

Incremental Centrality Algorithms for Dynamic Network Analysis

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical and Computer Engineering

Miray Kas

B.S., Computer Engineering, Bilkent University, Turkey
M.S., Computer Engineering, Bilkent University, Turkey

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

August 2013

 ii

Copyright © 2013 Miray Kas
All rights reserved.

 iii

To my Parents & Matta

 iv

ACKNOWLEDGEMENTS

I would like to express my appreciation and thanks to my advisors Prof. L. Richard

Carley and Prof. Kathleen M. Carley for making this thesis possible and for their guidance and

support. I am very grateful for their very positive, supportive, and transparent approach. Having

worked with several professors, I feel happy and honored to get my Ph.D. from them.

I would also like to thank my committee members Prof. Jurgen Pfeffer and Prof. Huan

Liu (Arizona State) for their support and guidance. I am also very grateful to Matthew Wachs for

his help and support in every step of my Ph.D. and for the encouragement he gave me to complete

my degree. Last but not least, I would like to thank CASOS members for insightful discussions

and feedback they gave me at various stages of my studies.

 This research is conducted in collaboration with the center for Computational Analysis of

Social and Organizational Systems (CASOS) under the Institute for Software Research within the

School of Computer Science (SCS) at Carnegie Mellon University (CMU). Financial support

was in part provided by the Defense Threat Reduction Agency (DTRA) under the grant number

HDTRA11010102. The views and conclusions contained in this document are those of the author

and should not be interpreted as representing the official policies, either expressed or implied, of

the Defense Threat Reduction Agency (DTRA) or the U.S. government.

 v

ABSTRACT

Incremental Social Centrality Algorithms for Dynamic Networks

Miray	
 Kas	

Electrical	
 and	
 Computer	
 Engineering	

Carnegie	
 Mellon	
 University	

	

	

The increasing availability of online resources such as digital libraries and social networking websites

has led to an upsurge of interest in the analysis of social networks. To date, a wealth of social centrality

measures have been designed for determining the importance of nodes in a social network from different

aspects. A significant number of social centrality metrics depend on the shortest paths in the network,

usually requiring solving the all-pairs shortest path problem. However, most of these metrics were designed

for static snapshots of 20-30 node networks. Computing centrality metrics in dynamically changing, large

networks is almost unfeasibly costly, especially if it involves repeatedly calculating centralities from

scratch for each incremental change.

This thesis proposes incremental algorithms for the two of the most popular shortest-path based social

centrality metrics (e.g. closeness centrality and betweenness centrality) to avoid computations from scratch

by performing early-pruning and achieving substantial performance improvements in dynamically

changing networks. It explores the computational time savings and the memory requirements as the

realistic social networks being analyzed scale to very large sizes. The key idea is to start with the old output

of the algorithm and to modify/update only the affected values such that the changes in the network (e.g.

edge/node insertions/deletions/modifications) are reflected in the centrality values as well. The approximate

versions of incremental closeness and betweenness centralities through k-hop bounded computations are

also designed where the shortest paths included in the computations should be less than or equal to k;

forcing the centrality computations to remain within a k-hop subgraph of a node instead of the entire graph.

The performance results obtained via experiments on a wide variety of synthetic and real-life dynamic

networks suggest substantial improvements over the state of the art.

 vi

Table of Contents

CHAPTER	
 1	
 INTRODUCTION	
 ...	
 1	

1.1	
 PROBLEM	
 DOMAIN	
 AND	
 RESEARCH	
 FIELD	
 ..	
 1	

1.2	
 THESIS	
 STATEMENT	
 AND	
 SUPPORT	
 ...	
 2	

1.3	
 KEY	
 IDEA	
 AND	
 APPROACH	
 ..	
 2	

1.4	
 BROADER	
 IMPACT	
 AND	
 INTENDED	
 USES	
 ..	
 3	

1.5	
 WHAT	
 CAN	
 OVER-­‐TIME	
 CENTRALITY	
 METRICS	
 SHOW?	
 ...	
 6	

1.6	
 THESIS	
 ORGANIZATION	
 ..	
 10	

1.7	
 DYNAMIC	
 NETWORK	
 DATASETS	
 USED	
 ...	
 11	

1.8	
 SUMMARY	
 OF	
 CONTRIBUTIONS	
 ..	
 12	

CHAPTER	
 2	
 BACKGROUND	
 AND	
 RELATED	
 WORK	
 ..	
 14	

2.1	
 SOCIAL	
 NETWORK	
 ANALYSIS	
 AND	
 CENTRALITY	
 METRICS	
 ..	
 14	

2.1.1	
 Background	
 on	
 Dynamic	
 Network	
 Analysis	
 ..	
 17	

2.1.2	
 Literature	
 Review	
 on	
 Closeness	
 Centrality	
 ...	
 19	

2.1.3	
 Literature	
 Review	
 on	
 Betweenness	
 Centrality	
 ...	
 22	

2.2	
 INCREMENTAL	
 ALGORITHMS	
 ...	
 27	

2.3	
 DYNAMIC	
 ALL-­‐PAIRS	
 SHORTEST	
 PATH	
 ALGORITHMS	
 ..	
 32	

2.3.1	
 Ramalingam	
 and	
 Reps	
 Dynamic	
 All	
 Pairs	
 Shortest	
 Paths	
 Algorithm	
 	
 34	

2.4	
 CLUSTERING	
 ALGORITHMS	
 ..	
 37	

CHAPTER	
 3	
 ALGORITHMIC	
 FRAMEWORK	
 AND	
 NOTATION	
 ...	
 41	

3.1	
 NETWORK	
 TYPES	
 ..	
 41	

 vii

3.2	
 NETWORK	
 UPDATE	
 TYPES	
 ..	
 41	

3.2.1	
 Growing	
 Network	
 Updates	
 ...	
 42	

3.2.2	
 Shrinking	
 Network	
 Updates	
 ...	
 44	

3.3	
 NOTATION	
 ..	
 45	

CHAPTER	
 4	
 INCREMENTAL	
 CLOSENESS	
 ALGORITHM	
 ...	
 47	

4.1	
 DEFINITION	
 &	
 COMPUTATION	
 OF	
 CLOSENESS	
 CENTRALITY	
 ...	
 47	

4.2	
 INCREMENTAL	
 CLOSENESS	
 ALGORITHM:	
 HIGH-­‐LEVEL	
 OVERVIEW	
 ...	
 50	

4.3	
 INCREMENTAL	
 CLOSENESS	
 ALGORITHM:	
 GROWING	
 NETWORK	
 UPDATES	
 	
 52	

4.3.1	
 INSERTCLOSENESS	
 ...	
 52	

4.3.2	
 INSERTUPDATECLOSENESS	
 ..	
 53	

4.4	
 INCREMENTAL	
 CLOSENESS	
 ALGORITHM:	
 SHRINKING	
 NETWORK	
 UPDATES	
 	
 56	

4.4.1	
 DELETECLOSENESS	
 ..	
 56	

4.4.2	
 DELETEUPDATECLOSENESS	
 ...	
 57	

4.5	
 COMMENTS	
 ON	
 ALGORITHMIC	
 COMPLEXITY	
 ...	
 60	

4.5.1	
 Run	
 Time	
 Analysis	
 ..	
 60	

4.5.2	
 Memory	
 Consumption	
 and	
 Overhead	
 Analysis	
 ..	
 63	

4.5.3	
 Comments	
 on	
 Accuracy	
 ..	
 67	

CHAPTER	
 5	
 INCREMENTAL	
 BETWEENNESS	
 ...	
 69	

5.1	
 DEFINITION	
 &	
 COMPUTATION	
 OF	
 BETWEENNESS	
 CENTRALITY	
 ..	
 69	

5.2	
 TRADITIONAL	
 ALGORITHMS	
 FOR	
 COMPUTING	
 BETWEENNESS	
 CENTRALITY	
 	
 71	

5.3	
 INCREMENTAL	
 BETWEENNESS	
 ALGORITHM:	
 GROWING	
 NETWORK	
 UPDATES	
 	
 74	

5.3.1	
 INSERTBETWEENNESS	
 ..	
 74	

 viii

5.3.2	
 INSERTUPDATEBETWEENNESS	
 ...	
 76	

5.3.3	
 REDUCEBETWEENNESS	
 ..	
 83	

5.3.4	
 INCREASEBETWEENNESS	
 ..	
 86	

5.4	
 INCREMENTAL	
 BETWEENNESS	
 ALGORITHM:	
 SHRINKING	
 NETWORK	
 UPDATES	
 	
 87	

5.4.1	
 DELETEBETWEENNESS	
 ...	
 88	

5.4.2	
 DELETEUPDATEBETWEENNESS	
 ..	
 89	

5.4.3	
 CLEARBETWEENNESS	
 ...	
 95	

5.4.4	
 ADJUSTNPS	
 ...	
 98	

5.4.5	
 ADJUSTBETWEENNESS	
 ...	
 100	

5.5	
 DISCUSSION	
 ON	
 ALGORITHMIC	
 COMPLEXITY	
 ...	
 101	

5.5.1	
 Run	
 Time	
 Analysis	
 ..	
 101	

5.5.2	
 Memory	
 Consumption	
 and	
 Overhead	
 Analysis	
 ..	
 105	

5.5.3	
 Comments	
 on	
 Accuracy	
 ..	
 113	

5.6	
 DISCUSSION	
 ON	
 GENERALIZATION	
 TO	
 OTHER	
 CENTRALITY	
 METRICS	
 AND	
 SHORTEST-­‐PATH	
 BASED	

PROBLEMS	
 ...	
 114	

CHAPTER	
 6	
 EXTENSIONS	
 AND	
 APPLICATIONS	
 ...	
 116	

6.1	
 WHAT	
 IS	
 K-­‐CENTRALITY?	
 ...	
 116	

6.2	
 K-­‐CLOSENESS	
 ...	
 121	

6.2.1	
 Dijkstra’s	
 k-­‐hop	
 Shortest	
 Path	
 ..	
 122	

6.2.2	
 Incremental	
 k-­‐Closeness	
 Centrality:	
 Growing	
 Network	
 Updates	
 	
 122	

6.2.3	
 Incremental	
 k-­‐Closeness	
 Centrality:	
 Shrinking	
 Network	
 Updates	
 	
 124	

6.3	
 K-­‐BETWEENNESS	
 ..	
 126	

 ix

6.3.1	
 Brandes’	
 k-­‐Betweenness	
 Algorithm	
 ...	
 126	

6.3.2	
 Incremental	
 k-­‐Betweenness	
 Centrality:	
 Growing	
 Network	
 Updates	
 	
 128	

6.3.3	
 Incremental	
 k-­‐Betweenness	
 Centrality:	
 Shrinking	
 Network	
 Updates	
 	
 130	

6.4	
 DISCUSSION	
 ON	
 THE	
 ANALYSIS	
 OF	
 K-­‐CENTRALITIES	
 ...	
 134	

6.5	
 EXAMPLE	
 APPLICATIONS	
 OF	
 INCREMENTAL	
 CENTRALITY	
 ALGORITHMS	
 	
 135	

6.5.1	
 Example	
 Use	
 Case	
 in	
 Clustering	
 (Community	
 Detection)	
 	
 135	

6.5.1.1	
 Incremental	
 Edge	
 Betweenness	
 with	
 Shrinking	
 Network	
 Updates	
 	
 139	

6.5.1.1.1	
 DeleteEdgeBetweenness	
 Algorithm	
 ...	
 141	

6.5.1.1.2	
 DeleteUpdateEdgeBetweenness	
 Algorithm	
 ...	
 142	

6.5.1.1.3	
 ClearEdgeBetweenness	
 Algorithm	
 ...	
 143	

6.5.1.1.4	
 AdjustEdgeBetweenness	
 Algorithm	
 ...	
 146	

6.5.1.1.5	
 Incremental	
 Edge	
 K-­‐Betweenness	
 Algorithm	
 ...	
 146	

6.5.1.2	
 Incremental	
 k-­‐Betweenness	
 Clustering	
 Algorithm	
 ...	
 148	

6.5.2	
 Example	
 Use	
 Cases	
 in	
 Wireless	
 Network	
 Analysis	
 ..	
 153	

6.5.2.1	
 Wireless	
 Network	
 Management:	
 Vulnerability	
 &	
 Network	
 Security	
 	
 154	

6.5.2.2	
 Resource	
 Allocation:	
 Channel	
 Access	
 Scheduling	
 ...	
 158	

CHAPTER	
 7	
 DATASETS	
 ...	
 162	

7.1	
 SYNTHETIC	
 NETWORKS	
 ..	
 162	

7.1.1	
 Preferential	
 Attachment	
 Networks	
 ..	
 163	

7.1.2	
 Erdos-­‐Renyi	
 Networks	
 ..	
 164	

7.1.3	
 Small	
 World	
 Networks	
 ...	
 164	

7.1.3.1	
 Selecting	
 a	
 rewiring	
 probability	
 (p)	
 value	
 ...	
 165	

7.1.4	
 Directed	
 Cycles	
 ...	
 166	

 x

7.1.5	
 Synthetic	
 Network	
 Set	
 ..	
 167	

7.2	
 REAL-­‐LIFE	
 NETWORKS	
 ..	
 171	

7.2.1	
 SocioPatterns	
 Dataset	
 ..	
 172	

7.2.2	
 OnlineForum:	
 Facebook-­‐like	
 Social	
 Network	
 ...	
 173	

7.2.3	
 HEP	
 Co-­‐authorship	
 Network	
 ..	
 173	

7.2.4	
 P2P	
 Communication	
 Network	
 ..	
 175	

7.2.5	
 Retweet	
 Network	
 on	
 Iran	
 Sanction	
 News	
 ..	
 176	

7.2.6	
 Real-­‐Life	
 Network	
 Datasets	
 ..	
 177	

CHAPTER	
 8	
 EXPERIMENTS	
 AND	
 RESULTS	
 ...	
 179	

8.1	
 IMPLEMENTATION	
 ENVIRONMENT	
 ..	
 179	

8.2	
 EXPERIMENT	
 DESIGN	
 ...	
 179	

8.3	
 PERFORMANCE	
 RESULTS	
 WITH	
 SYNTHETIC	
 NETWORKS	
 ..	
 184	

8.3.1	
 Incremental	
 Closeness	
 Centrality	
 Performance	
 Results	
 ..	
 184	

8.3.2	
 Incremental	
 Betweenness	
 Centrality	
 Performance	
 Results	
 	
 190	

8.3.3	
 How	
 do	
 the	
 Hub	
 Nodes	
 Affect	
 the	
 Performance	
 of	
 Incremental	
 Centrality	

Algorithms	
 in	
 Preferential	
 Attachment	
 Networks?	
 ..	
 195	

8.3.4	
 Incremental	
 k-­‐Centrality	
 Performance	
 Results	
 ..	
 199	

8.3.5	
 Discussion	
 on	
 the	
 Memory	
 Consumption	
 ..	
 208	

8.3.6	
 Additional	
 Performance	
 Results	
 with	
 Directed	
 Cycles	
 ...	
 213	

8.3.7	
 Performance	
 on	
 Larger	
 Networks	
 ..	
 217	

8.4	
 RESULTS	
 WITH	
 REAL-­‐LIFE	
 NETWORKS	
 ..	
 224	

8.4.1	
 Incremental	
 Closeness	
 Centrality	
 Performance	
 Results	
 ..	
 225	

 xi

8.4.2	
 Incremental	
 Betweenness	
 Centrality	
 Performance	
 Results	
 	
 230	

8.4.2.1	
 Additional	
 Notes	
 on	
 the	
 Performance	
 of	
 the	
 Incremental	
 Betweenness	
 Centrality	

Algorithm	
 on	
 Co-­‐authorship	
 Dataset	
 ..	
 234	

8.4.2.2	
 Performance	
 Comparison	
 against	
 the	
 QuBE	
 Algorithm	
 ...	
 237	

8.4.3	
 Incremental	
 k-­‐Centrality	
 Performance	
 Results	
 ..	
 239	

8.5	
 SUMMARY:	
 PERFORMANCE	
 TRENDS	
 ...	
 242	

8.5.1	
 Network	
 Size	
 and	
 Performance	
 Trends	
 in	
 Synthetic	
 Networks	
 	
 243	

8.5.2	
 Network	
 Features	
 and	
 Performance	
 on	
 Synthetic	
 Networks	
 	
 246	

8.5.3	
 Network	
 Size	
 and	
 Performance	
 Trends	
 on	
 Real-­‐Life	
 Networks	
 	
 263	

8.5.4	
 Network	
 Features	
 and	
 Performance	
 on	
 Real-­‐life	
 Networks	
 	
 266	

8.5.5	
 Comparative	
 Discussion	
 on	
 Performance	
 Trends	
 in	
 Synthetic	
 and	
 Real-­‐Life	

Networks	
 ..	
 281	

8.6	
 INCREMENTAL	
 BETWEENNESS	
 CLUSTERING	
 PERFORMANCE	
 RESULTS	
 	
 284	

8.7	
 COMMENTS	
 ON	
 VERIFICATION	
 ...	
 288	

CHAPTER	
 9	
 CONCLUSIONS	
 AND	
 FUTURE	
 WORK	
 ..	
 291	

9.1	
 SUMMARY	
 OF	
 FINDINGS	
 ...	
 291	

9.2	
 FUTURE	
 WORK	
 ..	
 296	

BIBLIOGRAPHY	
 ..	
 300	

 xii

LIST OF FIGURES

Figure 1 - Distribution of betweenness centrality values on SocioPatterns dataset. 6	

Figure 2 - Over-time betweenness centrality values for the top-three nodes in Socio

Patterns dataset. ... 8	

Figure 3 - Over-time betweenness centrality values for four selected nodes that have zero

betweenness centrality in the final, aggregated snapshot of the SocioPatterns social

network. .. 9	

Figure 4 - Example network. .. 48	

Figure 5 - Abstract figure describing that the entire network is not affected by an update

or modification done on the network. ... 50	

Figure 6 - Abstract figure describing how affected sink and source nodes are selected and

how early pruning is done. .. 51	

Figure 7 - Example network. .. 70	

Figure 8 - Example network for k-centrality discussion. .. 117	

Figure 9 - Far away changes on the network tend to have local implications. 149	

Figure 10 - UCSB Meshnet Topology (19-node subnetwork). All node labels in the figure

are preceded with 10.2.1. to form their IP addresses. ... 154	

Figure 11 - Increase in average number of hops as top ranked nodes are progressively

removed. .. 157	

Figure 12 - Increase in average number of hops as top ranked nodes are progressively

removed from a 200-node wireless mesh network topology. ... 158	

 xiii

Figure 13 - Delay vs. Throughput (When closeness centrality is used in prioritization, the

throughput increases by 15%). .. 161	

Figure 14 - SocioPatterns network topology. ... 172	

Figure 15 - OnlineForum (Facebook-like Social Network) network topology. 173	

Figure 16 - HEP Coauthorship network topology. ... 174	

Figure 17 - An earlier version of the HEP Coauthorship network topology. 174	

Figure 18 - P2P Communication network topology. .. 175	

Figure 19 - Iran retweet network topology. .. 176	

Figure 20 - In-degree distribution of the 1000-node preferential attachment network with

100 of its edges missing. ... 182	

Figure 21 - Log-log scale of in-degree distribution of the 1000-node preferential

attachment network with 100 of its edges missing. (Same data as in Figure 20). 182	

Figure 22 - In-degree distribution of the 1000-node preferential attachment network

(Complete topology, avg. degree = 6). ... 182	

Figure 23 - Log-log scale of in degree distribution of the 1000-node preferential

attachment network (Complete topology, average degree = 6). Same data as in Figure 23.

