this check is enforced for all nodes and all paths, the shortest paths are enforced to 

be bounded by k-hops. 

 

Algorithm–23:  BRANDES’ K-BETWEENNESS ALGORITHM (G) 
Input: A network G(V, E). 
Output: k-betweenness values of all nodes n V(G) are computed.  
1. CB [ ]  ←  0, v  ∈  V(G) 
2. for s ∈ V(G) 
3. S ←  empty stack  
4.  P[w]  ←  empty list, w  ∈  V(G) 
5.  σ [t]  ← 0,  t ∈ V(G); σ [s]  ← 1 
6.  d [t]  ← -1, t ∈ V(G); d [s]  ← 0 
7.  Q  ←  empty queue 
8.  enqueue s into Q  
9.  while Q ≠ ∅ 
10.   dequeue v ← Q 
11.   push v into S 
12.   for neighbor w of v 
13.    if d [w] < 0 
14.     d [w] ← d [v] + 1 
15.     if d [w] ≤ k  
16.     enqueue w into Q 
17.   if d [w] = d [v] + 1 
18.      σ [w]  ← σ [w] + σ [v] 
19.     append v into P[w] 
20. δ [v]  ←  0, v  ∈  V(G) 
21. while S ≠ ∅ 
22.  pop w ← S 
23.  for v  ∈  P[w] 
24. δ [v]  ← δ [v] + !  [!]

!  [!]
 .(1 + δ [w]) 

25.  if w ≠ s 
26. CB [w]  ← CB [w] + δ [w] 
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6.3.2 Incremental k-Betweenness Centrality: Growing Network Updates 

Next, we discuss the changes required for converting the part of the incremental 

betweenness centrality algorithm that handles growing network updates to work with k-

hop bounded shortest paths. As observed in the k-closeness centrality algorithms as well 

as the Brandes’ k-betweenness algorithm, the modifications required to limit the shortest 

paths to be less than or equal to k hops are done as a part of the path discovery process. 

Since the path discovery is handled as a part of the INSERTUPDATEBETWEENNESS 

algorithm, we provide the pseudocode for the modified version of the 

INSERTUPDATEBETWEENNESS algorithm as the INSERTUPDATEKBETWEENNESS algorithm. 

The REDUCEBETWEENNESS and the INCREASEBETWEENNESS algorithms remain the same. 

Thus, their pseudocodes are not included again in this chapter. The INSERTBETWEENNESS 

algorithm needs to invoke the INSERTUPDATEKBETWEENNESS algorithm instead of the 

INSERTUPDATEBETWEENNESS algorithm to compute the k-betweenness centrality 

incrementally. Since this is a trivial change, the pseudocode for the modified version of 

the INSERTBETWEENNESS algorithm is not included in this chapter. 

There are two conditional checks inserted into the INSERTUPDATEBETWEENNESS 

algorithm to arrive at the INSERTUPDATEKBETWEENNESS algorithm: Line – 7 and Line – 15 

of the INSERTUPDATEKBETWEENNESS algorithm presented below. Originally, Line – 7 

checks if the path with the alternative distance alt (i.e. the distance alt is obtained by 

summing up the cost of the edge under examination and the cost of the rest of the shortest 

path to the affected node z) is shorter than the previously known shortest path(s).  
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Similarly, Line – 15 checks if the alternative distance alt is equal to the currently 

known shortest path length to see if it is a newly found shortest path. Both of these lines 

are entry conditions for two cases of the path discovery phase: (i) the discovery of strictly 

Algorithm–24:  INSERTUPDATEKBETWEENNESS (G, src, dest, z, PairsDone) 
Input: Network G, newly inserted/modified edge {src →  dest}, an affected node z. 
Output: The shortest distances to z. The number of shortest paths and the 
predecessors on these shortest paths are also updated.  
1. Workset ←{src →  dest} //Min-key priority queue w.r.t the distance of the head of the edge to src 
2. VisitedVertices    ← src  
3. AffectedVertices  ← ∅ 
4. while Workset ≠ ∅ 
5. {x → y} ← pop (Workset) 
6. alt ← C (x, y) + D (y, z) 
7. if alt < D (x, z) & alt ≤ k 
8. if <x, z>  ∉ σold 
9. Dold (x, z) ←  D (x, z);  σold (x, z) ← σ(x, z) 
10. REDUCEBETWEENNESS (x, z) 
11. σ(x, z) ← 0; 𝑃!(𝑧) ← ∅ 
12. if [u, z] ∈ PairsDone 
13. Remove [x, z] from PairsDone 
14. D (x, z) ← alt  
15. if alt = D (x, z) & D (x, z) ≠ ∞ & alt ≤ k 
16. if [x, z] ∉  PairsDone 
17. if <x, z>∉ σold 
18. REDUCEBETWEENNESS (x, z) 
19. if σ (x, z) ≠ 0 
20. σold (x, z) ← σ (x, z) 
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z)) 
22. Append x to 𝑃!(𝑦)  
23. Append  𝑃!(𝑧) to 𝑃!(𝑧) 
24. Insert [x, z] into PairsDone 
25. Insert x into AffectedVertices 
26. for u ∈ Pred (x) //sorted w.r.t. edge costs in ascending order 
27. if SP (u, x, src) and  u ∉ VisitedVertices  
28. push {u → x} into Workset 
29. Insert u into VisitedVertices 
30. return Affected Vertices 
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shorter paths and (ii) the discovery of the shortest paths of equal length. In the 

INSERTUPDATEKBETWEENNESS algorithm, these conditions are supplemented by additional 

(alt ≤ k) checks to ensure that the newly found shortest paths also obey the restriction for 

the shortest paths to be less than or equal to k hops. 

6.3.3 Incremental k-Betweenness Centrality: Shrinking Network Updates 

Next, we discuss the changes required for converting the part of the incremental 

betweenness centrality algorithm that handles shrinking network updates to work with k-

hop bounded shortest paths. The CLEARBETWEENNESS, ADJUSTNPS, and 

ADJUSTBETWEENNESS algorithms remain unchanged while the DELETEBETWEENNESS 

algorithm has straightforward modifications where the invocations of the 

DELETEUPDATEBETWEENNESS algorithm are replaced by the invocations of the 

DELETEUPDATEKBETWEENNESS algorithm. Hence, only the pseudocode for the 

DELETEUPDATEKBETWEENNESS algorithm (Algorithm–25) is provided in this chapter. 

In the DELETEUPDATEKBETWEENNESS algorithm, there are four different points 

where restricting conditions for the shortest paths to be less than or equal to k hops are 

inserted: Line – 16, Line – 20, Line – 28, and Line – 36. The changes in Line – 16 and 

Line – 20 of the DELETEUPDATEKBETWEENNESS algorithm are a part of the path discovery 

process after a line has been removed or modified. Line – 16 checks for strictly shorter 

paths while Line – 20 checks for the shortest paths of equivalent length.  
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Algorithm–25:   DELETEUPDATEKBETWEENNESS (G, src, dest, z) 
Input: Network G(V, E), deleted or modified edge {src  →  dest}, and an affected node z. 
Output: The shortest distances (D) to the affected node z and the predecessors on these shortest paths are 
updated. The k-betweenness values of the intermediates on the invalid paths are reduced. 
1. AffectedVertices ← ∅ 
2.  Workset ←{src};  
3.  while Workset ≠ ∅ 
4.      u ←pop (Workset) 
5.     if u ∉ AffectedVertices then add u to AffectedVertices 
6.      for x ∈  Pred(u) such that SP(x, u, z)  
7.     add x into Workset 
8. AffVert  ←  AffectedVertices.copy() 
9.  Q_inc ← ∅ 
10.  while AffVert ≠ ∅ 
11.  a ←  extractMin(AffVert) 
12. if  (< 𝑎, 𝑧 >  ∉  σold )   then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) >  into σold  and CLEARBETWEENNESS (a, z) 
13.  if (< 𝑎, 𝑧 >  ∉  Dold )  then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) >  into Dold 
14.  myMin ← ∞ 
15.   for b ∈  Succ(a) 
16.   if (C(a, b) + D(b, z) < myMin & (C(a, b) + D(b, z)) ≤ k) 
17.   myMin←  C(a, b) + D(b, z) 
18.    𝑃!(𝑧) ← ∅ 
19.    if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
20.   else if (C(a, b) + D(b, z) = myMin & myMin ≠  ∞ & b  ∉  AffectedVertices & myMin ≤ k) 
21.   if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
22. 𝐷(𝑎, 𝑧) ←  myMin 
23. if myMin ≠  ∞ & a ∉  Q_inc 
24. add a into Q_inc 
25.  while Q_inc ≠ ∅ 
26.  a ←  extractMin(Q_inc) 
27.   for c ∈  Pred(a) 
28.   if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k) 
29. if(< 𝑐, 𝑧 >  ∉  σold )   then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) >  into σold  and CLEARBETWEENNESS (c, z) 
30.  if (< 𝑐, 𝑧 >  ∉  Dold ) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) >  into Dold 

31.    𝑃!(𝑧) ← ∅ 
32.   if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
33.  D(c, z) ←  C(c, a) + D(a, z) 
34.  if c ∉  Q_inc 
35. add c into Q_inc 
36.   else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k) 
37. if(< 𝑐, 𝑧 >  ∉  σold )   then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) >  into σold  and CLEARBETWEENNESS (c, z) 
38.  if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
39.  if c ∉  Q_inc 
40. add c into Q_inc 
41.  return AffectedVertices 
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The changes in the Line – 28 and Line – 36 are a part of the second phase of the 

shortest path discovery process where new shortest paths are searched for using the other 

shortest paths that are discovered in the first phase. Line – 28 checks for strictly shorter 

paths while Line – 36 checks for the shortest paths of equivalent length. 

Chapter 8.3.4 and Chapter 8.4.3 discuss the performance improvements of the 

incremental k-centrality algorithms in detail for synthetic and real-life networks, 

respectively. Consider the following performance result example. For a 5000-node Erdos-

Renyi network, the k-betweenness centrality based on the Brandes’ algorithm runs 64.1 

times faster than the original Brandes’ betweenness algorithm for k = 2. Then, with the 

incorporation of the incremental approach, the incremental k-betweenness algorithm runs 

64049 times faster than the k-betweenness algorithm based on the Brandes’ algorithm. 

Such a significant performance improvement comes from the fact that the number of 

affected nodes for the incremental k-betweenness centrality is very small. After updating 

a small number of shortest paths in a restricted area, the incremental k-betweenness 

algorithm terminates. However, the non-incremental version of the k-betweenness 

algorithm needs to compute the shortest paths from every single one of 5000 nodes even 

if the shortest paths are restricted to k hops. Hence, the centrality algorithms benefit 

significantly from the incremental algorithm design, especially when the shortest paths 

are restricted to remain within k hops, forcing the portion of the network affected by the 

incremental network update to be small. The results presented in Chapter 8.3.4 and 

Chapter 8.4.3 focus on demonstrating the performance improvements observed due to 

incorporation of the incremental algorithm design. Therefore, the results presented in 
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Chapter 8.3.4 and Chapter 8.4.3 compare the performance benefits of the incremental k-

centrality algorithms over the k-betweenness algorithm based on the Brandes’ 

betweenness algorithm and the k-closeness algorithm based on the Dijsktra’s shortest 

path algorithm. The performance benefits that only come from the k-hop approximations 

of the global centrality measures computed across the entire network have been 

demonstrated earlier in the literature in different contexts in a number of papers including 

[18], [135], and [136]. The findings of Pfeffer and Carley in [18] suggest that k-

centralities have substantial improvements in small-world type of networks where the 

networks are highly clustered and there are relatively long paths. On the contrary, in [18], 

the authors show that preferential attachment networks benefit less from k-hop 

approximations of centralities due to relatively shorter average path distances. Both of 

these results are inline with our findings as further detailed in Chapter 8.3.4. 

The memory improvements primarily stem from restricting the depth of the shortest 

path trees built from each source node to remain less than or equal to k. Unless restricted 

to remain within the first k hops, the depths of the shortest path trees might go as high as 

the diameter of the network, which can be very long especially in small-world type of 

networks, as shown in the network properties in Table 6, Table 7, and Table 8 in Chapter 

7.1. This is especially helpful for the computation of betweenness centrality, which 

requires information on the intermediate nodes that lie on the shortest paths in a network. 



 134 

6.4 DISCUSSION ON THE ANALYSIS OF K-CENTRALITIES 

The runtime and memory consumption analyses done for the incremental 

closeness centrality algorithm (Chapter 4.5) and the incremental betweenness centrality 

algorithm (Chapter 5.5) are valid for the incremental k-closeness and the incremental k-

betweenness algorithms as well. However, a lot of the complexities are expressed in 

terms of the sizes of affected sink and source node sets, the number of shortest paths, and 

the average shortest path length.  

When the shortest paths in a network are bounded to remain within k hops, the 

percentages of affected nodes drop substantially as discussed later in the results section in 

Chapter 8. For instance, the percentages of affected nodes drop from 0.89% - 68.31% 

range to 0.32%-3.47% range for the incremental betweenness centrality when k = 3 is 

used as the bounding parameter.  

In addition, some of the nodes that were connected by long, multi-hop paths 

before are not necessarily connected anymore when the paths connecting them cannot be 

any longer than k hops. This reflects as a reduction in Conn(G) which is used to denote 

the number of node pairs that are connected across the entire network topology.  

Moreover, the depth of a shortest path tree stemming from any node in the 

network cannot be any longer than k hops. However, when the shortest paths are not 

bounded to remain within k hops, the maximum depth of a shortest path tree stemming 

from a node is equal to the diameter of the network. Considering the network statistics 

presented in Table 6 and Table 7 in Chapter 7 for the controlled experiments with the 
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synthetic networks, the average shortest path lengths for synthetic network with 1000-

5000 nodes are in the range of 3.45-20.26 hops while the diameters of the same networks 

are in the range of 10-102 hops. Although both the average shortest path length and the 

diameter values are much lower than (𝑛 − 1)(i.e. the theoretical worst case upper bound 

for the length of a shortest path in a network), they are still considerably longer than 2 or 

3 hops, which would be the maximum when k = 2 or k = 3 is used as the bounding 

parameter; offering significant opportunity for improvement via the use of k-centralities 

in terms of memory consumption and speedup for very large problem sizes. 

6.5 EXAMPLE APPLICATIONS OF INCREMENTAL CENTRALITY ALGORITHMS 

This section examines a number of potential use cases for the incremental 

centrality algorithms in different contexts. First, we discuss how clustering algorithms 

can benefit from the incremental computation of the betweenness centrality. Then, we 

discuss the use of incremental centrality algorithms in real life, physical networks (e.g. 

wireless mesh networks). Rather than focusing on how fast incremental centrality metrics 

can be computed on such topologies, we focus on how they can be used in real-life 

wireless networks. 

6.5.1 Example Use Case in Clustering (Community Detection) 

In this dissertation, a modified version of the Girvan-Newman algorithm is 

investigated based on the proposed incremental betweenness algorithm. The Girvan-

Newman clustering algorithm is a hierarchical, divisive graph-clustering algorithm that 
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uses edge betweenness and generates a dendrogram as output [19] [119]. It successively 

partitions the graph based on edge betweenness centrality. Edge betweenness is a variant 

of regular vertex betweenness where an edge’s betweenness depends on the fraction of 

the shortest paths using that edge across all pairs of nodes. The main steps of the Girvan-

Newman clustering algorithm are as follows [19]: 

1. Calculate the edge-betweenness for all edges in the network. 

2. Remove the edge with the highest edge-betweenness. 

3. Recalculate the edge-betweenness of all the edges for the remaining topology. 

4. Repeat from the 2nd step until no edges remain on the graph. 

The Girvan-Newman clustering algorithm has been widely used and a number of 

variants of it have been proposed so far. This algorithm has been used for several types of 

networks, especially in the context of biological networks and social networks [137]. 

In [136] and independently later in [135] the use of k-betweenness in clustering 

has been investigated and modifications of the Girvan-Newman clustering algorithm have 

been discussed. In [136], the k-hop limited version of the local flow betweenness is used 

while in [135], the k-hop limited version of the classical betweenness is used. Both in 

[136] and [135], the main arguments were speeding up the execution time and focusing 

on local groups so that a change in a far apart group does not necessarily affect clustering 

of another group.  

The authors of [136] focus on validating the groupings formed incorporating the 

k-hop limited version of the local flow in the Girvan-Newman clustering algorithm. The 
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proposed clustering algorithm is validated using a corpus of instant messages that called 

MLog and a larger IBM intranet, global dataset. The resulting clusters were evaluated by 

the appropriate executive subject-matter experts of IBM through surveys and feedback 

and found to reflect the business relations quite accurately.  

On the other hand, in [135], Gregory investigates the performance improvements 

that can be achieved by using the k-hop limited approximation of the betweenness 

centrality instead of using the regular (i.e. full or global) betweenness centrality to 

discover communities in a network. In a 1133-node real-life network, the performance 

improvement achieved over the Girvan-Newman clustering algorithm is 312x when k = 2 

while the performance improvement increases up to 1325x when the network size is 

10680 nodes in terms of total execution time. 

The modifications done on the Girvan-Newman clustering algorithm also include 

performing fuzzy (overlapping) clustering [138]. Steve Gregory, the author of [138], later 

found that the fuzzy clustering algorithm he proposed based on the Girvan-Newman 

algorithm is very slow and, in [139], he extends his previous work ( [138]) to propose a 

faster overlapping algorithm that combines the use of k-betweenness and fuzzy grouping 

on top of the Girvan-Newman clustering algorithm. Steve Gregory finds that a lot of the 

real-life networks are indeed too large for the clustering algorithms that repeated use the 

global version of the betweenness centrality and provides performance results using only 

k = 3 and k = 2 instead. The author also observes that using k = 3 or k = 2 makes more of 

a performance difference in larger networks (7000+ nodes) than in smaller networks 

(300-2000 nodes). In addition, the author also discusses that using the k-hop limited 
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version of the betweenness centrality in clustering provides fairly accurate groupings in 

most cases. However, its accuracy decreases with respect to using the full (global) 

betweenness centrality when the diameters of the groups are larger than the k parameter 

value selected. 

 The main disadvantage of the Girvan-Newman clustering algorithm is its time 

complexity. This is also the reason why several variants of the Girvan-Newman 

clustering algorithm have been proposed to use k-betweenness to make it faster. The time 

complexity of the Girvan-Newman algorithm is O(m2n), where m is the number of edges 

and n is the number of nodes in the network. The Girvan-Newman algorithm loops 

through the main steps of the algorithm m times and Step-3 takes O(mn) time for binary 

network. If the costs of the edges are taken into account, then Step-3 takes O(mn + 

n2logn); yielding O(m2n + mn2logn) overall time complexity for the Girvan-Newman 

algorithm. However, in the worst case, the maximum possible number of edges, m, is 

O(n2). Therefore, the overall time complexity of the Girvan-Newman clustering 

algorithm can also be stated as O(n5).  

Due to the high complexity of the Girvan-Newman clustering algorithm, it is not 

always feasible to use it in larger networks. In addition to its high time complexity, it is 

also an iterative algorithm, repeatedly recomputing the betweenness values from scratch 

over and over again. These characteristics suggest that the Girvan-Newman clustering 

algorithm can benefit from an incremental retrofit that incorporates the incremental 

betweenness algorithm proposed in Chapter 5.4. 
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The rest of this section first discusses how to convert the incremental betweenness 

algorithm proposed in Chapter 5.4 to have a different accounting so that the betweenness 

values are calculated for the edges instead of the nodes. Then, a modified version of the 

Girvan-Newman algorithm is presented which incorporates the incremental edge 

betweenness algorithm in its main steps. 

6.5.1.1 Incremental Edge Betweenness with Shrinking Network Updates 

The Girvan-Newman clustering algorithm iteratively removes the edges from a 

network and recalculates the edge betweenness values for the remaining edges. Hence, to 

incorporate the incremental algorithm design into the Girvan-Newman clustering 

algorithm, modifying only the parts of the incremental betweenness centrality algorithm 

that handle the shrinking network updates for the computation of edge betweenness 

centrality is sufficient.  

In particular, to make the incremental betweenness centrality work with the 

Girvan-Newman clustering algorithm, the betweenness centrality values should be 

maintained for each edge in the network instead of each node in the network. In short, the 

only difference between the incremental node betweenness and the incremental edge 

betweenness algorithms is how the accounting for the betweenness centrality values is 

done. For edge betweenness centrality, a betweenness value should be stored for each 

edge in the network instead of each node in the network. In addition, when the shortest 

paths are updated due to an incremental network update, instead of adjusting the 
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betweenness values of all the intermediate nodes, the edge betweenness values of all the 

edges on the updated shortest paths should be adjusted. 

As explained earlier in Chapter 5.4, the part of the incremental betweenness 

algorithm that handles shrinking network updates consists of the following sub-

algorithms: DELETEBETWEENNESS, DELETEUPDATEBETWEENNESS, CLEARBETWEENNESS, 

ADJUSTNPS, and ADJUSTBETWEENNESS. 

Out of these five sub-algorithms, the ADJUSTNPS algorithm remains the same, 

with no modifications. The ADJUSTNPS algorithm is responsible from adjusting the 

number of shortest paths between node pairs, and it does not have anything to do with 

how the accounting for the betweenness values is done. The DELETEBETWEENNESS and 

DELETEUPDATEBETWEENNESS algorithms remain primarily the same except for a couple 

of lines where the edge betweenness versions of the CLEARBETWEENNESS and the 

ADJUSTBETWEENNESS algorithms are invoked. The pseudocodes for the modified 

DELETEBETWEENNESS and the DELETEUPDATEBETWEENNESS algorithms are also provided 

for completeness reasons. To avoid confusion, the edge betweenness versions of these 

two algorithms are renamed as the DELETEEDGEBETWEENNESS and the 

DELETEUPDATEEDGEBETWEENNESS, respectively. 

The CLEARBETWEENNESS and the ADJUSTBETWEENNESS algorithms are the main 

parts of the incremental betweenness centrality algorithm where the betweenness 

centrality values are modified. The pseudocodes for the modified CLEARBETWEENNESS 

and ADJUSTBETWEENNESS algorithms are also presented and the changes relevant for the 

edge betweenness computation are discussed in detail. To avoid confusion, the versions 
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of these algorithms that are designed for the edge betweenness computation are also 

renamed as CLEAREDGEBETWEENNESS and ADJUSTEDGEBETWEENNESS, respectively.  

6.5.1.1.1 DELETEEDGEBETWEENNESS ALGORITHM  

The DELETEEDGEBETWEENNESS algorithm (Algorithm-26) is a modification of the 

DELETEBETWEENNESS algorithm (Algorithm-15) presented in Chapter 5.4.1. The 

difference of the DELETEEDGEBETWEENNESS algorithm from the DELETEBETWEENNESS 

algorithm is that the DELETEEDGEBETWEENNESS algorithm invokes the edge betweenness 

versions of the algorithms that were initially presented in Chapter 5.4 for the incremental 

betweenness centrality at the node level. 

 

Algorithm-26:  DELETEEDGEBETWEENNESS  (G, src, dest, c) 
Input: Network G(V, E) for which betweenness values of all edges (BE) are pre-
computed. A modified edge {src →  dest} with a cost of c, where c > C(src, dest). The 
cost parameter c is optional. If it is not provided in the argument list, it is set to ∞  by 
default and the edge is deleted.  
Output: Network G(V, E) updated with the changes on the edge {src  →  dest}. The 
shortest distances between all nodes (D), the number of shortest paths, the predecessors 
on the shortest paths and betweenness values of all edges (BE) are also updated.  
1.  C(src, dest) ←  c;  𝐶!(dest, src) ←  c 
2.  σold ← [ ]; Dold   ←  [ ]; trackLost   ←  [ ] 
3.  AffectedSinks            ←    DELETEUPDATEEDGEBETWEENNESS (𝐺!, dest, src, src) 
4.  AffectedSources   ←   DELETEUPDATEEDGEBETWEENNESS (G, src, dest, dest) 
5.  for s ∈ AffectedSinks 
6.       DELETEUPDATEEDGEBETWEENNESS (G, src, dest, s) 
7.  for s ∈ AffectedSources 
8.       DELETEUPDATEEDGEBETWEENNESS (𝐺!, dest, src, s) 
9.	
  	
  ADJUSTNPS ( )	
  
10. ADJUSTEDGEBETWEENNESS ( )	
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Algorithm-27:   DELETEUPDATEEDGEBETWEENNESS (G, src, dest, z) 
1. AffectedVertices ← ∅ 
2.  Workset ←{src};  
3.  while Workset ≠ ∅ 
4.      u ←pop (Workset) 
5.     if u ∉ AffectedVertices then add u to AffectedVertices 
6.      for x ∈  Pred(u) such that SP(x, u, z)  
7.     add x into Workset 
8. AffVert  ←  AffectedVertices.copy() 
9.  Q_inc ← ∅ 
10.  while AffVert ≠ ∅ 
11.  a ←  extractMin(AffVert) 
12. if(< 𝑎, 𝑧 >  ∉  σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (a, z) 
13.  if (< 𝑎, 𝑧 >  ∉  Dold ) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) >  into Dold 
14.  myMin ← ∞ 
15.   for b ∈  Succ(a) 
16.   if (C(a, b) + D(b, z) < myMin) 
17.   myMin←  C(a, b) + D(b, z) 
18.    𝑃!(𝑧) ← ∅ 
19.    if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
20.   else if (C(a, b) + D(b, z) = myMin & myMin ≠  ∞ & b ∉  AffectedVertices) 
21.   if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
22. 𝐷(𝑎, 𝑧) ←  myMin 
23. if myMin ≠  ∞ & a ∉  Q_inc 
24. add a into Q_inc 
25.  while Q_inc ≠ ∅ 
26.  a ←  extractMin(Q_inc) 
27.   for c ∈  Pred(a) 
28.   if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices) 
29. if(< 𝑐, 𝑧 >  ∉  σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (c, z) 
30.  if (< 𝑐, 𝑧 >  ∉  Dold ) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) >  into Dold 

31.    𝑃!(𝑧) ← ∅ 
32.   if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
33.  D(c, z) ←  C(c, a) + D(a, z) 
34.  if c ∉  Q_inc 
35. add c into Q_inc 
36.   else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices) 
37. if(< 𝑐, 𝑧 >  ∉  σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (c, z) 
38.  if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
39.  if c ∉  Q_inc 
40. add c into Q_inc 
41.  return AffectedVertices 

6.5.1.1.2 DELETEUPDATEEDGEBETWEENNESS ALGORITHM  
The DELETEUPDATEEDGEBETWEENNESS algorithm (Algorithm-27) is a version of 
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the DELETEUPDATEBETWEENNESS algorithm (Algorithm-16) presented in Chapter 5.4.2. 

Only three lines are modified to convert the DELETEUPDATEBETWEENNESS algorithm into 

the DELETEUPDATEEDGEBETWEENNESS algorithm: Line 12, Line 29, and Line 37. The 

changes are marked with bold font. 

6.5.1.1.3 CLEAREDGEBETWEENNESS ALGORITHM  

Assume that an edge that lies on the shortest path(s) from a node a to another 

node z is removed and the previously known shortest path became disconnected and it 

cannot be the shortest path any more. The CLEAREDGEBETWEENNESS algorithm is 

responsible from reducing the edge betweenness values of the edges that lie on the 

previously known shortest paths from node a to node z, which are not the shortest paths 

any more.  The CLEAREDGEBETWEENNESS algorithm has two phases. The second phase of 

the algorithm starts at Line 8 of Algorithm–28. 