... 182	

Figure 24 - The distribution of nodes' in-degree values in 3000-node preferential

attachment network with average degree 6. .. 195	

Figure 25 - Log-log scale plot for the in-degree distribution depicted in Figure 24. 195	

Figure 26 - Distribution of execution times for 100 incremental edge insertions. 197	

 xiv

Figure 27 - Shortest paths from node-129 to node-37 before the insertion of the edge

{129→37}. .. 198	

Figure 28 - Memory statistics comparing the incremental closeness algorithm with the

Dijkstra's algorithm for closeness. .. 211	

Figure 29 - Memory statistics comparing the incremental closeness algorithm with the

Dijkstra's algorithm for closeness. .. 211	

Figure 30 - Memory statistics comparing the incremental closeness algorithm with the

Dijkstra's algorithm for closeness. Both are bounded by k = 2. 211	

Figure 31 - Memory statistics comparing the incremental closeness algorithm with the

Dijkstra's algorithm for closeness. Both are bounded by k = 2. 211	

Figure 32 - Memory statistics incremental closeness algorithm with the Dijkstra's

algorithm for closeness. Both are bounded by k = 3. .. 211	

Figure 33 - Memory statistics incremental closeness algorithm with the Dijkstra's

algorithm for closeness. Both are bounded by k = 3. .. 211	

Figure 34 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes’ algorithm. ... 212	

Figure 35 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes’ algorithm. ... 212	

Figure 36 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes’ algorithm. Both are bounded by k = 2. .. 212	

Figure 37 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes’ algorithm. Both are bounded by k = 2. .. 212	

 xv

Figure 38 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes’ algorithm. Both are bounded by k = 3. .. 212	

Figure 39 - Memory statistics comparing the incremental betweenness algorithm with the

Brandes' algorithm. Both are bounded by k = 3. .. 212	

Figure 40 - Performance of incremental closeness computation vs. the computation of

closeness centrality via the Dijsktra’s algorithm on large preferential attachment

networks. The Dijsktra’s algorithm is executed only once after all updates completed. 218	

Figure 41 - Incremental closeness centrality algorithm execution time per edge insertion

in milliseconds versus the number of edges inserted. The numbers of edges are

represented in thousands, where ‘1200’ on the x-axis represents 1,200,000 edges. The

execution time per edge insertion is given in milliseconds, 2500 represents the 2.5

seconds. ... 220	

Figure 42 - Incremental closeness centrality algorithm execution time per edge insertion

in milliseconds versus the number of nodes inserted. The numbers of nodes are

represented in thousands, where ‘200’ on the x-axis represents 200,000 nodes. The

execution time per edge insertion is given in milliseconds, 2500 represents the 2.5

seconds. ... 221	

Figure 43 - Incremental betweenness centrality algorithm execution time per edge

insertion in milliseconds versus the number of edges inserted. The numbers of edges are

represented in thousands, where ‘200’ on the x-axis represents 200,000 edges. The

execution time per edge insertion is given in milliseconds, 30,000 represents the 30

seconds. ... 222	

 xvi

Figure 44 - Incremental betweenness centrality algorithm execution time per node

insertion in milliseconds versus the number of nodes inserted. The numbers of nodes are

represented in thousands, where ‘40’ on the x-axis represents 40,000 nodes. The

execution time per edge insertion is given in milliseconds, 30,000 represents the 30

seconds. ... 223	

Figure 45 - Example network to demonstrate how the use of edge costs might change the

structure of the shortest paths in a network. ... 228	

Figure 46 - Performance of the incremental betweenness centrality algorithm for the data

in Table 13. Growing network updates on the preferential attachment, small world,

Erdos-Renyi networks, and directed cycles are analyzed. .. 244	

Figure 47 - Performance of the incremental closeness centrality algorithm for the data in

Table 11. Growing network updates on the preferential attachment, small world, Erdos-

Renyi networks, and directed cycles are analyzed. ... 244	

Figure 48 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Average betweenness centrality. .. 249	

Figure 49 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Global clustering coefficient. .. 250	

Figure 50 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Characteristic path length. .. 250	

Figure 51 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Network diameter. .. 251	

 xvii

Figure 52 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Network density. ... 251	

Figure 53 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Maximum node degree. .. 252	

Figure 54 - Performance improvement of the incremental closeness centrality algorithm

vs. Average betweenness centrality. ... 252	

Figure 55 - Performance improvement of the incremental closeness centrality algorithm

vs. Global clustering coefficient. .. 253	

Figure 56 - Performance improvement of the incremental closeness centrality algorithm

vs. Characteristic path length. ... 253	

Figure 57 - Performance improvement of the incremental closeness centrality algorithm

vs. Network diameter. ... 254	

Figure 58 - Performance improvement of the incremental closeness centrality algorithm

vs. Network density. ... 254	

Figure 59 - Performance improvement of the incremental closeness centrality algorithm

vs. Maximum node degree. ... 255	

Figure 60 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Average betweenness centrality. .. 255	

Figure 61 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Global clustering coefficient. .. 256	

Figure 62 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Characteristic path length. .. 256	

 xviii

Figure 63 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Network diameter. .. 257	

Figure 64 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Network density. ... 257	

Figure 65 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Maximum node degree. .. 258	

Figure 66 - Performance improvement of the incremental betweenness centrality

algorithm vs. Average betweenness centrality. ... 258	

Figure 67 - Performance improvement of the incremental betweenness centrality

algorithm vs. Global clustering coefficient. .. 259	

Figure 68 - Performance improvement of the incremental betweenness centrality

algorithm vs. Characteristic path length. .. 259	

Figure 69 - Performance improvement of the incremental betweenness centrality

algorithm vs. Network diameter. .. 260	

Figure 70 - Performance improvement of the incremental betweenness centrality

algorithm vs. Network density. ... 260	

Figure 71 - Performance improvement of the incremental betweenness centrality

algorithm vs. Maximum node degree. .. 261	

Figure 72 - Performance of the incremental betweenness centrality algorithm in real life

networks for the growing network updates vs. Network size. .. 264	

Figure 73 - Performance of the incremental closeness centrality algorithm in real life

networks for the growing network updates vs. Network size. .. 264	

 xix

Figure 74 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Average betweenness centrality. .. 269	

Figure 75 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Global clustering coefficient. .. 269	

Figure 76 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Characteristic path length. .. 270	

Figure 77 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Network diameter. .. 270	

Figure 78 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Network density. ... 271	

Figure 79 - Log-10 of the performance improvement of the incremental closeness

centrality algorithm vs. Maximum node degree. .. 271	

Figure 80 - Performance improvement of the incremental closeness centrality algorithm

vs. Average betweenness centrality. ... 272	

Figure 81 - Performance improvement of the incremental closeness centrality algorithm

vs. Global clustering coefficient. .. 272	

Figure 82 - Performance improvement of the incremental closeness centrality algorithm

vs. Characteristic path length. ... 273	

Figure 83- Performance improvement of the incremental closeness centrality algorithm

vs. Network diameter. ... 273	

Figure 84 - Performance improvement of the incremental closeness centrality algorithm

vs. Network density. ... 274	

 xx

Figure 85 - Performance improvement of the incremental closeness centrality algorithm

vs. Maximum node degree. ... 274	

Figure 86 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Average betweenness centrality. .. 275	

Figure 87 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Global clustering coefficient. .. 275	

Figure 88 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Characteristic path length. .. 276	

Figure 89 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Network diameter. .. 276	

Figure 90 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Network density. ... 277	

Figure 91 - Log-10 of the performance improvement of the incremental betweenness

centrality algorithm vs. Maximum node degree. .. 277	

Figure 92 - Performance improvement of the incremental betweenness centrality

algorithm vs. Average betweenness centrality. ... 278	

Figure 93 - Performance improvement of the incremental betweenness centrality

algorithm vs. Global clustering coefficient. .. 278	

Figure 94 - Performance improvement of the incremental betweenness centrality

algorithm vs. Characteristic path length. .. 279	

Figure 95 - Performance improvement of the incremental betweenness centrality

algorithm vs. Network diameter. .. 279	

 xxi

Figure 96 - Performance improvement of the incremental betweenness centrality

algorithm vs. Network density. ... 280	

Figure 97 - Performance improvement of the incremental betweenness centrality

algorithm vs. Maximum node degree. .. 280	

 xxii

LIST OF TABLES

Table 1 - Basic statistic on betweenness centrality values obtained on SocioPatterns

dataset. .. 7	

Table 2 - Common centrality metrics used in social network analysis. 15	

Table 3 - Computation of closeness centralities for the network depicted in Figure 4. ... 48	

Table 4 - Computation of betweenness centralities for the network depicted in Figure 7.

... 70	

Table 5 - Social centrality rankings of the nodes in UCSB MeshNet. 154	

Table 6 - Network statistics for varying network sizes. There are additional metrics that

are measured but not listed. For all the networks in this table minimum betweenness is 0,

network fragmentation is 0, and the average degree is 6. ... 168	

Table 7 - Network statistics for varying average node degrees. There are additional

metrics that are measured but not listed. For all the networks in this table minimum

betweenness is 0, network fragmentation is 0, and the number of nodes is fixed to 3000

nodes. .. 169	

Table 8 - Network statistics for additional 1000-node directed cycles, varying rewiring

probability p from 0.2 to 1.00 with a step size of 0.2 (Avg. degree = 6). 170	

Table 9 - Topological features of real-life networks. ‘D? U?’ column displays

information on the directionality of edges in the networks. D represents directed networks

while U represents undirected (bidirectional) networks. .. 177	

 xxiii

Table 10 - Parameters for the power law fit for the degree distribution of the smallest

(1000-node) preferential attachment network. .. 183	

Table 11 - Performance improvements of the incremental closeness algorithm over the

repeated invocations of computing closeness centrality using the Dijkstra’s algorithm

obtained on networks with different topologies/sizes described in Chapter 7.1. Average

node degree is 6. ... 185	

Table 12 - Performance improvements of the incremental closeness algorithm over the

repeated invocations of the Dijkstra’s algorithm for computing closeness centrality

obtained on with different network topologies and different average node degree values

as described in Chapter 7.1. The number of nodes is fixed at 3000. 188	

Table 13 - Performance improvements of the incremental betweenness algorithm over

repeated invocations of the Brandes’ betweenness algorithm obtained on networks with

different topologies/sizes described in Chapter 7.1. ... 192	

Table 14 - Performance improvements of the incremental betweenness algorithm over

repeated invocations of the Brandes’ algorithm obtained on networks with different

topologies and different average node degrees as described in Chapter 7.1. The number of

nodes is fixed at 3000. .. 193	

Table 15 - List of the hub nodes in 3000-node preferential attachment network with

average node degree 6. .. 196	

Table 16 - Performance benefits of the proposed incremental k-centrality algorithms and

the portion of the network affected by these changes obtained on preferential attachment,

Erdos-Renyi, small world networks, and directed cycles. Avg. degree = 6, k = 2. 201	

 xxiv

Table 17 - Performance benefits of the proposed incremental k-centrality algorithms and

the portions of the network affected by these changes obtained on preferential

attachment, Erdos-Renyi, small world networks, and directed cycles. Avg. degree = 6, k

= 3. .. 202	

Table 18 - Performance benefits of the proposed incremental k-closeness algorithm over

k-closeness algorithm and portion of the network affected by these changes obtained on

preferential attachment, Erdos-Renyi, small world networks, and directed cycles (k = 2,

number of nodes = 3000). The first column (e.g. T) lists the topology names along with

their average node degrees. ... 204	

Table 19 - Performance benefits of the proposed incremental k-betweenness algorithm

over k-betweenness algorithm implemented as in Brandes and the portion of the network

affected by these changes obtained on preferential attachment, Erdos-Renyi, small world

networks, and directed cycles (k = 3, avg. degree = 6). The first column (e.g. T) lists the

topology names along with their average node degrees. .. 205	

Table 20 - Network statistics for additional directed cycles based network, sweeping

rewiring probability (Size = 1000 nodes, avg. degree = 6. Same as Table 8 in Chapter

7.1). ... 214	

Table 21 - Performance benefits of the incremental closeness algorithm obtained on

directed cycles and the percentages of the networks affected by these changes (1000

nodes, average degree = 6). .. 215	

 xxv

Table 22 - Performance benefits of the incremental betweenness algorithm obtained on

directed cycles and the percentages of the networks affected by these changes (1000

nodes, average degree = 6). .. 215	

Table 23 - Performance benefits of the incremental k-centrality algorithms and the

percentages of the networks affected by these changes obtained on the directed cycles (k

= 2, 1000 nodes, avg. degree = 6). .. 216	

Table 24 - Performance benefits of the incremental k-centrality algorithms and the

percentages of the networks affected by these changes obtained on the directed cycles (k

= 3, 1000 nodes, avg. degree = 6). .. 217	

Table 25 - Performance improvements for the results presented in Figure 40. 218	

Table 26 - Performance improvements of the incremental closeness algorithm over

computing closeness centrality using repeated invocations of the Dijkstra's algorithm,

collected on real-life networks described in Chapter 7.2. Information on the affected

portion of the network is also provided. The results presented in this table are obtained on

the weighted versions of the networks. ... 225	

Table 27 - Performance improvements of the incremental closeness algorithm over

computing closeness centrality using repeated invocations of the Dijkstra's algorithm,

collected on real-life networks described in Chapter 7.2. Information on the affected

portion of the network is also provided. The results presented in this table are obtained on

the unweighted (binary) versions of the networks. ... 227	

Table 28 - Performance improvements of the incremental betweenness algorithm over

repeated invocations of the Brandes’ algorithm, collected on real-life networks described

 xxvi

in Chapter 7.2. Information on the affected portion of the network is also provided. The

results presented in this table are obtained on the weighted versions of the networks. .. 231	

Table 29 - Performance improvements of the incremental betweenness algorithm over the

repeated invocations of the Brandes' algorithm, collected on real-life networks.

Information on the affected portion of the network is also provided. The results presented

in this table are obtained on the unweighted (binarized) versions of the networks. 232	

Table 30 - Performance comparison of QuBE and our proposed algorithm. 238	

Table 31 - Performance benefits of the incremental k-centrality algorithms obtained on

real-life networks and the portions of the networks affected by these changes (k = 2). . 239	

Table 32 - Performance benefits of the incremental k-centrality algorithms obtained on

real-life networks and the portion of the networks affected by these changes (k = 3). .. 240	

Table 33 - Network statistics for varying network sizes accompanied by the performance

improvements of the incremental closeness centrality algorithm. The average degree is 6.