In Line 3 of Algorithm–28, each edge {s →  t} that appears as a part of the 

currently-known shortest path(s) is an element of the list IE(a, z). IE(a, z) denotes the list 

of edges that form the shortest paths from node a to node z just before the invalidation of 

the old set of shortest paths from a to z. Line 4 checks if the edge {s →  t} was originally a 

part of the shortest paths from node a to node z, before any update is made on the 

network. Since IE(a, z) returns the current list of the edges that appear to be on the 

shortest paths from node a to node z, it may contain some newly inserted edges which 

were not in the original set of edges that constitute the shortest paths from node a to node 

z before any incremental update is made on the network. If the edge {s →  t} is in the list 
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of original set of the edges that constitute the shortest paths from node a to node z, then 

its edge betweenness value (BE({s →  t})) is reduced by the original contribution of the 

node pair <a, z> to the edge betweenness value of the edge {s →  t}.  

 

This contribution is calculated as the fraction of the original set of shortest paths 

from node a to node z that pass through the edge {s →  t}. This fractional value is 

computed by breaking the shortest paths from node a to node z into several pieces. The 

old number of shortest paths from node a to node z that pass through the edge {s →  t} is 

represented as the and computed as the multiplication of the old number of shortest paths 

from node a to node s and the old number of shortest paths from node t to node z. Then, 

this value is divided by the total number of shortest paths from node a to node z: (σold (a, 

s) * 1 * σold (t, z)) / σold (a, z). To ensure that only the edge {s →  t} is considered among all 

Algorithm–28:  CLEAREDGEBETWEENNESS (a, z) 
Input: A source node a and a destination node z. The old set of shortest paths from a 
to z need to be invalidated.  
Output: The edge betweenness values of the edges on the previously known shortest 
paths are reduced.  
1. AlreadyDone ← ∅ 
2.  if σ(a, z) ≠ 0 
3.    for each edge {s →  t} ∈  IE(a, z)  
4. if (Dold (a, s) + C(s, t) + Dold (t, z) = Dold (a, z)) 
5.           add {s →  t} into AlreadyDone 
6. BE({s →  t}) ←  BE({s →  t}) – (σold (a, s) * 1 * σold (t, z) / σold (a, z)) 
7. add <<a, z>, {s →  t}> into trackLost 
8.  for (<x, y>  ∈ trackLost.KeySet()) 
9. if (Dold (a, x) + Dold (x, y) + Dold (y, z) = Dold (a, z)) 
10.  for each edge {s →  t} ∈  trackLost<x, y> 
11. if (Dold (a, s) + C(s, t) + Dold (t, z) = Dold (a, z)  & {s →  t}  ∉  AlreadyDone 
12.   add {s →  t} into AlreadyDone 
13.   BE({s →  t}) ←  BE({s →  t}) – (σold (a, s) * 1 * σold (t, z) / σold (a, z)) 
14.  add <<a, z>, {s →  t}> into trackLost 
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possible shortest paths from node a to node z, the number of shortest paths from node s to 

node t is replaced with 1.  

 In the second phase of the CLEAREDGEBETWEENNESS algorithm, we look for the 

edges on the original set of shortest paths that are not visible in the current list of edges 

that make up the currently known shortest paths. An edge {s →  t} which was originally a 

part of the shortest paths from node a to node z might be updated and removed when a 

sub-path from node x to node y is updated: 𝑎. . .→ 𝑥… 𝑠 →   𝑡 … →   𝑦… →   𝑧. In Line 9 

of Algorithm–28, we check if the shortest paths from node x to node y were sub-paths of 

the shortest paths from node a to node z. If the condition in Line 9 is satisfied, then, Line 

11 checks if the edge {s →  t} was originally a part of the shortest paths from node a to 

node z. Note that {s →  t} is different from the edge {s →  t} used in the first phase of the 

algorithm; it is rather an overloaded use of the notation for an edge. If both conditions 

hold, then the same of set of operations that was applied in the first phase (Lines 5 – 7) is 

applied for the edge {s →  t} in Lines 12 – 14 as well: (i) inserting {s →  t} into the 

AlreadyDone set, which is a set of edges that are already processed for the <a, z> node 

pair and the set AlreadyDone is not maintained across invocations of this algorithm (ii) 

reducing the edge betweenness value of the edge {s →  t} by the original contribution of 

the node pair <a, z>, and (iii) inserting the edge {s →  t} into the trackLost set which is 

maintained during the entire propagation of a network. Since the edges (e.g. {s →  t}) that 

were on the previously known shortest paths which are not the shortest paths anymore 

can no longer be reached by following the predecessors, there is need for a mechanism to 
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keep track of such edges. Therefore, the trackLost set contains key-value pairs where the 

key consists of the node pair (e.g <a, z>) whose shortest paths are about to be invalidated, 

and the value contains the list of edges on the invalidated paths.  

6.5.1.1.4 ADJUSTEDGEBETWEENNESS ALGORITHM  

The ADJUSTEDGEBETWEENNESS algorithm (Algorithm–29) is a fairly 

straightforward algorithm. The ADJUSTEDGEBETWEENNESS algorithm loops through the 

set of node pairs <a, z> that had their shortest paths changed either in terms of number or 

length (i.e. the node pairs listed in σold). For each node pair <a, z>, the shortest paths are 

constructed on demand by following the predecessors and the edges on these shortest 

paths are represented as IE(𝑎, 𝑧). Then, the edge betweenness value of each edge {s →  t} 

in IE(𝑎, 𝑧) is increased by the fraction of shortest paths from node a to node z that use the 

edge {s →  t}. 

 

6.5.1.1.5 INCREMENTAL EDGE K-BETWEENNESS ALGORITHM  

The algorithms discussed earlier in this chapter (Chapter 6.5.1.1.1 - Chapter 

6.5.1.1.4) can also be used to calculate the k-hop limited version of the edge betweenness 

centrality.  

Algorithm–29: ADJUSTEDGEBETWEENNESS ( ) 
Input: The list of node pairs between which the shortest paths are updated.  
Output: The edge betweenness values of the edges on the affected shortest paths are 
increased by the fraction of shortest paths they lie on.  
1. for (𝑎, 𝑧) ∈  σold  
2. for each edge {s →  t} ∈  IE(𝑎, 𝑧) 
3.  BE({s →  t}) ←  BE({s →  t}) + (σ (a, s) * 1 * σ (t, z) / σ (a, z)) 
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Algorithm–30:   DELETEUPDATEEDGEBETWEENNESS-K (G, src, dest, z) 
1. AffectedVertices ← ∅ 
2.  Workset ←{src};  
3.  while Workset ≠ ∅ 
4.      u ←pop (Workset) 
5.     if u ∉ AffectedVertices then add u to AffectedVertices 
6.      for x ∈  Pred(u) such that SP(x, u, z)  
7.     add x into Workset 
8. AffVert  ←  AffectedVertices.copy() 
9.  Q_inc ← ∅ 
10.  while AffVert ≠ ∅ 
11.  a ←  extractMin(AffVert) 
12. if(< 𝑎, 𝑧 >  ∉  σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (a, z) 
13.  if (< 𝑎, 𝑧 >  ∉  Dold ) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) >  into Dold 
14.  myMin ← ∞ 
15.   for b ∈  Succ(a) 
16.   if (C(a, b) + D(b, z) < myMin & (C(a, b) + D(b, z)) ≤  k) 
17.   myMin←  C(a, b) + D(b, z) 
18.    𝑃!(𝑧) ← ∅ 
19.    if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
20.   else if (C(a, b) + D(b, z) = myMin & myMin ≠  ∞ & b ∉  AffectedVertices & myMin  ≤  k) 
21.   if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
22. 𝐷(𝑎, 𝑧) ←  myMin 
23. if myMin ≠  ∞ & a ∉  Q_inc 
24. add a into Q_inc 
25.  while Q_inc ≠ ∅ 
26.  a ←  extractMin(Q_inc) 
27.   for c ∈  Pred(a) 
28.   if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z)  ≤  k) 
29. if(< 𝑐, 𝑧 >  ∉  σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (c, z) 
30.  if (< 𝑐, 𝑧 >  ∉  Dold ) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) >  into Dold 

31.    𝑃!(𝑧) ← ∅ 
32.   if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
33.  D(c, z) ←  C(c, a) + D(a, z) 
34.  if c ∉  Q_inc 
35. add c into Q_inc 
36.   else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z)  ≤  k) 
37. if(< 𝑐, 𝑧 >  ∉  σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) >  into σold and CLEAREDGEBETWEENNESS (c, z) 
38.  if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧) 
39.  if c ∉  Q_inc 
40. add c into Q_inc 
41.  return AffectedVertices 
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This can be achieved by modifying only the DELETEUPDATEEDGEBETWEENNESS 

algorithm to include the conditional checks in the DELETEUPDATEKBETWEENNESS 

algorithm for discovering the shortest paths within k-hops. The changes are minor and the 

modified lines are marked in bold in the DELETEUPDATEEDGEBETWEENNESS-K algorithm 

(Algorithm-30).  Since the changes related to the k-hop centrality were discussed earlier 

in Chapter 6.3.3 they are not discussed here again. 

6.5.1.2 Incremental k-Betweenness Clustering Algorithm  

This section discusses an incremental k-betweenness clustering algorithm, which 

is a modified version of the Girvan-Newman clustering algorithm. The proposed 

incremental k-betweenness clustering algorithm differentiates from the original Girvan-

Newman clustering algorithm in three ways: 

1. The edge betweenness values are calculated incrementally using the 

incremental k-betweenness algorithm for edges that handles the shrinking 

network updates (Chapter 6.5.1.1.5) instead of using the regular Brandes’ k-

betweenness algorithm (Chapter 6.3.1). 

2. Instead of using the global version of the edge betweenness that is computed 

over the entire network topology, its local approximate version (edge k-

betweenness) is used. 

3. Instead of having to remove all the edges in the network until no edges 

remain, a certain number of edges to be removed can be passed as a 
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parameter to the algorithm, providing flexibility for early termination 

condition. 

The idea of using the k-hop limited, approximate version of the edge betweenness 

centrality instead of regular edge betweenness is based on the following reasons.  

First, both the vertex betweenness and the edge betweenness are metrics that are 

calculated at the global level, and they are affected very much by any change in the 

network. In the prior literature, betweenness has been shown to be to a fragile metric [44] 

that changes easily as the shortest paths in the network change [45]. Thus, a change in the 

network topology due to the removal of an edge has implications on the local clustering 

of a cluster, which may actually be a cluster that is far away from the change made on the 

network. See Figure 9 for an abstract visual description of the idea.  

 
Figure 9 - Far away changes on the network tend to have local implications. 

This was also the main motivation argument of the clustering algorithm based on 

the local flow betweenness proposed in [136]. The results produced by the k-hop limited 
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edge betweenness centrality have been successfully validated against real-life 

organizational datasets in [136]. 

Second, the memory requirement of the Girvan-Newman clustering is very large. 

Since the edge betweenness values used for the Girvan-Newman clustering algorithm are 

maintained per each edge in the network instead of per each node in the network, the 

memory requirement of the edge betweenness is usually larger than that of the vertex 

(node) betweenness. Moreover, the Girvan-Newman clustering algorithm generates a 

dendrogram as an output, which is additionally maintained in the memory as a tree with n 

nodes, where n is the number of nodes in a network. Since the incremental betweenness 

algorithms require larger memory than their non-incremental counter parts, this would 

only exacerbate the memory requirements. Hence, using an approximate version of the 

betweenness centrality will help reducing the memory requirements while speeding up 

the computation time as well. 

Third, depending on the network structure, removing the edge with the highest 

edge betweenness might trigger a worst case update where a significant number of 

shortest paths in the network are updated and all the nodes in the network are inserted 

into the sets of affected source or affected sink nodes. Such a widespread network update 

may sweep away the potential benefits of using an incremental algorithm, leaving too 

little room for speedup while significantly increasing the memory requirements. 

However, when the changes are forced to remain within a number of hops surrounding 

each edge, then the network update is prevented from potentially generating a worst-case 
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update, which propagates to the entire network. Hence, using the k-hop limited 

approximation of the edge betweenness centrality for clustering provides a good solution. 

The idea of giving the flexibility to remove a certain number of edges from the 

network stems from the implementation of the Girvan-Newman clustering algorithm in 

JUNG Java graph library [140]. While providing additional flexibility to stop the iteration 

of recalculating edge betweenness values at an earlier point, the output produced by the 

INCREMENTALBETWEENNESSCLUSTERING algorithm is exactly the same as the original 

Girvan-Newman clustering algorithm when the number of edges to be removed is equal 

to the total number of edges in the network. Removing the edges with the highest edge 

betweenness centrality values tend to partition the network. Hence, as more edges are 

removed, the resulting clusters become smaller and more cohesive. 

Stopping the iteration of edge removals at an earlier point before all the edges in 

the network are removed is similar to creating a full dendrogram and cutting it at the level 

where the iterations have stopped. A dendrogram is usually represented as a tree in the 

memory with n leaf nodes, where n is the number of nodes in the network. Since it takes 

substantial extra memory, it is also possible not to build a dendrogram if it is allowed to 

stop removing the edges earlier before no edges remain in the network. In such a case, a 

plausible option for generating output is to run weak component clustering which finds 

all the weak clusters in a network. A weak cluster is defined as the maximal subgraph 

where all pairs of nodes in the subgraph are reachable from one another in the underlying 

undirected subgraph (i.e. regardless of edge orientation).   
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The INCREMENTALBETWEENNESSCLUSTERING algorithm (Algorithm-31) produces 

the same results as the original Girvan-Newman clustering algorithm if the following 

three changes are made:  

• The call for the BRANDESEDGEKBETWEENNESS algorithm on Line–5 of the 

INCREMENTALBETWEENNESSCLUSTERING algorithm is replaced with a call for the 

BRANDESEDGEBETWEENNESS algorithm.  

• The call for the INCREMENTALEDGEKBETWEENNESS algorithm on Line–7 of the 

INCREMENTALBETWEENNESSCLUSTERING algorithm is replaced with  

• The number of edges to be removed is given as |E(G)|.  

 

Chapter 8.6 evaluates the performance of the versions of the 

INCREMENTALBETWEENNESSCLUSTERING, and compare it against the original Girvan-

Newman clustering algorithm and a modified version of the Girvan-Newman algorithm 

Algorithm–31:  INCREMENTALBETWEENNESSCLUSTERING(G, removeCnt) 
Input: Network G(V, E) and the number of edges to be removed. 
Output: Clusters of nodes formed after removeCnt many edges are removed.  
1. edgeToRemove  ← null 
2. maxBtw  ← -1 
3. for (i = 0; i < removeCnt; i ++)  
4. if (i = 0) 
5. BRANDESEDGEKBETWEENNESS(G) 
6. else  
7. INCREMENTALEDGEKBETWEENNESS (G, edgeToRemove) 
8. edgeToRemove  ← null 
9. maxBtw  ← -1 
10. for (Edge e : E(G)) 
11. if (BE(e) > maxBtw) 
12. maxBtw  ← BE(e) 
13. edgeToRemove ← e 
14. clusterSet ← weakComponentClustering(G) 
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which uses the BRANDESEDGEKBETWEENNESS. This way, it is possible to comment on 

what percentage of the performance improvements comes from the use of approximate 

edge k-betweenness and what percentage comes from the use of incremental algorithm. 

6.5.2 Example Use Cases in Wireless Network Analysis 

Another use case of the incremental centrality metrics beyond social networks is 

in physical networks. This section discusses the uses of the incremental betweenness and 

the incremental closeness centrality computations in network management and resource 

allocation in wireless mesh networks. A wireless mesh network (WMN) is a multi-hop 

communication network in which the nodes (routers) are self-organized (i.e., without 

needing a central coordinator) to form a mesh topology to provide communication over 

multiple wireless links without requiring an external authority imposing a planned 

structure. Over the last decade, wireless mesh networking technology has emerged as an 

important enabling technology to provide better services in wireless networks [3]. A 

wireless mesh network is composed of mesh routers, gateways, and mesh clients. 

Gateways are the nodes that have access to the Internet, and the other nodes have to route 

through multiple hops to get access to the Internet. Mesh clients represent the end users 

such as mobile devices or laptops. 

In our evaluations, we use a real-life wireless mesh network that is provided by 

the University of California, Santa Barbara (UCSB) MeshNet on-campus WMN 

deployment. The UCSB MeshNet is a multi-radio 802.11 a/b network consisting of 38 

PC-nodes deployed indoors on five floors of a typical office building in the UCSB 
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campus. The data contains 2 sub-networks, each consisting of 19 nodes. In our 

evaluations, we use one of the 19-node sub-networks. 

 
Figure 10 - UCSB Meshnet Topology (19-node subnetwork). All node labels in the figure are 
preceded with 10.2.1. to form their IP addresses. 

Figure 10 depicts the topology of the 19-node sub-network while Table 5 shows 

the five top-ranked nodes in terms of the degree centrality, the closeness centrality, and 

the betweenness centrality along with their corresponding normalized centrality values 

presented in parentheses. 

Table 5 - Social centrality rankings of the nodes in UCSB MeshNet. 

Degree Centrality Closeness Centrality  Betweenness Centrality 
10.2.1.5     (0.556) 10.2.1.5       (0.720) 10.2.1.5       (0.176) 
10.2.1.106 (0.556) 10.2.1.106   (0.692) 10.2.1.100   (0.153) 
10.2.1.100 (0.500) 10.2.1.102   (0.643) 10.2.1.106   (0.146) 
10.2.1.102 (0.500) 10.2.1.101   (0.643) 10.2.1.102   (0.107) 
10.2.1.101 (0.500) 10.2.1.20     (0.621) 10.2.1.101   (0.086) 

6.5.2.1 Wireless Network Management: Vulnerability & Network Security 

Social centrality metrics can aid system administrators or automated management 

systems to better analyze the state of a WMN, and manage it in a more effective manner 
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[141]. Social centrality metrics can provide answers for questions like: (i) Which nodes 

are more critical from a robustness point of view? (ii) Loss of which nodes would have a 

significant impact on the connectivity of the network? This section investigates the 

impact of social network analysis on reliability assessment. To discuss how we can use 

incremental centrality metrics in wireless network analysis and the impact of social 

centrality metrics on the communication routes (in terms of average number of hops 

packets travel in the network), we perform coordinated attacks. In other words, we issue 

shrinking network updates and introduce progressive failures to the central nodes.  

Simulated Failure Scenarios: For each centrality metric of interest (e.g. 

betweenness centrality, closeness centrality, and degree centrality), we incrementally 

compute the nodes with the highest centrality values by applying shrinking network 

updates. At each step: 

1. Compute the centrality values of the nodes in the network 

2. Identify the node with the highest centrality value 

3. Remove the node with the highest centrality value 

4. Restart from Step-1 to recompute the centrality values of the remaining nodes.  

Instead of recomputing centrality values from scratch after each change in the 

network, we issue the node removals as shrinking network updates in the network, and 

incrementally compute the centrality values. This makes vulnerability analysis a prefect 

use case for incremental centrality metrics. For the UCSB Meshnet network, we select up 

to the first five nodes with the highest centrality. 



 156 

Technical Details on the Simulations: For each experiment, we simulate the 

same uniform traffic scenario where every node generates a constant bit rate (CBR) 

connection to every other node, resulting in O(n2) connections. All the connections start 

at the 25th second and end at the 125th second and the CBR rate is fixed at 500 bps for all 

connections. The simulations last 200 seconds. The amount of total traffic that is 

generated is kept the same. These experiments follow the methodology in [142], [143]. 

In the simulations, we used the Optimized Link State Routing protocol (OLSR) as 

the routing protocol. It is a proactive link state routing protocol where each node stores 

next-hop destinations for all nodes in the network using the shortest-hop paths. To 

compute the incremental social centrality metrics, we learn the shortest path related 

information from the OLSR routing protocol. In the case of node removals, the behavior 

of OLSR routing protocol is consistent across different runs on the same network 

topology (e.g., when node x is removed in two different runs, the newly formed shortest 

paths are consistent across different runs.) 

Simulation Results: Figure 11 shows the impact of central nodes’ failures on the 

average number of hops packets traverse to reach their destinations. Random, the baseline 

case, shows the average of 10 experiments where the failing nodes are selected randomly. 

Closeness centrality identifies nodes that have rapid access to information by 

being close to many other nodes on average. On the other hand, betweenness centrality 

detects nodes that are on the shortest paths for many other nodes, which are usually the 

nodes that can partition the network. Therefore, in Figure 11, when one or two nodes fail, 

the impact of betweenness centrality is less than that of closeness centrality because the 
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original topology is relatively well connected and it is not immediately partitionable. 

However, as the number of failing nodes increases, the residual topologies have longer 

paths causing the steep increase in the betweenness centrality results. 

 

 
Figure 11 - Increase in average number of hops as top ranked nodes are progressively removed. 

Simulations on a larger network: To show that our results are generalizable to 

larger networks, we perform simulations on a 200-node network as well, and 

progressively remove up to 40 nodes (20%). The results in Figure 12 justify the relative 

ranking of centrality metrics to be betweenness, closeness and degree centrality in terms 

of their importance for network reliability. In other words, the metric that is most 

effective in degrading network performance in a coordinated attack is betweenness 

centrality. This behavior is consistent with other work on the literature that assesses the 

effectiveness of centrality metrics in coordinated attacks [42]. 
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Figure 12 - Increase in average number of hops as top ranked nodes are progressively removed 
from a 200-node wireless mesh network topology. 

6.5.2.2 Resource Allocation: Channel Access Scheduling 
Another case study we investigate is the use of dynamic computation of centrality 

metrics in resource allocation in wireless mesh networks. In particular, we focus on 

channel access scheduling designed at the MAC layer. The MAC layer protocols that are 

available in the literature can be broadly classified into two groups: contention based 

protocols and scheduling based protocols. In contention-based protocols, nodes contend 

for channel access and collisions are possible. 802.11 MAC protocol [144], which is 

based on carrier sense multiple access/collision avoidance (CSMA/CA), is one of the 

most well known examples of contention based MAC protocols. The second group of 

MAC protocols, the scheduling-based protocols, schedules the access of nodes or links to 

the channel in advance. TDMA based protocols that operate in discrete slotted time and 

typically arrange the transmission of the nodes or links in the network based on a 

schedule constitute examples of scheduling-based protocols [145].  

Recent WMN standards such as WiMAX [146] and 802.11s [147] consider 

Spatial-TDMA (STDMA) based MAC mechanisms and WMNs operate in multi-hop 
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environments. In STDMA based schemes, two nodes that are in non-conflicting parts of 

the network (i.e. nodes that are located far apart from one another) can be scheduled to 

transmit simultaneously. 

As a part of this case study, we propose an STDMA-based channel access 

scheduling scheme that uses closeness centrality at its heart. In particular, we investigate 

how much we can improve the end-to-end throughput at the user level if we use closeness 

centrality to prioritize nodes accessing the wireless medium such that the nodes that are 

ranked higher in terms of closeness centrality are prioritized over others. We prefer using 

closeness centrality because, by definition, it is used to describe information propagation 

efficiency and it is an appropriate metric for optimizing the efficiency of communication 

networks, including WMNs. In addition, the computation of closeness requires fewer 

resources compared to other social centrality metrics because Eigenvector centrality has a 

recursive implementation and betweenness requires additional information on all shortest 

paths in the network. 

Closeness-based Scheduling Scheme: The proposed channel access scheduling 

algorithm is a lottery based slot assignment where the nodes’ closeness values are used as 

their approximate priorities. The goal is to improve throughput by assigning more slots to 

more central nodes. Each node generates as many pseudorandom lottery ticket numbers 

as its closeness value for each time slot. Since the nodes with higher closeness values 

hold more lottery tickets, their probability for winning the lottery for a particular time slot 

is higher. To give an example, if a node’s closeness value is 10, then it joins the elections 

with 10 tickets. If another node has closeness value 2, it joins the elections with 2 tickets. 
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The node that has the highest ticket number for that slot is the winner of the slot and is 

the node that has the right to transmit and a node with a higher number of tickets has a 

higher chance of winning.  With this kind of scaling, the probability of each node to win 

a slot will be approximately proportional to its closeness priority. Further details can be 

found in [3]. 

Technical Details on the Simulations: The simulations are performed in ns-2.31 

using data rates from 650 bits/sec up to 1350 bits/sec. We measure end-to-end delay and 

end-to-end throughput calculated across all data packets (excluding control packets) 

generated during the simulations. WMNs have fairly static topologies. Therefore, only 

the static topologies are simulated. At the routing layer, the Optimized Link State 

Routing protocol (OLSR) is used as the routing protocol. For the incremental closeness 

calculations performed in real time, periodical OLSR HELLO packets are broadcast 

every 2ms. Hence, node mobility and topology changes are accounted for in the closeness 

centrality computations. 

Simulation Results: Next, the performance of the proposed socially aware 

scheduling scheme is evaluated. For the baseline scheme, a similar framework is used 

where only the prioritization scheme is modified. In the baseline case, each node 

generates a random number of lottery tickets, rather than closeness many tickets. In other 

words, each node has an equal chance of being the winning node that earns transmission 

right during each time slot. At each time slot the winning node is selected randomly 

following no particular prioritization. In other words, in the baseline case, nodes generate 

random weights instead of using their closeness centrality values as their weights. 
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Figure 13 - Delay vs. Throughput (When closeness centrality is used in prioritization, the 
throughput increases by 15%). 

Figure 13 presents the performance results on the tradeoff between delay and 

throughput, justifying the throughput advantage brought by the use of social centrality 

metrics. According to the results presented in Figure 13, the packet delivery ratio 

increases by about 15% for the same amount of delay incurred when closeness centrality 

is used in prioritization of the packets.  
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CHAPTER 7 DATASETS 

This chapter describes the datasets used for performance evaluation in this 

dissertation. Both synthetic and real-life networks of different sizes, topologies, and 

average degrees have been used. Chapter 7.1 describes the used synthetic networks while 

Chapter 7.2 describes the real life networks. 

7.1 SYNTHETIC NETWORKS 

This section describes the synthetic networks used in the performance 

evaluations. There two main goals of using synthetic networks in performance 

evaluations. First, using a set of networks with controlled topologies enables us to 

evaluate the impact of the network topology on the performance benefits that can be 

obtained using the incremental algorithms proposed in this dissertation. Second, by 

changing the network size and average degree, it is possible to evaluate how the 

performance benefits of the incremental algorithm scale with the increasing network size 

and average node degree.  

To evaluate the impact of network topology, synthetic networks with three 

different topologies are used: preferential attachment networks [10], Erdos-Renyi 

networks [11], and small-world networks [12].  
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7.1.1 Preferential Attachment Networks 

Barabasi and Albert have proposed the preferential attachment graph generation 

model for generating graphs with heavy-tailed degree distributions, which is observed in 

many real life networks including the Internet, World Wide Web (WWW), and many 

social networks [10]. The preferential attachment graph generation model has two phases: 

growth and preferential attachment [148]. In the growth phase, starting with a small 

number of nodes (mo starting nodes), new nodes are added one at a time, with m edges (m 

< mo) to link the newly added node to the nodes that are already in the network. In the 

preferential attachment phase, when the incoming nodes are about to choose the nodes to 

connect to, the current degrees of already existing nodes are taken into account. Nodes 

that have a higher number of existing connections are more likely to receive more/new 

connections. In sociology, this phenomenon is called the Matthew effect (or accumulated 

advantage), which is based on a phrase from Bible and originally used to explain the 

issues with fame, status, and advantages of economic capital [149]. This phenomenon is 

also known as ‘rich get richer’. Numerical studies indicated that networks generated with 

this model evolve into a scale-free (scale invariant) state with power-law degree 

distribution [148]. In such networks, several nodes have very little number of connections 

(low degrees) while very few nodes act as major hubs with too many connections, 

resulting in power-law degree distributions. 
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7.1.2 Erdos-Renyi Networks 

In their original 1959 article, Erdos and Renyi describe a random network with m 

edges and n nodes where a fixed number of edges are drawn uniformly at random from 

n(n – 1) / 2 possible edges [11]. A similar approach for the generation of random graphs 

was also discussed by Edgar Gilbert in 1959 where each edge is created independently 

with probability p, where 0 < p < 1 [150]. In other words, p represents the fraction of 

edges that appear in a network out of all possible n(n – 1) / 2 edges. Since all edges 

(relationships) form independently from the others, the networks (graphs) generated with 

Erdos-Renyi or Gilbert model do not usually match well with the topologies of real-life 

networks. In real life networks, there are additional interaction mechanisms such as 

transitivity or introductions that influence the formation of new connections, causing real 

life networks’ topologies to be very different from random graphs. However, due to their 

ease of analysis, Erdos-Renyi networks are usually included in network studies as a 

standard way of making comparisons with the state of the art literature.	
  

7.1.3 Small World Networks  

In 1998, Watts and Strogatz introduced a model that starts with a regular lattice 

(ring) of n nodes and then modified by rewiring [12]. Small world networks model 

communities where most nodes are not neighbors of one another and most nodes are 

confined to their own neighborhoods, however, due to existence of random connection 

formed via rewiring, most nodes can reach one another in a small number of hops. In the 

generation process of small world networks, initially, there is a ring of n nodes and each 
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node is connected to its 2r nearest neighbors. This regular ring is modified by rewiring 

each edge randomly and independently with a rewiring probability p, where 0 < p < 1. 

The topology changes with the increased rewiring probability p, which reflects as 

increased randomness and reduction in the average distance (i.e. characteristic path 

length).  

7.1.3.1 Selecting a rewiring probability (p) value  

Small world networks are discussed to model complex real world networks 

nicely, and there exist studies that study the extent different networks exhibit small world 

network characteristics. In the paper [151], the authors design a metric called ‘small-

world-ness’, a score that determines how small-world like a network is and assigns scores 

to them accordingly. The authors also examine 30 different real life networks and found 

that 27 of them exhibited small-world network properties to varying degrees. Another 

approach to determine the appropriateness of small-world network model for the real life 

networks is to fit the small world network model to the real data and extract the 

parameter values from the model. In [152], the authors study 1000-node neuron networks 

from brain and the impact of the structure on memory/recall and observe that when the 

rewiring parameter p = 0.3, the performance of the network start converging and the 

optimal value is obtained when p = 0.4.  

In [153], the author examines the ethnocentrism phenomenon which refers to the 

tendency to behave differently towards strangers based only on whether they belong to 

the in-group or the out-group and how the social agents perform in social networks (i.e. 
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how much they cooperate or interact with their neighbors). The authors find that the 

optimal settings are observed in small neighborhoods with few random connections (p < 

0.3), and when the rewiring probability p > 0.3, the networks are greatly reconnected and 

the social agents perform worse than they perform in regular lattice networks. 

Another study, [154], studies the spread of rumor in social networks on an 

underlying small world structure using three p different values: p = 0.05, p = 0.19, and p 

= 0.3.  The experiments with rumor spread suggest that when the p value is too small (p = 

0.05), the rumor dies too soon, and when the p = 0.3, the behavior of the rumor spread 

depends on whether or not a shortcut is reached. The authors suggest that they obtain 

their optimal results when p = 0.19.  

Another paper from the field of economic research ( [155]) studies the self-

organizing, Ising-like model of financial markets with underlying small world networks 

of interacting agents. The authors find that using the rewiring probability p = 0.3 can 

reproduce main stylized facts including price dynamics, evolution of returns; producing 

the most accurate results. Considering all the examples mentioned above from different 

fields, the general inclination of the authors is that smaller p values (p < 0.4) usually work 

well in different contexts, especially when p ≤ 0.3. In our experiments, we use p = 0.3. 

7.1.4 Directed Cycles 

Directed cycles are formed as a variant of small-world networks using the same 

parameters and the network generation algorithm. The only difference between directed 

cycles and small world networks is that in directed cycles, the edges are directed while in 
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small world networks the edges are undirected or bidirectional. Therefore, when the 

edges are directed in one direction only, the resulting network is a big ring of nodes, with 

random bounds in it. Such networks have been studied in the literature in different 

contexts before and they appear under various names including ‘directed small world 

networks’, ‘asymmetric small world networks’, ‘rings with random bounds’, and 

‘directed cycles’ [156] [157] [158] [159]. In the rest of this dissertation, we refer to these 

networks as ‘directed cycles’. Since such networks have directed edges, they tend to form 

very long shortest paths for the node pairs that cannot benefit from the existence of 

random shortcuts. Therefore, in such networks the diameter of the network can get very 

large as we see later in this section, which can form an example for a pathological case 

for the incremental centrality algorithm forcing them to update shortest paths that are too 

long. To be able to provide direct comparisons between small world networks and 

directed cycles, we again use p = 0.3 for generating directed cycles. 

7.1.5 Synthetic Network Set 

In order to understand how the performance benefits of the incremental centrality 

algorithms scale with the increasing network size and average node degree, two sets of 

synthetic networks from the abovementioned network topologies are used. The average 

degree of a network is a measure that compares the number of edges against the number 

of nodes in the network. It is computed as (2 |E(G)| / |N(G)|) as each edge contributes to 

the degree of both nodes it is connecting.  
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First, for each synthetic network topology, the number of nodes is varied from 

1000 to 5000 with a step size of 2000, and the average degree is fixed to 6. For small 

world networks, the rewiring probability is 0.5. Table 6 lists basic statistical information 

about the synthetic networks generated with different topology generation models and 

network sizes.  

In the second set of synthetic networks, for each synthetic network topology, the 

number of nodes is fixed to 3000, and the average number of nodes is varied from 4 to 8 

with a step size of 2. Table 7 lists basic statistical information for the networks with 

varied average number of nodes, similar to the information presented in Table 6. 

Table 6 - Network statistics for varying network sizes. There are additional metrics that are 
measured but not listed. For all the networks in this table minimum betweenness is 0, network 
fragmentation is 0, and the average degree is 6. 

Topology Size Max Btw Avg. Btw 
Std. Dev. 

Btw 
Min 
Deg 

Max 
Deg 

Std.Dev 
Deg 

Diam
eter 

Char. 
Path 

Length 
Clustering 
Coefficient 

Pref. Attach. 1000 1953.97 94.37 177.47 3 89 6.822 10 3.45 0.014 
Pref. Attach. 3000 5183.26 197.59 434.83 3 233 8.064 14 4.126 0.007 
Pref. Attach. 5000 12987.22 292.48 749.01 3 212 8.251 16 4.442 0.005 
Erdos-Renyi 1000 25429.36 4777.28 4249.81 1 14 2.498 15 6.305 0.003 
Erdos-Renyi 3000 76713.80 18136.74 10087.35 2 13 1.572 14 7.086 0.001 
Erdos-Renyi 5000 108061.53 32073.39 16062.96 2 11 1.362 14 7.492 0.001 
Small World 1000 7376.179 1809.59 1184.202 3 11 1.292 8 4.623 0.212 
Small World 3000 31788.719 6617.851 4378.002 3 11 1.271 9 5.413 0.208 
Small World 5000 71757.523 12079.138 7844.011 3 12 1.237 9 5.833 0.216 
Directed Cycles 1000 13112.60 3544.12 2379.46 3 11 1.292 38 8.38 0.106 
Directed Cycles 3000 75111.21   14986.28   10954.08 3 11 1.271 57 11.37 0.104 
Directed Cycles 5000 145539.10 28762.20 21557.20 3 12 1.237 77 12.98 0.108 

 

According to the topological statistics presented in Table 6, in preferential 

networks, the maximum number of connections nodes can attain (Max Deg.) is 

substantially higher in preferential attachment networks; resulting in high deviation of 
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node degrees (Std. Dev. Degree). In addition since there are few nodes with very high 

number of connections, a substantial portion of the nodes in preferential attachment 

networks are directly connected to such nodes. Hence, the shortest paths in such networks 

are relatively shorter when compared to the networks that are generated using the other 

graph generation models. The networks generated by the Barabasi-Albert graph 

generation model have systematically lower average path lengths than a random network. 

The average path length for Barabasi-Albert preferential attachment networks increases 

approximately logarithmically with the increasing network size, following 

𝐴𝑣𝑔.𝑃𝑎𝑡ℎ  𝐿𝑒𝑛𝑔𝑡ℎ  ~    !" |!(!)|
!" !" |!(!)|

.  

Table 7 - Network statistics for varying average node degrees. There are additional metrics that 
are measured but not listed. For all the networks in this table minimum betweenness is 0, network 
fragmentation is 0, and the number of nodes is fixed to 3000 nodes. 

Topology 
Avg 
Deg Max Btw Avg. Btw 

Std.Dev. 
Btw 

Min 
Deg 

Max 
Deg 

Std.Dev 
Deg 

Diam
eter 

Char. 
Path 

Length 
Clustering 
Coefficient 

Pref. Attach. 4 5673.02 76.60 270.60 2 141 5.841 12 3.89 0.0058 
Pref. Attach. 6 5183.26 197.59 434.83 3 233 8.064 14 4.126 0.007 
Pref. Attach. 8 11264.55 414.08 855.95 4 238 10.388 15 4.269 0.009 
Erdos-Renyi 4 247466.93 18077.70 24650.83 1 11 1.904 30 10.622 0.0009 
Erdos-Renyi 6 76713.80 18136.74 10087.35 2 13 1.572 14 7.086 0.0010 
Erdos-Renyi 8 77281.40 14015.49 10985.36 1 20 2.879 14 5.907 0.0012 
Small World 4 98401.898 9477.128 6988.962 2 11 1.002 13 7.320 0.179 
Small World 6 31788.719 6617.851 4378.002 3 11 1.271 9 5.413 0.208 
Small World 8 25648.943 5492.811 3194.403 4 15 1.445 7 4.663 0.231 
Directed Cycles 4 119074.50 19577.90 19271.70 2 11 1.002 102 20.26 0.090 
Directed Cycles 6 75111.21   14986.28   10954.08 3 11 1.271 57 11.37 0.104 
Directed Cycles 8 50415.84 10557.80 6886.33 4 15 1.445 39 8.10 0.115 

 

On the other hand, small world networks have higher local clustering (e.g. 

clustering coefficient) and have relatively small shortest path lengths while the directed 
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cycles have very long paths in the network (diameter and characteristic path length) to 

reach to far nodes when they are unable to utilize a random shortcut in the network. 

Considering the information presented in Table 7, several observations are in 

order. As the average node degree increases, the characteristic path length (average path 

length) increases in the preferential attachment network while it decreases for the Erdos-

Renyi networks, Small-World networks, and the directed cycles. This is primarily 

because how different network topologies tend to be structured. For instance, for the 

small world networks and the directed cycles, the increased number of connections 

increases the immediate neighborhood sizes for all the nodes in the network as well as the 

number of rewired shortcut edges. Both of these factors contribute to the decreased 

shortest path length. For preferential attachment networks, the differences in the 

characteristic path lengths are not too big, as preferential attachment networks tend to 

have relatively small shortest path lengths. In addition, in all network types studied 

above, the clustering coefficient increases along with the increasing average node degree. 

Table 8 - Network statistics for additional 1000-node directed cycles, varying rewiring 
probability p from 0.2 to 1.00 with a step size of 0.2 (Avg. degree = 6). 

p Max Btw 
Avg. 
Btw 

Std. Dev. 
Btw 

Min 
Deg 

Max 
Deg 

Std. Dev. 
Deg 

Diam
eter 

Char. Path 
Length 

Clustering 
Coefficient 

0.2 34020.93 4305.77 3104.97 3 9 1.028 35 9.711 0.154 

0.4 15036.88 3183.39 2395.88 3 12 1.423 30 8.017 0.071 
0.6 14763.34 2268.86 2463.76 3 11 1.575 31 7.789 0.024 
0.8 6779.73 833.58 1161.97 3 12 1.715 22 6.444 0.005 
1.0 1026.5 100.79 144.32 3 13 1.765 12 3.862 0.003 

 
Apart from these two sets of synthetic networks, further investigation is 

performed on the directed cycles as they are well known to have varying topological 
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characteristics, depending on the chosen rewiring probability, p. A sweep of p values 

covering the range of 0.2 – 1.0 with a step size of 0.2 is performed on 1000-node small 

world networks and directed cycles, with an average degree of 6.  

Table 8 lists the topological features and basic network statistics for 1000-node 

directed cycles. As the rewiring probability increases, the network becomes more 

random. As a result, the network diameter and the average path length are reduced along 

with the clustering coefficient. In addition, the deviation in the distribution of node 

degrees increases as the nodes’ connections become more random, starting to lose the 

initial lattice structure that exists at their initialization phases. 

7.2 REAL-LIFE NETWORKS 

Apart from the synthetic networks, the performances of the proposed incremental 

centrality algorithms are also evaluated with a number of real-life networks that grow 

over time and are of different scales and topologies. 

The real-life networks used in the evaluations are prepared as weighted networks 

where the cost of an edge is inversely proportional to the strength of the relationship it 

models. That is, multiple updates for the same pair of nodes are consolidated in a single 

edge. For instance, if communications/interactions from node x to node y have been 

recorded twice up to a certain point, then the edge {x → y} has the cost of 1/2. When a 

third update from node x to node y is recorded, then the cost of the edge {x → y} is 

updated to be 1/3. Next, the real-life datasets that are used in performance evaluations are 

described in detail. 
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7.2.1 SocioPatterns Dataset  

SocioPatterns dataset was collected during the ACM Hypertext 2009 conference, 

where the SocioPatterns project deployed the Live Social Semantics application [8]. 

During the conference, the participants volunteered to wear Radio Frequency 

Identification (RFID) embedded badges. The RFID badges had coverage of 1 – 1.5 

meters, and human bodies acted as RF shields, which allows identification of primarily 

face-to-face contacts. The power and frequency of the RFID badges were adjusted such 

that face-to-face communication can be captured with more than 99% reliability. For 

about 2.5 days, communication between RFID badges is recorded every 20 seconds based 

on the RFID packet exchanges observed among any two participants’ badges.  

  
Figure 14 - SocioPatterns network topology. 

The resultant social network is a bi-directional, weighted, dynamic contact 

network of 113 conference attendees with 20,818 dynamic communication updates. This 
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dataset is further explored in [160]. Figure 14 shows the topology of the SocioPatterns 

social network. 

7.2.2 OnlineForum: Facebook-like Social Network 

This dataset was collected from an online community for students at University of 

California, Irvine [14] [13]. This dataset contains 59,835 time stamped online messages 

sent among 1,899 users. The information on the sender, the receiver, and the length (how 

many characters) was recorded for each message. After self-loops and the messages with 

zero length are removed, there were 58,827 messages left in the dataset. The final form of 

the network is a directed, weighted, dynamic social network and its topology is depicted 

in Figure 15. 

 

Figure 15 - OnlineForum (Facebook-like Social Network) network topology. 

7.2.3 HEP Co-authorship Network 

HEP co-authorship dataset is the co-authorship network that has been derived 
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from the High Energy Physics Theory dataset (HEP-TH), which is a publicly available 

dataset, compiled by arXiv [161] for the KDD Cup’03 competition [162]. The authorship 

network contains 21,917 edges among 7,508 researchers who are the authors of 29,555 

high-energy physics papers that were added to the arXiv online library from 1992 to 

2003. A detailed exploration of this dataset has been performed in [15]. Figure 16 shows 

the final topology of the network, while Figure 17 shows an earlier snapshot of the 

network when the network was still in growth phase. Out of 7508 nodes, 5786 of them 

are in the core component of the network. Since transitivity and social networking is very 

important for the formation of coauthorship relationships, there is a significant level of 

triangulation observed, which is more visible in the earlier version of the network drawn 

in Figure 17. 

 

Figure 16 - HEP Coauthorship network 
topology. 

 

Figure 17 - An earlier version of the HEP 
Coauthorship network topology. 
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7.2.4 P2P Communication Network 

P2P Communication network is a peer-to-peer file sharing dataset collected on a 

server running the OpenNap [163] file sharing system. The P2P communication network 

was collected on two campus networks: the University of Brescia (UNIBS) and the 

Politecnico di Torino (POLITO). The traces contain the Internet usage data from 

informed participants who agreed to continue their normal Internet usage during the 

course of the experiment [17].  

 

Figure 18 - P2P Communication network topology. 

Out of this dataset, I extracted P2P traffic, generated by several different file 

sharing and communication based P2P applications including amule, bittorrent, edonkey, 

and Skype. I derive P2P communications and file transmissions and model them as a 

network where nodes represent the users and links represent the 

communication/transmission between those two users. The resultant network contains 

6843 nodes, and 7572 edges and its topology is presented in Figure 18. 
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7.2.5 Retweet Network on Iran Sanction News 

Iran Twitter dataset is compiled by G.R. Boynton from Iowa State University, and 

consists of tweets posted online following two different pieces of news on Washington 

Post [16]: 

• WASHINGTON -- Secretary of State Hillary Rodham Clinton says the United States 
and its partners seeking new sanctions against Iran have come up with a draft 
proposal for a new round of penalties. (10:50 AM EDT Tuesday, May 18, 2010) 

• The U.N. Security Council voted 12 to 2 to impose a fourth round of sanctions on 
Iran, bringing to a close months of diplomatic efforts by the Obama administration to 
penalize Tehran for building a covert nuclear facility and accelerating its enrichment 
of uranium. (11:32 AM EDT Wednesday, June 9, 2010). 
 

 

Figure 19 - Iran retweet network topology. 

The Twitter stream covers dates between May 18, 2010 and June 15, 2010. There 

are 4546 tweets posted online on this topic and 707 of them are retweets using the RT 

feature provided by Twitter. The retweet network extracted from this dataset contains 809 

nodes and 665 links, and it is a very sparse network (See Figure 19). 
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7.2.6 Real-Life Network Datasets 

Table 9 shows basic topological features and network statistics of the real-life 

datasets used in performance evaluations. As shown in Table 9, these networks have 

substantially different topological features and sizes. For instance, P2P network has 

almost no clustering and the distribution for the degrees of nodes is highly right skewed 

(max = 2185, min = 1, average = 2.21). The average number of connections nodes have is 

so small despite the large maximum value, which means that there is only a handful of 

nodes that are connected to a good portion of nodes, while the majority of the nodes are 

have a couple of connections.  

Table 9 - Topological features of real-life networks. ‘D? U?’ column displays information on the 
directionality of edges in the networks. D represents directed networks while U represents 
undirected (bidirectional) networks. 

 
 

Network 

 
  D? 
U? Nodes Edges 

Avg 
Deg 

Min 
Deg 

Max 
Deg 

Std. 
Dev. 
Deg Diameter 

Char. Path 
Length 

Clust. 
Coeff 

SocioPatterns U 113 4392 38.87 1 98 18.35 3 1.6562 0.534 
OnlineForum D 1897 20290 21.40 3 339 35.61 8 3.1966 0.085 

HEP Coauthorship U 7507 38804 5.16 3 64 6.147 15 5.7426 0.459 
P2P D 6843 7572 2.21 1 2185 38.33 3 1.2481 0 

Twitter (Iran) D 809 665 1.644 1 39 2.349 5 1.404 0.016 
 

On the other hand, although HEP Co-authorship and P2P Communication 

networks are comparable in terms of the number of nodes they have, HEP Co-authorship 

network exhibits more of the expected characteristics of social networks. For instance, it 

has higher local clustering and the phenomenon of six-degrees of separation is also 

observed. Another dataset whose topology is highly influenced by the social networking 

concepts is SocioPatterns networks, where there is again high clustering and transitivity 
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in the connections people make. In addition, in terms of network size (number of nodes) 

this set of networks provide a good sample covering both the small networks a lot of 

social analysts are interested in and the larger networks that have become popular more 

recently due to availability of online data collections.  
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CHAPTER 8 EXPERIMENTS AND RESULTS 

This chapter first describes the coding environment used for the implementation 

of the algorithms proposed in this thesis. Then, the performance benefits of the proposed 

incremental centrality algorithms obtained on the synthetic and real-life networks are 

reported. 

8.1 IMPLEMENTATION ENVIRONMENT 

As the implementation environment, I have extended the GraphStream [164], 

which is an open source, dynamic graph library written in Java. GraphStream provides a 

framework to handle the evolution of graphs, and provides support for the addition, 

removal, and modification of nodes and edges [164] [165]. The performance results are 

collected on a machine with 3.20Ghz Intel Xeon CPU and 256 GB RAM.  

8.2 EXPERIMENT DESIGN 

To measure the performance of the incremental centrality algorithms for handling 

growing network updates, 100 edges are randomly selected from each network and the 

initial computation of the centrality values is done on the incomplete version of the 

network that has all but 100 edges. Then, each of these 100 edges is inserted 

incrementally. The average performance in terms of execution time over the repeated 

invocations of traditional baseline algorithm (e.g. the Dijkstra’s algorithm for the 

closeness centrality and the Brandes’ algorithm for the betweenness centrality) is 
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calculated by averaging the execution time of each incremental update. For instance, if 

the incremental centrality algorithm takes 5 seconds on average to complete a set of 

updates and it takes 30 seconds on average for the non-incremental algorithm to complete 

the same set of updates, we conclude that the incremental algorithm is 6x faster than the 

corresponding non-incremental baseline algorithm on average.  

Similar experiments have been designed for measuring the performance of the 

proposed incremental centrality algorithms for shrinking network updates as well. In the 

experiments performed for shrinking network updates, we start with the complete version 

of the network and incrementally remove the same set of edges used in the experiments 

for growing network updates. Therefore, we have a way of comparing how different 

types of network updates affect the performance. The performance results reported in the 

next section (Chapter 8.3) are obtained on networks with different topologies (e.g. 

preferential attachment networks [10], Erdos-Renyi networks [166], small-world 

networks [167], and directed cycles) and different network sizes (e.g. 1000, 3000, and 

5000) and average node degrees (e.g. 4, 6, and 8). Herein, the network size is represented 

in terms of the number of nodes in a network. For small world networks and directed 

cycles, the rewiring probability is 0.3. However, through a set of additional experiments 

presented in Chapter 8.3.6, the impacts of the rewiring probability on the network 

topology and the performance improvements achieved by the incremental centrality 

algorithms are discussed.  

Aside 1 – Adding random edges in a network may result in losing the scale-free 

properties of a preferential attachment network. While it is unlikely that adding or 
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removing 100 edges will impact the network topology, for the smallest networks the 

random addition of edges may move the network somewhat away from scale free slightly 

and this might dilute the impact of the scale free networks. Considering this potential side 

effect, instead of adding or removing 100 random edges, we start with a scale free 

network and then remove 100 edges randomly selected out of the entire network 

topology. Then, these edges are gradually added back in. Thus, the network becomes 

closer to a pure scale free form.  

Next, using the 1000-node preferential attachment network (avg. deg = 6) as an 

example, we check the distribution of node degrees in the two versions of the network 

when it is with and without those 100 edges randomly selected out of the entire network 

topology to observe if they still exhibit the scale free property. Figure 20 - Figure 23 

present the distribution of edges before and after the removal of the 100 edges randomly 

selected out of the network topology. As it can be observed by comparing Figure 20 with 

Figure 22 and Figure 21 with Figure 23, removal of 100 edges does not disturb the 

distribution of node degrees. 

Mathematically, the distribution of a random variable x obeys a power law if its 

probability distribution satisfies 𝑝 𝑥 ∝ 𝑥!! where α is the characterizing scaling 

exponent which typically lies in the range of 2 <   𝛼 < 3 for power law data. More 

precisely, when the data is discrete, which is the case in our dataset, 𝑝 𝑥 = Pr 𝑋 =

𝑥 = 𝐶𝑥!! where C is a constant. Various studies have shown that if an empirical dataset 

follows a power-law distribution, it usually only does so for values of x, where 𝑥 >

𝑥!"#  [168]. In the cases where 𝑥!"# is not known in advance, accurate estimation of 𝑥!"! 
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is very important for estimating α accurately. If the value chosen for 𝑥!"# is too low, then 

we would try to fit power laws to a part of the dataset which does not necessarily follow 

power laws. Similarly, if the value chosen for 𝑥!"# is too high, then we are effectively 

reducing the size of the dataset, making it prone to statistical errors [169]. 

 

Figure 20 - In-degree distribution of the 1000-
node preferential attachment network with 100 
of its edges missing. 

 

Figure 21 - Log-log scale of in-degree 
distribution of the 1000-node preferential 
attachment network with 100 of its edges 
missing. (Same data as in Figure 20). 

 

Figure 22 - In-degree distribution of the 1000-
node preferential attachment network 
(Complete topology, avg. degree = 6). 

 

Figure 23 - Log-log scale of in degree 
distribution of the 1000-node preferential 
attachment network (Complete topology, 
average degree = 6). Same data as in Figure 23. 
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Detection and Characterization of Power Laws 

Estimating 𝒙𝒎𝒊𝒏: To estimate the lower bound of a power law distribution, we 

use the method proposed by Clauset et al. in [170]. The basic idea is to choose the value 

of 𝑥!"# such that the maximum absolute distance between the CDF functions of the 

original data and the pruned data (which contains only 𝑥 > 𝑥!"#) is minimized.  The goal 

is to make the distribution of the original dataset and the best fitted power law as similar 

as possible. 

Estimating α: For estimating the characterizing scaling exponent, we use the 

method described in [168], which essentially describes a maximum likelihood estimator 

that is equivalent to a discrete version of the Hill estimator [171]. Mathematically, the 

estimated α, 𝛼 is calculated as α = 1 + n ln xi
xmin

n
i=1

-1
.  

Table 10 - Parameters for the power law fit for the degree distribution of the smallest (1000-node) 
preferential attachment network. 

 𝒂 𝒙𝒎𝒊𝒏 L 
Incomplete Topology 2.44 10 1.0406e+04 
Complete Topology 2.44 10 1.0468e+04 

 

When Clauset’s power-law fitting method is applied both on the complete 

network topology and the version of the network with 100 missing edges, the following 

𝑥!"#,𝑎, and L (log-likelihood of 𝑥 > 𝑥!"#) values are obtained as presented in Table 10. 

Since  𝑎 and 𝑥!"# values are unaffected, especially the 𝑎 value, we conclude that 

experiments with the removal and insertion of 100 edges randomly selected out of the 



 184 

entire network topology do not cause the preferential attachment networks to lose their 

topological properties. 