... 247	

Table 34 - Network statistics for varying average node degrees accompanied by the

performance improvements of the incremental betweenness centrality algorithm. The

average degree is 6. ... 247	

Table 35 - Table summarizing how different network features affect the performance of

the incremental centrality algorithms on synthetic networks. .. 262	

Table 36 - Network statistics for real-life networks accompanied by the performance

improvements of the incremental closeness centrality algorithm. 266	

 xxvii

Table 37 - Network statistics for real-life networks accompanied by the performance

improvements of the incremental betweenness centrality algorithm. 267	

Table 38 - Table summarizing how different network features affect the performance of

the incremental centrality algorithms on real life networks. ... 281	

Table 39 - Performance results for the clustering algorithm based on incremental k-

betweenness compared against the clustering algorithm based on k-betweenness,

collected on synthetic networks. ... 286	

Table 40 - Performance results for the clustering algorithm based on incremental k-

betweenness compared against the clustering algorithm based on k-betweenness,

collected on synthetic networks. ... 287	

Table 41 - Performance results for the clustering algorithms based on the incremental k-

betweenness and the Brandes' k-betweenness. Collected on real-life networks. 288	

Table 42 - Comparison of output from the incremental and non-incremental betweenness

centrality algorithms. .. 290	

 1

CHAPTER 1 INTRODUCTION

1.1 PROBLEM DOMAIN AND RESEARCH FIELD

Social network analysis has been considered to be an important tool for finding

the structural holes in organizational structures, for analyzing the patterns of information

dissemination, or for identifying the key actors that can influence/control others; all of

which are very useful for answering several key business or organizational questions.

As a result, determining the most influential, well connected, and prominent

nodes in networks has been an important research area and, to date, several social

centrality metrics have been designed. Some of these metrics are based on the number of

immediate connections nodes have (e.g. degree centrality, eigenvector centrality) while

others are based on the shortest communication paths in the network (e.g. closeness

centrality, betweenness centrality).

This dissertation examines networks that change dynamically and require

reanalyzing centralities every time a network update is issued. Since updating degree-

based centralities for dynamically changing connections can be trivially achieved by

maintaining a number of counters, they are not considered to be as challenging as

updating the centrality metrics based on dynamic shortest paths. Overall, the goal of this

dissertation is to propose and evaluate the effectiveness of incremental algorithms for

closeness and betweenness centralities, while handling various network types (e.g.

directed/undirected binary/positively weighted) and network updates (e.g. node/edge

addition/removal, edge cost increase/decrease).

 2

1.2 THESIS STATEMENT AND SUPPORT

This dissertation explores and confirms the effectiveness of incremental algorithm

design for computing the shortest path based social centrality metrics such as closeness

centrality and betweenness centrality in dynamic networks. In particular:

“Computations of the shortest path based centrality metrics such as

betweenness centrality and closeness centrality are important and costly dynamic

network analysis problems, and the solutions to these problems can greatly benefit

from incremental algorithms which build on results from previous runs to perform

early pruning and enable substantial performance improvements.”

This thesis statement is supported experimentally by measuring the performances

of the proposed incremental algorithms against their non-incremental counterparts, using

both synthetic and real-life networks. In support of this thesis statement, several

algorithms are developed and analyzed, which are further listed in detail in the summary

of contributions.

1.3 KEY IDEA AND APPROACH

This thesis employs an incremental algorithm design approach in order to handle

the special needs of rapidly changing, dynamic networks. An incremental algorithm uses

information from earlier computations such that the changes in the input (e.g. network

structure) are reflected on the output values (e.g. centrality values) as well.

An incremental algorithm is different from its static counterpart that performs all

computations from scratch. At one point, an initial run is performed by a static algorithm

 3

that performs the desired computation from scratch. Then, the incremental algorithm is

used in subsequent runs to handle changes in the input (e.g. network). The benefit of an

incremental algorithm is that by being able to build on prior computations, an incremental

algorithm is able to perform early pruning and update only the affected parts of the

network while avoiding recomputations to the extent possible. The algorithms proposed

in this dissertation are designed to handle various network updates such as node/edge

insertions, node/edge deletions, and edge cost modifications in the case of weighted

networks. Out of these network update types, node/edge insertions and edge cost

decreases are grouped as growing network updates, while node/edge deletions and edge

cost increases are grouped as shrinking network updates, which are further explained in

Chapter 3.

1.4 BROADER IMPACT AND INTENDED USES

The study of networks, including social networks, biological networks,

information networks, and many others has been a major topic in scientific research.

Traditionally, social networks have been studied in social sciences such as sociology,

psychology, and business administration [1]. The general features of these classical

studies are that they are often restricted to small networks, and often consider the

networks as static graphs, whose nodes represent individuals and whose links represent

the social interactions among these individuals. Although it has been researched for

almost sixty years, social network analysis has witnessed uses in other remote fields in

the last two decades or so. This is primarily due to two reasons: abundance of data and

 4

potentially broader impact. First, as more datasets become available online, the interest in

social networks grows rapidly, especially in the area of longitudinal analysis of data

accruing over time. Second, many of the obtained results are not only the solutions for

problems in the field of social networks, but they are also applicable to other fields such

as biological networks [2], statistical physics, physical/technological networking [3] [4],

bibliometrics/scientometrics [5], or even remote fields like urban planning [6] and

nuclear capabilities assessment [7].

Among the classical and most commonly used techniques of social network

analysis is the centrality analysis, which measures the relative importance of entities in a

social structure that is modeled as a group of entities (represented as nodes) connected

through links to model certain relationships or interactions. Most centrality metrics

consider the immediate connections of the entities modeled or the features of the overall

structure or network topology. This makes social network analysis techniques applicable

to any concept or problem where the entities to be examined can be represented as nodes

in a network that models their relationships or interactions. This is also the reason why

social network analysis has such a demonstrated breadth of applicability in its use.

Betweenness centrality and closeness centrality are metrics to measure the relative

importance of nodes in a network, considering the overall structure (topology) of the

network. This makes them applicable to various networks designed to model very

different entities. The incremental centrality algorithms proposed in this dissertation are

intended to be applied on over-time dynamic networks, regardless of the structure or the

set of entities the network models, applicable to many other fields such as biological

 5

networks (protein-protein interaction networks), physical/technological networking (e.g.

wireless networking, P2P file sharing, the US power grid), bibliometrics/scientometrics

(e.g. citation, coauthorship, collaboration analysis, expertise analysis), urban planning, or

transportation networks.

Unlike the early examples of datasets used in social network analysis, most of the

abovementioned examples of over-time dynamic networks are obtained through

automated data collection methods. Hence, they have the potential to be substantially

larger (i.e. on the order of several thousands) than the early social network datasets used

by traditional sociologists, which were mostly less than a hundred nodes. However,

current technology also allows us to collect network data that would model millions and

billions of users from the Internet. Since the incremental centrality algorithms build on

the results from earlier runs, they usually need a large amount of data to be in the

memory so that they can fetch and use related pieces of data quickly. Larger memory

requirements restrain the use of incremental centrality algorithms to networks that are on

the order of several thousands and tens of thousands of nodes and edges, but not

necessarily to networks whose node counts are on the order of millions; unless they are

combined with approximation algorithms. Hence, the datasets used in this dissertation are

on the scale of thousands of nodes. Approximations required for applicability to larger

networks through extensions for k-centrality metrics and potential application areas are

further discussed in Chapter 6.

 6

1.5 WHAT CAN OVER-TIME CENTRALITY METRICS SHOW?

The most straightforward application area for the incremental centrality metrics is

the computation of over-time centrality values for dynamically changing datasets. This

section investigates what kind of additional information over-time centrality metrics are

able to provide through a detailed examination of the over-time centrality values for the

SocioPatterns social netwrok. SocioPatterns is a publicly available, dynamic social

network dataset that models the interactions and face-to-face communication in real time

among 113 attendees during the ACM Hypertext 2009 conference for 2.5 days [8].

Figure 1 - Distribution of betweenness centrality values on SocioPatterns dataset.

Figure 1 presents a histogram for the distribution of betweenness centrality values

and Table 1 presents the basic statistics for the aggregate, static snapshot of the network

that is formed after all the real-time updates during the conference are issued. The

distribution presented in Figure 1 shows that a very high number of nodes in the network

have zero betweenness (e.g. 44 nodes out of 113 nodes). Such behavior is in line with the

 7

previous findings in the literature. For instance, [9] shows that the distributions of the

betweenness values in many real-life, scale-free networks follow power laws where many

nodes have zero betweenness centrality while only a few nodes have very high values of

betweenness centrality.

Table 1 - Basic statistic on betweenness centrality values obtained on SocioPatterns dataset.

Statistics Value
Mean 346.32
Median 28
Std. Err. 60.16
Std. Dev. 639.51
Sample Variance 408967.81
Kurtosis 9.68
Skewness 2.94
Min. Value 0
Max. Value 3570

Considering the data presented in Figure 1, two interesting research questions are

as follows: ‘Are all the attendees with zero betweenness value unimportant for the

community?’ or ‘Can they really have the same level of importance?’. In an attempt to

find answers to such questions, in Figure 2 and Figure 3, the evolutions of betweenness

centrality values for two groups of attendees are traced: (i) top three nodes with highest

betweenness centrality values, (ii) the nodes that have zero betweenness at the static,

aggregate snapshot of the network. The results presented in Figure 2 and Figure 3

indicate that temporal patterns of betweenness centrality values reveal interesting

information and provide supplementary data for further ranking of nodes in a network.

 8

Figure 2 - Over-time betweenness centrality values for the top-three nodes in Socio Patterns
dataset.

 Figure 2 presents the overtime betweenness centrality values for three attendees

that are ranked as top-three in terms of betweenness centrality. Considering the results

presented in Figure 2, it can be observed that the rankings of the top three attendees are

not very stable, especially in the first half of the network lifetime, when the network was

still in the growth phase. Up-to-date analysis for the over-time centrality values might

enable phase shifts, detection of sudden jumps, similar to the jump observed around

7813th update for the First attendee, or detection of declines similar to the decline that

start around 9549th update for the Third attendee.

Figure 3 investigates the second group of attendees and presents the temporal

behaviors of the betweenness centrality values of four attendees that have zero

betweenness centrality at the final snapshot of the network. Out of 44 attendees that have

zero betweenness in the final snapshot, only 25 of them have zero betweenness across the

 9

entire network lifetime, and 19 of them had non-zero betweenness values for some time

during the conference. Since drawing 19 nodes’ temporal betweenness behavior is

visually not comprehensible, Figure 3 presents information for only four nodes.

Figure 3 - Over-time betweenness centrality values for four selected nodes that have zero
betweenness centrality in the final, aggregated snapshot of the SocioPatterns social network.

 Figure 3 depicts multiple attendees whose betweenness centralities are non-zero

during various intervals, although they appear to have zero betweenness centrality at the

final snapshot of the network due to formation of new, shorter paths over time. As

attendees keep interacting, new communication paths are formed through introduction of

people to one another. In such cases, new introductions may lead to new, shorter paths

and an attendee that used to be a part of the shortest paths may not necessarily be on the

shortest paths any more. However, such attendees are more central to the community than

the attendees whose betweenness centralities remain as zero for the entire lifetime of the

 10

network. For instance, the attendee shown in Attendee-1 (drawn in pink) is only active in

the first half of the network’s lifetime, which indicates Attendee-1 as a prominent person

in the field, who did not attend the second half of the conference while the other

attendees continued communicating with one another. As another example, all other

attendees shown in Figure 3 are more central than Attendee-2, who had a very low non-

zero betweenness centrality for a very short time period, around the 3861st – 6117th

updates. Similarly, all attendees investigated in detail in Figure 3 are more central than all

other nodes that have zero betweenness centrality for the entire lifetime of the network.

 Considering only the betweenness values obtained at the final, static snapshot of a

network, it is not possible to distinguish the entities that have the same final centrality

values, potentially generating misleading results for dynamic networks that change over

time. Hence, understanding the temporal behavior of centrality values is important,

especially when there is need for further differentiation of entities’ importance. This

makes the incremental algorithms proposed in this dissertation valuable especially for

cases when it is very costly to compute the over-time behavior of centrality values.

1.6 THESIS ORGANIZATION

The first part of this thesis focuses on the problem of costly computation of the

shortest path based social centrality metrics in dynamically changing networks and

proposes incremental algorithms for computing closeness and betweenness centrality in

less computational time while handling the different network types and updates. To make

the algorithms proposed in this dissertation more generalizable to even larger networks,

 11

the second part of this dissertation covers k-centrality extensions and potential

applications of incremental centrality algorithms to clustering (e.g. modified Girvan-

Newman algorithm for finding groups) and wireless network analysis. The third and final

part of this thesis reports experiments on a wide variety of synthetic and real-life dynamic

networks to evaluate the behavior of algorithms on different network topologies and on

networks with different sizes and densities.

Towards this end, the remainder of this dissertation is structured as follows.

Chapter 2 provides background information and reviews the related work available in the

current literature. Chapter 3 discusses the algorithmic framework including the network

types and updates supported by the algorithms developed in this dissertation. In Chapter 4

and Chapter 5, the incremental closeness and the incremental betweenness algorithms are

described, respectively. Chapter 6 discusses the k-centrality extensions and potential

application of incremental centrality metrics on clustering and wireless networks

vulnerability analysis and channel access scheduling. Chapter 7 describes the details of

the synthetic and real-life networks used in the performance evaluations. Chapter 8

reports the performance results obtained. Finally, Chapter 9 concludes the dissertation by

highlighting the key findings and potential directions for future research.

1.7 DYNAMIC NETWORK DATASETS USED

In this dissertation, both synthetic and real-life datasets are used to measure the

performance of incremental centrality algorithms. For synthetic networks, we use a

 12

variety of topologies generated using preferential attachment [10], Erdos-Renyi [11], and

small-world [12] network generation mechanisms.

Real life networks to be examined in more detail are as listed follows:

• Socio Patterns Dataset [8]

• Facebook-like Online Student Forum Network [13] [14]

• High-Energy Physics Scientific Co-Authorship Networks [15]

• User-to-User Twitter network about news about sanctions on Iran [16]

• Peer-2-Peer (P2P) File Sharing Network [17]

1.8 SUMMARY OF CONTRIBUTIONS

As mentioned above, the first part of this thesis designs incremental algorithms

for closeness centrality and betweenness centrality to accommodate the needs of

dynamically changing, streaming social networks. Hence, the contributions of the first

part of this dissertation are the design, implementation, and the analysis of the

algorithmic complexity of four incremental centrality computation algorithms in which

the accuracies of the centrality values are perfectly maintained (i.e., no approximations

are employed) across multiple updates:

• Incremental closeness centrality algorithm (Growing network updates Chapter 4.3)

• Incremental closeness centrality algorithm (Shrinking network updates Chapter 4.4)

• Incremental betweenness centrality algorithm (Growing network updates Chapter 5.3)

• Incremental betweenness centrality algorithm (Shrinking network updates Chapter 5.4)

 13

The second part of this dissertation focuses on potential extensions and

applications of the above mentioned algorithms. For the extensions, the plan is to adapt

working principles of k-centralities into incremental centrality algorithms listed above

and propose a new set of algorithms that can be applied to very large networks. The k-

centralities approximate and speed up shortest path based centralities by only considering

the first k-hop neighborhoods of nodes, instead of considering the shortest paths across

the entire network [18]. As far as the applications go, one particular application is to

demonstrate the use of streaming social centrality metrics in designing faster grouping

(clustering) algorithms and analyzing over-time behavior and evolution of social agent

and content based networks. The contributions for this part include the design of the

following additional algorithms:

• Incremental k-closeness centrality algorithm (Chapter 6.2)

• Incremental k-betweenness centrality algorithm (Chapter 6.3)

• Incremental edge betweenness centrality that handles shrinking network

updates and incorporation of incremental edge betweenness centrality into the

Girvan-Newman clustering algorithm [19]. (Chapter 6.5.1)

 14

CHAPTER 2 BACKGROUND AND RELATED WORK

 This chapter reviews research available in the current literature that is closely

related to the work presented in this dissertation. First, background information on social

centrality metrics is presented, followed by a review of research done on closeness and

betweenness centrality metrics. Then, background information and literature review on

incremental algorithms, dynamic all-pairs shortest path algorithms, and clustering

algorithms are presented.

2.1 SOCIAL NETWORK ANALYSIS AND CENTRALITY METRICS

A social network (SN) is a social structure consisting of a group of people that are

connected by various relationships such as friendship, family ties or common interests

and beliefs. Social networks are traditionally modeled and analyzed as graphs where the

social actors (i.e., people) are represented as nodes while the relationships between the

people are represented by the links drawn between the nodes on these social network

graphs.

Research on social networks in the past 60 years or so has led to a wealth of

findings about the structure and evolution of these networks and a host of metrics and

tools for assessing, forecasting, and visualizing network behavior more generally. The

three major mathematical underpinnings of social network methods are graph theory,

statistical and probability theory, and algebraic models [1]. Historically, much of the

relevant work in social networks analysis (SNA) was applied to assessing the behavioral

 15

patterns and social interactions among human beings using graph theoretic metrics. SNA

centrality measures focus on finding the key actors in a social network. To date, hundreds

of social centrality metrics have been designed and discussed in the literature for

evaluating the prominence/importance of the actors in the network from different aspects

[20] [21] [1] [22] [23] [24].