Aside 2 – It is possible to run the growing and shrinking network updates in 

combination, in any order. The reason to show the performance improvements separately 

in the following tables is to provide opportunities for comparison of the performances of 

the incremental centrality algorithms for the shrinking and growing network updates.  

8.3 PERFORMANCE RESULTS WITH SYNTHETIC NETWORKS 

This section reports the performance of the incremental centrality algorithms 

obtained on the synthetic networks and discusses the performance results in line with the 

topological features of the synthetic networks. In the rest of this section, the synthetic 

networks that are described in Chapter 7.1 are used for performance measurements. 

8.3.1 Incremental Closeness Centrality Performance Results 

The performance values reported in Table 11 describe the speedup obtained by 

the incremental closeness algorithm over the repeated invocations of the Dijkstra’s 

algorithm used for computing closeness centrality, averaged across 100 incremental 

updates on the network as described in Chapter 8.2. The standard deviations for the 

performance improvements are added in parenthesis for each corresponding average 

performance value. Table 11 also shows the percentage of the total number of nodes that 

are affected by the growing and the shrinking network update types. The total number of 
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affected nodes is calculated as the size of the set formed as the combination of 

AffectedSinks and AffectedSources nodes. 

Table 11 - Performance improvements of the incremental closeness algorithm over the repeated 
invocations of computing closeness centrality using the Dijkstra’s algorithm obtained on 
networks with different topologies/sizes described in Chapter 7.1. Average node degree is 6. 

Topology Growing Network 
Updates 

Shrinking Network 
Updates 

   Closeness 
Speedup 

Closeness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Preferential Attachment - 1000 900 x 
(732.53) 3.79 467.70 x 

(905.96) 2.93 

Preferential Attachment - 3000 
14714.43 x 

(7298.64) 2.13 3447.89 x 
(12233.78) 1.51 

Preferential Attachment - 5000 47738.81 x 
(27076.62) 1.33 10150.29 x 

(48386.73) 0.97 

Erdos-Renyi - 1000 
123.07 x 

(1146.17) 60.86 58.37 x 
(1018.59) 43.71 

Erdos-Renyi - 3000 
515.35 x 
(485.18) 69.02 169.83 x 

(148.08) 41.31 

Erdos-Renyi - 5000 890.56 x 
(1158.4) 70.66 304.44 x 

(389.26) 41.21 

Small World - 1000 
233.49 x 

(5671.12) 50.10 
118.71 x 

(3838.12) 17.51 

Small World - 3000 642.45 x 
(80695.62) 52.39 

338.81 x 
(27515.92) 18.5 

Small World - 5000 
2015.87 x 

(145931.31) 50.69 
822.01 x 

(91968.11) 17.97 

Directed Cycles - 1000 
309.62 x 

(1221.32) 26.27 
106.27 x 

(1207.63) 20.82 

Directed Cycles - 3000 740.44 x 
(15275.67) 26.17 

243.70 x 
(12120.51) 21.47 

Directed Cycles - 5000 
1822.83 x 

(54345.94) 26.54 
495.39 x 

(38131.80) 22.17 

 

Consider the results presented in Table 11. First, the performance improvements 

obtained over the baseline are higher for the growing network updates than for the 

shrinking network updates. However, in general, the number of affected nodes is lower 
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for the shrinking network updates. The DELETEUPDATECLOSENESS algorithm maintains a 

priority queue while the INSERTUPDATECLOSENESS algorithm does not and the 

DELETEUPDATECLOSENESS algorithm is significantly more complicated than the 

INSERTUPDATECLOSENESS algorithm. Therefore, the overall algorithmic complexity and 

the actual execution time are higher for shrinking network updates. 

Second, the incremental closeness algorithm, both for the growing and the 

shrinking network updates, performs best with the preferential attachment networks. It is 

also observed that other parameters shown in Table 6 such as network diameter and 

characteristic path length are inversely related with the performance obtained. For 

instance, in preferential attachment networks, characteristic path length, diameter, and the 

clustering coefficient are lower compared to other topologies. When the shortest paths in 

a directed network are short (i.e. contain a number of hops) and there is not much 

redundancy, an update on the shortest paths cannot propagate very far, resulting in quick 

return from the update and a very limited number of affected nodes (e.g. less than 5% in 

the case of preferential attachment networks).  

On the other hand, the average length of the shortest paths in small world 

networks is not high either. However, the small world networks have undirected 

(bidirectional) edges. Thus, the number of shortest paths between any two nodes is likely 

to be higher. Hence, there is a large difference in the portion of the network affected by 

the growing and the shrinking network updates. Consider the following example. There 

are three shortest paths from node a to node b. Then, an edge on one of these shortest 

paths is removed. Although one of these shortest paths is not a shortest path from node a 
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to b anymore, there are still two more paths that would serve as the shortest paths, and the 

update terminates relatively quickly. Now, consider the opposite case. There are again 

three shortest paths from node a to node b. Then, a direct edge connecting node a to node 

b is inserted and all the previously known shortest paths should be invalidated and the 

rest of the shortest paths in the network that use the shortest path from node a to node b 

as their subpaths should also be updated. Therefore, it is likely that the portion of a small 

world network that is affected by an incremental growing network will be higher than the 

portion of the same network that is affected by its corresponding shrinking network 

update. 

Third, comparing the speedup obtained on different networks, speedup obtained 

using the incremental closeness algorithm increases with the increased network size. The 

largest improvements are again observed with preferential attachment networks because 

the incremental algorithms are able to prune a larger portion of the network from 

subsequent computations in preferential attachment networks.  

When the standard deviations on the performance improvements are examined in 

detail, additional observations on the performance behavior of the incremental closeness 

centrality algorithm can be made. First, the highest deviations are observed in the 

directed cycles and small world networks. This is reasonable given that both network 

types benefit from the existence of rewired shortcuts. Second, there are some networks on 

which the standard deviations for the performance of the incremental closeness centrality 

algorithm is very large compared to the average performance obtained on the same 
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network. This is because in those networks some of the incremental network updates 

completed very quickly, which causes the deviation to be very large.  

Table 12 - Performance improvements of the incremental closeness algorithm over the repeated 
invocations of the Dijkstra’s algorithm for computing closeness centrality obtained on with 
different network topologies and different average node degree values as described in Chapter 
7.1. The number of nodes is fixed at 3000. 

Topology Avg 
Deg. 

Growing Network 
Updates 

Shrinking Network 
Updates 

    Closeness 
Speedup 

Closeness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Preferential Attachment 4 13384.83 x 
(30947.95) 0.95 3344.98 x 

(5952.6) 0.79 

Preferential Attachment 6 
14714.43 x 

(7298.64) 2.13 3447.89 x 
(12233.78) 1.51 

Preferential Attachment  8 15259.79 x 
(51827.04) 3.19 3694.61 x 

(10063.46) 1.86 

Erdos-Renyi 4 
288.15 x 

(114.565) 54.70 89.74 x 
(93.174) 48.33 

Erdos-Renyi  6 
515.35 x 
(485.18) 69.02 169.83 x 

(148.08) 41.31 

Erdos-Renyi 8 885.19 x 
(2480.52) 59.48 321.66 x 

(1174.89) 30.16 

Small World 4 
471.70 x 

(58927.40) 63.23 
129.20 x 

(39859.40) 36.09 

Small World 6 710.11 x 
(80695.62) 52.39 

338.81 x 
(27515.92) 18.5 

Small World  8 
1492.96 x 
(1698.92) 45.63 

829.57 x 
(1161.88) 11.61 

Directed Cycles 4 
393.86 x 

(150095.88) 31.18 
118.75 x 

(74590.23) 29.84 

Directed Cycles 6 
740.44 x 

(15275.67) 26.17 
243.70 x 

(12120.51) 21.47 

Directed Cycles  8 
2391.75 x 

(25320.00) 18.50 
928.00 x 

(10223.88) 12.69 
 

Although the actual values of standard deviations depend very much on the 

interaction of the random network update with the rest of the network topology, the 
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general trend is that the deviation on the shrinking network updates is lower than the 

deviation on the growing network updates as it takes longer to complete the shrinking 

network updates in general. 

Next, Table 12 presents performance results collected in a similar fashion to those 

presented in Table 11. In Table 12, different from the results presented in Table 11, the 

average degrees of networks are varied from 4.0 to 8.0 with a step size of 2.0 for each 

synthetic network topology type while the number of nodes is fixed at 3000 nodes for all. 

The standard deviations for the performance improvements are added in parenthesis for 

each corresponding average performance value.  

For preferential attachment networks, there is a slight performance improvement 

with the increasing average degree; however, this trend is not as pronounced as it is with 

the other network topologies. In Erdos-Renyi networks, the performance improvements 

of the incremental closeness algorithm increases with the increased average degree, both 

for growing and shrinking network updates. Yet, this is not necessarily strictly in line 

with the percentage of affected nodes as the randomness of the connections in Erdos-

Renyi networks may result in different proportions of the network getting affected by the 

issued network update. For small world networks and directed cycles, the performance 

improvements again increase with the increasing average degree as the percentage of 

nodes affected by the network updates decrease.  

Overall, when the number of immediate connections per node increases, the 

network is denser but this does not necessarily mean that the shortest paths in the network 

become longer. As presented earlier in Table 7, in Erdos-Renyi networks, small world 
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networks, and especially in directed cycles, the increased average node degree provides 

opportunities for including more random connections that connect far apart nodes, 

reducing the characteristic (average) shortest path lengths and the diameters of the 

networks. This effect, as a result, reflects as a substantial increase in the performance 

improvements obtained by the incremental closeness centrality algorithm over computing 

the closeness centrality with the Dijkstra’s algorithm [109]. 

8.3.2 Incremental Betweenness Centrality Performance Results 

Next, the performance of the proposed incremental betweenness centrality 

algorithm is examined. The design and preparation of the experiments are the same as 

those used for the incremental closeness centrality algorithm, as discussed earlier in 

Chapter 8.2. The incremental network updates are the same as those used in the timing 

experiments done with the incremental closeness centrality algorithm, presented earlier in 

Chapter 8.3.1. The non-incremental baseline algorithm is the Brandes’ betweenness 

algorithm [28], which is the best performing betweenness algorithm used in standard 

implementations.  

Table 13 and Table 14 list the average speedups obtained by the incremental 

betweenness centrality algorithm over the Brandes’ algorithm both for the growing and 

the shrinking network updates along with the percentages of the total number of nodes 

that are affected. The percentages of affected nodes are calculated in terms of the size of 

the combination of the two sets, AffectedSinks and AffectedSources. The standard 
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deviations for the performance improvements are added in parenthesis for each 

corresponding average performance value.  

In particular, the performance results in Table 13 show how the performance 

improvements of the incremental betweenness centrality algorithm change along with the 

changing network size and topology. On the other hand, Table 14 reports the changes in 

the performance improvements along with the changing average node degree and the 

network topology. 

Similar to the performance results obtained with the incremental closeness 

algorithm in Chapter 8.3.1, the performance results presented in both tables indicate that 

the incremental betweenness algorithm provides the highest performance benefits on the 

preferential attachment networks and the lowest performance improvements on the 

directed cycles. Directed cycles provide examples of pathological test cases for the 

incremental centrality algorithms because they tend to have very long diameters and 

relatively large average (characteristic) shortest path lengths both of which increase the 

lengths of the shortest paths to be updated. 

Comparing the network statistics (Table 6) and the performance results obtained 

on different networks (Table 13), the speedup obtained using the incremental 

betweenness update algorithm increases with the increased network size. It is also 

observed that other parameters such as network diameter, characteristic path length, and 

average/min/max unscaled betweenness centrality values are inversely correlated with the 

performance obtained; the longer the shortest paths are in a network, the lower the 

performance improvements are in that network.  
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Table 13 - Performance improvements of the incremental betweenness algorithm over repeated 
invocations of the Brandes’ betweenness algorithm obtained on networks with different 
topologies/sizes described in Chapter 7.1. 

 Growing Network Updates Shrinking Network Updates 
Topology   Betweenness 

Speedup 
Betweenness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

Preferential Attachment - 1000 178.65 x 
(971.51) 3.54 

173.84 x 
(967.36) 3.63 

Preferential Attachment - 3000 971.40 x 
(9021.75) 1.98 

740.13 x 
(8809.35) 1.95 

Preferential Attachment - 5000 3760.48 x 
(33818.54) 1.16 

2415.18 x 
(32011.24) 1.14 

Erdos-Renyi - 1000 7.99 x 
(996.81) 62.89 

6.60 x 
(997.09) 62.48 

Erdos-Renyi - 3000 18.97 x 
(40.22) 67.77 

15.08 x 
(14.89) 68.08 

Erdos-Renyi - 5000 31.18 x 
(66.51) 68.31 

24.87 x 
(53.91) 68.32 

Small World - 1000 
8.77 x 

(12.25) 61.03 
7.87 x 

(12.98) 61.03 

Small World - 3000 20.94 x 
(27.16) 61.63 

17.13 x 
(25.95) 61.63 

Small World - 5000 
36.32 x 
(51.01) 60.73 

29.38 x 
(50.51) 60.73 

Directed Cycles - 1000 
3.78 x 

(803.30) 44.14 
1.79 x 

(622.95) 43.98 

Directed Cycles - 3000 4.26 x 
(6342.75) 42.07 

2.22 x 
(4508.81) 41.65 

Directed Cycles - 5000 
6.47 x 

(15361.89) 43.87 
2.92 x 

(15324.96) 43.12 
 

Considering the network characteristics presented in Table 6, it is observed that in 

the preferential attachment networks, the characteristic path length and the diameter are 

substantially lower compared to the other topologies. And, the shortest paths in the 

directed cycles are substantially longer, yielding performance results that are much lower 

compared to the other network types as the performance results in Table 13 suggest.  
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Table 14 - Performance improvements of the incremental betweenness algorithm over repeated 
invocations of the Brandes’ algorithm obtained on networks with different topologies and 
different average node degrees as described in Chapter 7.1. The number of nodes is fixed at 3000.  

Topology Avg 
Deg. 

Growing Network 
Updates 

Shrinking Network 
Updates 

    Betweenness 
Speedup 

Betweenness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

Preferential Attachment 4 1856.54 x 
(3865.926) 0.90 

1672.78 x 
(2979.49) 0.89 

Preferential Attachment 6 971.40 x 
(9021.75) 1.98 

740.13 x 
(8809.35) 1.95 

Preferential Attachment  8 916.52 x 
(6119.21) 2.69 

627.16 x 
(3331.99) 2.68 

Erdos-Renyi 4 14.02 x 
(66324.74) 56.26 

9.23 x 
(53451.25) 55.67 

Erdos-Renyi  6 18.97 x 
(40.22) 67.77 

15.08 x 
(14.89) 68.08 

Erdos-Renyi 8 
29.95 x 
(154.4) 58.43 

22.80 x 
(164.28) 58.50 

Small World 4 14.23 x 
(27.64) 72.89 

11.24 x 
(26.17) 72.89 

Small World 6 
20.94 x 
(27.16) 61.63 

17.13 x 
(25.95) 61.63 

Small World  8 
28.14 x 
(28.41) 54.89 

23.34 x 
(27.96) 54.89 

Directed Cycles 4 0.88 x 
(29674.85) 38.52 

1.09 x 
(17844.20) 36.98 

Directed Cycles 6 
4.26 x 

(6342.75) 42.07 
2.22 x 

(4508.81) 41.65 

Directed Cycles  8 14.60 x 
(4273.70) 37.74 

7.19 x 
(2743.57) 37.75 

 

Apart from the lengths of the shortest paths, the average betweenness value 

(unscaled) and the network size are also very important factors, especially the network 

size. As mentioned earlier, the performance benefits of the incremental betweenness 

update algorithm increases with the increasing network size. When the average 

betweenness values are examined (Table 6), it is observed that the difference across 
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different topologies is very large. This is because in preferential attachment networks, 

compared to other network topologies, there are fewer intermediate nodes that are on the 

shortest paths. Hence, when there is a network update, there are fewer nodes whose 

betweenness values should be adjusted. When most of the shortest paths in a network 

consist of a couple of hops only (i.e., when it takes a social agent only a number of 

intermediaries to reach out to the majority of the network), then there are fewer nodes 

that lie on the shortest paths and the overall depth of the shortest path tree is shorter. As a 

result, there are fewer predecessors to be tracked and maintained when there is need for 

reconstructing the shortest paths in the network. 

Finally, the percentages of nodes that are affected are higher for the incremental 

betweenness centrality than for the incremental closeness centrality. The closeness 

centrality is only affected by the changes in the shortest distances in a network. For the 

incremental closeness centrality, only the nodes that have strictly shorter or strictly longer 

paths to/from them are inserted into the sets of affected sinks/sources. On the other hand, 

for the incremental betweenness centrality, not only the changes in the shortest distances 

but also the changes in the number of shortest paths affect the centrality values. Hence, 

for the incremental betweenness centrality, there are more reasons to include nodes in the 

set of affected nodes, resulting in a larger percentage of affected nodes overall. Since the 

incremental betweenness centrality algorithm needs to maintain more information (e.g. 

tracking predecessors, maintaining the number of shortest paths), the performance of the 

incremental closeness centrality algorithm is higher than that of the incremental 
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betweenness centrality algorithm (Compare the performance results in Table 11 with 

Table 13 and the performance results in Table 12 with Table 14). 

8.3.3 How do the Hub Nodes Affect the Performance of Incremental Centrality 
Algorithms in Preferential Attachment Networks? 
‘Preferential attachment’ is a network generation model that leads to the 

generation of scale free networks with heavy-tailed, power-law degree distributions. In 

such networks, there are very few nodes with a large number of connections (e.g. hubs) 

while the majority of the nodes in the network have very few connections. Figure 24 

presents the in-degree distribution of the nodes in a 3000-node preferential attachment 

network with an average degree of 6. Figure 25 presents the same data in log-log scale.  

The preferential attachment network whose degree distribution is presented in 

Figure 24 and Figure 25 have a number of hub nodes. Next, the hub nodes with the 

highest number of connections are listed in Table 15.  

 
Figure 24 - The distribution of nodes' in-degree 
values in 3000-node preferential attachment 
network with average degree 6. 

 
Figure 25 - Log-log scale plot for the in-
degree distribution depicted in Figure 24. 
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Table 15 - List of the hub nodes in 3000-node preferential attachment network with average node 
degree 6. 

Rank Node ID #(Connections) Rank Node ID #(Connections) 
1 0 233 11 9 54 
2 6 110 12 21 54 
3 1 107 13 82 50 
4 3 99 14 31 47 
5 11 94 15 30 43 
6 2 82 16 16 42 
7 7 79 17 24 41 
8 15 78 18 54 41 
9 17 59 19 8 38 
10 4 58 20 25 38 

 

One question that stems from the existence of hub nodes in a network is ‘How do 

the incremental centrality algorithms perform when a network update that involves one of 

the hub nodes is issued?’ A hub node x might be the head or the tail of a modified edge 

{x → y} or it might be on the shortest paths that are affected by the modification of an 

edge {a → b}. This section attempts to answer the question posed through detailed 

examination of the performance results for the incremental betweenness centrality 

algorithm. Similar observations hold for the performance of the incremental closeness 

centrality, however, the performance differences across different updates are more 

pronounced for the incremental betweenness centrality. 

How the existence of hub nodes affects the performance is a result of the network 

structure, the position of the incremental network update with respect to the position of 

the hub nodes, and the direction of connections into/out of the hub nodes. When the 

updated edge {x → y} ends at a hub node y with many incoming connections and no 

outgoing connections, the update terminates immediately. However, when both updates 
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are made on nodes with high number of connections, then the incremental update takes 

longer to complete because such nodes are expected lie on many shortest paths. Hence, a 

change in the network that involves a hub node is expected to trigger a big wave of 

changes if it has enough many outgoing connections on top the incoming connections it 

has. In addition, when a hub node is marked as an affected node, then its immediate 

neighbors should be traversed to see if the incremental network update should propagate 

further by adding one or more its immediate neighbors in the list of affected nodes as 

well. Since hub nodes have a lot of connections, it is expected that traversing its 

immediate neighbors will take longer than traversing the immediate neighbors of a node 

with only a couple of immediate connections. 

 

Figure 26 - Distribution of execution times for 100 incremental edge insertions. 

Out of the 100 randomly selected network updates, there were only 6 updates that 

took significantly longer than the rest of the updates. In particular, %80 of the individual 
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updates completed in less than 16 milliseconds, and there are only 6 updates that took 

more than 75 milliseconds, with only 2 updates taking longer than 200 milliseconds. 

Figure 26 shows the distribution of execution times for 100 incremental edge insertions. 

Insertion of the edge {129 → 37} is the update that took the longest. For instance, 

node-129 has 24 incoming connections and 2 outgoing connections while node-37 has 18 

incoming connections and 3 outgoing connections. Before the insertion of the edge {129 

→ 37} that would connect node-129 and node-37 directly, these two nodes were 

connected through 4 different shortest paths of length 3.0 as shown in Figure 27.  

 
Figure 27 - Shortest paths from node-129 to node-37 before the insertion of the edge {129→37}. 

 

For instance, when the edge {129 → 37} is inserted the old set of shortest paths 

should be invalidated and all the shortest paths that use these invalidated shortest paths as 

their subpaths should also be invalidated. Another important point to notice is that 

although node-129 and node-37 are average nodes with not too many or not too few 



 199 

connections, there are two major hubs on their shortest paths: node-0 (233 connections) 

and node-2 (82 connections), which cause the slowdown in the completion of this 

particular update when the shortest paths that pass through them are to be updated. In 

conclusion, when the hub nodes lie on the affected paths and are inserted into the set of 

affected nodes, then the network update takes longer than average. The execution time 

tends to increase with the increased number of hub nodes inserted into the sets of affected 

nodes.  

8.3.4 Incremental k-Centrality Performance Results 

Next, the performance of the incremental k-closeness and k-betweenness 

centrality algorithms are examined. In the performance results presented in Table 16 and 

Table 17, we use k = 2 and k = 3, respectively. The baseline algorithms (the Dijkstra’s 

algorithm [109] for the closeness centrality and the Brandes’ algorithm [28] for the 

betweenness centrality) are also bounded by the k hop limit. The experiments are 

designed as described in Chapter 8.2. Hence, to avoid repetition, they are not described 

here again. In Table 16 and Table 17, PF stands for preferential attachment networks, ER 

stands for Erdos-Renyi networks, SW stands for small world networks, and DC stands for 

directed cycles. Each network topology type is appended by a number: 1, 3, or 5, which 

denote the network size in terms of the number of nodes and stand for 1000 nodes, 3000 

nodes, and 5000 nodes, respectively. 

Considering the performance results provided in Table 16 and Table 17, it is 

observed that the incremental centrality algorithms provide performance benefits that are 
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on the order of thousands. There are three main trends that stand out: (i) the incremental 

k-closeness algorithm provides higher performance benefits than the incremental k-

betweenness algorithm, (ii) the incremental k-centrality algorithms provide higher 

performance improvements for the growing network updates than they do for the 

shrinking network updates, and (iii) the performance benefits of the incremental 

centrality algorithms increase with the increasing network size. All of these observations 

are in line with the results presented earlier.  

However, there is one major difference that can only be observed in the behavior 

of k-centralities. When the shortest paths are not limited by k hops, the maximum 

performance benefits are obtained on the preferential attachment networks (Chapter 8.3.1 

and Chapter 8.3.2). However, in k-centralities, the incremental centrality algorithms 

provide the minimum performance benefits in the preferential attachment networks and 

the maximum performance benefits in the small world networks. In other words, the 

ordering of the topologies in terms of how much they benefit from the incorporation of 

the incremental approach is reversed when the shortest paths are limited within k hops 

both for the incremental algorithms and the baseline algorithms. 

The performance benefits of the incremental k-centralities depend on how much 

work they can avoid. In preferential attachment networks, the shortest paths are mostly 

composed of a couple of hops, with relatively smaller average characteristic path length 

and network diameter compared to the other network topologies. With the introduction of 

the limiting parameter k, the shortest paths become even shorter but the amount of work 
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that can be avoided is not as high as the work that can be avoided in other network 

topologies. 

Table 16 - Performance benefits of the proposed incremental k-centrality algorithms and the 
portion of the network affected by these changes obtained on preferential attachment, Erdos-
Renyi, small world networks, and directed cycles. Avg. degree = 6, k = 2.  

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2) 

T 
Closeness 
Speedup 

Closeness 
Affected% 

Betweenness 
Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness    
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

PF1 4007.39 x 
(2660.30) 1.77 

1169.57 x 
(708.83) 0.73 

2318.95 x 
(1689.62)  0.67 

561.91 x 
(415.49) 1.68 

PF3 67536.43 x 
(70166.31) 0.74 

12252.17 x 
(8936.66) 0.29 

26128.53 x 
(34690.16) 0.27 

4660.43 x 
(4350.67) 0.72 

PF5 175671.04 x 
(144434.28) 0.36 

33434.23 x 
(19134.80) 0.14 

150069.59 x 
(95076.37) 0.13 

17114.77 x 
(9173.12) 0.35 

ER1 8434.33 x 
(8192.99) 2.45 

2214.27 x 
(1657.40) 0.77 

9349.37 x 
(5936.06) 0.76 

1095.16 x 
(1500.38) 2.44 

ER3 93542.53 x 
(40662.82) 0.85 

19922.55 x 
(6648.24) 0.27 

84290.54 x 
(29807.10) 0.26 

7674.98 x 
(2773.54) 0.85 

ER5 356374.65 x 
(104205.84) 0.53 

64049.13 x 
(17893.89) 0.16 

394281.47 x 
(117711.62) 0.16 

21370.51 x 
(7166.96) 0.53 

SW1 3505.08 x 
(3323.48) 3.91 

700.38 x 
(313.34) 1.02 

4576.60 x 
(3080.00) 0.85 

286.24 x 
(211.32) 4.05 

SW3 50380.67 x 
(40131.32) 1.40 

5698.70 x 
(2223.15) 0.35 

53706.20 x 
(36106.66) 0.30 

1944.95 x 
(1192.21) 1.48 

SW5 245023.50 x 
(199487.08) 0.78 

22649.73 x 
(8159.11) 0.20 

246886.51 x 
(156819.89) 0.17 

6356.84 x 
(3776.83) 0.82 

DC1 8013.70 x 
(8339.80) 1.55 

1832.06 x 
(1460.83) 0.68 

5939.09 x 
(4855.54) 0.57 

1005.99 x 
(1720.02) 1.63 

DC3 140584.58 x 
(63424.38) 0.53 

22107.68 x 
(7744.64) 0.23 

125663.72 x 
(40038.24) 0.19 

10258.06 x 
(4859.67) 0.56 

DC5 639784.95 x 
(246368.46) 0.30 

87351.19 x 
(28524.46) 0.13 

630523.27 x 
(157903.27) 0.11 

33937.61 x 
(14724.15) 0.32 

 

In the incremental k-centralities algorithms, the highest performance benefits are 

obtained on directed cycles. In directed cycles, some nodes are connected by the 

shortcuts in the network formed by rewiring. However, there are also other node pairs 

whose shortest paths do not include any shortcut edges and such shortest paths tend to be 
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very long. When the shortest paths are confined to the 2-hop or 3-hop neighborhood of 

each node, most of the very long shortest paths are eliminated from computations. In 

addition, how far a network update can propagate across the network is very limited as 

well (limited to the k-hop neighborhood only).  