However, a significant number of publications analyzing social networks consider

only a handful of metrics: degree centrality, eigenvector centrality [25], closeness

centrality [26], and betweenness centrality [27] [28]. Out of these four metrics, the former

two focus on the connections of nodes while the latter two focus on the overall topology

and the shortest path in the networks. Table 2 lists the meanings and common usages of

these key metrics. Depending on the research question at hand, one centrality metric

might become more important than the others because each metric provides insights into

different aspects of the networks and has different implications and usages.

Table 2 - Common centrality metrics used in social network analysis.

Measure Definition Common Usage
Degree Centrality Node with most

connections
Identifying sources for intel

Betweenness
Centrality

Connection between
disconnected groups

Reducing/controlling/influencing
activity by disconnecting groups

Closeness Centrality Node that is closest to all
other nodes

Information spreading and rapid
access to information

Eigenvector Centrality Nodes connected to most
highly connected nodes

Identifying who can mobilize
others in the network

Degree based metrics consider the number of connections a node has. In binary

networks, degree centrality of a node is simply defined as the number of its connections

while in weighted networks this definition is extended to include the total weight of the

 16

immediate connections a node has. Another degree based centrality measure, spectral

centrality, is a recursively-calculated metric, which defines an actor/node as prominent if

another prominent actor points to it. Eigenvector centrality is another metric used for key

actor identification, which defines the centrality value of a node to be proportional to the

sum of centrality values of all its neighbors. In other words, it is used for finding the node

that is most connected to other highly connected nodes, indicating a stronger capital.

Unlike degree-based metrics, geodesic distance based metrics focus on the

network topology, the connections, and the distances between the nodes. Closeness

centrality of a node evaluates its information propagation efficiency. For any node-X,

closeness centrality is defined as the inverse of the sum of distances from node-X to all

other actors in the network. Betweenness centrality is defined as the number/fraction of

the best (shortest) paths that pass through a node-X. For instance, in a clustered network,

a node that is high in betweenness is likely to be a node that connects two clusters.

Another centrality metric derived from betweenness centrality is bridging centrality.

Bridging centrality of a node-X is calculated by multiplying its betweenness centrality

value by a bridging coefficient such that it indicates how well the node-X is positioned

among nodes with high degree centralities.

The initial design point for all of these centrality metrics, including betweenness,

was static snapshots of small networks (e.g. 20-30 nodes) [27]. And the limiting

algorithmic complexities and computation times of centrality measures were not a

significant problem for such small, static networks. However, restricting the

representation of social networks to static snapshots has been shown to result in

 17

substantial information loss in several studies, especially when the dynamic nature of

social relationships is of interest [29].

Currently, there is an increasing trend toward dynamic network analysis (DNA).

Dynamic network analysis is useful for analyzing social networks that evolve over time

and serves as a response to the concerns about the limitations of analyses performed on

static snapshots of social networks. However, keeping the costly-to-compute centrality

metrics up to date in dynamic networks that rapidly change/grow due to several

thousands of updates becomes almost infeasibly costly from a computation time

perspective. This is because many important centrality metrics such as betweenness

require re-solving the all-pairs shortest path problem with every update/change made to

the network. Expensive computation times inhibit many social network researchers from

analyzing over-time variations of centrality values on time-variant networks. To maintain

solutions to costly problems on continually changing networks, we propose using

incremental algorithms that update the solution to a problem after an incremental change

is made to the network structure [30]. Next, we discuss some of the research on dynamic

network analysis, then review the literature on the centrality metrics for which

incremental algorithms are discussed in this dissertation in more detail.

2.1.1 Background on Dynamic Network Analysis

Relations in social networks are often dynamic and changing over time.

Longitudinal networks are studied by researchers in several fields (e.g. sociologists,

anthropologists, computer scientists, statistical physicists, etc.) to understand network

 18

evolution, belief formation, friendship formation, diffusion of innovations, acquisition and

dissipation of power, spread of deviant behavior, emergence and evolution of communities

etc. [31]. One traditional way of collecting longitudinal network data for analysis is to

repeat the same information collection method (e.g. survey) over the same community at

different points in time which results in two or more snapshots of the same network.

Early research on longitudinal network analysis dates back to 1960’s. One of the first

studies in longitudinal networks is that of Newcomb’s where he studied the evolution of

friendship in US college fraternity, and published his research in 1961 [32]. Another

famous example from 1969 is the Sampson’s monastery [33], where Sampson stayed

with a group of monks as an experimenter on vision and collected data at three different

points in time to capture changes within the group over time. With recording/archiving of

more data, it is also possible to have detailed information certain events (e.g. birth/death)

for several time periods (e.g. generations).

Recently, automated online data collection techniques have brought a different

dimension to dynamic network analysis by enabling collecting over-time data that has

more than a handful of snapshots. In the ideal case, we would prefer to collect and

analyze streaming network data where each update is recorded with a timestamp as soon

as it takes place, which are the types of datasets that are under investigation in this

dissertation.

While data collection is one aspect of dynamic network analysis that is different

than conventional social network analysis, the analyses that can be performed,

information to be extracted or inferred, and the scope of questions one can find answers

 19

to are different as well. Dynamic network analysis provides a means for seeking answers

to research questions from a broader perspective, through time. A few, questions that one

can find answers to using dynamic network analysis over social network analysis can be

listed as follows:

• How do different contact sequences and interactions among the agents in a dynamic

network influence dynamical processes?

• How do the distributions of links in dynamic networks change over time?

• How to control diffusion, spreading, contact, information, knowledge, money, and

resource flow processes for networks over time?

• How do the influence, prestige, and prominence of agents in a network change over

time?

The last one of these questions can be answered by investigation of centralities

over time. This dissertation primarily designs new incremental algorithms for computing

two of the most commonly used shortest path based centrality measures (e.g.

betweenness centrality and closeness centrality), which are discussed in detail in the

following sections.

2.1.2 Literature Review on Closeness Centrality

Closeness centrality is a commonly used social centrality metric and it can have

different uses/meanings in different contexts. Closeness centrality is defined as the

inverse of the sum of distance from a node x to all other nodes in the network. Closeness

centrality of a social actor describes the actor’s efficiency for information propagation

 20

across the entire network. In other words, social actors with high closeness centrality

values are considered to be efficient at making contact with others in the network. High

closeness centrality is also regarded as representing high potential for independent

communication.

In the context of technological networks, such as wireless networks, closeness

centrality identifies nodes that have rapid access to information (e.g. nodes that are close

to many other nodes on average). Since closeness centrality is inversely proportional to

the sum of the distances to all other nodes, it also provides an estimate of how long it will

take information to spread from a certain node to all other nodes in a network. Hence, it

can also be used as a performance measure in technological networks [4]. For instance in

[3], a channel access scheduling scheme (a resource allocation mechanism) is proposed

where the nodes with higher closeness centralities are assigned a higher number of slots.

In such a mechanism, the nodes that are “close” to all other nodes in the network (i.e. the

nodes with high closeness centrality) get to deliver the majority of the messages, thus the

end-to-end throughput the end users in the network experience is improved. Closeness

centrality has also been used as a malware containment strategy in cellular mobile

networks [34]. Nodes with high closeness centrality are used to dispatch rapid patches so

that cellular resource consumption and associated costs due to malware spread are

reduced.

As another example, in [35], the authors discuss the use of closeness centrality for

policy-making networks (e.g. drug policy making). In the context of policy-making

 21

networks, the actors that have information that is crucial to all other actors in the network

are expected to have high closeness centrality for the network to function effectively.

An interesting observation about closeness centrality, that comes from research on

citation networks, is that the papers that are high in closeness centrality are usually

relatively recent papers, which have rapid access to information in other papers. Since

citation networks are directed and acyclic, older papers cannot cite newer papers. In other

words, the older papers do not have paths to access more recent papers while they are

accessible by other, newer papers. Therefore, the distance from a newer to older paper is

defined (e.g. a real number) while the distance from an older to a newer paper is

undefined (e.g. set to infinity). Hence, closeness values of newer papers will be

considerably higher than those of older papers and closeness rankings have been shown

to be useful for identifying more recent papers when the citation network is provided

without publication dates [15].

As we mentioned earlier, closeness centrality is one of the most commonly used

metrics in social network analysis. Hence, it should be understood that there are several

others papers that employ closeness centrality and that the preceding discussion simply

provides a few examples of the applications of closeness centrality in social network

analysis. There exist other studies that discuss the extensions of closeness centrality

metrics for dynamic, complex networks [36]. There has also been research on new

methods to select top-k nodes in terms of closeness in large-scale networks [37],

algorithms for approximation of closeness [38], the robustness of closeness centrality in

 22

terms of accuracy in the case of missing data [39], and incremental algorithms for

network management and analysis based on closeness centrality [40].

2.1.3 Literature Review on Betweenness Centrality

In the field of social network analysis, betweenness centrality is one of the most

commonly used metrics. The original argument and the algorithm for calculating

betweenness centrality were introduced by Freeman [27]. Currently, the majority of the

implementations for betweenness centrality use Brandes’ algorithm or a variant of it [28].

Betweenness is critical in part because actors high in betweenness have social power to

get things done [25], in scientific networks they are likely to be interdisciplinary [41] and

have high mobility [15], and the removal of high betweenness nodes is likely to cripple

network capability more than the removal of other nodes; e.g., nodes with high degree

centrality [42]. Betweenness is often highly correlated with other network metrics;

however, the degree of correlation depends on the network topology such that their

correlation is lower in fractal networks [43]. Betweenness, however, is a fragile metric

[44] that changes easily as the network structure changes [45].

 Therefore, the number of studies that focus on betweenness is significant. A

group of studies on betweenness centrality focus on its variants. One such work is that of

Everett and Borgatti’s where the authors discuss betweenness centrality of the ego in an

ego network [46]. Another work that specifically focuses on the variants of betweenness

centrality is [47]. In [47], Brandes discusses several ways of generalizing betweenness

 23

centrality including scaling of values with respect to length, inclusion of end-points in the

path, computation of edge betweenness, group betweenness, and many others.

 Another set of variants of betweenness centrality focus on incorporating over-time

information into the definition of betweenness for dynamically changing graphs. To give

a few examples, [48] proposes a model that reduces time-varying interactions in a

network to directed flows on a static network to compute traditional, static centrality

measures. On the other hand, [49] focuses on the general class of path-based metrics and

introduces a new way of computing centrality measures by integrating time in the form of

memory retention (i.e., aging/decaying of information over time) and accounting for the

length of retention as well. The authors of [50] have a broader perspective, and propose

temporal closeness and betweenness centrality metrics, which incorporate time into the

computation of these metrics based on the temporal network model that is previously

proposed in [51]. The temporal network idea in these two papers is based on reachability

concept which emphasizes that not all nodes are reachable to one another right from the

start as an aggregate form of the network suggests; they become reachable over time with

the inclusion of new edges. In [52], the authors focus specifically on betweenness

centrality and propose three different methods of incorporating time into the computation

of betweenness centrality via explicit time-based ordering of edges. Similarly, [53] also

uses time ordering to analyze centralities of nodes on complete worldwide airport

transportation network, which results in design of new centrality measures (e.g. time-

dependent transfer centrality and time-dependent connection centrality) that incorporate

sequence of event arrivals and time orderings in centrality measures.

 24

 In contrast to these studies we do not change or extend the definition of

betweenness; we rather focus on faster computation methods for the original betweenness

metric in dynamically evolving networks. Another very recent study focuses on speeding

up the exact computation of betweenness centrality using two different heuristics [54].

The first heuristic is used for identifying and contracting the structurally equivalent nodes

that have the same centrality and the same contribution to the centrality of others. The

second heuristic used focuses on partitioning the network into several smaller

components and computing betweenness centrality on them. Although [54] focuses on

speeding up betweenness computation, the suggested heuristics are geared towards

handling static network snapshots; and does not focus on maintaining betweenness

centrality across several network updates as it is done in this dissertation. In [55], the

authors present a streaming betweenness algorithm for the fast computation of

betweenness centrality in the case of edge insertions for binary networks. The main idea

of [55] is based on modifying the breadth-first search tree that is built as a part of the

shortest path search process in binary networks when computing betweenness centrality.

In addition to binary networks, the algorithms proposed in this dissertation cover

weighted networks while providing support for a wide variety of network update types

including edge/node insertions and removals as well as edge cost modifications.

Another approach that is closely related to our work is QuBE that focuses on

quickly updating betweenness centralities without computing all-pairs shortest paths in

the network [56]. The idea of QuBE depends on estimating the nodes whose betweenness

values might change due to an update in a network and quickly restoring them while

 25

avoiding computation of all-pairs shortest paths. Further comparisons against the QuBE

algorithm are provided in Chapter 8.4.2.2.

Other than the studies discussed so far, there are also other studies that investigate

how betweenness centrality changes with time varying networks instead of proposing a

new metric or computation method for it. For instance, in [45], the authors investigate

how betweenness values change when the density and the structure of the network

change dynamically.

Betweenness is also commonly discussed within the concept of vulnerability of

networks to different attacks since it is useful for identifying the nodes that might

partition the network when they are removed. One such work, [42], notes that removal of

the nodes with the highest betweenness values (i.e. remove the node with the highest

betweenness value, recalculate betweenness values on the remaining network) is more

harmful than the betweenness or degree centrality values computed on the initial,

complete form of the network.

There are also other papers on betweenness centrality discussing its properties

from different perspectives. For instance, [41] investigates the meaning of betweenness

centrality in the context of scientific networks and suggests that betweenness centrality is

actually a good indicator of interdisciplinarity for authors that publish in different fields.

In [15], it is further discussed that in scientific networks betweenness centrality can also

indicate high-mobility for authors that have co-authors from different affiliations they

have visited; connecting/bridging different communities. Apart from these studies,

betweenness centrality has also become a topic of interest for more mathematical or

 26

statistical physics based research such as [43], where the authors examine the correlation

between degree and betweenness centrality and show that the correlation between these

centrality measures is weaker in fractal models compared to non-fractal models.

 Another line of research involves examining the studies done on the approximation

of betweenness centrality. For instance, [57] approximates betweenness centrality by

performing adaptive sampling that selects a number of source (seed) nodes to calculate

the shortest paths from. As another example, [58], discusses scaling the betweenness

contributions of nodes’ with respect to their distance from the sampled source (seed)

nodes. In [59], a new metric called k-path centrality is defined which relies on the

assumption that communication messages travel across k paths at most and a randomized

algorithm for its computation is proposed.

Approximation techniques are important for providing important tradeoffs

between performance and accuracy and they are very important for larger networks.

Hence, approximation algorithms for closeness and betweenness centralities are

examined further in Chapter 6.

 There are a number of techniques proposed for parallelization of betweenness

centrality [60] [61] [62] [63] [64]. Out of these papers, [60] by Bader and Madduri is the

one that proposed the first parallel implementations of betweenness centrality along with

other parallel algorithms for the commonly used social network analysis techniques and

centrality metrics. In [61], Madduri et al. propose a lock-free parallel algorithm for

betweenness centrality and evaluate their algorithm on massive complex networks. The

authors of [61] also provide optimized implementations designed for the massively

 27

multithreaded Cray XMT system with the Threadstorm processor. In [62], the authors

propose a parallel algorithm for computing betweenness centrality and the novelty of

their algorithm lies within the handling of access conflicts for a CREW PRAM algorithm.

CREW PRAM stands for Concurrent Read Exclusive Write (CREW) Parallel Random

Access Machine (PRAM) where simultaneous reads of the same memory cell are allowed

while only one process can write to an individual memory cell. The authors of [63] note

the problem with the additional space requirements of the betweenness algorithm which

requires quadratic space when parallelization is performed over the vertex set of the

standard betweenness algorithm (Brandes’ algorithm [28]) and proposes a solution to

reduce the space consumption of the parallel algorithm to O(|V| + |E|). The solution

proposed in [63] is designed to work with Concurrent Read Concurrent Write (CRCW)

PRAM systems where simultaneous reads and writes on the same memory cell are

allowed. More recently, there is also work on computing betweenness centrality on

systems such as IBM Cyclops64 [64] and GPUs [65]. There are also papers on specific

applications of parallelized betweenness centrality computations on complex networks

such as the US power grid and resilience and response in the case of an emergency [66].

2.2 INCREMENTAL ALGORITHMS

 An incremental algorithm is an algorithm that updates the solution to a problem

after an incremental change is made on its input [30]. Incremental algorithms arrive at

solutions for computationally complex problems in an efficient manner without

recomputing everything from scratch by preserving substantial information from prior

 28

computations. They present a tradeoff between incremental computation time and

additional storage requirements for intermediate results.

An incremental algorithm is different from its static counterpart that performs all

computations from scratch. The application of an incremental algorithm is as follows. At

one point, an initial run is performed by a non-incremental algorithm that performs the

desired computation from scratch. Despite their limited use in social network analysis so

far, incremental algorithms have been used in several different areas: computer aided

design, artificial intelligence, programming languages, database maintenance and data

analysis, networked systems, and graph based computations. Next, I briefly review their

uses in these above-mentioned areas to give a better understanding of what incremental

algorithms mean to researchers from different fields.

Incremental computation and optimization is very important for VLSI CAD tool

development [67] [68]. For instance, assume that a researcher is building a circuit and

changing the layout structure by adding new connections between two different blocks,

which in turn changes the shortest paths and the associated wiring costs and delays at

every step. In such a case, incremental algorithms, rather than computing the shortest

paths from scratch, are used to provide reduced computation time for a smoother human-

computer interaction for the end user. Circuit-related incremental algorithms have been

the topic of several research studies [68] [69] [70].

In the early days of artificial intelligence, incremental algorithms have been used

for truth maintenance systems [71] [72]. A truth maintenance system (TMS) is a problem

solver subsystem for reasoning programs and it makes inferences based on the reasons

 29

and beliefs that are recorded and maintained in the system. A TMS also allows agents to

choose their actions based on their beliefs and assumptions and to revise those beliefs and

assumptions when the assumptions held by the system contradict the discoveries made

[71]. More recently, incremental algorithms are increasingly used for decision-making

systems, especially in the field of robotics. To name a couple, various incremental

algorithms have been proposed for deployment (i.e. using information on what has

already been deployed when deploying a new instance) [73], or updating the solution

after an incremental change is made on the training sample on learning procedures [74]

[75].	

In the field of programming languages research, language processing algorithms

for interactive of programming tools/systems, expression evaluation via function caching

(memoization) [76], high-level programming language design [77], and the design of

compilers that re-compile the code after an incremental change or provide loop

optimizations especially benefit from incremental algorithm design as they need to

handle changes in the background triggered by small changes in the input [78]. The

POPL’93 paper, [79], provides a thorough categorized bibliography on incremental

computation examples covering the literature until the date of its publication going

beyond the field of programming languages. As an example to more recent studies in this

field, in [80], the authors build on work on dynamic dependence graphs (e.g. [81], [82])

and discuss combining memorization with the computation of dynamic dependence

graphs and present experimental performance results.

 30

In the field of database management and data analysis, there are a number of

problems that are discussed that need and benefit from solutions based on incremental

algorithms. Algorithms for computing database queries incrementally are called

incremental view maintenance techniques and such techniques have been studied in the

context of propagation of changes in both relational [83] and nested data collections [84]

[85] [86], mostly focusing on object additions and deletions, leaving attribute

modifications out. Later, incremental computation of complex queries has been studied

for object-oriented database (OODB) query languages that allow construction of

composite objects and nested collections [87] [88] [89].

Other examples of incremental algorithms emerge from networked systems such

as dynamic routing over the Internet [90], and analysis/monitoring of network anomalies

or user pattern where new data arrives continuously. Analysis/monitoring of such data is

usually performed in a sliding window fashion where a full recomputation is needed

across the entire window every time the window slides. Sliding window analysis

techniques can be improved by using incremental algorithms that efficiently update the

output by reusing the old sub-computations, adding new data, and dropping the oldest

data. In a recent study, [91], the authors discuss the performance of the incremental

sliding-window analysis including URL propagation on Twitter and the 95th percentile

distance between users using the data collected by Glasnost measurement servers [92].

 There are also many other incremental algorithm studies done in the field of

graph theory and algorithms, some of them date back to 1970s [93]. More recent

studies done in this field focus on computing solutions for graph-based problems in

 31

dynamically growing graphs. One such example is [94] where the authors propose an

incremental algorithm for graph pattern matching with a focus on subgraph isomorphism

that computes changes to the matches in response to the updates on large-scale graphs.

Although pattern matching on graphs is one of the topics that are actively researched

these days, I should point out that this is an active topic for almost thirty to forty years

[95] and the use of incremental algorithms in this context has been discussed since early

1980s [96]. Some of the other graph problems incremental algorithms are used include

online updating of minimum spanning trees [97] [98], graph connectivity [99] [100], and

maintenance of transitive closures and transitivity [101].

Although incremental algorithms are commonly used in other research fields, they

are relatively under-explored in the field of social network analysis. This dissertation

targets the problem of rapidly computing closeness and betweenness centralities of nodes

for each snapshot of a dynamically updated network. In our case, the incremental

algorithms use information from earlier computations such that the changes in the input

(e.g. network structure) are reflected on the output values (e.g. centrality values) to

handle various network updates such as edge cost modifications (in the case of weighted

networks), node/edge insertions, and node/edge deletions. The benefit of an incremental

algorithm is that by being able to build on prior computations, an incremental algorithm

is able to perform early pruning and update only the affected parts of the network while

avoiding recomputation to the extent possible.

 32

2.3 DYNAMIC ALL-PAIRS SHORTEST PATH ALGORITHMS

 The second set of studies related to our research is the set of studies on dynamic

shortest path computations. As noted earlier, the computations of closeness and

betweenness centrality are tightly coupled with solving the all-pairs shortest paths

problem. In the literature, there are many different techniques proposed for solving the

all-pairs shortest paths problem dynamically [102] [103] [104] [105]. However, some of

these techniques come with a number of restrictions. For instance, [103] solves the all-

pairs shortest paths problem in networks that have positive integer edge costs that are less

than a certain number, b, which is a serious limitation for networks whose edges are

positive real valued. Another algorithm, the algorithm of Demetrescu and Italiano [102],

depend on the notions of locally shortest paths and locally historical paths. A path is a

locally shortest path if the paths obtained by deleting its first or last edge on the path are

both shortest paths. According to this notion, empty paths and edges are considered to be

locally shortest paths. While a shortest path is a locally shortest path by definition, a

locally shortest path may not necessarily be a shortest path. A locally historic path is a

path that has been identified as a shortest path at some point and has not been modified

since then. The main idea is to maintain dynamically the set of locally historical paths

including the shortest paths and the locally shortest paths as special cases.

 In this dissertation, the Ramalingam and Reps dynamic all-pairs shortest path

algorithm [104] is used as a basic building block for a number of reasons. First, the

Ramalingam and Reps algorithm provides an easy to understand framework and clearly

 33

distinguish between different network update types (e.g. growing versus shrinking

network updates). Second, the Ramalingam and Reps algorithm is one of the most

commonly used dynamic all-pairs shortest paths algorithms, and has been deployed

practical industrial applications. For instance, the dynamic shortest path algorithms

developed by Ramalingam and Reps have been used by AT&T to improve the

performance of Open Shortest Path First (OSPF) [106], the most commonly used intra-

domain routing protocol on the Internet [107]. Third, it has good performance compared

to other dynamic all-pair shortest path algorithms available in the literature. In 2006,

Demetrescu and Italiano have published a study that performs an experimental analysis of

the dynamic all-pairs shortest paths algorithms available in the literature [108]. As it has

also been pointed out in Demetrescu and Italiano’s paper [108], the Ramalingam and

Reps algorithm performs quite well on sparse, real-life networks and the compute times

of Ramalingam and Reps’ algorithm and Demetrescu and Italiano’s algorithm are quite

close.

 The underlying computing platform plays a role in determining which dynamic

all-pairs shortest path algorithm performs better. In experiments done with real life

networks (presented in [108]), the Ramalingam and Reps algorithm has the lowest or one

of the lowest compute times among all the dynamic all-pairs shortest paths algorithms

compared in that paper. The authors state that Demetrescu and Italiano’s algorithm’s

performance gets better with the increased cache size while the Reps and Ramalingam

algorithm is likely to become faster as the number of nodes increases because

Demetrescu and Italiano’s algorithm maintains more global structures and requires more

 34

memory while the Ramalingam and Reps algorithm requires less space and exhibits

better locality in the memory access pattern. Since supporting an increasing number of

nodes is important for dynamically growing social networks and it has overall good

performance, we have decided to use the Ramalingam and Reps dynamic all-pairs

shortest path algorithm as a building block in the design of incremental centrality

algorithms.

2.3.1 Ramalingam and Reps Dynamic All Pairs Shortest Paths Algorithm

 The incremental centrality algorithms proposed in this dissertation build on the

Ramalingam and Reps dynamic all pairs shortest path algorithm presented in [104].

Hence, the working principles and the underlying key ideas of the Ramalingam and Reps

algorithm are briefly reviewed here. In [104], the authors start by posing the dynamic

single sink shortest path problem where the shortest path tree into a single sink

(destination) node is maintained across incremental updates. In this context, the shortest

path tree represents the shortest paths from every possible source node into the sink node,

and the sink node is a distinguished node v in a network G, the shortest paths to which are

calculated. A source node is a node that is the origin/starting point of a path. The working

principles of the incremental single sink shortest path algorithm is similar those of the

Dijkstra’s algorithm [109]. Thus, the edges in the studied networks are expected to have

positive edge costs.

In the following sections of their technical report [104], the authors extend the

ideas and the algorithms designed for the single source shortest path problem into a

 35

solution for the dynamic all-pairs shortest path problem. Both single-sink and all-pairs

shortest path algorithms depend on identifying the set of nodes that are affected by an

incremental network update. In the all-pairs shortest paths algorithms, the sets of affected

sink and affected source nodes are identified and the rest of the computations are

performed on these reduced subsets, which are mostly much smaller than the entire

network size. The incremental all-pairs shortest paths algorithm designed by Ramalingam

and Reps have two distinct pieces: (i) deleting an edge and (ii) inserting an edge, and a

separate algorithm is designed for each case. The algorithms for edge deletion are the

DELETEEDGE (Algorithm-1) and the DELETEUPDATE (Algorithm-2) while the algorithms

for edge insertion are the INSERTEDGE (Algorithm-3) and the INSERTUPDATE (Algorithm-

4). The entry point for execution is the INSERTEDGE algorithm when a new edge is

inserted and the DELETEEDGE algorithm when an existing edge is removed.

To process edge deletions, at a very high level, the idea is to look for affected

nodes whose distances to a particular sink node have now increased and to update those

distances accordingly. The proposed all-pairs shortest path algorithm idea depends on the

solution for the single-sink shortest path problem: the same graph is traversed twice, once

in forward direction, once in backward direction. When the edges are traversed in a

backward fashion the sink nodes that are identified to be affected would actually be the

affected source nodes if the graph were to be processed in a forward fashion in all

directions. This is an attempt to restrict the traversal complexity, which may become

unbounded if it were not forced stick with the shortest paths only, either processed

forward or backward. Once the affected sink nodes are identified, then the algorithm

 36

Algorithm–2: DELETEUPDATE (G, src, dest, z)
1. AffectedVertices ← ∅
2. if there does not exist x ∈ Succ(src) such that SP(src, x, z)
3. Workset ← {src};
4. while Workset ≠ ∅
5. u ← pop (Workset)
6. Add u to AffectedVertices
7. for x ∈ Pred(u) such that SP(x, u, z)
8. if (all y ∈ Succ(x) such that SP(x, y, z) and y ∈ AffectedVertices)
9. push x into Workset
10. PriorityQueue ← ∅
11. for a ∈ AffectedVertices
12. minDst ← min({C(a, b) + D(b, z) | {a →b} ∈ E(N) & b ∉ AffectedVertices}, {∞})
13. D(a, z) ← minDst
14. if D(a, z) ≠ ∞
15. Insert (PriorityQueue, a, D(a, z))
16. while PriorityQueue ≠ ∅
17. a ← extractMin(PriorityQueue)
18. for c ∈ Pred(a) such that C(c, a) + D(a, z) < D(c, z)
19. D(c, z) ← C(c, a) + D(a, z)
20. if c ∈ PriorityQueue
21. DecreaseKey (PriorityQueue, c, D(c, z))
22. else
23. Insert (PriorityQueue, c, D(c, z))
24. return AffectedVertices

attempts to find a new path to every sink node starting from the modified or removed

edges head and tail nodes. This part of the problem is handled by the DELETEUPDATE

algorithm (Algorithm-2).

Algorithm–1: DELETEEDGE (G, src, dest, c)
1. C(src, dest) ← c; 𝐶!(dest, src) ← c
2. AffectedSinks ← DELETEUPDATE (𝐺!, dest, src, src)
3. AffectedSources ← DELETEUPDATE (G, src, dest, dest)
4. for s ∈ AffectedSinks
5. DELETEUPDATE (G, src, dest, s)
6. for s ∈ AffectedSources
7. DELETEUPDATE (𝐺!, dest, src, s)

 37

2.4 CLUSTERING ALGORITHMS

This dissertation investigates clustering algorithms as one potential application area

for the proposed incremental centrality algorithms. Clustering is defined as the process of

organizing objects into groups whose members are similar in some way [110] [111].

Clustering is a very widely studied research area, and to date, several clustering

algorithms have been proposed, which can be classified in various ways [112].

Algorithm–3: INSERTEDGE (G, src, dest, c)
1. C (src, dest) ← c; 𝐶!(dest, src) ← c
2. AffectedSinks ← INSERTUPDATE (𝐺!, dest, src, src)
3. AffectedSources ← INSERTUPDATE (G, src, dest, dest)
4. for s ∈ AffectedSinks
5. INSERTUPDATE (G, src, dest, s)
6. for s ∈ AffectedSources
7. INSERTUPDATE (𝐺!, dest, src, s)

Algorithm–4: INSERTUPDATE (G, src, dest, z)
1. Workset ← {src → dest}
2. VisitedVertices ← src
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x → y} ← pop (Workset)
6. if C (x, y) + D (y, z) < D (x, z)
7. Add x to AffectedVertices
8. D (x, z) ← C (x, y) + D (y, z)
9. for u ∈ Pred(x)
10. if SP (u, x, src) and u ∉ VisitedVertices
11. push {u → x} into Workset
12. Insert u into VisitedVertices
13. return AffectedVertices

 38

One plausible way of classifying clustering algorithms is to consider how

different groups are formed: partitional or hierarchical.

Partitional clustering algorithms (e.g. k-means, DBSCAN [113]) produce

unnested grouping, which simply divides data into several groups based on a clustering

criterion. These kinds of algorithms usually try to minimize a cost function or optimality

criteria where a cost is associated to each cluster instance. Some of these algorithms are

probabilistic where the input is a number of observations from a set of k unknown

distributions. Each data point is assumed to belong to a single distribution and several

efficient Expectation-Maximization schemes exist to perform the optimization iteratively

[114]. Due to its simplicity, the k-means algorithm is one of the first clustering algorithms

that were proposed. In the k-means algorithm, each point is assigned to one of the k

clusters initially. Then, the center of each cluster is replaced by the mean of that cluster.

These two steps are repeated until convergence. A point is assigned to a cluster that is

close to it in terms of the distance function that is being used (e.g. Euclidian distance).

Although the idea is simple, the outcome is very much dependent on the distance

function (Euclidian distance or some other specially defined function), and can get stuck

in local minima, which is an effect of the sensitivity to the initial assignments. In

addition, obtaining meaningful clusters with such algorithms usually involves

assumptions and/or prior knowledge about the data to assign correct parameters for the

algorithm of choice [115].

On the other hand, hierarchical clustering algorithms produce dendrograms by

splitting or merging groups based on similarity criteria. A dendrogram is a hierarchical

 39

tree formed of nested series of partitions. Hierarchical clustering algorithms can be

further grouped as agglomerative and divisive clustering algorithms. Agglomerative

clustering algorithms form clusters by merging subgroups (e.g. single link clustering

[116], group-averaging clustering, complete link clustering [117] [118]). In

agglomerative clustering, initially, each object is a unique cluster on its own and the

closest clusters are successively merged in a bottom-up fashion until a single cluster

remains and the output is usually represented in the form of a dendrogram. In contrast,

divisive clustering algorithms form a dendrogram by splitting larger groups into smaller

groups in a top-down fashion (e.g. Girvan-Newman [19] [119], DIVCLUST-T [120],

DHSCAN [121]). The divisive clustering algorithms start with one, all-inclusive cluster

and keep splitting until only singleton clusters of individual points remain. The

differences between different divisive algorithms stem from how the algorithms decide to

split the clusters at each step and how the actual splitting is done [122].

In addition to classifying them as partitional or hierarchical, it is also possible to

categorize clustering algorithms in other ways. One plausible way of classifying

clustering algorithms is to classify them based on their outputs. The output of a clustering

algorithm can be (i) hard (strict) or (ii) fuzzy (overlapping) clusters. In strict partitioning

algorithms, an object is assigned to only one cluster [123]. In fuzzy clustering, objects

have varying degrees of membership in different groups and can be members of several

of different clusters to different extents. Hence, an object is allowed to belong to multiple

clusters with certain degrees of membership [124]. Given the additional computations

required for calculating the degrees of memberships for each object, fuzzy clustering

 40

algorithms are computationally more complex and incur higher overhead compared to

their hard (strict) clustering counterparts. Fuzzy clustering algorithms are particularly

useful when the boundaries among different clusters in the data are not well defined and

separated. Fuzzy clustering algorithms also enable the discovery of potentially more

sophisticated relationships among objects and the clusters they belong to.

To date, hundreds of clustering algorithms have been proposed. Herein, we only

briefly review how this huge body of work can be categorized at a very high level. The

references regarding the literature on clustering algorithms have been collected in a

number of survey papers and books [111] [112] [115] [122] [123] [125].