Table 17 - Performance benefits of the proposed incremental k-centrality algorithms and the 
portions of the network affected by these changes obtained on preferential attachment, Erdos-
Renyi, small world networks, and directed cycles. Avg. degree = 6, k = 3. 

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3) 

T 
Closeness 
Speedup 

Closeness 
Affected% 

Betweenness 
Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

PF1 1933.86 x 
(2460.15) 2.79 

467.76 x 
(424.54) 1.71 

980.19 x 
(957.92) 1.42 

318.11 x 
(389.35) 2.60 

PF3 12305.23 x 
(56123.57) 1.27 

3880.92 x 
(4845.24) 0.73 

12345.63 x 
(8129.59) 0.61 

1619.92 x 
(2190.31) 1.19 

PF5 70359.54 x 
(55104.65) 0.64 

13972.58 x 
(7995.69) 0.35 

29268.18 x 
(22821.96) 0.31 

6301.81 x 
(4698.60) 0.59 

ER1 2648.67 x 
(6388.20) 6.99 

665.23 x 
(1342.86) 2.45 

8741.28 x 
(5309.33) 2.38 

321.24 x 
(1114.04) 6.92 

ER3 25453.04 x 
(18069.07) 2.55 

5917.13 x 
(3475.05) 0.85 

100799.68 x 
(27376.85) 0.85 

2058.77 x 
(10260.79) 2.56 

ER5 96010.96 x 
(45713.23) 1.60 

18529.29 x 
(8188.16) 0.52 

377138.79 x 
(100462.26) 0.52 

6298.02 x 
(2769.37) 1.59 

SW1 1054.90 x 
(4155.52) 13.16 

182.17 x 
(157.09) 4.15 

955.40 x 
(3168) 3.29 

76.80 x 
(77.80) 14.61 

SW3 14267.99 x 
(41931.26) 5.15 

1294.52 x 
(966.03) 1.48 

10661.16 x 
(27570.41) 1.27 

431.51 x 
(382.85) 5.85 

SW5 53772.04 x 
(139668.06) 2.84 

4574.47 x 
(3486.16) 0.82 

48955.05 x 
(113508.33) 0.69 

1405.23 x 
(1291.21) 3.24 

DC1 6760.30 x 
(6372.81) 2.94 

1097.46 x 
(1506.50) 1.67 

5346.76 x 
(4207.69) 1.28 

625.45 x 
(1751.89) 3.47 

DC3 80953.65 x 
(38993.78) 1.01 

8812.74 x 
(5324.65) 0.56 

51067.62 x 
(37778.30) 0.45 

4666.67 x 
(2620.77) 1.19 

DC5 288379.42 x 
(135771.75) 0.58 

34715.31 x 
(20091.47) 0.32 

229305.42 x 
(158129.62) 0.25 

14197.06 x 
(9886.13) 0.67 

 

The abovementioned factors result in a dramatic increase in the speedup that can 

be achieved by incremental k-centrality algorithms as well as a dramatic decrease in the 
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percentage of the nodes that are affected by the incremental network updates. Consider 

the percentages of the networks affected by the incremental network updates as listed in 

Table 13, Table 14, Table 16, and Table 17. When the shortest paths are not bounded by 

any k-hop limits, the percentages of the affected nodes are in the range of 42.07% - 

68.32% (for Table 13) and 36.98% - 72.89% (for Table 14) if only the Erdos-Renyi, 

small-world and directed cycles networks are accounted for. These ranges extend to 

1.16% - 68.32% (for Table 13) and 0.89% - 72.89% (for Table 14) if the preferential 

attachment networks are included as well. When the shortest paths are restricted to 

remain within k hops, these values change as follows. The percentages of the affected 

nodes remain within 0.11% - 3.91% for all network types (Table 16) for k = 2 while for k 

= 3, these affected percentages remain within 0.25% - 14.61% (Table 17). 

When the results in Table 16 and Table 17 are compared against one another, it is 

observed that the performance benefits of the incremental k-centralities are higher when k 

= 2 and the percentages of affected nodes are lower. However, in most cases the total 

percentages of affected nodes are less than 10-15%, mostly staying within less than 5% 

of the entire network. The underlying reasons are the same as those resulting in high 

performance benefits. When the shortest paths are confined to k-hop neighborhood, how 

far a network can propagate across the network is also limited.  

Next, in Table 18 and Table 19, the performance results of the incremental k-

betweenness and incremental k-closeness algorithms, for networks with varying average 

node degrees are presented, using the k-hop limits k = 2 and k = 3, respectively. The 

performance results presented in Table 18 and Table 19 collected on networks with 3000 
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nodes and varying average node degrees (e.g. 4.0, 6.0, and 8.0). Considering the 

incremental k-betweenness results, the performance improvements provided by the 

incremental k-betweenness algorithm over the Brandes’ k-betweenness algorithm 

decreases with the increasing average node degree. 

Table 18 - Performance benefits of the proposed incremental k-closeness algorithm over k-
closeness algorithm and portion of the network affected by these changes obtained on preferential 
attachment, Erdos-Renyi, small world networks, and directed cycles (k = 2, number of nodes = 
3000). The first column (e.g. T) lists the topology names along with their average node degrees. 

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2) 

T 
Closeness 
Speedup 

Closeness 
Affected% 

Betweenness 
Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness    
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

PF4 
42393.01 x 
(49332.76) 0.19 

18835.73 x 
(10743.23) 0.39 

18338.90 x 
(28261.15)    0.19 

6344.60 x 
(5411.19) 0.38 

PF6 
67536.43 x 
(34690.16) 0.74 

12252.17 x 
(8936.66) 0.29 

26128.53 x 
(70166.31) 0.27 

4660.43 x 
(4350.67) 0.72 

PF8 
88628.43 x 
(69466.50) 0.32 

10587.64 x 
(7429.73) 0.95 

28990.65 x 
(35282.93) 0.29 

2706.76 x 
(3307.44) 0.90 

ER4 
112938.19 x 
(115455.15) 0.18 

28141.80 x 
(21516.05) 0.42 

105115.30 x 
(96063.50) 0.19 

15175.37 x 
(16955.21) 0.42 

ER6 
93542.53 x 
(40662.82) 0.85 

19922.55 x 
(6648.24) 0.27 

84290.54 x 
(29807.10) 0.26 

7674.98 x 
(2773.54) 0.85 

ER8 
67272.73 x 
(57479.85) 0.32 

13440.00 x 
(8457.19) 1.35 

79497.84 x 
(50806.15) 0.32 

3611.11 x 
(3120.86) 1.35 

SW4 
80986.09 x 
(55057.35) 0.72 

11547.87 x 
(4282.55) 0.25 

68229.48 x 
(37660.91) 0.23 

4619.78 x 
(2522.49) 0.73 

SW6 
50380.67 x 
(40131.32) 1.40 

5698.70 x 
(2223.15) 0.35 

53706.20 x 
(36106.66) 0.30 

1944.95 x 
(1192.21) 1.48 

SW8 
48238.49 x 
(33250.30) 2.06 

4235.30 x 
(564.37) 0.43 

46067.38 x 
(26961.08) 0.33 

1005.81 x 
(564.37) 2.26 

DC4 
205357.14 x 
(130529.90) 0.33 

32911.39 x 
(19353.79) 0.18 

179316.73 x 
(67508.42) 0.16 

19609.63 x 
(13187.93) 0.33 

DC6 
140584.58 x 

(63424.38) 0.53 
22107.68 x 

(7744.64) 0.23 
125663.72 x 

(40038.24) 0.19 
10258.06 x 

(4859.67) 0.56 

DC8 
127924.53 x 

(56549.32) 0.68 
19087.64 x 

(7900.49) 0.27 
125663.72 x 

(31835.46) 0.20 
7260.27 x 
(3496.14) 0.75 

 

When k = 2, the largest performance improvements are observed in the directed 

cycles, followed by the Erdos-Renyi networks, preferential attachment networks, and 
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small world networks. This is also in line with the percentage of the nodes affected by the 

incremental updates. In all three different types of networks, the performance 

improvements decrease with the increasing average node degree. This is because when 

there are more immediate neighbors connected to each node, an incremental network 

update is inevitably felt by more nodes in the network.  

Table 19 - Performance benefits of the proposed incremental k-betweenness algorithm over k-
betweenness algorithm implemented as in Brandes and the portion of the network affected by 
these changes obtained on preferential attachment, Erdos-Renyi, small world networks, and 
directed cycles (k = 3, avg. degree = 6). The first column (e.g. T) lists the topology names along 
with their average node degrees. 

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3) 

T 
Closeness 
Speedup 

Closeness 
Affected% 

Betweenness 
Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

PF4 
20235.23 x 
(49632.85) 0.60 

11662.51 x 
(7664.97) 0.38 

16813.56 x 
(27306.46) 0.36 

4986.82 x 
(4115.51) 0.58 

PF6 
12305.23 x 
(56123.57) 1.27 

3880.92 x 
(4845.24) 0.73 

12345.63 x 
(8129.59) 0.61 

1619.92 x 
(2190.31) 1.19 

PF8 
36385.76 x 
(73620.80) 1.80 

2996.25 x 
(4460.23) 0.91 

9720.92 x 
(8793.33) 0.7 

1427.46 x 
(2753.62) 1.62 

ER4 
57248.21 x 

(140441.29) 0.89 
14303.40 x 
(23260.63) 0.42 

54836.49 x 
(98033.33) 0.42 

6205.19 x 
(18471.12) 0.89 

ER6 
25453.04 x 
(18069.07) 2.55 

5917.13 x 
(3475.05) 0.85 

100799.68 x 
(27376.85) 0.85 

2058.77 x 
(10260.79) 2.56 

ER8 
15889.83 x 
(18687.31) 5.24 

2917.32 x 
(3415.20) 1.35 

12176.84 x 
(16390.85) 1.32 

824.32 x 
(975.16) 5.21 

SW4 
23769.90 x 
(47122.22) 1.91 

3262.50 x 
(2417.90) 0.73 

19485.04 x 
(35948.19) 0.67 

1532.71 x 
(1308.55) 2.00 

SW6 
14267.99 x 
(41931.26) 5.15 

1294.52 x 
(966.03) 1.48 

10661.16 x 
(27570.41) 1.27 

431.51 x 
(382.85) 5.85 

SW8 
10072.24 x 
(12263.00) 9.01 

886.12 x 
(595.87) 2.26 

7431.26 x 
(9028.73) 1.76 

220.35 x 
(173.73) 10.97 

DC4 
101742.36 x 
(133504.69) 0.53 

19638.21 x 
(21366.49) 0.33 

97027.70 x 
(79794.33) 0.29 

10534.19 x 
(15765.61) 0.56 

DC6 
80953.65 x 
(38993.78) 1.01 

8812.74 x 
(5324.65) 0.56 

51067.62 x 
(37778.30) 0.45 

4666.67 x 
(2620.77) 1.19 

DC8 
51720.16 x 
(32805.24) 1.48 

6220.12 x 
(4535.26) 0.76 

39479.64 x 
(17969.89) 0.54 

2672.00 x 
(2490.92) 1.92 
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When k = 3, similar to the case where k = 2, the performance improvements 

decrease with the increasing average node degree.  However, when k = 2, most of the 

longer shortest paths are eliminated while k = 3 retains some of the longer shortest paths. 

The impact of the structure of the shortest paths become more visible and the 

performance improvements are lower than the performance improvements obtained when 

the limiting parameter k = 2.  

For both k = 2 and k = 3, the percentages of affected nodes are lower for the 

incremental k-closeness centrality than they are for the incremental k-betweenness 

centrality. Similar observations are made for the other results and this effect stems from 

the difference in the definitions of the closeness and betweenness centrality. The 

incremental updates for the closeness centrality only propagate when the shortest 

distances in a network change while the incremental updates for the betweenness 

centrality have additional reasons for propagation such as the changes in the number of 

shortest paths, apart from the shortest distance changes. 

For the incremental k-closeness centrality, since directed cycles have very long 

shortest paths, limiting the shortest paths into k hops provides substantial performance 

improvements, yielding the highest performance improvements across all types of 

synthetic networks simulated.  

Unlike the behavior of the incremental k-betweenness centrality, the incremental 

k-closeness centrality shows different trends of performance improvements for different 

network topologies. For the incremental k-betweenness centrality, the performance 

improvements consistently decrease with the increasing average node degree in the 



 207 

networks. There are more edges emanating from each node on average. Hence, there are 

potentially a larger number of shortest paths that are of equivalent length. This would 

cause the incremental k-betweenness algorithm to search for and update a larger number 

of paths while the same situation might help incremental k-closeness for an early 

termination of an update. Consider the following scenario. From node x to node y, there 

are three different shortest paths: p1, p2, and p3. Then, an edge e, which was on the path 

p1, is removed. In such a case, the k-betweenness centrality values of all the intermediates 

on the remaining shortest should be updated. However, in the case of incremental k-

closeness centrality, one of the shortest paths is removed but there are other shortest paths 

to rely on which would keep the shortest distance from node x to node y same as before. 

While the specific values for the speedups obtained over the baseline algorithms 

depend very much on the network topology and the shortest paths in the networks, the 

key takeaway point is that in the computations of the k-betweenness and k-closeness 

centralities, the incremental algorithms provide the best performance improvements in 

directed cycles, followed by the Erdos-Renyi, followed by the preferential attachment 

networks, and the small world networks. This is the reverse of the trend observed in non-

approximate versions of the betweenness and closeness centrality computations, and is 

related with the amount of work that can be pruned with the incorporation of the 

incremental computation approach.  

Small world networks have a number of properties that cause them to behave 

slightly differently than the other network types. Small world networks have low average 

shortest path lengths, the networks are highly clustered compared to the other network 
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types, and their edges are undirected, all of which help increasing the connectivity in the 

network. Hence, the k-hop neighborhood of a node might be more crowded than it is for 

the other network types that have the same number of nodes and the same average node 

degree, which reflects as higher portions of networks being affected and a higher number 

of shortest paths to be updated. 

8.3.5 Discussion on the Memory Consumption  

This section discusses observations on the memory consumption of the algorithms 

the experiments were run with. As previously mentioned in Chapter 4.5 and Chapter 5.5, 

the overall memory consumptions of the incremental centrality algorithms are higher than 

their corresponding baseline algorithms (the Dijsktra’s algorithm [109] for computing 

closeness centrality and the Brandes’ algorithm [28] for computing betweenness 

centrality).  

The maximum memory consumption statistics are collected for each run. In the 

following set of figures (Figure 28 - Figure 33), the memory consumption of the 

incremental closeness algorithm is compared against the Dijkstra’s algorithm for 

computing closeness centrality. In the next set of figures (Figure 34 - Figure 39), the 

memory consumption of the incremental betweenness algorithm is compared against the 

Brandes’ algorithm. The figures on the left hand side show memory consumption results 

for the varying number of nodes and keeping the average node degree at 6.0. The figures 

on the right hand side show similar information for the varying average node degrees 
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while keeping the number of nodes at 3000. All these figures show the maximum 

memory consumption in GBs. 

As mentioned earlier, all the experiments were done on a machine with 256 GB 

main memory. Hence, the memory consumption did not hit the physical memory limit of 

the machine. The source codes for all algorithms are written under the same coding 

infrastructure, in GraphStream, a pure Java-based dynamic graph library [164].  

In Java, garbage collection is automated. Although it is possible to call for 

garbage collection explicitly in the source code using System.gc() function call, this does 

not necessarily enforce the execution of garbage collection [172] [173]. Since the 

experiments were run on a machine that has 256GB of memory, the garbage collection is 

almost never executed as the memory consumption does not necessarily get close to the 

actual limits and this is why very high, climbing memory consumption is observed. 

Therefore, while the numbers presented in the figures below are not very representative 

of an implementation with ideal memory management, there are still some conclusions 

that can be drawn.  

First, for the closeness centrality, the network topology type does not change the 

maximum memory consumption observed; the memory consumption is consistent across 

preferential attachment, Erdos-Renyi, and directed cycles. This is primarily because the 

information on the intermediates that lie on the shortest paths is not maintained; only the 

shortest distances and closeness values are kept. However, it is higher for small world 

networks. This is because the undirected edges in small world networks are kept as two 

separate directed edges in opposite directions, which increases the number of edges 
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stored in the memory. Second, both the number of nodes and the sparsity of the networks 

are important in determining the amount of memory consumed, but, among these two 

factors, what makes the real difference in how much memory is needed is the number of 

nodes in a network. For computing the k-closeness centrality, bounding the shortest paths 

by k hops does not necessarily affect the amount of memory used up because the amount 

of memory to keep all the nodes and edges is still needed as well as the shortest distances 

among nodes and the closeness centrality value of each node. 

On the other hand, slightly different trends are observed for the memory 

consumption of the betweenness computation. Both for the Brandes’ betweenness 

algorithm and the incremental betweenness centrality algorithms, the number of nodes in 

the network is a more important factor than the average node degree, similar to the results 

observed with closeness centrality. However, since the intermediates on the shortest paths 

are also kept in the memory, the topology of the network is also a factor. In addition, for 

betweenness centrality, bounding the shortest paths within k hops helps by reducing the 

amount of memory further as there are fewer shortest paths with relatively low number of 

intermediates to be maintained, compared to regular non-approximate version of the 

betweenness. When the memory consumption results of the k-betweenness is compared 

against that of the regular betweenness centrality, it is still possible to notice some impact 

of the topology on the amount of memory consumed. Yet, the differences across different 

network topologies are less pronounced when the shortest paths are bounded to remain 

within k hops. 
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Figure 28 - Memory statistics comparing the 
incremental closeness algorithm with the 
Dijkstra's algorithm for closeness.  

 
Figure 29 - Memory statistics comparing the 
incremental closeness algorithm with the 
Dijkstra's algorithm for closeness.  

  
Figure 30 - Memory statistics comparing the 
incremental closeness algorithm with the 
Dijkstra's algorithm for closeness. Both are 
bounded by k = 2.  

  
Figure 31 - Memory statistics comparing the 
incremental closeness algorithm with the 
Dijkstra's algorithm for closeness. Both are 
bounded by k = 2.  

 
Figure 32 - Memory statistics incremental 
closeness algorithm with the Dijkstra's algorithm 
for closeness. Both are bounded by k = 3.  

 
Figure 33 - Memory statistics incremental 
closeness algorithm with the Dijkstra's algorithm 
for closeness. Both are bounded by k = 3.  
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Figure 34 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes’ algorithm.  

  
Figure 35 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes’ algorithm.  

  
Figure 36 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes’ algorithm. Both are bounded by k = 2.  

  
Figure 37 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes’ algorithm. Both are bounded by k = 2.  

  
Figure 38 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes’ algorithm. Both are bounded by k = 3.  

 
Figure 39 - Memory statistics comparing the 
incremental betweenness algorithm with the 
Brandes' algorithm. Both are bounded by k = 3. 
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The actual numbers of memory usage can be very much affected by the 

programming language and the computing platform (e.g. CPU, RAM, how much of the 

main memory is reserved as RamDisk) on which the experiments are run. For instance, 

for Java, the Java Virtual Machine (VM) arguments also change how the memory 

allocation is done and how much memory is allocated for identical runs executed on the 

same physical machine. In our case, the same set of runs was observed to have different 

memory consumption values in different machines, and in the same machine with 

different VM arguments.  A lot of the memory consumption observed in the figures 

above are governed by the memory allocation behavior, and would reflect the topology, 

size, and density differences better if the algorithms were implemented in another 

language where memory allocation can be managed at fine-grain resolution. Hence, we 

do not elaborate further on the memory consumption and take the memory consumption 

analysis done in Chapter 4.5 and Chapter 5.5 as ground. 

8.3.6 Additional Performance Results with Directed Cycles  

Both in small world networks and directed cycles, the network topology and the 

speedup values of the incremental centrality algorithms vary substantially depending on 

the rewiring probability p even when the number of nodes and the average node degree 

are kept the same. In directed cycles, each node has a number of immediate neighbors. 

Some of the other nodes that are not within the immediate neighborhood of a node can be 

reached in a small number of steps following the shortcuts formed in the network while 

for accessing the others long paths in the form of chains that cannot benefit from the 
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existence of the shortcuts should be traversed.  

Directed cycles have different topological characteristics and performance values 

depending on the chosen rewiring probability p. As p value moves closer to 1.0, the 

randomness in the network increases, turning the network into more of a random 

network. As presented earlier in Chapter 7.1.5, the differences observed in the 

characteristics of the directed cycles are larger than those observed in the small world 

networks. This enables us to observe how the performances of the proposed incremental 

centrality algorithms change along with the changing network characteristics easier in 

directed cycles. Hence, in this section, we examine how the performance of the proposed 

centrality algorithms change when the rewiring probability p changes, which in turn 

changes both the clustering coefficient and the structure of the shortest paths as reflected 

by the diameter and the characteristic (average) shortest path lengths. 

Table 20 - Network statistics for additional directed cycles based network, sweeping rewiring 
probability (Size = 1000 nodes, avg. degree = 6. Same as Table 8 in Chapter 7.1). 

p Max Btw 
Avg. 
Btw 

Std. Dev. 
Btw 

Min 
Deg 

Max 
Deg 

Std. Dev. 
Deg Diameter 

Char. 
Path 
Length 

Clustering 
Coefficient 

0.2 34020.93 4305.77 3104.97 3 9 1.028 35 9.711 0.154 

0.4 15036.88 3183.39 2395.88 3 12 1.423 30 8.017 0.071 
0.6 14763.34 2268.86 2463.76 3 11 1.575 31 7.789 0.024 
0.8 6779.73 833.58 1161.97 3 12 1.715 22 6.444 0.005 
1.0 1026.5 100.79 144.32 3 13 1.765 12 3.862 0.003 

 

The following set of tables (Table 21 – Table 24) report performance results for a 

sweep of the rewiring probability, p, in the range of 0.2 to 1.0 with a step size of 0.2, on 

1000-node directed cycles networks, with an average degree of 6. Table 21 presents the 

performance results obtained with the proposed incremental closeness centrality while  
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Table 22 presents the corresponding performance results of the proposed 

incremental betweenness algorithm on 1000-node directed cycles. 

Table 21 - Performance benefits of the incremental closeness algorithm obtained on directed 
cycles and the percentages of the networks affected by these changes (1000 nodes, average 
degree = 6). 

 
Growing Network 

Updates 
Shrinking Network 

Updates 

p 
Closeness 
Speedup 

Closeness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

0.2 280.88 x 22.903 121.45 x 18.659 
0.4 298.49 x 29.494 126.94 x 22.552 
0.6 341.23 x 26.876 122.34 x 21.511 
0.8 761.37 x 14.003 234.25 x 11.817 
1.0 7246.77 x 2.274 2188.96 x 2.091 

 
Table 22 - Performance benefits of the incremental betweenness algorithm obtained on directed 
cycles and the percentages of the networks affected by these changes (1000 nodes, average 
degree = 6). 

 
Growing Network 

Updates 
Shrinking Network 

Updates 
p Betweenness 

Speedup 
Betweenness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

0.2 1.42 x 47.780 0.80 x 47.264 
0.4 9.09 x 36.268 7.29 x 36.634 
0.6 17.95 x 28.004 15.34 x 27.089 
0.8 57.47 x 13.063 43.74 x 12.892 
1.0 974.19 x 2.238 688.53 x 2.270 

 

As shown in Table 20, the general trend is that along with the increasing rewiring 

probability, the clustering coefficient, the diameter, and the characteristic path length 

reduce. This reflects as an increase in the speedups of the incremental closeness 

algorithm as presented in Table 21. In addition, the speedup obtained over the repeated 

invocations of the Dijkstra’s algorithm increases with the reducing percentage of affected 
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nodes, in line with the other results presented earlier in this chapter. Similar reasoning 

holds for the results presented in  

Table 22 for the incremental betweenness algorithm. However, the speedups obtained with the 
incremental algorithms are significantly higher for the closeness centrality than they are for the 
betweenness centrality as presented in Table 21 and  

Table 22.  

One interesting point is that when the rewiring probability p is very low, the 

shortest paths in the network tend to be very long because of the nodes that cannot be 

connected through the shortcuts in the network. Hence, when there is an update in the 

network, which results in a change that affects one of those longer, no-shortcuts kind of 

paths, it might become very costly to update all the predecessors on the path and the 

related information. Hence, when the rewiring probability p = 0.2, the speedup for the 

growing networks is very low (only 1.42x) while the non-incremental, Brandes’ 

betweenness algorithm performs slightly better than the incremental algorithm for 

shrinking network updates (0.80x) due to the superfluous work the incremental 

betweenness algorithm has to do in this case. 

Table 23 - Performance benefits of the incremental k-centrality algorithms and the percentages of 
the networks affected by these changes obtained on the directed cycles (k = 2, 1000 nodes, avg. 
degree = 6). 

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2) 

p 
Closeness 
Speedup 

Closeness 
Affected% 

Betweenness 
Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

0.2 10654.97x 1.388 1896.79x 0.656 7284.59x 0.495 792.66x 1.47 
0.4 18280.59x 1.676 2656.63x 0.686 10163.28x 0.637 1028.50x 1.70 
0.6 18305.36x 1.652 3140.03x 0.674 10318.20x 0.651 1294.06x 1.66 
0.8 18357.80x 1.575 3174.32x 0.686 13134.49x 0.68 1336.51x 1.55 
1.0 24903.89x 1.052 4172.75x 0.574 14034.04x 0.57 1851.82x 1.05 
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Table 24 - Performance benefits of the incremental k-centrality algorithms and the percentages of 
the networks affected by these changes obtained on the directed cycles (k = 3, 1000 nodes, avg. 
degree = 6). 

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3) 
p Closeness 

Speedup 
Closeness 

Affected% 
Betweenness 

Speedup 
Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

0.2 4648.45x 2.380 740.56x 1.493 2839.03x 1.045 412.64x 2.90 
0.4 5930.71x 3.455 1239.29x 1.719 3474.23x 1.547 619.20x 3.66 
0.6 6025.94x 3.400 1274.09x 1.676 4253.95x 1.578 663.20x 3.48 
0.8 6746.01x 3.005 1383.60x 1.571 4124.95x 1.524 736.41x 2.92 
1.0 12205.53x 1.521 2305.77x 1.044 5975.05x 1.026 1491.10x 1.52 

 

However, this observation does not hold for k-centralities. The following tables, 

Table 23 (k = 2) and Table 24 (k = 3), present the performance results of the incremental 

algorithms for the k-centralities in directed cycles. Since the percentages of affected 

nodes remain less than 5% of the entire network, in k-centralities, we observe speedups 

that are on the order several hundreds to thousands. 

8.3.7 Performance on Larger Networks  

One important point about larger networks is that it takes too long for them to 

compute the centrality measures, especially when one wishes to recompute the centrality 

measure with every change on networks that are changing over time. And, the 

performance improvements that were obtained on networks with short 

average/characteristic shortest path lengths (typical of real-world social networks) are 

substantial (See performance results obtained on preferential attachment networks 

presented in Table 11 in Chapter 8.3.1). One key use of incremental algorithms for larger 

networks is that they can substitute for the traditional closeness algorithms for computing 
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centralities for the very large networks even after all the updates in the networks are final. 

In other words, incremental closeness algorithms support both on-the-fly computation on 

dynamic networks and faster computation of the metric on large, static networks.  

Table 25 - Performance improvements for the results presented in Figure 40. 

#(Nodes) #(Edges) Performance 
10,000 30,000 14.78 x 
20,000 60,000 24.17 x 
30,000 90,000 26.28 x 
40,000 120,000 29.53 x 

 

 

Figure 40 - Performance of incremental closeness computation vs. the computation of closeness 
centrality via the Dijsktra’s algorithm on large preferential attachment networks. The Dijsktra’s 
algorithm is executed only once after all updates completed. 

 
We support this claim by the results presented in Figure 40, in which traditional 

closeness centrality computation using the Dijkstra’s algorithm [109] is executed only 

once instead of modeling the growth of the network. In the results presented in Figure 40 

and Table 25, four different preferential attachment networks are used where the number 
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of nodes is varied between 10,000 and 40,000 with a step size of 10,000. The average 

node degree is 6.  

This set of experiments “pretend” to build the network incrementally by invoking 

the INSERTCLOSENESS algorithm once for each edge in the network and compare its 

performance against computing closeness centrality by running the Dijkstra’s algorithm 

only once from each node in the network on the final, static version of the network. Since 

many real-life, large-scale networks exhibit scale-free behavior and the best performance 

improvements with incremental closeness centrality are obtained on preferential 

attachment networks, this set of experiments use preferential attachment networks. 

According to the results presented in Table 25, computing closeness centrality with 

repeated invocations of the INSERTCLOSENESS algorithm performs 15-30x better than 

using traditional non-incremental algorithms only once (e.g. the Dijkstra’s algorithm).  

The incremental centrality algorithms work best on mid-scale networks with 

several thousands of nodes and edges with frequent network updates. In an attempt to see 

what is possible in a reasonable time using the hardware already described above, we 

have run two additional exploratory experiments with the incremental closeness centrality 

algorithm and the incremental betweenness centrality algorithm. These experiments were 

run on larger networks in the same fashion as the other experiments described earlier in 

this section: experiments that build a network from scratch by inserting each edge one at 

a time, incrementally. To be consistent with the other experiments presented earlier in 

this section, we have again used directed, preferential attachment networks and set the 

average node degree as 6. In this additional set of experiments, only the incremental 
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algorithms are run, and their static non-incremental counterparts are not run for 

comparison.  

 

Figure 41 - Incremental closeness centrality algorithm execution time per edge insertion in 
milliseconds versus the number of edges inserted. The numbers of edges are represented in 
thousands, where ‘1200’ on the x-axis represents 1,200,000 edges. The execution time per edge 
insertion is given in milliseconds, 2500 represents the 2.5 seconds. 

The results of this exploratory experiment suggest that the incremental closeness 

centrality algorithm run on the available hardware (in particular a machine with 256GB 

of RAM) can easily handle a network with 100.000 nodes and 600,000 edges. Then, we 

tried another run on a larger network with 250,000 nodes and 1,500,000 edges. Figure 41 

and Figure 42 present the execution time of the incremental closeness centrality 

algorithm per edge insertion in this larger experiment versus the number of edges and the 

number of nodes, respectively. In these figures, the numbers of edges and nodes are 
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presented in thousands. The ‘1200’ on the x-axis of Figure 41 represents 1,200,000 edges 

while ‘200’ on the x-axis of Figure 42 represents 200,000 nodes. 

 

 

Figure 42 - Incremental closeness centrality algorithm execution time per edge insertion in 
milliseconds versus the number of nodes inserted. The numbers of nodes are represented in 
thousands, where ‘200’ on the x-axis represents 200,000 nodes. The execution time per edge 
insertion is given in milliseconds, 2500 represents the 2.5 seconds. 

Before being able to insert all the edges into the 250,000-node network, the 

system started swapping at around 165,000 nodes and 1,000,000 edges. This is why the 

execution times oscillate between low and high values after the number of edges in the 

network reach 1,000,000 and the time required for each edge insertion increased 

dramatically on average. The higher execution time values represent the execution times 

for the network updates that are affected by swapping and the lower values represent the 

execution times of the updates that were executed when the memory was freed up. This 
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data point is not exhaustive, but it suggests that on a machine with 256GB of physical 

memory can process incremental closeness centrality on preferential attachment based 

social networks with degree of 6 and somewhere between 150,000 to 200,000 nodes.   

 

Figure 43 - Incremental betweenness centrality algorithm execution time per edge insertion in 
milliseconds versus the number of edges inserted. The numbers of edges are represented in 
thousands, where ‘200’ on the x-axis represents 200,000 edges. The execution time per edge 
insertion is given in milliseconds, 30,000 represents the 30 seconds. 

Similar results were also collected for the behavior of the incremental 

betweenness centrality algorithm, as presented in Figure 43 and Figure 44. Figure 43 and 

Figure 44 present the execution time of the incremental closeness centrality algorithm per 

edge insertion versus the number of edges and the number of nodes, respectively. In these 

figures, the numbers of edges and nodes are given in thousands. The ‘200’ on the x-axis 

of Figure 43 represents 200,000 edges while ‘40’ on x-axis of Figure 44 represents 

40,000 nodes. 
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Figure 44 - Incremental betweenness centrality algorithm execution time per node insertion in 
milliseconds versus the number of nodes inserted. The numbers of nodes are represented in 
thousands, where ‘40’ on the x-axis represents 40,000 nodes. The execution time per edge 
insertion is given in milliseconds, 30,000 represents the 30 seconds. 
 

For the case of betweenness centrality, the fact that additional information must 

be stored for the incremental computations, the corresponding network sizes are much 

smaller for the betweenness centrality. For betweenness centrality, the execution time per 

edge insertion starts increasing considerably when the network reaches 30,000 nodes and 

180,000 edges. Once the network becomes larger than 35,000 nodes and 225,000 edges, 

the execution time of running the incremental betweenness algorithm on a new edge is 

observed to increase dramatically. However, the cause of this slowness is not the physical 

memory limits; the system does not yet swap due to lack of memory. Rather, it is slow 

because as the network gets larger, the algorithm needs to update several pieces of 

information including the number of shortest paths, the shortest distances, and the 
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predecessors on the shortest paths. In other words, the amount of information the 

algorithm needs to update has increased substantially with the increased node/edge size, 

which results in slower update progression.  

As one final note, it is also observed that, in terms of memory requirements, the 

stack size is more important for the incremental betweenness centrality than it is for the 

incremental closeness centrality for such larger networks. This is because there are more 

sub-algorithms for the incremental betweenness centrality than for the incremental 

closeness centrality. Hence, the number of sub-algorithms invoked during the execution 

of incremental betweenness centrality tends to be much larger than it is for the 

incremental closeness centrality, which might call for a larger stack size to be allocated 

for the execution of the incremental betweenness centrality.  

8.4 RESULTS WITH REAL-LIFE NETWORKS 

This section evaluates the performance of the proposed incremental centrality 

algorithms on the real life networks that are described in Chapter 7.2 and interprets the 

obtained performance results in line with the topological features of the networks.  

In a similar fashion to the experiments with synthetic networks, for growing 

network updates, an earlier version of the network is formed which has all the 

information except 100 edges. Then, those edges are inserted incrementally one by one. 

Similarly, to obtain performance results with shrinking network updates, we start with the 

complete version of the network and remove the same set of 100 edges that were used in 

the timing runs with the growing network updates. The performance of the incremental 
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closeness algorithm is compared against the Dijkstra’s algorithm while the performance 

of the incremental betweenness centrality is compared against the Brandes’ algorithm as 

baseline algorithms. When measuring the performance of the k-centralities, the baseline 

algorithms are also bounded by k hop limits. 

8.4.1 Incremental Closeness Centrality Performance Results 

First, the performance of the incremental closeness centrality algorithm is 

discussed. Table 26 and Table 27 present the performance results of the incremental 

closeness algorithm collected on real life networks that are described in Chapter 7.2. In 

the performance results presented in Table 26, the networks were modeled as weighted 

networks while Table 27 presents the performance results collected on the unweighted 

(binary) versions of the same real-life networks. Both Table 26 and Table 27 provide the 

percentages of the total number of nodes that are affected by the network updates. 

Table 26 - Performance improvements of the incremental closeness algorithm over computing 
closeness centrality using repeated invocations of the Dijkstra's algorithm, collected on real-life 
networks described in Chapter 7.2. Information on the affected portion of the network is also 
provided. The results presented in this table are obtained on the weighted versions of the 
networks. 

 Growing Network Updates   Shrinking Network Updates  

Network 
Closeness 
Speedup 

Closeness 
Affected% 

Closeness 
Speedup 

Closeness 
Affected% 

SocioPatterns 452.31 x 2.51 49.00 x 4.19 
Twitter (Iran) 21769.19 x 0.33 11650.32 x 0.33 
Email 1917.84 x 5.41 585.01 x 4.58 
HEP Coauthorship 8328.39 x 6.84 3732.56 x 6.16 
P2P 356527.35 x 0.04 23494.72 x 0.04 
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Considering the performance results presented in Table 26, in general, similar to 

the results obtained on the synthetic networks, the performance benefits of the proposed 

incremental closeness algorithm increase with the increasing network size and growing 

network updates yield higher performance benefits than the corresponding shrinking 

network updates. However, how much performance improvement can be obtained is also 

a factor of the structure of the shortest paths in the network and the portion of the 

network that is affected.  

For instance, in the P2P file transfer network, there are very few nodes that serve 

files for download to the other users, and the majority of the network consist of users that 

do not share files and are only there for downloading file that are of interest for them. 

Hence, the shortest paths in this network are very short. The average shortest path length 

is 1.24, slightly more than a single hop, which reflects as an enormous speedup that is 

obtained over the non-incremental algorithm. Thus, the majority of the edges are on the 

shortest paths for the nodes they are connecting and the speedup that can be obtained on 

such a network in the case of shrinking networks is lower, as it is also shown in Table 26. 

This is because, most of the time we remove an edge {x → y}, we actually make a change 

on the shortest paths, and the algorithm probes all other neighbors of the node x to see if 

it is possible to find another path to y and which one is the shortest if any. Given that the 

network has hub-like nodes that have very high degree centrality (max degree = 2185), 

probing for the new shortest path might take longer when an edge is removed than it 

takes when an edge is inserted.  
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Similar behavior is observed in the Twitter dataset collected on Iran sanctions. In 

the Iran Twitter dataset, the average shortest path is 1.4, and it is a very sparse network as 

well. This is why it breaks the pattern of increased performance benefits with the 

increasing network size and provides substantial speedup with the use of incremental 

centrality algorithms. 

Another interesting observation is that the affected portion of the network is 

higher when there is higher impact of personal acquaintances or in-person 

communication due to the way the networks are structured. In such networks, there is 

usually higher transitivity and clustering. Transitivity refers to the probability of two 

nodes i and k being connected given that there exist an edge (i, j) and (j, k), and this is a 

kind of behavior one would expect to observe in a conference-like environment. For 

instance, the clustering coefficient of the SocioPatterns network is 0.534 while the 

clustering coefficient for the Iran retweet network is 0.016. 

Table 27 - Performance improvements of the incremental closeness algorithm over computing 
closeness centrality using repeated invocations of the Dijkstra's algorithm, collected on real-life 
networks described in Chapter 7.2. Information on the affected portion of the network is also 
provided. The results presented in this table are obtained on the unweighted (binary) versions of 
the networks. 

 Growing Network Updates   Shrinking Network Updates  

Network 
Closeness 
Speedup 

Closeness 
Affected% 

Closeness 
Speedup 

Closeness 
Affected% 

SocioPatterns 339.51 x 64.21 115.79 x 1.90 
Twitter (Iran) 25411.20 x 0.33 4177.58 x 0.33 
Email 6728.97 x 20.01 1680.93 x 4.11 
HEP Coauthorship 4395.16 x 23.55 679.55 x 18.89 
P2P 301301.33 x 0.04 20662.69 x 0.04 
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Next, Table 27 presents the performance results similar to the results presented in 

Table 26. In Table 27, the presented results are collected on the unweighted versions of 

the real-life networks. Although they are relatively close, the performance results 

presented in Table 27 are different from the performance results presented in Table 26, as 

well as the percentages of the affected nodes in each network.  

When the networks are unweighted, all edges have the same edge cost. Assigning 

costs to the edges causes the structure of the shortest paths to be different. Consider the 

abstract example depicted in Figure 45. The cost of each edge is written on top of the 

edge. 

 

Figure 45 - Example network to demonstrate how the use of edge costs might change the 
structure of the shortest paths in a network. 

 
In the network drawn in Figure 45, there are four possible paths from node src to 

node dest. Out of these four possible paths, only the path {𝑠𝑟𝑐 →   𝐴 → 𝐵 → 𝐶 → 𝑑𝑒𝑠𝑡} is 

the shortest path with a total path cost of 0.8 when the edge costs written on the edges are 

taken into account. However, when the same network is modeled as an unweighted 

network where the edge costs are ignored, the structure of the shortest paths change 
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dramatically. In the unweighted version of the network depicted in Figure 45, there are 

three distinct shortest paths, each with a total path cost of 3: {𝑠𝑟𝑐 →   𝐷 → 𝐸 → 𝑑𝑒𝑠𝑡}, 

{𝑠𝑟𝑐 →   𝐹 → 𝐺 → 𝑑𝑒𝑠𝑡}, and {𝑠𝑟𝑐 →   𝐻 → 𝐾 → 𝑑𝑒𝑠𝑡}. Another effect of ignoring the 

edge costs is that when the edge costs are less than or equal to 1 as is the case with the 

real-life networks used in these experiments, the shortest paths in the unweighted, binary 

version of the network might have paths with lower number of hops as demonstrated in 

the example network depicted in Figure 45. 

In addition to potentially changing the structure of shortest paths and the shortest 

distances, ignoring the edge costs might lead to a higher number of equivalent shortest 

paths in the network, resulting in a higher percentage of affected nodes when an 

incremental growing network update is issued on the network. While the chances are 

lower to get multiple paths with exactly the same cost when the edge costs come from a 

large range of values, it is relatively easier to get multiple paths of the same cost when the 

path costs are determined in terms of number of hops. As demonstrated in Table 27, the 

most dramatic changes in the percentages of the affected nodes are observed in the 

SocioPatterns and HEP Co-authorship networks. This is because, the percentages of 

affected nodes are especially higher for the growing network updates on the better-

connected networks with higher clustering coefficients and undirected edges where there 

are more redundant paths and a higher number of nodes are reachable from each node.  

The redundancy in the shortest paths reflects as a lower percentage of the affected 

nodes in the SocioPatterns, Twitter, and Email networks because removal of an edge 
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from one of the shortest paths does not necessarily change the shortest distances between 

nodes, as there might be other shortest paths to fall back.  

In the HEP Co-authorship network, the percentage of the affected nodes is also 

higher for the shrinking network updates, which can be interpreted as a certain feature 

(e.g. funneling) of the shortest path structure in the coauthorship networks. Funneling is a 

concept that has been discussed in the context of co-authorship networks. Newman found 

that most of the shortest paths to a particular scientist pass through a disproportionately 

small number of his or her collaborators [174]; this phenomenon was later termed as 

“funneling” [175]. When funneling is observed frequently, the shortest paths mostly 

converge at some point (i.e. at a funneling node), which results in the change of most of 

the shortest paths in the case of decremental updates. This can also be observed from the 

higher percentage of affected nodes for the shrinking network updates in HEP Co-

authorship network where funneling is an important concept. 

8.4.2 Incremental Betweenness Centrality Performance Results 

Next, the performance of the incremental betweenness centrality algorithm is 

discussed. Table 28 and Table 29 present the performance results of the incremental 

betweenness algorithm collected on real life networks. In the performance results 

presented in Table 28 the networks were modeled as weighted networks while Table 29 

presents performance results collected on the unweighted (binary) versions of the same 

networks. Both Table 28 and Table 29 provide the percentages of the total number of 

nodes that are affected by the network updates. 
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Table 28 - Performance improvements of the incremental betweenness algorithm over repeated 
invocations of the Brandes’ algorithm, collected on real-life networks described in Chapter 7.2. 
Information on the affected portion of the network is also provided. The results presented in this 
table are obtained on the weighted versions of the networks. 

 Growing Network Updates   Shrinking Network Updates  

Network 
Betweenness 

Speedup 
Betweenness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

SocioPatterns 113.67 x 2.64 24.66 x 12.63 
Twitter (Iran) 8429.88 x 0.32 6681.51 x 0.33 
Email 217.79 x 13.54 163.70 x 14.41 
HEP Coauthorship 233.27 x 33.55 160.71 x 27.39 
P2P 53722.49 x 0.04 29753.69 x 0.04 

 

Similar to the incremental closeness performance results, the highest performance 

benefits are obtained on P2P communication network and the Iran retweet network while 

the SocioPatterns dataset provides the lowest speedup. However, the general trend is that 

the performance benefits increase with the increasing network size for networks of 

similar structures.  

In addition, the impact of real social community structure and how this affects the 

affected percentages of the networks is more visible for the incremental betweenness 

centrality (Table 28) than it is for the incremental closeness centrality (Table 26). 

Comparing the affected percentages of the networks provided in both tables, it is 

observed that the percentage of a network that is affected by the incremental betweenness 

centrality updates is usually higher than the percentages affected by the incremental 

closeness centrality updates. As mentioned earlier, this is because incremental 

betweenness centrality handles changes both in the length and the number of the shortest 
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paths in a network while the incremental closeness centrality algorithm focuses only on 

the changes in the lengths of the shortest paths. 

When the performances of both incremental centrality algorithms are compared, 

the performance benefits of the incremental closeness centrality algorithm is higher than 

that of incremental betweenness centrality, which is in line with the results obtained on 

the synthetic networks. Similar observations hold for the performance results presented in 

Table 29. The differences in the interpretation and scale of the performance results 

presented in Table 29 against the performance results presented in Table 28 stem from 

the structural differences in the shortest paths as discussed in the interpretation of 

performance differences for incremental closeness centrality algorithm in Chapter 8.4.1. 

Table 29 - Performance improvements of the incremental betweenness algorithm over the 
repeated invocations of the Brandes' algorithm, collected on real-life networks. Information on 
the affected portion of the network is also provided. The results presented in this table are 
obtained on the unweighted (binarized) versions of the networks. 

     Growing Network Updates   Shrinking Network Updates  

Network 
Betweenness 

Speedup 
Betweenness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

SocioPatterns 8.73 x 44.14 8.12 x 44.17 
Twitter (Iran) 8442.96 x 0.32 6734.63 x 0.33 
Email 14.05 x 42.55 12.57 x 42.58 
HEP Coauthorship 64.66 x 44.66 48.16 x 44.64 
P2P 54536.88 x 0.04 29428.90 x 0.04 
 

The performance values and the percentage of affected nodes are different in 

unweighted versions of the networks, when compared to the results collected on their 

weighted versions. Due to increased redundancy in the number of shortest paths in 

SocioPatterns, Email, and HEP Coauthorship networks, the performance improvements 
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of the incremental betweenness algorithm over the Brandes’ algorithm has dropped down 

while the percentages of the affected nodes have increased substantially. On the other 

hand, the performance results remain similar in weighted and unweighted version of the 

Twitter and P2P networks where the redundancy of shortest paths is not a significant 

factor.  

When comparing the performance results obtained for the incremental closeness 

(Table 27) and incremental betweenness (Table 29) algorithms on the unweighted 

versions of the networks, it is observed that the percentages of affected nodes for 

shrinking network updates demonstrate different behaviors. This is observed due to 

differences in the definitions of closeness and betweenness centrality metrics. In 

betweenness, the number of equivalent shortest paths from one node to another is 

important while closeness only need information on the shortest distances. Assume that 

an edge e which lies on a shortest path from a node x to another y is removed. When one 

of the shortest paths from a node x to node y changes, the betweenness values of all the 

intermediate nodes on the shortest paths from node x to node y change. However, in 

closeness centrality, when one of the shortest paths from node x to y changes, if there are 

other shortest paths which would keep the shortest distance from node x to y as is, then 

the incremental network update concludes without adding more nodes into the set of 

affected nodes. Hence, the sets of affected nodes for the incremental betweenness 

algorithm handling shrinking network updates are substantially larger than those for the 

incremental closeness algorithm handling shrinking network updates. In addition, due to 

the reasons discussed above, unlike incremental closeness centrality algorithm, the 
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percentages of the affected nodes for the incremental betweenness algorithm handling 

shrinking network updates are comparable to those for the incremental betweenness 

algorithm handling growing network updates. 

8.4.2.1 Additional Notes on the Performance of the Incremental Betweenness 

Centrality Algorithm on Co-authorship Dataset 

An accepted way of evaluating the performance of the incremental algorithms in 

the literature is to issue a number of random incremental updates on the network and to 

report the average performance across all the random updates [56]. When a batch of 

random updates is issued on a network, there is an implicit assumption that all random 

updates are equally likely to be observed. However, this is usually not the case for the 

real-life networks whose properties are studied in depth in prior literature. Certain types 

of updates are more likely to occur than the others in real life networks. 

For instance, authorship networks have well-understood properties that are 

previously documented in the literature [169] [15]: 

• Links in co-authorship networks are reciprocal (i.e., symmetric). 

• The link weights between two authors in co-authorship networks can increase 

over time if two authors have further collaboration. 

• Vertices and edges added to the citation/co-authorship networks are permanent 

and cannot be removed at a later time.  

• The already formed part of the network is mostly static; in most cases, only the 

leading edge of the network changes over time. 
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A lot of real life networks, including authorship networks, have time information 

for every piece of action taken. For instance, an authorship network have such 

information available from the date/year the authors publish a paper. When the entire 

lifetime of a network is considered, there are usually different social agents that are active 

during different periods of time. For instance, when an authorship network for a certain 

research field is considered, there are usually new people that join the network, who are 

likely to be M.S. or Ph.D. students that start their graduate school career. In co-authorship 

networks, a lot of the authors publish only a couple of papers during their graduate school 

career and then their publications cease. On the other hand, there are usually a core set of 

academicians that publish a substantial number of papers, and form the shortest paths at 

the core of the network. Such core-authors usually tend to be the authors that have 

published a lot of papers together and established the research field. The core-authors 

also stop publishing after a certain number of years. However, since the relationships 

between them are very strong compared to the authors in the rest of the network, the 

paths that pass through the core set of authors tend to remain as the shortest paths in the 

network for a long time. 

Depending on the phase an authorship network is in, these observations might 

have different implications on the shortest paths in the network and how an incremental 

update propagates in a co-authorship network. For instance, if an authorship network is in 

early growth stages, the shortest paths are likely to be modified every time a new 

edge/node is inserted. However, when the research field is more established, it is likely 

that a relationship between two newer authors will not affect all the shortest paths in the 
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network; which causes the incremental network update not to propagate too far in the 

network.  

Another likely-to-occur update type is a new node joining a network, which 

represents, for instance, a graduate student. Usually, such new nodes join the network 

through a funneling node (which is likely to be the student’s advisor) through which all 

the shortest paths to/from this new node pass [174]. When such a new node joins the 

network, the shortest paths to/from this new node should be discovered from scratch, 

which usually affects the entire component the funneling node (potentially the node 

representing the advisor) is a part of. This situation potentially increases the percentage of 

the network affected by this incremental network update. 

Instead of inserting 100 edges that are selected randomly out of the entire network 

topology, when we issue last 100 updates on the same authorship network in the order the 

updates arrive at the network in real life, the performance of the incremental betweenness 

centrality algorithm over the Brandes’ betweenness algorithm is different.  For instance, 

when the last 100 updates are issued on the HEP authorship network considering the 

timestamps of the network updates, the incremental betweenness algorithm runs 357.96 

times faster than the Brandes’ algorithm and 42.08% of the network is affected on 

average. However, when the 100 updates are randomly selected out of all network 

updates, the incremental betweenness algorithm performs 233.27 times faster than the 

Brandes’ betweenness algorithm and the 33.55% of the network is affected on average as 

presented in Table 28. 
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As one last point, since the published papers are archived permanently, in 

authorship networks, only growing network updates are observed: insertion of new edges 

and nodes, and edge cost decrease. No shrinking network updates are observed for the 

authorship networks in real life. 

8.4.2.2 Performance Comparison against the QuBE Algorithm 

Next, the performance of the proposed incremental betweenness algorithm is 

compared against the performance of a recent betweenness algorithm called QuBE [56]. 

The idea of the QuBE algorithm [56] depends on estimating the nodes whose 

betweenness values might change due to an update in a network while avoiding 

computation of all-pairs shortest paths. In contrast, the incremental betweenness 

algorithm proposed in this dissertation depends on the dynamic maintenance of all-pairs 

shortest paths and the related auxiliary data, which might be useful in other problems 

beyond betweenness as discussed earlier in Chapter 5.6.  

The QuBE algorithm covers edge insertions/deletions, leaving out node insertions 

and deletion and edge cost modifications for weighted network types. In contrast, our 

algorithm supports edge cost modifications for the weighted networks as well as support 

for node insertion and removal.  

Providing support for weighted networks makes the algorithm design harder as it 

introduces several additional cases to be handled. Consider the following simple 

example. Assume that there is a path from node x to node y. Then, an incremental 

network update inserts a direct edge from node x to node y. In binary networks, it is 
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obvious that no path from node x to node y can be smaller than a direct edge from x to y, 

and several changes on the shortest paths can be kept up to date only by accounting for 

the number of hops. However, in weighted networks, when an edge {x→ y} from node x 

to node y is inserted, it is not necessarily given that this newly inserted edge will be on 

the shortest paths. Depending on the cost of the edge {x→ y} and the previously known 

shortest path length from node x to node y, it may or may not be. Hence, it will still be 

necessary to check the paths of equivalent length before ruling out all previously known 

shortest paths between x and y due to the insertion of a direct edge {x→ y}, which 

increases the complexity of the algorithm design.  

Next, the performance of the incremental betweenness centrality algorithm 

proposed in this dissertation is compared against the QuBE algorithm using the same 

datasets Lee et al. used in their QuBE paper [56]. We select two of their datasets: the 

dataset on which QuBE performs the best (Eva), and the dataset on which QuBE 

performs the worst (CAGrQc). 

Table 30 - Performance comparison of QuBE and our proposed algorithm. 

 
Network Type  #(Node)  #(Edge) QuBE 

Incremental 
Betweenness 

Eva [176] Ownership  4457 4562 2418.17 25425.87 
CAGrQc [177] Collaboration  4158 13422 2.06 67.86 

 

Table 30 reports the average performance results for 100 random updates on the 

networks. Both the QuBE algorithm and the incremental betweenness centrality 

algorithm proposed in this dissertation are compared against the Brandes’ algorithm as 
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baseline. Our algorithm performs 10-30 times better than the QuBE algorithm while 

providing substantial improvements over the Brandes’ algorithm. 

8.4.3 Incremental k-Centrality Performance Results 

Next, the performances of the incremental k-closeness and k-betweenness 

centrality algorithms on real life networks are discussed. For the performance evaluations 

with the incremental k-centrality algorithms, the unweighted (binary) versions of the real 

life networks are used. In the performance results presented in Table 31 and Table 32, the 

bounding parameter k is set as k = 2 and k = 3, respectively. The baseline algorithms (the 

Dijkstra’s algorithm [109] for closeness centrality and the Brandes’ algorithm [28] for 

betweenness centrality) are also bounded by k hops. The experiments are designed in a 

similar fashion to those in Chapter 8.4.1 and Chapter 8.4.2 (i.e. 100 random edge 

insertions and their removals). Hence, to avoid repetition, they are not described here 

again. 