One algorithm of interest for this dissertation is the Girvan-Newman clustering

algorithm [19]. The Girvan-Newman clustering algorithm is a hierarchical, divisive

clustering algorithm that removes the edges in a graph based on the betweenness values

of the edges. Chapter 6.5.1 discusses the details of the Girvan-Newman clustering

algorithm and the proposed variations of it available in the literature, along with the

modifications proposed to make it work with the incremental centrality algorithms

proposed in this dissertation.

 41

CHAPTER 3 ALGORITHMIC FRAMEWORK AND NOTATION

3.1 NETWORK TYPES

The algorithms proposed in this dissertation are designed to work on single-mode,

dynamic networks with positive edge weights/costs, including directed/undirected and

binary/weighted networks. The algorithms proposed in this dissertation have similar

working principles to those underlying Dijkstra’s algorithm so they are not designed to

handle negative edge costs.

Undirected (bidirectional) networks model relationships that are mutually

maintained. Undirected (bidirectional) networks can be considered as a special case of

directed networks. Undirected networks can be represented as directed networks where

the edge {x − y} is represented using two directed edges {x → y} and {y → x}.

Similarly, binary networks can also be represented as a special case of weighted

networks where the existing edges’ weights/costs are always equal to 1. Therefore,

directed, weighted networks provide the most generalized coverage of different network

types. Thus, throughout this dissertation, the pseudocodes of algorithms designed to

handle positively weighted, directed networks are presented.

3.2 NETWORK UPDATE TYPES

For each centrality metric examined in this dissertation, two sets of algorithms

will be designed to handle two separate classes of network updates. Broadly, network

 42

updates can be classified into two: (i) growing network updates, and (ii) shrinking

network updates. These two classes of network updates interact differently with the

structure of the shortest paths in the network. Growing network updates may result in

shorter paths or new shortest paths of equivalent length while shrinking network updates

may result in longer paths. Since they interact differently with the structure of the shortest

paths in a network, there is need for designing two sub-algorithms for each centrality

metric; one for each class of network updates. For both classes of network updates, the

proposed algorithms focus on unit changes, handling each modification in the network

one at a time.

3.2.1 Growing Network Updates

The first group of updates, the growing network updates, includes (i) inserting a

new node, (ii) inserting a new edge, and (iii) decreasing the cost of an existing edge. We

call them ‘growing network updates’ because networks usually grow by new

agents/actors joining the network (e.g. inserting a new node), new relationships or

interactions observed among agents in a network (e.g. inserting a new edge), or existing

relationships becoming stronger due to increased communication/interaction levels.

The growing network updates may result in new shorter paths or additional

shortest paths of equal length. Consider the following scenario. Assume that a new edge

{x→ y} is incrementally inserted into network G. However, the node x did not exist

before this update. Then, this update will result in the insertion of a new node x and the

discovery of a number of shortest path that start from node x and reach out to the rest of

 43

the network through node y. Or, consider a different scenario. An edge {u→ z} is inserted

where both nodes u and z existed before the update and node u was able to reach to node

z following a number of edges. Now, with the insertion of the edge {u→ z}, there might

be new paths that are shorter, using the edge that has just been inserted. Or, it may result

in the formation of additional shortest paths without changing the shortest distance, just

increasing the redundancy in terms of the number of available shortest paths. However, it

is not necessarily guaranteed that growing network updates will result in new shortest

paths. They may not have any effect on the shortest paths in the network and do not

propagate far in the network. However, they cannot result in any longer paths.

The growing network updates can be handled by a single algorithm. Insertion of a

new node with no edges (e.g. an isolated node) has no effect on the shortest paths in the

network, requiring no further action for the update. Insertion of a new node with one or

more edges is equivalent to inserting one or more edges to or from the new node.

Therefore, an algorithm designed to handle inserting new edges into a network can also

be used to handle inserting new nodes into the network. Inserting a new edge can indeed

be represented as a special case of the network update that decreases the cost of an edge.

Because inserting a new edge corresponds to decreasing the cost of an edge from infinity

to a real, positive value in the adjacency matrix. Hence, a single algorithm will be

sufficient to cover all three sub-types of growing network updates.

 44

3.2.2 Shrinking Network Updates

Similar reasoning is also applicable for the second class of updates, the shrinking

network updates. Shrinking network updates include (i) deleting an existing node, (ii)

deleting an existing edge, and (iii) increasing the cost of an existing edge. We call them

‘shrinking network updates’ because they are usually observed due to existing

actors/agents departing from the network or broken/weakening relationships among

agents.

The shrinking network updates may result in longer paths or have no effect on the

construction of the shortest paths in the network. However, they cannot result in any

shorter paths. For instance, when a node x is removed from the network, the shortest

paths to and from node x should be removed as well. Assume another scenario. There is

an edge that has a very high edge cost and it is not used by any of the shortest paths in the

network. When this edge is deleted, then there are no changes in the shortest paths.

However, when an edge {x→ y} that lies on the shortest paths is removed or its cost

increased, then we may need to look for new shortest paths (which will have to be longer

than what we had before the network update) or eliminate the shortest paths that pass

through {x→ y}.

Handling the deletion of a node with several edges reduces to several edge

deletions to handle the deletion of each edge emanating from and/or entering into the

deleted node. Similarly, deleting an existing edge can be represented as a special case of

the network update that increases the cost of an edge. This is because deleting an existing

edge corresponds to increasing the cost of an edge from a real, positive value to infinity

 45

in the adjacency matrix. Hence, a single algorithm will be sufficient to cover all three

sub-types of shrinking network updates.

3.3 NOTATION

This section discusses the terminology and notation used in this dissertation. A

directed network G consists of a set of nodes 𝑉(𝐺) and edges 𝐸(𝐺) where n is the

number of nodes, and m is the number of edges in the network. The number of nodes and

edges can also be represented as |𝑉 𝐺 | and |𝐸 𝐺 |, respectively. {x → y} ∈ 𝐸(𝐺)

represents an edge directed from node x to node y, where x ∈ 𝑉(𝐺) is a predecessor of y,

and y ∈ 𝑉(𝐺) is a successor of x. 𝑃𝑟𝑒𝑑(𝑥) is used to denote all predecessors of node x in

the network 𝐺. 𝑃! 𝑦 denotes the set of predecessors of node y on the shortest paths from

node x. In other words, 𝑃!(𝑦) is a subset of 𝑃𝑟𝑒𝑑(𝑦); 𝑃! 𝑦 ⊆ 𝑃𝑟𝑒𝑑(𝑦). 𝐺 is the

transpose (reverse) of network 𝐺 where all edges in network 𝐺 are reversed in direction.

Similar to network 𝐺, the set of edges, nodes, and edge costs are defined for network 𝐺 as

well.

In weighted networks, each edge e in the network has a weight 𝑊 𝑒 associated

with the edge, which might denote the strength of the relationship between two actors in a

social network. However, the weight of an edge should not be confused with the cost of

the edge, 𝐶 𝑒 . In this framework, the weight and cost of edges are interpreted as the

inverse of one another such that having a stronger, closer relationship (i.e. higher weight)

is inversely proportional to the effort to communicate (i.e. lower communication cost).

 46

To be more precise, if the weight of an edge 𝑒 is 2 (𝑊 𝑒 = 2), then, the cost of

traversing the edge e is 0.5 (𝐶 𝑒 = 0.5). We assume that C (𝑒) > 0 for 𝑒 ∈ 𝐸(𝐺). The

length of a path Path is defined as the sum of the costs of the edges on Path. The distance

from node 𝑥 to node 𝑦 is the length of the minimum length path from node 𝑥 to node 𝑦,

which is also called the shortest path.

The algorithms proposed in this dissertation maintain additional information. D(x,

y) denotes the shortest distance while σ(x, y) denotes the number of distinct shortest paths

from node x to node y. 𝐶! and 𝐶! are vectors of length n, holding the betweenness and

closeness centrality value of each node in the network, respectively. BE is a vector of

length m that holds the edge betweenness values of the edges in the network.

I(a, z) denotes the set of intermediate nodes on the shortest paths from node a to

node z. Similarly, IE(a, z) denotes the set of edges that are on the shortest paths from node

a to node z. SP(x, y, z) is true if the edge {x → y} ∈ 𝐸(𝐺) is on a shortest path from node

x to node z, satisfying the two conditions: (i) there is a path from node x to node z (i.e. the

distance from node x to node z is D(x, z) ≠ ∞) and (ii) D(x, z) = C(x, y) + D(y, z). SP is

false otherwise [104].

Finally, as a part of the related work, single source shortest path based algorithms,

the Dijkstra’s algorithm [109] and the Brandes’ betweenness algorithm [28], are also

discussed. In these algorithms, single source shortest distance information is stored in

vector d. The d[v] holds the shortest distance to the destination node v where the source

node is implicit. Similarly, P[v] indicates the predecessors on the shortest paths to the

destination node v where the source node is again implicit.

 47

CHAPTER 4 INCREMENTAL CLOSENESS ALGORITHM

This chapter presents the design of an incremental algorithm for closeness

centrality that handles various types of network updates including addition, removal, and

modification of nodes and edges. Closeness centrality was selected as the focus for this

chapter for two reasons. The definition of closeness centrality depends entirely on the

shortest distances across all pairs of nodes in the network. The information on the

shortest distance between pairs of nodes is inherently required by all shortest path based

metrics. This means that the incremental methods discussed in this chapter are

generalizable to other metrics with shortest path computation as their core speed

limitation. Most other shortest path based centrality metrics are not as generic as

closeness centrality and require additional information such as the number of shortest

paths between nodes, the predecessors and/or successors on these shortest paths.

Therefore, we start incremental algorithm design for social centrality measures with the

closeness centrality.

4.1 DEFINITION & COMPUTATION OF CLOSENESS CENTRALITY

Closeness centrality 𝐶! 𝑥 of node 𝑥 is defined as the inverse of the sum of the

distances between 𝑥 and all other nodes in the network as formulated in Eq(1). In Eq(1),

𝐷 𝑥,𝑦 denotes the shortest distance from node x to node y.

𝐶! 𝑥 = !
! !,!!!!

 Eq(1)

 48

Figure 4 - Example network.

Figure 4 depicts a sample network and we walk through the computation of the

closeness centrality, 𝐶! , for each node in the network as laid out in Table 3. Each edge is

label with its cost. In Table 3, each row represents a node x, and each column in the table

represents a node to which node x’s shortest distance is calculated. The rightmost

column, ‘Total’, represents the sum of all the defined distances from node x to all other

nodes in the network.

Table 3 - Computation of closeness centralities for the network depicted in Figure 4.

 Distance To
Node

1 2 3 4 Total

1 0 1 2 3 6

2 ∞ 0 1 2 3

3 ∞ 2 0 1 3

4 ∞ 1 2 0 3

The closeness centrality, 𝐶! , of each node is calculated by inverting the total value

at its corresponding row: 𝐶! 1 = 1/6; 𝐶! 2 = 1/3; 𝐶! 3 = 1/3; and 𝐶! 4 = 1/3.

Computation of closeness centrality can be performed by running an all-pair shortest

paths algorithm (e.g. Floyd-Warshall algorithm [126]), which directly results in O(n3)

time complexity.

 49

Closeness centrality is traditionally best computed by running a single-source

shortest path algorithm (e.g. the Dijkstra’s algorithm [109]) using each node as the source

node once. At each iteration, the distances found are summed up to obtain the total

distance from a given source node, and the total distance is then inverted to obtain the

closeness value of the source node. In directed networks, the Dijkstra’s algorithm [109]

has O((n + m)logn) complexity, where n denotes the number of nodes, m denotes the

number of edges in the network. This complexity is achieved when a binary min-heap is

used in the implementation of the priority queue. A faster run-time of O(m + nlogn) can

be achieved by implementing the priority queue using a Fibonacci heap [127]. When

Dijsktra’s algorithm is invoked using every node in the network once as the source node

to compute all-pairs shortest paths, the overall complexity is O(mn + n2logn). The

algorithmic complexities of both the Floyd-Warshall algorithm and the Dijkstra’s

Algorithm–5: DIJKSTRA’S SINGLE-SOURCE SHORTEST PATH ALGORITHM (G, src)
Input: A network G(V, E) and source node src.
Output: Shortest path distances from src to all nodes n V(G) are computed.
1. for v ∈ V(G)
2. d [v]← ∞
3. P[v] ← empty list
4. d [s] ← 0
5. Q ← w ∈ V(G)
6. while Q ≠ ∅
7. dequeue u ← Q
8. if d [u] = ∞
9. break;
10. for neighbor v of u
11. alt ← d [u] + C (u, v)
12. if alt < d [v]
13. d [v] ← alt
14. P[v] ← u
15. decrease-key v in Q

 50

algorithm are sufficiently high that they are very costly to re-execute for keeping

centrality values up-to-date in dynamically changing, large networks every time the

network is updated. Hence, this dissertation proposes incremental centrality algorithms to

address this problem and avoid the cost of recomputing all the shortest paths from scratch

for keeping centrality values up to date at every network update.

4.2 INCREMENTAL CLOSENESS ALGORITHM: HIGH-LEVEL OVERVIEW

To compute closeness centrality incrementally for streaming, dynamically

changing social networks, the incremental all-pairs shortest paths algorithm proposed by

Ramalingam and Reps [104] [105] is extended such that closeness values are

incrementally updated in line with the changing shortest path distances in the network.

Figure 5 - Abstract figure describing that the entire network is not affected by an update or
modification done on the network.

At each network update, there is only a subset of the network that is affected; the

entire network is not affected. Assume that there are two nodes called 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡 in a

network, and an edge from 𝑠𝑟𝑐 to 𝑑𝑒𝑠𝑡, {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}, is inserted as shown in the

abstract Figure 5.

In such a scenario, there will be a subset of nodes that are affected by this change.

For instance, with the insertion of the edge {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}, the paths from node 𝑠𝑟𝑐 to

 51

node 𝑑𝑒𝑠𝑡 and to some of the AffectedSinks might now be using a new path that passes

through the newly inserted edge {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}. Similarly, there will be a number of

AffectedSource nodes that will now access the node 𝑑𝑒𝑠𝑡 and/or some of the

AffectedSink nodes using the newly inserted edge {𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡}. In most real life

networks, we usually do not encounter edges that lie on all the shortest paths between all

pairs of nodes and that are being continuously updated. Therefore, there is usually a fairly

large portion of the network that is not necessarily affected by a network update.

Figure 6 - Abstract figure describing how affected sink and source nodes are selected and how
early pruning is done.

Before moving on to the low level details of how the shortest path distances and

closeness centrality values are updated, I describe (i) how affected sink and source nodes

are identified and (ii) how early pruning of shortest paths is performed at a high level.

Consider the case when the edge 𝑠𝑟𝑐 → 𝑑𝑒𝑠𝑡 is inserted to a network as

depicted in Figure 6. Updating the shortest paths and closeness centralities starts with the

inserted edge. The edges that are on the shortest paths are followed to ensure propagation

of the shortest path updates as far as needed. In Figure 6, the edges that are drawn with

solid lines are the edges on the shortest paths, and they are considered for subsequent

processing later in the execution to see if the update should propagate any further. The

 52

edges that are drawn with dashed lines are not on the shortest paths. The gray nodes that

are accessible from those edges represent the nodes are not affected by the incoming

network update; hence, they are pruned early from recomputation. The set of black nodes,

which are either the head or the tail of one of the shortest path edges, form the set of the

affected sink and source nodes.

The following sections (Chapter 4.3 and Chapter 4.4) describe how to find the

affected set of nodes, and how to update the closeness centralities while updating the

shortest paths to/from the affected nodes.

Finally, for generalization purposes, Figure 6 depicts a directed graph. However,

an undirected graph can simply be handled by converting each undirected edge {a — b}

into two edges in opposite directions {a→b} and {b→a}.

4.3 INCREMENTAL CLOSENESS ALGORITHM: GROWING NETWORK

UPDATES

When a growing network update is issued (e.g. insertion of a new node/edge or

edge cost decrease), the incremental computation of closeness centrality is handled by

two sub-algorithms: INSERTCLOSENESS and INSERTUPDATECLOSENESS. The main entry

point for execution is the INSERTCLOSENESS algorithm.

4.3.1 INSERTCLOSENESS

The INSERTCLOSENESS algorithm invokes the INSERTUPDATECLOSENESS algorithm

several times to ensure identification of all affected source and sink nodes and to

 53

maintain closeness centrality values and the shortest distances to/from those nodes

accurately. INSERTCLOSENESS first invokes INSERTUPDATECLOSENESS to find the set of

AffectedSink and AffectedSource nodes, passing once the source, once the destination of

the inserted edge as a parameter to it (Lines 2–3 of INSERTCLOSENESS). Then,

INSERTUPDATECLOSENESS is invoked for each AffectedSink and AffectedSource (Lines 4–

7 of INSERTCLOSENESS) to update the information required for accurate maintenance of

closeness values in line with the newly discovered, shortest paths (e.g. D for the shortest

distance between each node pair).

4.3.2 INSERTUPDATECLOSENESS

In the INSERTUPDATECLOSENESS algorithm, the list Workset holds the set of edges

that should be processed to detect formation of new shortest paths or existing paths

becoming shorter. Since closeness centrality is computed as the inverse of sum of the

distances from a node to all other nodes in a network, the only information needed is the

Algorithm–6: INSERTCLOSENESS (G, src, dest, c)
Input: A network G(V, E) for which shortest distances between all nodes (D) and
closeness values of all nodes (Cc) are pre-computed. A newly inserted or modified
edge {src→dest}, with a cost of c where c < C (src, dest).
Output: Network G(V, E) updated with the edge {src → dest}. The shortest path
distances between all nodes (D) and closeness values of all nodes (Cc) updated.
1. C (src, dest) ← c; 𝐶!(dest, src) ← c
2. AffectedSinks ← INSERTUPDATECLOSENESS (𝐺!, dest, src, src)
3. AffectedSources ← INSERTUPDATECLOSENESS (G, src, dest, dest)
4. for s ∈ AffectedSinks
5. INSERTUPDATECLOSENESS (G, src, dest, s)
6. for s ∈ AffectedSources
7. INSERTUPDATECLOSENESS (𝐺!, dest, src, s)

 54

shortest distances between all pairs of nodes (represented as D). It is not necessary to

know the number of shortest paths, the predecessors on these shortest paths, etc.

Assume that the shortest path distances and closeness centralities of nodes are

already computed for a given network. In the case of a network update, we only need to

update the closeness centrality of a node x if the shortest distance from node x to any

other node in the network changes. We check for the changes in the shortest distances

using the condition given in Line-6 of the INSERTUPDATECLOSENESS algorithm. If this

condition holds, it means that there is now a path from node x to node z which is strictly

shorter than the previously known shortest path from x to node z and this new path uses

the edge {x → y}. Hence, the distance from node x to node z (i.e. D(x, z)) should be

updated to hold the cost of this newly discovered path (i.e. C(x, y) + D(y, z)) (Line–14 of

INSERTUPDATECLOSENESS).

Before the previous value of D(x, z) is overridden with the new value, Lines 8–13

of the INSERTUPDATECLOSENESS algorithm handle the accurate maintenance of closeness

centrality. To update closeness centrality value of node x accurately, it is first necessary

to check if node z was previously reachable from node x (e.g. D(x, z) ≠ ∞). If it was

reachable before, then it means the distance from node x to node z had a contribution to

the closeness centrality of node x. In this case, it is necessary to first subtract the

previously known shortest distance from node x to node z (e.g. D(x, z)), and then add the

new shortest distance (e.g. C(x, y) + D(y, z)) to the sum of distances to all other nodes

from node x. Otherwise, nothing is subtracted, only the new shortest distance is added to

 55

the sum of distances from node x. Finally, closeness centrality of node x is obtained by

inverting the total distance (INSERTUPDATECLOSENESS, Line 13).

The final part of the INSERTUPDATECLOSENESS algorithm (Lines 15–17) performs

checks for subsequent processing. This part of the algorithm also prunes the portions of

the network that are not affected by the changes in the shortest paths. For each edge {u →

x} entering into the affected node x, it is checked to see if the edge {u → x} is on the

inspected shortest paths. If SP returns true, and if the other end of the edge (node u) is not

Algorithm–7: INSERTUPDATECLOSENESS (G, src, dest, z)
Input: A network G(V, E), a newly inserted or modified edge {src → dest}, and an
affected node z.
Output: The shortest distances (D) to the affected node z are updated, and closeness
values (Cc) of the sources of the updated distances are also updated.
1. Workset ← {src → dest}
2. VisitedVertices ← src
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x → y} ← pop (Workset)
6. if C (x, y) + D (y, z) < D (x, z)
7. Add x to AffectedVertices
8. TotDist(x) ← 1

𝐶𝑐(𝑥)

9. if D (x, z) ≠ ∞
10. TotDist(x) ← TotDist(x) – D (x, z) + C (x, y) + D (y, z)
11. else
12. TotDist(x) ← TotDist(x) + C (x, y) + D (y, z)
13. 𝐶!(𝑥) ←

!
!"#$%&#(!)

14. D (x, z) ← C (x, y) + D (y, z)
15. for u ∈ Pred(x)
16. if SP (u, x, src) and u ∉ VisitedVertices
17. push {u → x} into Workset
18. Insert u into VisitedVertices
19. return AffectedVertices

 56

in the list of already processed nodes, the edge {u → x} is inserted in the set of edges that

would need subsequent processing.

4.4 INCREMENTAL CLOSENESS ALGORITHM: SHRINKING NETWORK
UPDATES

Next, the algorithms for incremental maintenance of closeness values in the case

of shrinking network updates (e.g. node/edge deletions or edge cost increases) are

presented. Following an approach similar to that of Chapter 4.3, shrinking network

updates are handled by two sub-algorithms: DELETECLOSENESS (Algorithm–3) and

DELETEUPDATECLOSENESS (Algorithm–4).

4.4.1 DELETECLOSENESS

The DELETECLOSENESS (Algorithm–8) follows a very similar logic to that of the

INSERTCLOSENESS (Algorithm–6).

After updating the edge cost matrix for the modified/deleted edge (Line-1 of

Algorithm–8), the DELETEUPDATECLOSENESS algorithm (Algorithm–9) is invoked several

Algorithm–8: DELETECLOSENESS (G, src, dest, c)
Input: Network G(V, E) for which shortest distances between all nodes (D) and
closeness values of all nodes (Cc) are pre-computed. A modified edge {src → dest}
with a cost of c, where c > C(src, dest).
Output: Network G(V, E) updated with the changes on the edge {src → dest}. The
shortest distances between all nodes (D) and closeness values of all nodes (Cc) are
also updated.
1. C(src, dest) ← c; 𝐶!(dest, src) ← c
2. AffectedSinks ← DELETEUPDATECLOSENESS (𝐺!, dest, src, src)
3. AffectedSources ← DELETEUPDATECLOSENESS (G, src, dest, dest)
4. for s ∈ AffectedSinks
5. DELETEUPDATECLOSENESS (G, src, dest, s)
6. for s ∈ AffectedSources
7. DELETEUPDATECLOSENESS (𝐺!, dest, src, s)

 57

times: first, to identify affected sink and source nodes and then, to process each affected

sink and source node separately.

4.4.2 DELETEUPDATECLOSENESS

The DELETEUPDATECLOSENESS algorithm (Algorithm–9) has two distinct phases.

The first phase of the DELETEUPDATECLOSENESS algorithm is between Lines 1–14 while

the second phase is between Lines 15–39. The first phase of the algorithm identifies the

set of affected nodes. In this case, affected nodes are the nodes whose shortest distances

to node z (the third parameter of the algorithm) have increased. The shortest path distance

from node x to node z may only increase if the network update is made on an edge which

used to lie on all the shortest paths from node x to z and all the available shortest paths

from node x to node z pass through the modified/deleted edge (i.e. when there is no

alternative shortest paths which would still be shorter). The check for this condition is

performed in Lines 12–13 of the DELETEUPDATECLOSENESS algorithm.

The second phase of the DELETEUPDATECLOSENESS algorithm determines the new

shortest path distance from all affected nodes identified in the first phase of the algorithm

to node z (the third parameter of the algorithm). The new shortest path distances to node z

are kept in a min-key priority queue where the priority of a node corresponds to its

distance to node z.

Nodes’ closeness centralities are also updated in the second phase of the

DELETEUPDATECLOSENESS algorithm. To be more precise, closeness centrality values are

updated whenever a D value is changed (Lines 18–25 and Lines 29–35). The idea behind

the closeness updates is similar to the idea described in Chapter 4.3. However, in this

 58

case additional checks are performed to avoid updating closeness values with a distance

that was just set to infinity. Because, shrinking network updates might disconnect two

nodes that were previously connected, causing the distance between them to be set as

infinity. Line 19 of Algorithm–9 checks if node z was previously reachable from node a

(e.g. D(a, z) ≠ ∞). If it was reachable before, then it means the distance from node a to

node z had a contribution to the closeness centrality of node x. In this case, it is necessary

to first subtract the previously known shortest distance from node a to node z (e.g. D(a,

z)). Next, we update D(a, z) with the new shortest path distance. Since the shortest paths

in the network have changed due to a shrinking network update, it might have resulted in

disconnecting the two nodes a and z, making node z unreachable from node a. In such a

case, there would be no b nodes that would satisfy the condition on Line 17, and the

value of minDst has to be chosen as infinity. Before, updating the total distance from

node a and the closeness centrality of node a, we again need to check whether the current

distance from node a to z, D(a, z), is infinity (Line 22 of DELETEUPDATECLOSENESS) and

if it would contribute to the closeness centrality value of node a (Line 25 of

DELETEUPDATECLOSENESS).

In Line 24, node a is inserted into the priority queue that holds the distances to

node z in ascending fashion. A node is inserted into this priority queue only if its shortest

distance to node z is changed and if it is still able to reach to node z.

 59

Algorithm–9: DELETEUPDATECLOSENESS (G, src, dest, z)
Input: Network G(V, E), deleted or modified edge {src→dest}, and an affected node z.
Output: The shortest distances (D) to the affected node z are updated, and closeness values (Cc) of the
sources of the updated distances are also updated.
1. AffectedVertices ← ∅
2. atLeastOneExists ← false;
3. for x ∈ Succ(src)
4. if SP(src, x, z)
5. atLeastOneExists ← true;
6. break;
7. if atLeastOneExists = false
8. Workset ← {src};
9. while Workset ≠ ∅
10. u ← pop (Workset)
11. Add u to AffectedVertices
12. for x ∈ Pred(u) such that SP(x, u, z)
13. if (all y ∈ Succ(x) such that SP(x, y, z) and y ∈ AffectedVertices)
14. push x into Workset
15. PriorityQueue ← ∅
16. for a ∈ AffectedVertices
17. minDst ← min({C(a, b) + D(b, z) | {a →b} ∈ E(N) & b ∉ AffectedVertices}, {∞})
18. TotDist(a) ← !

!!(!)

19. if D(a, z) ≠ ∞
20. TotDist(a) ← TotDist(a) – D(a, z)
21. D(a, z) ← minDst
22. if D(a, z) ≠ ∞
23. TotDist(a) ← TotDist(a) + D(a, z)
24. Insert (PriorityQueue, a, D(a, z))
25. 𝐶!(𝑎) ←

!
!"#$%&#(!)

26. while PriorityQueue ≠ ∅
27. a ← extractMin(PriorityQueue)
28. for c ∈ Pred(a) such that C(c, a) + D(a, z) < D(c, z)
29. TotDist(c) ← !

!!(!)

30. if D (c, z) ≠ ∞
31. TotDist(c) ← TotDist(c) – D(c, z)
32. D(c, z) ← C(c, a) + D(a, z)
33. if D (c, z) ≠ ∞
34. TotDist(c) ← TotDist(c) + D(c, z)
35. 𝐶!(𝑐) ←

!
!"#$%&#(!)

36. if c ∈ PriorityQueue
37. DecreaseKey (PriorityQueue, c, D(c, z))
38. else
39. Insert (PriorityQueue, c, D(c, z))
40. return AffectedVertices

 60

The final part of the DELETEUPDATECLOSENESS algorithm processes this priority

queue to see if the shortest distances can be further updated. In Line 17, if no b nodes that

would satisfy the update condition were found, then the shortest distance of the node a to

node z was forced to be infinity. Starting with Line 26 of the DELETEUPDATECLOSENESS

algorithm, the shortest paths that are properly discovered earlier in the algorithm are

examined to see if shorter paths that would use them as their sub-paths can be discovered.

The process of searching for new shortest paths is carried out in the form of

ripples expanding outwards. For each node a in the priority queue, we check its

predecessor nodes (c ∈ Pred(a)) and see if the newly discovered shortest distance from

node a to node z is useful in finding a shorter path from node c to node z. When D(c, z) is

successfully updated to a smaller value, the closeness value of node c is also updated in

Lines 29–35, similar to the operations performed earlier in Lines 18–25. In addition, the

priority queue is also updated to hold the new distance of node c to node z as there might

be some other nodes that use D(c, z) as their sub-paths to reach node z. If node c is

already an element of the priority queue its priority is updated with the new shortest

distance, otherwise it is inserted into the priority queue with D(c, z) as its priority.

4.5 COMMENTS ON ALGORITHMIC COMPLEXITY

4.5.1 Run Time Analysis

In this final section of Chapter 4, the algorithmic complexities of the algorithms

proposed in Chapter 4.3 and Chapter 4.4 are discussed. There are different perspectives

 61

on how to evaluate the complexities of incremental algorithms. In some cases, it has been

demonstrated that, in the worst case, no incremental algorithm can perform

asymptotically better than the algorithm that computes everything from scratch [128]

[129]. Because, in the worst case, everything will be updated and the incremental

algorithm will not be able to perform any early pruning. Hence, the worst-case upper

bound time complexity is usually not descriptive enough to discuss the performance

benefits of an incremental algorithm observed in practice over the performance of a non-

incremental algorithm solving the same problem from scratch.

Such research has led to discussions on what is the best way to evaluate the

complexities of incremental algorithms. Complexity analysis for incremental algorithms

usually incorporates the complexity of changes for expressing the time complexity of the

incremental function. For incremental algorithms, a preferred way of discussing their

computational complexity is through the sum of the sizes of the input (e.g. the modified

graph/network) and the output (e.g. modified distance and closeness centrality values).

Next, we discuss the computational complexities of the INSERTCLOSENESS and the

DELETECLOSENESS algorithms in terms of the changes made in the input and output.

The INSERTCLOSENESS algorithm calls the INSERTUPDATECLOSENESS algorithm for

every AffectedSink and AffectedSource node. The INSERTUPDATECLOSENESS algorithm

essentially performs a traversal in the neighborhood of every AffectedSink and

AffectedSource node, respectively. Hence, the complexity of each of these operations is

on the order of O(||Affected||) where ||Affected|| is used to denote the sum of the number

 62

of edges and the nodes in the subgraph formed by the AffectedSource and AffectedSink

nodes’ neighborhoods.

Similar complexity analysis can be performed for the DELETECLOSENESS

algorithm. The DELETECLOSENESS algorithm invokes the DELETEUPDATECLOSENESS

algorithm for every AffectedSink and AffectedSource node. However, the

DELETEUPDATECLOSENESS algorithm is more complicated than the

INSERTUPDATECLOSENESS algorithm. The DELETEUPDATECLOSENESS algorithm has two

distinct phases with different algorithmic complexities. Phase–1 continues until Line–14

and Phase–2 starts with Line–15. Phase–2 makes use of a priority queue, whose time

complexity must be taken into account separately.

In Phase–1, the SP conditions in Lines 12–13 of the DELETEUPDATECLOSENESS

algorithm check the existence of the shortest paths between a predecessor (e.g. x) and a

successor (e.g. y) of node u. This makes the time complexity of Phase–1 to be limited by

O(||Affected||2,z) where the subscript 2 denotes the size of two-hop neighborhood of all

affected nodes and z refers to the last parameter of the algorithm (i.e. the node to which

the shortest path distances are updated). The complexity of Phase–2 is dominated by the

complexity of priority queue, which is denoted by O(|Affectedz| log |Affectedz|). Hence,

the overall time complexity of the DELETECLOSENESS algorithm is bounded by

O(||Affected||2 + |Affected| log |Affected|) where the set of affected nodes is given by the

combination of AffectedSink and AffectedSource nodes.

In terms of time complexity, an advantage of the INSERTUPDATECLOSENESS

algorithm over the DELETEUPDATECLOSENESS algorithm is that the

 63

INSERTUPDATECLOSENESS algorithm does not maintain a priority queue. Since the

growing network updates result in potentially shorter paths, and the shortest distance that

is previously known is the minimum of all, the information we would need is directly

available without needing to maintain a min-first priority queue. All the changes that are

made to update closeness centrality incrementally are of O(1) time complexity.

Therefore, computing closeness centrality along with the dynamic maintenance of the

shortest paths does not increase the overall time complexity.

4.5.2 Memory Consumption and Overhead Analysis

Next, we discuss the theoretical scaling argument of how the memory usage

scales with the problem size for the incremental closeness centrality algorithm. For

solving the single-source shortest path problem, the Dijkstra’s algorithm has O(m+n)

space complexity. This space requirement increases to O(mn+n2) when the Dijsktra’s

single-source shortest path algorithm is run once from each node in the network to

compute and maintain the shortest paths across all node pairs.

The incremental closeness algorithm maintains the original graph and its

transpose (reverse) simultaneously. This duality is of critical importance for achieving a

bounded incremental update algorithm. Hence, the memory requirement increases to

2m+2n for graph representation (i.e. the representation of nodes and edges). The duality

is an algorithmic property inherited from the incremental all-pairs shortest paths

algorithm designed by Ramalingam and Reps. The incremental closeness centrality

algorithm also needs an additional memory space of O(n) for storing the closeness

 64

centrality value of each node. However, the closeness attributes or other attributes do not

need to be maintained for the transpose network; they only need to be maintained for the

original version of the graph. Hence, the closeness centrality values need to be stored

only once in the memory.