Table 31 - Performance benefits of the incremental k-centrality algorithms obtained on real-life 
networks and the portions of the networks affected by these changes (k = 2). 

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2) 
Topology Closeness 

Speedup 
Closeness 

Affected% 
Betweennes
s Speedup 

Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

Socio 
Patterns 616.86 x 64.21 10.17 x 43.85    471.55 x 1.90 12.66 x 43.90 

Twitter (Iran) 7985.74 x 0.31 9808.72 x 0.29 4259.78 x 0.29 7876.06 x 0.31 

Email 6114.62 x 17.51 327.61 x 3.72 5691.02 x 1.45 118.77 x 27.85 

HEP Coauthor 233476.79 x 1.15 38011.02 x 0.22 224353.97 x 0.15 6958.46 x 1.54 

P2P 312118.62 x 0.04 53980.70 x 0.03 21023.51 x 0.03 26442.56 x 0.04 
 



 240 

Both Table 31 and Table 32 provide performance results and percentages of the 

affected nodes both for the incremental k-closeness and the incremental k-betweenness 

algorithms. To understand how the incremental k-centrality algorithms improve over the 

incremental centrality algorithms, the performance results presented in this section (Table 

31 and Table 32) should be compared against the performance results presented earlier in 

Table 27 (incremental closeness centrality performance results collected over the 

unweighted versions of the real-life networks) and Table 29 (incremental betweenness 

centrality performance results collected over the unweighted versions of the real-life 

networks). 

Table 32 - Performance benefits of the incremental k-centrality algorithms obtained on real-life 
networks and the portion of the networks affected by these changes (k = 3). 

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3) 
Topology Closeness 

Speedup 
Closeness 

Affected% 
Betweenness 

Speedup 
Betweenness 
Affected % 

Closeness 
Speedup 

Closeness 
Affected % 

Betweenness 
Speedup 

Betweenness 
Affected % 

Socio 
Patterns 603.89 x 64.21 8.23 x 44.14 466.58 x 1.90 9.66 44.17 

Twitter (Iran) 5902.69 x 0.32 9764.90 x 0.31 3807.37 x 0.31 6949.98 0.33 

Email 4558.35 x 19.97 34.04 x 30.26 2224.55 x 3.52 30.69 39.74 
HEP Coauthor 35248.73 x 4.63 3640.68 x 1.55 23075.61 x 0.78 845.69 7.35 

P2P 290828.22x 0.04 52633.31 x 0.04 20027.29 x 0.04 29980.52 0.04 
 

First, the performance of the incremental k-closeness centrality algorithm is 

discussed. Considering performance results presented in Table 31 (k = 2) and Table 32 (k 

= 3), it is observed that performance improvements of the incremental k-centrality 

algorithms are higher when the bounding parameter k is lower in general. However, the 

specific performance values are affected by the amount of work that can be avoided by 

setting k to a lower value. For instance, in the Email and HEP Coauthorship networks, the 
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performance difference is dramatic when k = 3 or k = 2. The average shortest path length 

for the Email network is 3.2 while the HEP coauthorship network has an average path 

length of 5.76. Since the Email and HEP Coauthorship networks tend to have longer 

shortest paths, this as a result, causes a large fraction of nodes to be affected. Hence, 

bounding the shortest paths within k hops helps improving the performance substantially, 

and the performance difference is also visible when k is updated from k = 3 to k = 2. 

However, the other real-life networks (especially the P2P network) have relatively low 

average shortest path lengths, less than 2.0. The average path length is 1.65 for the 

SocioPatterns network, 1.4 for the Iran Twitter network, and 1.24 for the P2P 

communication network. Hence, although there are slight improvements with the limiting 

k value decreasing, the performance is not all that different when k is updated from k = 3 

to k = 2.  

The percentage of affected nodes remain the same as the incremental closeness 

centrality (no limiting k is set) when k = 3, and have small reductions when k = 2 for the 

SocioPatterns, Twitter (Iran), and P2P networks. Considering the average shortest path 

lengths are less than 2.0, such an outcome is reasonable. However, we do observe 

substantial reductions in the size of the affected nodes set for the Email and HEP 

Coauthorship network. For instance, for the part of the incremental closeness algorithm 

that handles the growing network updates, the percentage of affected nodes is 23.55% of 

the HEP Coauthorship network. This percentage reduces to 4.63% when k = 3, and to 

1.15% when k = 2. Hence, the performance improvements of the incremental closeness 

algorithm over the corresponding versions of the Dijsktra’s algorithm increase from 
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4395.16x (over the Dijkstra’s algorithm) to 35248.73x (over the Dijkstra’s algorithm with 

k = 3), and to 233476.79x (over the Dijkstra’s algorithm with k = 2), respectively. 

Similar observations hold for the performance results for the incremental k-

betweenness centrality. The performance and the percentage of affected nodes remain 

similar to the incremental betweenness centrality with no limiting k in SocioPatterns, 

Twitter (Iran), and P2P networks while the performance improvements again become 

larger with decreasing k. The most dramatic performance improvements for the 

incremental k-betweenness centrality are observed for the HEP coauthorship network, 

which is larger than the other networks, and benefit more from k-hop limit as its shortest 

paths tend to be longer on average. Comparing the performance results of the incremental 

k-closeness and incremental k-betweenness algorithms, the incremental k-closeness 

algorithm provides higher performance improvements over its baseline because it has 

fewer pieces of information to maintain and the percentage of affected nodes are lower. 

8.5 SUMMARY: PERFORMANCE TRENDS 

This section discusses how the performances of the incremental centrality 

algorithms scale with varying network sizes and different network features. First, the 

performance scaling on synthetic networks is discussed in Chapter 8.5.1 and Chapter 

8.5.2. Then, the performance scaling on real-life networks is discussed in Chapter 8.5.3 

and Chapter 8.5.4. Finally, Chapter 8.5.5 discusses the performance trends observed in 

real-life and synthetic networks in comparison to one another.  
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Chapter 8.5.1 and Chapter 8.5.3 discuss performance scaling of the incremental 

centrality algorithms with respect to network size while Chapter 8.5.2 and Chapter 8.5.4 

discuss performance scaling considering other network features. Performance scaling 

with respect to the network size is presented and discussed separately because the 

network size is the main driving factor for the performance scaling and the memory 

consumption. 

8.5.1 Network Size and Performance Trends in Synthetic Networks 
This subsection analyzes the performance trends of the incremental centrality 

algorithms with respect to the network size on synthetic networks.  

Earlier in Chapter 8.3.2, the performance values of the incremental betweenness 

centrality algorithm were presented in Table 13 for the growing network updates for 

preferential attachment, Erdos-Renyi, small world networks, and directed cycles. Figure 

46 visualizes the same information and presents the performance values in logarithmic 

scale. Similarly, Figure 47 presents the performance of the incremental closeness 

centrality algorithm based on the data in Table 11 using logarithmic scale for the 

performance values.  

Since preferential attachment performance improvements are at a different scale, 

when they are displayed in the same figure with the other network types, the trends for 

the other network types are not clearly visible. Hence, the performance values are drawn 

in logarithmic scale. In these figures (Figure 46 and Figure 47), the x-axis shows the 

number of nodes and y-axis shows the log-10 of the speedup obtained by the incremental 

centrality algorithm over its non-incremental, traditional baseline algorithm.   
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Figure 46 - Performance of the incremental betweenness centrality algorithm for the data in Table 
13. Growing network updates on the preferential attachment, small world, Erdos-Renyi networks, 
and directed cycles are analyzed. 

 

 
Figure 47 - Performance of the incremental closeness centrality algorithm for the data in Table 
11. Growing network updates on the preferential attachment, small world, Erdos-Renyi networks, 
and directed cycles are analyzed. 
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Below is a list of the equations for the curves fitted to the data presented in Figure 

46 and Figure 47. For clarity, the regression equations are listed below. These equations 

are obtained by plugging the network size (in terms of the number of nodes) as the x-

values (e.g. 1000, 3000, and 5000) and the actual performance improvement values (not 

the logarithmic) as the y-values: 

Polynomial curves fitted on the performance of the incremental closeness 

centrality algorithm: 

• y = 0.0024x2 – 2.698x + 1196.8 (Preferential Attachment) 

• y = 0.0001x2 – 0.2775x + 390 (Small World) 

• y = 8e-05x2 – 0.11x + 337.63 (Directed Cycles) 

• y = -2e-06x2 + 0.2045 – 79.375  (Erdos-Renyi) 

Polynomial curves fitted on the performance of the incremental betweenness 

centrality algorithm: 

• y = 0.0002x2 – 0.6015x + 530 (Preferential Attachment) 

• y = 4e-07x2 + 0.0045x + 3.88 (Small World) 

• y = 2e-07x2 – 0.0006x + 4.1888 (Directed Cycles) 

• y = 0.0058x + 2.0833  (Erdos-Renyi) 

The regression equations obtained for the performance of the incremental 

closeness and betweenness centrality algorithms resemble one another. However, the 

constants for the curves fitted to the incremental closeness centrality algorithm are larger 

than those in the curves fitted to the performance of the incremental betweenness 
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centrality. All equations are polynomial and are selected to fit all the data points in the 

curves. 

Finally, for the network size data points analyzed in this dissertation, the general 

tendency is that, as the network sizes increase, the densities of the networks tend to get 

smaller and the performance benefits of the incremental centrality algorithms increase. 

However, if the network to be analyzed becomes very large, then the hardware capacity 

and the requirements for the memory consumption would govern the limits of this trend. 

8.5.2 Network Features and Performance on Synthetic Networks 
Next, in Chapter 8.5.2, we discuss how the performances of the incremental 

centrality algorithms scale with the other network features. To be able to analyze these 

aspects, we primarily benefit from the information provided in the network statistics 

tables in Chapter 7.1.5 and the performance results presented earlier in this section on 

synthetic networks.  

In particular, we select some of the network features that are expected to have an 

impact on the performance of the incremental centrality algorithms such as the average 

shortest path length, diameter, and the clustering coefficient and draw their scatter plots 

against the performance values. More precisely, we generate multiple scatter plots using 

the average shortest path length vs. the performance of the incremental betweenness 

centrality algorithm or the diameter vs. the performance of the incremental closeness 

centrality algorithm, and so on. Once we have the scatter plots ready, we perform 

regression analysis and try fitting curves on them to be able to comment on the general 

trends observed.  
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Table 33 - Network statistics for varying network sizes accompanied by the performance 
improvements of the incremental closeness centrality algorithm. The average degree is 6. 

Topology Size 

 
 

Density Avg. Btw 
Min 
Deg 

Max 
Deg 

Diam
eter 

Char. 
Path 

Length 
Clustering 
Coefficient 

 
Closeness 
Speedup 

Pref. Attach. 1000 0.003 94.37 3 89 10 3.45 0.014 900 

Pref. Attach. 3000 0.001 197.59 3 233 14 4.126 0.007 14714.43 
Pref. Attach. 5000 0.0006 292.48 3 212 16 4.442 0.005 47738.81 
Erdos-Renyi 1000 0.003 4777.28 1 14 15 6.305 0.003 123.07 
Erdos-Renyi 3000 0.001 18136.74 2 13 14 7.086 0.001 515.35 
Erdos-Renyi 5000 0.0006 32073.39 2 11 14 7.492 0.001 890.56 
Small World 1000 0.003 1809.59 3 11 8 4.623 0.212 233.49 
Small World 3000 0.001 6617.851 3 11 9 5.413 0.208 642.45 
Small World 5000 0.0006 12079.138 3 12 9 5.833 0.216 2015.87 
Directed Cycles 1000 0.003 3544.12 3 11 38 8.38 0.106 309.62 
Directed Cycles 3000 0.001 14986.28   3 11 57 11.37 0.104 740.44 
Directed Cycles 5000 0.0006 28762.20 3 12 77 12.98 0.108 1822.83 

 

Table 34 - Network statistics for varying average node degrees accompanied by the performance 
improvements of the incremental betweenness centrality algorithm. The average degree is 6. 

Topology Size 

 
 

Density Avg. Btw 
Min 
Deg 

Max 
Deg 

Diam
eter 

Char. 
Path 

Length 
Clustering 
Coefficient 

Betweenness 
Speedup 

Pref. Attach. 1000 0.003 94.37 3 89 10 3.45 0.014 178.65 
Pref. Attach. 3000 0.001 197.59 3 233 14 4.126 0.007 971.40 
Pref. Attach. 5000 0.0006 292.48 3 212 16 4.442 0.005 3760.48 
Erdos-Renyi 1000 0.003 4777.28 1 14 15 6.305 0.003 7.99 
Erdos-Renyi 3000 0.001 18136.74 2 13 14 7.086 0.001 18.97 
Erdos-Renyi 5000 0.0006 32073.39 2 11 14 7.492 0.001 31.18 
Small World 1000 0.003 1809.59 3 11 8 4.623 0.212 8.77 
Small World 3000 0.001 6617.851 3 11 9 5.413 0.208 20.94 
Small World 5000 0.0006 12079.138 3 12 9 5.833 0.216 36.32 
Directed Cycles 1000 0.003 3544.12 3 11 38 8.38 0.106 3.78 
Directed Cycles 3000 0.001 14986.28   3 11 57 11.37 0.104 4.26 
Directed Cycles 5000 0.0006 28762.20 3 12 77 12.98 0.108 6.47 

 

Combining the information provided on Table 6 (network statistics for synthetic 

networks –varied by size–) and Table 11 (performance results for the incremental 
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closeness centrality algorithm), Table 33 is obtained. Similarly, Table 34 combines 

information from Table 6 and Table 13 (performance results for the incremental 

betweenness centrality algorithm). 

Using the information provided in Table 33 and Table 34, I have generated 

multiple scatter-plot figures to show how the performance improvements change with the 

changing network parameters. The scatterplots (Figure 48 - Figure 71) are accompanied 

by non-linear regression equations (trend lines) that would provide the best possible 

match, as close as possible to all data points in the graph. Although the actual 

performance values are different, the general performance trends for the incremental 

closeness and betweenness centrality algorithms are similar. Thus, I first provide figures 

comparing the performance values of the incremental closeness centrality algorithm 

(Figure 48 - Figure 59 for the information presented in Table 33) and then the figures for 

the performance of the incremental betweenness centrality algorithm (Figure 60 – Figure 

71 for the information presented in Table 34) against the network features. To be 

consistent with the results presented earlier in Chapter 8.5.1 and to make the figures more 

visible, the y-axes are also drawn in logarithmic scale. For comparison purposes, the 

scatter plots with linear y-axes are also included. In particular, Figure 48 - Figure 53 

show log-10 of the performance of the incremental closeness centrality algorithm versus 

various network features and Figure 54 - Figure 59 show their counterparts drawn in 

linear y-axes. Similarly, Figure 60 - Figure 65 show log-10 of the performance of the 

incremental betweenness centrality algorithm versus various network features and Figure 

66 - Figure 71 show their counterparts drawn in linear y-axes. 
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For the data presented in Figure 48 - Figure 71, regression equations are fit in an 

attempt to better explain the trends. In the regression equations, x-value represents the 

network feature under investigation such as the clustering coefficient, the average 

shortest path length, or the network diameter while the y-value represents either the 

performance improvement or the log-10 of the performance improvement of the 

incremental centrality algorithms depending on the figure. 

 

Figure 48 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Average betweenness centrality. 
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Figure 49 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Global clustering coefficient. 

 
 

 

Figure 50 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Characteristic path length. 
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Figure 51 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Network diameter. 

 

 

Figure 52 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Network density. 
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Figure 53 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Maximum node degree. 

 

 

Figure 54 - Performance improvement of the incremental closeness centrality algorithm vs. 
Average betweenness centrality. 
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Figure 55 - Performance improvement of the incremental closeness centrality algorithm vs. 
Global clustering coefficient. 

 

 

Figure 56 - Performance improvement of the incremental closeness centrality algorithm vs. 
Characteristic path length. 
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Figure 57 - Performance improvement of the incremental closeness centrality algorithm vs. 
Network diameter. 

 

 

Figure 58 - Performance improvement of the incremental closeness centrality algorithm vs. 
Network density. 
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Figure 59 - Performance improvement of the incremental closeness centrality algorithm vs. 
Maximum node degree. 

 
The next set of figures present the performance scaling of the incremental 

betweenness algorithm. First, the set of figures with logarithmic scale on the performance 

axes are presented (Figure 60 - Figure 65). Then, their counterparts with linear scale are 

presented for comparison purposes (Figure 66 - Figure 71). 

 

Figure 60 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Average betweenness centrality. 
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Figure 61 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Global clustering coefficient. 

 

 

Figure 62 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Characteristic path length. 
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Figure 63 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Network diameter. 

 

 

Figure 64 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Network density. 
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Figure 65 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Maximum node degree. 

 

 

Figure 66 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Average betweenness centrality. 
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Figure 67 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Global clustering coefficient. 

 

 

Figure 68 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Characteristic path length. 
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Figure 69 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Network diameter. 

 

 

Figure 70 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Network density. 
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Figure 71 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Maximum node degree. 

 
The trends observed for the incremental betweenness and incremental closeness 

centrality algorithms are similar. For instance, Figure 50 and Figure 62 suggest that the 

performance improvements of the incremental centrality algorithms increase with the 

decreasing average shortest path length. This is reasonable as there are fewer nodes on 

the shortest paths to be updated on average. This would also cause the memory 

consumption to be lower as there are fewer nodes to be tracked as predecessors when 

constructing shortest paths trees with lower depth on average.  

One surprising results is the relationship of the maximum node degree and the 

performance of the incremental centrality algorithms (Figure 53 and Figure 65). For the 

same average node degree, increased maximum degree implies a network structure that is 

moving towards having hub nodes with many connections as in preferential attachment 

and scale-free networks. Although all the previous performance results suggested higher 
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performance benefits for the preferential attachment networks, it is striking to see the 

impact through the maximum node degree. 

Finally, Table 35 summarizes our findings about how different network properties 

affect the performance of the incremental centrality algorithms on synthetic networks. A 

sample row in Table 35 is read as follows. While the diameter of a network decreases, the 

performance benefits of the incremental centrality algorithms are expected to increase 

and the memory consumption is expected to decrease.  

For most of the network features, the memory consumption and performance 

improvements go hand in hand: the memory consumption decreases while the 

performance improvements increase. For instance, when the shortest paths in a network 

are not very long, the average shortest path length is relatively small. Lower average 

shortest path lengths result in fewer affected nodes, which causes the performance 

improvements of the incremental algorithms to be higher. In addition, lower average 

shortest path length also causes the shortest path trees that are stored in the background to 

contain fewer nodes and to have low depth. 

Table 35 - Table summarizing how different network features affect the performance of the 
incremental centrality algorithms on synthetic networks. 

Network Feature 
 

Performance 
 

Memory 
 

Clustering Coefficient: Decrease  Increase Governed by others  
Max. Degree: Increase Increase Governed by others 
Avg. Shortest Path Length: Decrease Increase Decrease 
Diameter: Decrease Increase Decrease 
Density: Decrease  Increase Decrease 
Size: Increase Increase Increase 
Density: Decrease Increase Increase 
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8.5.3 Network Size and Performance Trends on Real-Life Networks 

This section discusses the regression analysis performed on how the performances 

of the incremental centrality algorithms scale with the network size on the real life 

datasets. The discussion presented in this section is the counterpart of the regression 

analysis performed on synthetic networks in Chapter 8.5.1. 

Figure 72 presents the performance improvements of the incremental betweenness 

centrality algorithm collected on real life networks using growing network updates. 

Figure 73 presents similar results for the closeness centrality algorithm. The performance 

improvements range from 113x to 53722x for the incremental betweenness centrality 

algorithm and range from 452x to 356527x for the incremental closeness centrality 

algorithm. Thus, the performance values are drawn on logarithmic scale to ensure that all 

data points are clearly visible. Figure 72 and Figure 73 (real-life networks) are the 

counterparts of Figure 46 and Figure 47 (synthetic networks).  

As suggested by the results presented both in Figure 72 and Figure 73, out of 

these five networks, two networks (e.g. Group-I: Iran Retweet network and P2P file 

communication network) above the general trend line behave differently than the 

remaining three networks (e.g. Group-II: SocioPatterns network, Email network, and 

HEP Co-authorship network) that remain below it. 
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Figure 72 - Performance of the incremental betweenness centrality algorithm in real life networks 
for the growing network updates vs. Network size. 

 

  
Figure 73 - Performance of the incremental closeness centrality algorithm in real life networks for 
the growing network updates vs. Network size. 

 
There is no regression curves found that would fit all data points and present a 

clear trend. Hence, separate curves are fitted for the Group-I and Group-II networks as 
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follows. In the equations presented below, the y values denote the performance 

improvements of the incremental algorithm over its non-incremental static counterpart. 

The x values represent the network size in terms of number of nodes. 

Incremental Betweenness Centrality: 

y = 0.1625x – 303.3 (Group-I: Iran Retweet, P2P Communication) 

y = 29.826 ln(x) – 23.091 (Group-II: SocioPatterns, Email, HEP Coauthorship) 

Incremental Closeness Centrality: 

y = 0.0599x + 398.83 (Group-I: Iran Retweet, P2P Communication) 

y = 4e-05x2 + 0.7338x + 368.53 (Group-II: SocioPatterns, Email, HEP 

Coauthorship) 

These above formulated equations have a number of implications on how the 

performances of the incremental centrality algorithms scale with network size while 

accounting for different properties of networks. First, considering the constants in the 

above given equations, the incremental closeness centrality is more likely to provide 

higher benefits as the network size (in terms of the number of nodes) increases. Second, 

the performance of the incremental betweenness centrality algorithm scales with a 

logarithmic equation (e.g. the ln function) for the Group-II networks, which implies that 

the performance benefits become more incremental with the increasing network size. 

However, it is the opposite for the Group-I networks, which is supported by a linear 

scaling trend. This is because the overall structures of the Group-I networks in are 

different from those in Group-II networks. Group-I networks benefit from sparsity of the 

networks and the social structure that causes most of the relationship to be in one 
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direction. However, in two out of three Group-II networks are undirected and Email 

network has a lot of connections that go in both directions. Altogether, these properties 

cause the percentages of affected nodes to be higher in Group-II network than in Group-I 

networks, which is also reflected in the scaling of performance improvements as the 

regression analysis suggested. 

8.5.4 Network Features and Performance on Real-life Networks 
Next, we discuss how the performances of the incremental centrality algorithms 

scale with the other network features on real life networks. This section is the counterpart 

of Chapter 8.5.2 that analyzes and discusses how the performances of the incremental 

centrality algorithms scale with varying network features for synthetic networks. To be 

able to analyze these aspects, we primarily benefit from the information provided in 

network statistics in Chapter 7.2.6 and the real-life networks’ performance results that are 

presented earlier in this chapter.  

Table 36 - Network statistics for real-life networks accompanied by the performance 
improvements of the incremental closeness centrality algorithm.  

 
 

Network 

 
  D? 
U? Nodes Edges 

 
Den 
sity 

 
Avg. 
Btw. 

Max 
Deg 

Diam
eter 

Char. 
Path 
Len 

Clust. 
Coef 

 
Closeness  
Speedup 

SocioPatterns U 113 4392 0.35 36.752 98 3 1.66 0.53 452.31 
OnlineForum D 1897 20290 0.0056 7159.92 339 8 3.2 0.08 1917.84 

HEP Coauthorship U 7507 38804 0.00068 15620.65 64 15 5.74 0.46 8328.39 
P2P D 6843 7572 0.00016 0.33 2185 3 1.25 0 356527.35 

Twitter (Iran) D 809 665 0.00102 0.464 39 5 1.4 0.02 21769.19 
 

Combining the information provided on Table 9 (network statistics for real life 

networks) and Table 26 (performance results for the incremental closeness centrality 
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algorithm), we obtain Table 36. Similarly, Table 37 combines information from Table 9 

and Table 28 (performance results for the incremental betweenness centrality algorithm). 

 
Table 37 - Network statistics for real-life networks accompanied by the performance 
improvements of the incremental betweenness centrality algorithm.  

 
 

Network 

 
  D? 
U? Nodes Edges 

 
 

Density 

 
Avg. 
Btw. 

Max 
Deg 

Diam
eter 

Char. 
Path 
Len 

Clust. 
Coef 

 
Betweenness  

Speedup 
SocioPatterns U 113 4392 0.35 36.752 98 3 1.66 0.53 113.67 
OnlineForum D 1897 20290 0.0056 7159.92 339 8 3.2 0.08 217.79 

HEP Coauthorship U 7507 38804 0.00068 15620.65 64 15 5.74 0.46 233.27 
P2P D 6843 7572 0.00016 0.33 2185 3 1.25 0 53722.49 

Twitter (Iran) D 809 665 0.00102 0.464 39 5 1.4 0.02 8429.88 
 

Using the information provided Table 36 and Table 37, I have again generated 

multiple scatter-plot figures to show how the performance improvements change with the 

changing network parameters. The scatterplots (Figure 74 - Figure 97) are accompanied 

by non-linear regression equations (trend lines) that would provide the best possible 

match, as close as possible to all data points in the graph. Although the actual 

performance values are different, the general performance trends for the incremental 

closeness and betweenness centrality algorithms are similar. Thus, I first provide figures 

comparing the performance values of the incremental closeness centrality algorithm 

(Figure 74 - Figure 85 for the information presented in Table 36) and then the figures for 

the performance of the incremental betweenness centrality algorithm (Figure 86 - Figure 

97 for the information presented in Table 37) against the network features. To be 

consistent with the results presented earlier in Chapter 8.5.1, Chapter 8.5.2, and Chapter 

8.5.3 and to make the figures more visible, the y-axes of the figures used in main 
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discussion are again drawn in logarithmic scale, accompanied by their equivalents in 

linear scale for comparison purposes. In particular, Figure 74 - Figure 79 show log-10 of 

the performance of the incremental closeness centrality algorithm versus various network 

features and Figure 80 - Figure 85 show their counterparts drawn in linear y-axes. 

Similarly, Figure 86 - Figure 91 show log-10 of the performance of the incremental 

betweenness centrality algorithm versus various network features and Figure 92 - Figure 

97 show their counterparts drawn in linear y-axes.  

For the data presented in Figure 74 - Figure 97, regression equations are fit in an 

attempt to better explain the trends. In the regression equations, x-value represents the 

network feature under investigation such as the clustering coefficient, the average 

shortest path length, or the network diameter. The y-value represents either the logarithm 

of the performance improvement or the performance improvement of the incremental 

centrality algorithms. 
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Figure 74 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Average betweenness centrality. 
 

 

Figure 75 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Global clustering coefficient. 
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Figure 76 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Characteristic path length. 

 

 

Figure 77 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Network diameter. 
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Figure 78 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Network density. 

 

 

Figure 79 - Log-10 of the performance improvement of the incremental closeness centrality 
algorithm vs. Maximum node degree. 
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Figure 80 - Performance improvement of the incremental closeness centrality algorithm vs. 
Average betweenness centrality.  
 

 

Figure 81 - Performance improvement of the incremental closeness centrality algorithm vs. 
Global clustering coefficient. 
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Figure 82 - Performance improvement of the incremental closeness centrality algorithm vs. 
Characteristic path length. 

 

 

Figure 83- Performance improvement of the incremental closeness centrality algorithm vs. 
Network diameter. 
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Figure 84 - Performance improvement of the incremental closeness centrality algorithm vs. 
Network density. 

 

 

Figure 85 - Performance improvement of the incremental closeness centrality algorithm vs. 
Maximum node degree. 
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The next set of figures present the performance scaling of the incremental 

betweenness algorithm. The set of figures with logarithmic y-axes (Figure 86 - Figure 91) 

are presented first, followed by the figures with linear performance axes (Figure 92 - 

Figure 97) for comparison purposes. 

 

Figure 86 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Average betweenness centrality. 
 

 

 

Figure 87 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Global clustering coefficient. 
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Figure 88 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Characteristic path length. 

 

 

Figure 89 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Network diameter. 
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Figure 90 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Network density. 

 

 

Figure 91 - Log-10 of the performance improvement of the incremental betweenness centrality 
algorithm vs. Maximum node degree. 
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Figure 92 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Average betweenness centrality. 

 
 

 

Figure 93 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Global clustering coefficient. 
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Figure 94 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Characteristic path length. 

 

 

Figure 95 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Network diameter. 
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Figure 96 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Network density. 

 

 

Figure 97 - Performance improvement of the incremental betweenness centrality algorithm vs. 
Maximum node degree. 

 
Considering the trend lines fit on the performance results presented in the figures 

above, the maximum degree and the network density have trend lines that closely match 



 281 

the data presented. Although the other network features have some visible trends, most of 

the time, these network features interact with one another and cause the actual 

performance values to deviate from the expected values. Table 38 summarizes the 

general trends on how specific network features would steer the performances of the 

incremental centrality algorithms. In general, the trends observed on the real life and 

synthetic networks are in line with one another, which will be discussed next in Chapter 

8.5.5 in detail. 

Table 38 - Table summarizing how different network features affect the performance of the 
incremental centrality algorithms on real life networks. 

Network Feature 
 

Performance 
 

Memory 
 

Max. Degree: Increase Increase Governed by others 
Density: Decrease  Increase Decrease 
Size: Increase Increase Increase 
Clustering Coefficient: Decrease  Increase Governed by others  
Avg. Shortest Path Length: Decrease Increase Decrease 
Diameter: Decrease Increase Decrease 
Fragmentation: Increase Increase Decrease 

8.5.5 Comparative Discussion on Performance Trends in Synthetic and Real-Life 
Networks 

This section discusses the performance trends observed in synthetic and real-life 

networks together in an attempt to compare between the synthetic network data and the 

real-life network data and comment on how well the performance trends on the synthetic 

data reflect the performance trends of the real-life networks. 

It is observed that the trends observed in real life and synthetic networks are 

comparable as outlined in Table 35 and Table 38. However, there are minor differences. 

For instance, the clustering coefficients in real life networks have the potential to be 
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higher than those in the synthetic networks. Another difference is that in real life 

networks, the networks’ diameters are short, i.e., less than 15 hops. However, in synthetic 

networks, especially for directed cycles, the diameters can become artificially long, 

exceeding 100 hops.  

In real-life networks is that a substantial portion of relationships among social 

agents is mutual and modeled as undirected (bidirectional) networks. The impact of 

converting a network from directed to undirected is different in different networks. In 

most real life networks, the average shortest path lengths and diameters are low as 

discussed earlier. When the network is converted to an undirected network from a 

directed network, this usually results in higher number of pairs that can reach out to one 

another and higher clustering coefficient, without having too much impact on the lengths 

of the shortest paths. Converting the relationships from directed to undirected also results 

in an increased number of nodes affected when an incremental update such as an edge 

insertion is issued on the network. This usually reflects as decreased performance 

benefits when the network is undirected compared to directed networks. However, on an 

artificially created network, the impact might be different. For instance, the small world 

networks are undirected versions of the directed cycles. The small world networks’ 

shortest path lengths are very low compared to those in the directed cycles, reducing the 

network diameter from 102 (3000-node directed cycles with avg. node degree 4) to 13 

(3000-node small world network with avg. node degree 4). In contrast to what we 

observe for most real life networks, we observe that small world networks have higher 
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performance benefits than directed cycles due to decreased shortest path lengths on 

average. 

In addition, real-life networks might have fragmentation and disconnected 

components that would help increasing the performance obtained with incremental 

algorithms on such networks. Among the datasets we have used, only two networks have 

considerable, non-zero fragmentation: Iran retweet network has 0.86 fragmentation and 

the co-authorship network has 0.239 fragmentation. The synthetic networks are modeled 

to reflect the claimed network sizes as the entire node space; hence, they have zero 

fragmentation. Since we have only two data points for fragmentation, we don’t have 

enough data points and they are not included in the scatter plots. Yet, the impact of the 

fragmentation can be understood from the very high performance improvements obtained 

on the Iran retweet network despite the fact that it is a small network with less than 1000 

nodes. 

Apart from the differences discussed so far, there are also similarities that are well 

covered, which causes similar trends to be observed in both real life and synthetic 

networks when regression analysis is performed on the scatter plots of different network 

features. As a specific example, the performances of the incremental centrality algorithms 

on the P2P file transfer network resemble the performance trends of the directed 

preferential attachment networks. This is because both the preferential attachment 

networks and the P2P file transfer network are modeled as directed networks. In addition, 

they both have central, hub nodes with very large number of connections and very few 
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nodes with high betweenness centrality values, resulting in low average betweenness 

centrality across the entire network.  

8.6 INCREMENTAL BETWEENNESS CLUSTERING PERFORMANCE RESULTS 

In this section, the performance of the clustering algorithm that is discussed in 

Chapter 6.5.1 is evaluated. The performance results presented in Table 39 and Table 40 

are collected as follows. For each network used in the evaluations, using the 

corresponding k-hop limit, the edge betweenness centrality values are calculated. Then, 

1000 edges are removed either by recomputing the edge betweenness values using the 

incremental edge k-betweenness algorithm or by using the Brandes’ edge k-betweenness 

algorithm. The performance results compare the total (cumulative) execution time that 

includes (i) the initialization of the edge k-betweenness centrality values, (ii) searching 

for the edge with the maximum edge betweenness to remove in the next iteration, and 

(iii) re-computation of the edge k-betweenness values after the removal of the edge with 

the largest edge k-betweenness centrality value. 

As explained earlier in Chapter 6.5.1.2, using the incremental edge betweenness 

algorithm within the edge betweenness based clustering might trigger worst-case network 

updates. This is because the edge betweenness based clustering algorithms (e.g. the 

Girvan-Newman clustering algorithm and its variants) remove the edge with the highest 

edge betweenness centrality value, which is the edge that tends to lie on many shortest 

paths. The removal of such an edge may result in a big change in the network, which, in 

turn, might trigger an update for all the shortest paths in the network. To ensure that the 
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possibility of the worst case updates which would minimize the potential performance 

benefits of the incremental centrality is ruled out, using the k-hop limited approximation 

of the edge betweenness centrality is recommended in this thesis. Therefore, the results 

presented in this section focus on comparing the performance of the edge betweenness 

based clustering algorithm using the incremental and the non-incremental (Brandes’) 

edge betweenness algorithms with k hop limits. In the results presented in Table 39 and 

Table 40 the performance improvements of the proposed clustering algorithm discussed 

are around 100x – 200x for 1000 edge removals. However, since there are other parts of 

the algorithm accounted for such as initialization and the search for the maximum edge 

betweenness centrality value, the performance improvement values do not smoothly 

increase with the increasing network size or the average node degree. Therefore, as a part 

of the results presented in Table 39 and Table 40, the actual execution times are included 

as well. The actual execution times were collected in terms of nanoseconds, and 

converted to seconds for presentation in Table 39 and Table 40. 

In Table 39, the evaluations for the preferential attachment, Erdos-Renyi, small-

world, and directed cycles network topologies for increasing network sizes (e.g. 1000, 

3000, and 5000) are presented. All networks have an average node degree of 6. For 

instance, PF1 stands for preferential attachment network with 1000 nodes while SW5 

stands for small world network with 5000 nodes. 
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Table 39 - Performance results for the clustering algorithm based on incremental k-betweenness 
compared against the clustering algorithm based on k-betweenness, collected on synthetic 
networks.  

 (k = 2) (k = 3) 

T 
Brandes 

k-btw (sec) 
Incremental 
k-btw (sec) 

Performance 
Improvement 

Brandes 
k-btw (sec) 

Incremental  
k-btw (sec) 

Performance 
Improvement 

PF-1 925.65 6.61  139.98x 1002.34 8.58 116.81x 
PF-3 9411.91 57.33 164.16x 9696.87 65.34 148.41x 
PF-5 39940.17 249.94 159.79x 43935.9 415.37 105.77x 
ER-1 952.29 5.91 161.09x 998.63 7.51 132.93x 
ER-3 10180.22 83.9 121.33x 13434.94 109.03 123.23x 
ER-5 46442.98 263.49 176.26x 49698.67 308.65 161.02x 
SW-1 1004.88 8.04 124.98x 1203.82 15.77 76.33x 
SW-3 9793.34 59.85 163.63x 12436.9 84.77 146.71x 
SW-5 37075.02 262.23 141.38 x 58208.12 293.24 198.49x 
DC-1 978.56 5.69 171.93x 998.29 6.81 146.64x 
DC-3 8374.41 56.98 146.96x 9119.83 58.87 154.92x 
DC-5 42406.91 255.89 165.72x 43632.24 277.58 157.18x 

 

In Table 40, the evaluations for the preferential attachment, Erdos-Renyi, small-

world, and directed cycles network topologies for varying average node degrees (e.g. 4, 

6, and 8) are presented. All networks have 3000 nodes. For instance, PF4 stands for 

preferential attachment network with 3000 nodes and average degree of 4 while SW8 

stands for small world network with 3000 nodes and average degree of 8. 

Finally, in Table 41, the performance results collected on the real life networks 

are presented. In these results, 100 edges are removed, and similar to the synthetic 

networks’ performance results presented in Table 39 and Table 40, the total execution 

times are compared which includes the initial computation of the edge betweenness 

values, selecting the edge with the maximum edge betweenness value. 
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Table 40 - Performance results for the clustering algorithm based on incremental k-betweenness 
compared against the clustering algorithm based on k-betweenness, collected on synthetic 
networks. 

 (k = 2) (k = 3) 

T 
Brandes 

k-btw (sec) 
Incremental 
k-btw (sec) 

Performance 
Improvement 

Brandes 
k-btw (sec) 

Incremental  
k-btw (sec) 

Performance 
Improvement 

PF-4 8222.77 53.76 152.94x 9258.58 53.85 171.93x 
PF-6 9411.91 57.33 164.16x 9696.88 65.33 148.41x 
PF-8 8907.49 60.36 147.56x 11119.39 97.87 113.61x 
ER-4 8505.08 53.62 158.63x 9045.75 57.73 156.69x 
ER-6 10180.22 83.9 121.33x 13434.94 109.02 123.23x 
ER-8 9883.49 56.83 173.89x 12624.59 73.91 170.79x 
SW-4 8780.47 58.78 149.37x 9273.4 61.69 150.32x 
SW-6 9793.34 59.85 163.63x 12436.9 84.77 146.71x 
SW-8 12890.4 63.56 202.81x 18012.4 135.17 133.25x 
DC-4 9227.45 60.94 151.40x 11150.38 53.86 207.01x 
DC-6 9119.83 56.98 160.04x 8374.41 58.87 142.26x 
DC-8 11488.83 89.83 127.90x 13457.54 101.65 132.39x 

 

The results presented in Table 41 present the performance improvements obtained 

over the clustering performed using the regular Brandes’ edge betweenness algorithm. 

Imagine a missing column for the clustering algorithm that uses the Brandes’ edge 

betweenness algorithm with all the values set as 1x. Hence, it is possible to see how much 

of the performance improvement comes from the use of k-betweenness algorithm, and 

how much of the performance improvement comes from adding the benefits of the 

incremental algorithm design. The performance results presented in Table 41 show that 

the majority of the performance improvements come from the incorporation of the 

incremental algorithm in the edge betweenness based clustering. The larger performance 

improvements are observed in cases where the introduction of the k-hop limits can prune 

some of the extra work that would have been performed otherwise. 
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Table 41 - Performance results for the clustering algorithms based on the incremental k-
betweenness and the Brandes' k-betweenness. Collected on real-life networks.  

 (k = 2) (k = 3) 
Topology Brandes  

k-betweenness 
Incremental  

k-betweenness 
Brandes  

k-betweenness 
Incremental  

k-betweenness 
Socio Patterns 1.438 x 11.676 x 1.395 x 5.397 x 
Twitter (Iran) 1.18 x 28.291 x 1.04 x 30.368 x 
Email 2.95 x 79.656 x 1.05 x 1.05 x 
HEP Coauthor 5.698 x 30.867 x 2.58 x 24.280 x 
P2P 1.002 x 18.037 x 1.002 x 17.753 x 

 

As one last point, the performance improvements presented for the real life 

networks are lower than those presented for the synthetic networks because the number 

of edges removed in the experiments done with real networks is lower than the number of 

edges removed in synthetic network experiments. Different numbers of edges are selected 

for removal from synthetic and real life networks so that it would also be possible to 

comment on how the numbers of recomputations affect the absolute values of 

performance improvements. The results presented in Table 39, Table 40, and Table 41 

imply that the performance improvements obtained by the incorporation of the 

incremental k-betweenness computation increase with the increasing number of removed 

edges. 

8.7 COMMENTS ON VERIFICATION  

During the initial phases of algorithm development, I have used several small 

networks of 5 to 10 nodes that model different network structures such as cliques, chains, 

star topology, cycles, and various combinations of those to cover various basic network 
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structures and potential corner cases. One I started running experiments with the larger 

networks that were used in the results presented in this dissertation, I initially recorded 

the betweenness and the closeness centrality values from the incremental centrality 

algorithms and from the non-incremental algorithms (the Brandes’ algorithm for 

betweenness and the Dijkstra’s algorithm for closeness) to compare the results generated 

at each step after every incremental network update. Since writing all the centrality 

values at each network update to the disk takes a long time, after getting satisfactory 

results with the accuracy results, I have started using the following verification method: I 

have recorded the betweenness/closeness centrality values only once after all 100 

network updates complete for both the incremental centrality algorithms and their non-

incremental counterparts, and compared both result files against one another. Since the 

incremental centrality values build on the results from prior runs, if there is a discrepancy 

in the algorithm, the centrality values at the end of 100 updates tend to be way off from 

the value suggested by the non-incremental, baseline algorithm. This is a good way for 

validating the results as well as identifying and debugging the potential bugs in the 

algorithm during the design and development stage. 

A small sample from the betweenness centrality values generated on a 1000-node 

directed cycle network with p = 0.2 is presented in Table 42. The betweenness centrality 

values presented in Table 42 are recorded after 100 edge insertion updates are issued on 

the network. 
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Table 42 - Comparison of output from the incremental and non-incremental betweenness 
centrality algorithms. 

Incremental Betweenness Algorithm Brandes’ Betweenness Algorithm 
Node ID Betweenness Centrality Node ID Betweenness Centrality 

0 0.0 0 0.0 
1 2.5 1 2.5 

986 3.5 986 3.5 
989 6.0 989 6.0 
3 8.333333333333332 3 8.333333333333332 

971 2.8333333333333335 971 2.8333333333333335 
974 6.0 974 6.0 
4 5.833333333333333 4 5.833333333333333 
2 0.0 2 0.0 
5 2.833333333333333 5 2.833333333333333 

870 7.833333333333332 870 7.833333333333333 
6 3.8333333333333335 6 3.8333333333333335 

817 5.5 817 5.5 
7 4.333333333333333 7 4.333333333333333 
8 5.333333333333334 8 5.333333333333333 
9 9.5 9 9.5 

  

The centrality values do match across the incremental and non-incremental 

algorithm, with very minor differences in how the floating-point values are handled (See 

the centrality values for node-870 and node-8). However, we consider the betweenness 

centrality values of such nodes equal. Similar results were obtained for the 

shrinking/growing network updates for closeness centrality, betweenness centrality, and 

their k-hop limited approximations; however, they are not included here for brevity.  
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the key findings of this dissertation and discusses 

several additional ideas that are particularly promising as future research directions.   

9.1 SUMMARY OF FINDINGS 

 This dissertation proposes incremental centrality algorithms that perform dynamic 

maintenance of closeness and betweenness centrality values while providing support for 

new edge/node insertions and deletions and edge cost modifications. The goal is to avoid 

re-computations involved in the analysis of dynamic social networks and reflect changes 

triggered by an incremental network update as efficiently as possible. The performance 

results collected on different synthetic and real-life networks indicate that incremental 

computations of social centrality metrics is a high-performance method, providing 

substantial performance improvements in revealing temporal patterns of closeness 

centrality and betweenness centrality. 

Closeness centrality was selected as the first metric of interest because its 

computation is only dependent on the shortest distances across the nodes, which is the 

core information required by all other shortest path based social centrality metrics. The 

other metric that is selected as the metric of interest is the betweenness centrality due to 

its wide application across several fields. 
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In general, the incremental centrality algorithms proposed in this dissertation 

increases the speed with which the centrality metrics can be calculated for all nodes in a 

network, exploiting the classical tradeoff between memory and speed.  

Considering the performance results presented in Chapter 8, several observations 

are in order. First, the performance gains increase with the increasing network size. In 

larger networks, the opportunity for early pruning is larger, which in turn results in 

increased performance benefits.  

Another point of observation is that the network topology is an important factor in 

the performance improvements the incremental centrality algorithms provide. The 

performance results obtained on real-life networks suggest that the structure of the 

shortest paths in a network might differ considerably from the binary, unweighted version 

of the same network depending on the weights/costs of the edges. The difference between 

the binary, unweighted version and the weighted version of the same network is 

especially higher if the weights of the edges come from a large range of values. Hence, 

the performance improvements of the incremental centrality algorithms obtained on the 

binary and the weighted versions of the same network tend to be different from one 

another.  

The impact of topology on the performance benefits of the incremental centrality 

algorithms were also visible in experiments performed with the synthetic networks. The 

incremental centrality algorithms obtain the best performance improvements on the 

preferential attachment networks. The performance improvements were inline with the 

average shortest path length and the diameter of the network; increasing with the 
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decreased shortest path length in general. Such behavior also impacts how much 

performance improvement can be obtained by the incremental k-centralities. When the 

shortest paths in a network are relatively short (i.e. composed of a small number of hops), 

there is not too much room for opportunity for early pruning due to limiting the shortest 

paths to remain within the first k hops. In the case of incremental k-centralities, the best 

performance benefits are obtained on small world networks while the performance 

benefits obtained on the preferential attachment networks are lower.  

Considering the behaviors of the incremental centrality algorithms both in real-

life and synthetic networks, it is observed that the performance trends of the incremental 

centrality algorithms are similar for the real world and synthetic networks. In general, the 

performance improvements increase with increasing network size, increasing node 

maximum degree, and decreasing network density. Moreover, the performance 

improvements decrease with the increasing average betweenness centrality, increasing 

average shortest path length, increasing network diameter, and increasing global 

clustering coefficient. 

It is also observed that most real life networks have low diameters and average 

shortest path lengths. Hence, networks with very long diameters such as the directed 

cycles are less likely to be observed when real-life relationships are modeled. In addition, 

real life networks benefit more from fragmentation and the existence of disconnected 

components, which helps to increasing the performance improvements obtained by the 

incremental algorithms.  
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Another trend in real-life networks is that a substantial portion of relationships 

among social agents is mutual and modeled as undirected (bidirectional) networks. The 

impact of converting a network from directed to undirected is different in different 

networks. In most real life networks, the average shortest path lengths and diameters are 

low as discussed earlier. When the network is converted to an undirected network from a 

directed network, this usually results in higher number of pairs that can reach out to one 

another and higher clustering coefficient, without having too much impact on the lengths 

of the shortest paths. Converting the relationships from directed to undirected also results 

in an increased number of nodes affected when an incremental update such as an edge 

insertion is issued on the network. This usually reflects as decreased performance 

benefits when the network is undirected compared to directed networks. However, on an 

artificially created network, the impact might be different. For instance, the small world 

networks are undirected versions of the directed cycles. The small world networks’ 

shortest path lengths are very low compared to those in directed cycles, reducing the 

network diameter from 102 (3000-node directed cycles with avg. node degree 4) to 13 

(3000-node small world network with avg. node degree 4). In contrast to what we 

observe for most real life networks, we observe that small world networks have higher 

performance benefits than directed cycles due to decreased shortest path lengths on 

average. 

As discussed in Chapter 8.6, the incremental k-centrality algorithms are quite 

effective at improving the performance of the clustering algorithms that use edge 

betweenness to partition the network into clusters (e.g. the modified Girvan-Newman 
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clustering algorithm). However, the performance improvements obtained with the 

clustering algorithm that uses the incremental edge betweenness algorithm instead of the 

edge betweenness algorithm based on the Brandes’ betweenness algorithm do not justify 

the additional algorithmic complexity and memory used for its computation. This is 

because modifying the edge with the maximum edge betweenness can trigger updates 

where almost the entire network is affected. Such a problem is avoided when the shortest 

paths are restricted to stay within first k hops. Hence, we recommend the use of 

incremental k-centrality algorithms in clustering. 

As one final note, an additional use case for the incremental closeness algorithm 

is to use it on a large static network. By “pretending” that the network is being built 

incrementally, one can apply the incremental closeness algorithm and calculate closeness 

centrality more quickly than one can do using the non-incremental algorithm only once.  

In an attempt to see what is possible in a reasonable time, we have run two 

additional exploratory experiments with the incremental closeness centrality algorithm 

and the incremental betweenness centrality algorithm.  

The results of these exploratory experiments suggest that the incremental 

closeness centrality algorithm run on the available hardware (a quad-core PC with 256GB 

of RAM) can easily handle a network with 100,000 nodes and 600,000 edges. Then, we 

tried another run on a network with 250,000 nodes and 1,500,000 edges. Before being 

able to complete the entire run, the system started swapping at around 165,000 nodes and 

1,000,000 edges. Once the number of edges in the network reached 1,000,000, the time 

required for each edge insertion increased dramatically on average due to this swapping. 



 296 

This data point is not exhaustive, but it suggests that a PC with 256GB of physical 

memory can process incremental closeness centrality on preferential attachment based 

social networks with degree of 6 and somewhere between 150,000 to 200,000 nodes.   

The corresponding network sizes are much smaller for the betweenness centrality. 

For betweenness centrality, the execution time per edge insertion starts increasing 

considerably when the network reaches 30,000 nodes and 180,000 edges. Once the 

network becomes larger than 35,000 nodes and 225,000 edges, the execution time of 

running the incremental betweenness algorithm on a new edge is observed increase 

dramatically. Note, this increase in execution time per insertion is necessarily a memory 

limit in this case but a result of the structure of the problem. 

Finally, the ability for fast incremental computations of how power, influence, 

and centralities change in a dynamic network enables the use of incremental centrality 

metrics to rapidly identify over-time change and to set up alerts. In conclusion, 

incremental algorithm design offers the potential to allow dynamic social network 

analysis to be applied to real time data, and to much larger datasets than would have been 

possible using traditionally static centrality metric computational methods. 

9.2 FUTURE WORK 

Inline with the behavior of most incremental algorithms, the algorithms presented 

in this dissertation are costly in terms of memory requirements. Hence, they are primarily 

geared towards mid-scale networks that are composed of several thousands to tens of 

thousands of nodes. To make them work with large-scale networks whose numbers of 
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nodes are mostly on the order of millions, parallelization and approximation are among 

the possible directions.  

Parallelization: With the advents in the multi-core technology, support for 

multithreaded execution and utilization of computing resources is important, and as 

previously discussed in Chapter 2.1.3, there are a number of research studies that already 

focus on parallelizing betweenness algorithms for large-scale networks. Therefore, one 

fruitful future research direction for the work presented in this dissertation is the design 

of parallel, incremental centrality algorithms based on the incremental centrality 

algorithms proposed in this dissertation.  

The incremental centrality algorithms proposed in this dissertation are based on 

the idea of identifying the set of nodes that are affected by an incremental network update 

and the subgraph defined by these nodes, which is usually a subset that is much smaller 

than the entire network. For instance, assume that there are two incremental network 

updates issued one after another and they propagate on totally disparate parts of the 

network. In such a case, these two incremental network updates can be issued in totally 

parallel with no problem because the subsets those two incremental network updates 

work on would have no overlap. However, for the cases when there is some overlap 

between the affected parts of the network for two different updates, the updates should be 

handled with care. For such a case, one reasonable approach is to use CREW (Concurrent 

Read Exclusive Write) based parallelization techniques that would allow reading 

different variables concurrently but would allow only one process to write to an 

individual cell. If the write-protection is to be achieved with atomic locks instead, then 
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metadata common across all network updates such as the shortest path distances, the 

centrality values, the number of shortest paths, and the predecessors on the shortest paths 

need to be protected. 

Approximation: This dissertation discusses the approximations of the 

incremental centrality algorithms through the k-centrality extensions in Chapter 6, where 

the number of hops the shortest paths are composed of should be less than or equal to k. 

However, as mentioned earlier in Chapter 2.1.3, there are other methods for 

approximating the centrality metrics such as the methods discussed in [57] [58], which 

are based on sampling a number of source (seed) nodes to calculate the shortest paths 

from. Towards this end, an interesting direction is to attempt combining seed based 

approaches with incremental algorithm design, which would selectively propagate the 

incremental updates in a network depending on the relationship of the source of an update 

with the set of sampled seed nodes. The evaluation of the accuracy (validation) for such 

an approximation method is also necessarily, posing another interesting but challenging 

problem. Another direction in this context is to combine the incremental updates with the 

adaptive sampling of seed nodes where the set of sampled seed nodes evolve based on the 

frequency and topological position of the incremental updates issued dynamically in the 

network. 

Extensions to other centrality metrics: Apart from parallelization and 

approximation techniques, there are also other directions the work presented in this 

dissertation can be extended to. As previously mentioned in Chapter 5.6, one other 

potential future work direction is to design incremental centrality algorithms for other 
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shortest path based centrality metrics such as the stress centrality [20] or the information 

centrality [178].  

Stress centrality is defined as the number of shortest paths that pass through a 

node across all pairs of nodes in a network. Betweenness centrality is defined as the 

fraction of shortest paths that pass through a node across all pairs of nodes in a network. 

The definition and computation of stress centrality are very similar to that of betweenness 

centrality. Hence, the incremental betweenness centrality algorithm can be converted to 

compute the stress centrality only by changing the lines where the betweenness centrality 

of a node is modified. 

The information centrality of a node [178] is defined as the harmonic mean of the 

‘bandwidth’ for all the shortest paths originating from the node whose centrality is being 

calculated. The bandwidth of a path is calculated as the inverse of its path length. This 

metric is always mentioned in relation to the closeness centrality, as it also needs 

information on the inverse of the shortest paths lengths. The algorithm for the 

incremental computation of the information centrality can be obtained by modifying the 

lines inserted into the Ramalingam and Reps dynamic all-pairs shortest paths algorithm to 

support the computation of closeness centrality. 
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