The space the incremental closeness centrality algorithm needs to hold the

shortest distance values across all pairs of nodes is O(n2) in the worst case (i.e. O(n2)

distance matrix). To be more precise, for each node, there are 𝑛 − 1 other nodes in the

network it can reach out to. Hence, the precise upper bound for the number of node pairs

for whose distances are defined is 𝑛 𝑛 − 1 = 𝑛2, which is represented as O(n2) in the

worst case in the Big-O notation. We do not need to hold the information for 𝐷 𝑖, 𝑖 , 𝑖 ∈ 𝐺

as 𝐷 𝑖, 𝑖 is always equal to 0 by default. However, a lot of real life networks are very

sparse and the distance matrix does not even need to be stored as an O(n2) matrix; the

sparse representations are preferable. In sparse networks, not every node is reachable

from every other node in the network. More precisely, the data structure that holds the

shortest distance information has Conn(G) entries where Conn(G) represents the number

of node pairs in the network that have a finite shortest distance defined. The only piece of

information that needs to be maintained for the transpose of the graph is the shortest

distances defined on that version of the graph. This adds another Conn(G) entries to the

memory consumption.

Overall, the space complexity of the incremental closeness centrality algorithm is

(2n + 2m + n + 2Conn(G)) which reduces to O(n2 +m). The space complexity of O(n2 +m)

 65

can also be represented as O(n2) given that the worst case value of m (i.e. the maximum

possible number of edges) is O(n2) as well.

In addition to the amount of data that needs to be stored permanently across

several different iterations of the incremental closeness centrality algorithm, another

aspect of the memory consumption is the overhead: the amount of data that is temporarily

stored during the execution of a single incremental network update, and not maintained

across different updates.

There are two sub-algorithms that handle the growing network updates: the

INSERTCLOSENESS algorithm and the INSERTUPDATECLOSENESS algorithm. In the

INSERTUPDATECLOSENESS algorithm, lists of AffectedVertices and VisitedVertices are

maintained as well as a working set of edges (e.g. Workset). Both the AffectedVertices

and VisitedVertices might be of order O(n) while the Workset might be of order O(m) in

the worst case. Hence, the memory overhead per iteration in the worst case is (2n + m),

which can be represented as O(n + m). These data structures are only maintained during

the execution of the INSERTUPDATECLOSENESS algorithm and cleared once the execution

of the algorithm is complete. The INSERTCLOSENESS algorithm maintains two sets of

nodes: AffectedSinks and AffectedSources, which are of order O(n) each. These two

objects are stored during the entire lifetime of an incremental update and cleared once the

network update completes successfully.

Similar memory overhead analysis can be performed for temporarily stored data

for the algorithms that handle the shrinking network updates. There are two sub-

algorithms that handle the shrinking network updates: the DELETECLOSENESS algorithm

 66

and the DELETEUPDATECLOSENESS algorithm. In the DELETEUPDATECLOSENESS algorithm,

lists of AffectedVertices and VisitedVertices are maintained and a set working nodes

(e.g. Workset). The AffectedVertices, VisitedVertices, and Workset are of order O(n) in

the worst case. Hence, the memory overhead per iteration in the worst case is 3n, which

can be represented as O(n). These data structures are only maintained during the

execution of the DELETEUPDATECLOSENESS algorithm and cleared once the execution of

the algorithm is complete. Similar to the INSERTCLOSENESS algorithm, the

DELETECLOSENESS algorithm maintains two sets of nodes: AffectedSinks and

AffectedSources, which are of order O(n) each. These two objects are stored during the

entire lifetime of an incremental update and cleared once the network update completes

successfully.

As the analyses done on the performance and memory usage suggest, different

network features have different effects on both the performance and memory

consumption. For instance, if a network has several small, disconnected components,

then the network’s diameter and average shortest path length are likely to be smaller than

they would be otherwise. In addition, Conn(G) is also likely to be smaller, which is one

of the main values that make up the memory consumption of the incremental centrality

algorithms. Another effect this would have is that the number of nodes that are affected

by the incremental network update is likely to be smaller, which reflects as increased

performance as the percentage of the affected nodes decreases.

Another feature that might affect the level of connectivity, Conn(G), which

represents the number of node pairs that are connected, is whether a network is directed

 67

or undirected (bidirectional). When a network is undirected, if a node x can reach to

another node y, then node y can reach to node x as well. However, this is not necessarily

true when the edges in a network are directed. Hence, when a network is undirected

(bidirectional), Conn(G) is likely to be higher, which reflects as a potential increase in the

memory consumption and the percentage of nodes affected by an incremental network

update as well as a potential decrease in the performance speedup that can be obtained.

4.5.3 Comments on Accuracy

The algorithms presented in this chapter are the modified versions of the dynamic

shortest path algorithms proposed in [104] to incorporate the accurate computation of

closeness centrality. In other words, the incremental closeness centrality algorithms

presented in this chapter has no loss in the accuracy of closeness centrality values. Both

in the INSERTUPDATECLOSENESS algorithm and the DELETEUPDATECLOSENESS algorithm,

the closeness centrality of a node x is updated only when the shortest distance from x to

another node is updated. Hence, accurate maintenance of closeness centrality values

depends strictly on the accurate maintenance of the shortest distances, whose correctness

was proved in [104]. The reader is referred to [104] for more details on the proof of

correctness regarding the shortest path updates.

One important point to watch out while implementing these incremental

algorithms is how the floating-point numbers are handled. If the intention is to match the

results produced by the non-incremental algorithms that compute closeness centrality,

then both the incremental and the non-incremental closeness centrality algorithms should

 68

handle the floating-point numbers using the same epsilon value, 𝜀. Two real numbers 𝑎

and 𝑏 are considered equal if 𝑎 − 𝑏 < 𝜀, where 𝑎 − 𝑏 denotes the absolute value of

(𝑎 − 𝑏). The conditions that test whether a path is a shortest path compare the length of

the path against the shortest distance to look for equality. Such conditional checks lie at

the heart of both the incremental and non-incremental algorithms and govern how the rest

of the network update propagates in the network and how the rest of the shortest path

trees are built. Hence, the conditional checks that test the equality/inequality of the

shortest path distances should be supported by an epsilon range. The epsilon value used

in our implementations was 10-7.

For verification, every time the incremental algorithm was run, the standard non-

incremental algorithm was also run and the results compared. Once we took the same

epsilon into account in both, the results of both the incremental algorithm and the

standard algorithm were identical in every case. Further comments on verification can be

found in Chapter 8.7.

 69

CHAPTER 5 INCREMENTAL BETWEENNESS

This chapter presents the design of an incremental algorithm for betweenness

centrality that handles various types of network updates including addition, removal, and

modification of nodes and edges. First, we provide the formulation of betweenness

centrality for weighted, directed networks and discuss traditional algorithms for

computing betweenness centrality. Then, the proposed incremental betweenness

algorithm is presented, along with the details of the sub-algorithms designed FOR

handling growing and shrinking network updates. Finally, the algorithmic complexities

and generalization to other shortest path based problems are discussed.

5.1 DEFINITION & COMPUTATION OF BETWEENNESS CENTRALITY

Betweenness centrality of a node 𝑖 is defined as the fraction of the shortest paths

that pass through node 𝑖 across all pairs of nodes. Let 𝜎(!,!) be the number of shortest

paths from 𝑗 to 𝑘 and 𝜎(!,!)(𝑖) be the number of shortest paths from 𝑗 to 𝑘 that contain

node 𝑖, where 𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘.

𝐶! 𝑖 =
! !,! !

! !,!

!!!!!∈! ! 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘

The value of 𝐶!(𝑖) depends on the number of nodes in the network G. To

calculate the betweenness centrality of node 𝑖,𝐶!(𝑖) is then normalized by the number of

possible node pairs that do not involve 𝑖: Betweenness(𝑖) = 𝐶!(𝑖)/((𝑛 − 1)(𝑛 − 2))

 70

As a centrality metric based on the shortest paths between nodes, betweenness

centrality requires information on the number of shortest paths between any node 𝑖 and 𝑗

where 𝑖 ≠ 𝑗, and the intermediate nodes on each shortest path.

Figure 7 - Example network.

Figure 7 depicts a sample network with edge costs as indicated on the edges. We

walk through the computation of the 𝐶! value of each node in the network as laid out in

Table 4. Each column in Table 4 represents a node pair (i, j) where i ≠ j, while rows

represent the nodes in the network.

Table 4 - Computation of betweenness centralities for the network depicted in Figure 7.

 1,2 1,3 1,4 2,1 2,3 2,4 3,1 3,2 3,4 4,1 4,2 4,3

1 -- -- -- -- 0 0 -- 0 0 -- 0 0

2 -- 1 2 1 2 -- -- -- 0 -- 0 0 -- 1

3 0 -- 1 0 -- 1 -- -- -- 0 0 --

4 0 0 -- 0 0 -- 0 1 -- -- -- --

 Consider the computation of 𝐶! 2 . From node 1 to node 3, there are two shortest

paths: one of them follows the edge {1 → 3}; the other one follows the edges {1 → 2},

{2 → 3}. Out of these two paths, node 2 appears on only one of them. Hence, the

contribution of pair (1, 3) to 𝐶! 2 is 1/2. This notion is called ‘pair dependency’. In this

 71

case, the dependency of the node pair (1, 3), δ!,!, on node 2 is δ!,! 2 = 0.5. Next,

consider the computation of 𝐶! 3 . When the shortest paths from node 1 to 4 are

considered, there are again two different shortest paths: {1 → 2, 2 → 3, 3 → 4} and {1 →

 3, 3 → 4}. However, node 3 appears on both paths. Therefore, the contribution of pair (1,

4) to 𝐶! 3 is 2/2 = 1. The 𝐶! value of each node is calculated as the sum of values at its

corresponding row: 𝐶! 1 = 0; 𝐶! 2 = 2;𝐶! 3 = 2;𝐶! 4 = 1. The normalized

betweenness centrality value of each node is then calculated by dividing 𝐶! values by (3

× 2) = 6, which is equal to the total number of pairs that do not involve the node whose

betweenness value is computed.

5.2 TRADITIONAL ALGORITHMS FOR COMPUTING BETWEENNESS

CENTRALITY

In its most naïve form, betweenness can be computed by augmenting an all-pairs

shortest paths algorithm (e.g. Floyd-Warshall [126]) with path counting. Having obtained

the information on the number of shortest paths between each node pair and the

intermediate nodes on these shortest paths, a O(n3) nested for loop (e.g. O(n) invocations

of a O(n2) loop to sum up dependencies for each node) is then run to compute the 𝐶!(𝑖)

of each node 𝑖, where n is the number of nodes in the network.

In 2001, Brandes published his research on faster computation of betweenness

centrality which yields O(nm + n2logn) performance for a weighted network where n is

the number of nodes in the network and m is the number of edges [28]. Brandes’

 72

algorithm has become the most commonly used implementation of betweenness

centrality.

The idea of Brandes’ algorithm is to exploit the sparseness of large, real life

networks, hence to avoid some of the superfluous work done in O(n3) algorithms. To

exploit sparseness, path counting is performed by running the Dijkstra’s single-source

shortest path algorithm [109] once for each node, which also naturally discovers all the

Algorithm–10: BRANDES’ BETWEENNESS ALGORITHM (G)
Input: A network G(V, E).
Output: Betweenness values of all nodes n V(G) are computed.
1. CB [] ← 0, v ∈ V(G)
2. for s ∈ V(G)
3. S ← empty stack
4. P[w] ← empty list, w ∈ V(G)
5. σ [t] ← 0, t ∈ V(G); σ [s] ← 1
6. d [t] ← -1, t ∈ V(G); d [s] ← 0
7. Q ← empty queue
8. enqueue s into Q
9. while Q ≠ ∅
10. dequeue v ← Q
11. push v into S
12. for neighbor w of v
13. if d [w] < 0
14. enqueue w into Q
15. d [w] ← d [v] + 1
16. if d [w] = d [v] + 1
17. σ [w] ← σ [w] + σ [v]
18. append v into P[w]
19. δ [v] ← 0, v ∈ V(G)
20. while S ≠ ∅
21. pop w ← S
22. for v ∈ P[w]
23. δ [v] ← δ [v] + ! [!]

! [!]
 .(1 + δ [w])

24. if w ≠ s
25. CB [w] ← CB [w] + δ [w]

 73

shortest paths from the selected source node and the predecessors on these paths. Thus,

the Brandes’ algorithm benefits from avoiding the computation of unrelated pair

dependencies in the network by only focusing on the nodes in the predecessor lists on the

shortest paths discovered by the Dijsktra’s shortest path algorithm.

The pseudocode for the Brandes’ betweenness algorithm provided in Algorithm–

10 is the original version of the algorithm as discussed in his paper [28]. This version of

the algorithm is designed for computing betweenness centrality in unweighted graphs.

This is why in Lines 15 and 16 of Algorithm–10, we use increments of distance by 1,

instead of using the cost of the corresponding edges between w and v. To make it work

for weighted networks, d [v] + 1 should be replaced with d [v] + C(v, w) where d [v]

denotes the distance of from the source node s to node v and C(v, w) denotes the cost of

the edge {v → w}. In addition, this version of the algorithm makes it more suitable for

undirected edges because in Line 12, all neighbors of node v are considered without

considering the edge orientation. In directed networks, only the successors of node v

should be considered: ‘for neighbor w of v’ should be replaced with ‘for w ∈ Succ(v)’.

However, the most important difference in converting the Brandes’ algorithm presented

above for the weighted, directed networks comes from the implementation of the queue

Q, which is implemented as a higher complexity, min-key priority queue data structure to

handle the differences in distances introduced by the differences in edge weights. The

current distance of a node from the current source node is used as its priority for the

priority queue.

 74

5.3 INCREMENTAL BETWEENNESS ALGORITHM: GROWING NETWORK

UPDATES

This chapter discusses the details of the incremental betweenness algorithm for

handling growing network updates (e.g. edge/node insertion or edge cost decrease). There

are four sub-algorithms we make use of to incrementally maintain betweenness centrality

values: INSERTBETWEENNESS, INSERTUPDATEBETWEENNESS, REDUCEBETWEENNESS, and

INCREASEBETWEENNESS. Next, each sub-algorithm is discussed respectively.

5.3.1 INSERTBETWEENNESS

In the event of a supported network update (e.g. node/edge insertion or edge cost

decrease), the entry point of execution is the INSERTBETWEENNESS algorithm. The

INSERTBETWEENNESS algorithm calls the INSERTUPDATEBETWEENNESS algorithm several

times; first, to find the complete set of affected sink and source nodes, then, to update the

shortest paths to/from each affected sink/source node.

The data structures initialized in Line 2 of the INSERTBETWEENNESS algorithm are

initialized as data structures that are visible to all the algorithms used for handling the

growing network updates.

The Dold and σold are implemented as hash maps whose keys are composed of the

related <x, y> node identifiers. The Dold holds the original D(x, y) values and the σold

values hold the original σ(x, y) values before the network update has been issued. The

data structure used for trackLost is also a hash map whose keys are again constructed as

 75

2-tuples composed of the identifiers of the related nodes <x, y>. The values held in

trackLost are also implemented as hash set, holding the identifiers of the nodes that were

previously intermediates on the shortest paths from node x to node y, and that are not on

the shortest paths any more. Finally, to avoid reprocessing the same pair of nodes several

times, the PairsDone holds a set of node pairs <x, y> that are already processed.

In the INSERTBETWEENNESS algorithm, the INSERTUPDATEBETWEENNESS algorithm

is initially invoked twice (Lines 3–4 of INSERTBETWEENNESS) to determine the sets of

affected sinks and affected sources; passing once the source, once the destination of the

inserted edge as a parameter to it. The INSERTUPDATEBETWEENNESS algorithm is then

invoked for each affected sink and source node (Lines 5–8 of INSERTBETWEENNESS) to

modify the information required for accurate maintenance of betweenness values. The

modified information includes the shortest distances (D), the number of distinct shortest

paths (σ), and the predecessors on these shortest paths (𝑃). After all the shortest

Algorithm–11: INSERTBETWEENNESS (G, src, dest, c)
Input: Network G(V, E) for which shortest distances between all nodes (D) and
betweenness values of all nodes are pre-computed. A newly inserted or modified
edge {src → dest} with a cost of c where c < C (src, dest).
Output: Network G(V, E) updated with the edge {src → dest}. The shortest path
distances (D), the number of shortest paths (σ), the predecessors on the shortest
paths (P), and the betweenness values of all nodes are updated.
1. C (src, dest) ← c; 𝐶!(dest, src) ← c
2. σold ← []; Dold ← []; trackLost ← []; PairsDone ← []
3. AffectedSinks ← INSERTUPDATEBETWEENNESS (𝐺!, dest, src, src, PairsDone)
4. AffectedSources ← INSERTUPDATEBETWEENNESS (G, src, dest, dest, PairsDone)
5. for s ∈ AffectedSinks
6. INSERTUPDATEBETWEENNESS (G, src, dest, s)
7. for s ∈ AffectedSources
8. INSERTUPDATEBETWEENNESS (𝐺!, dest, src, s)
9. INCREASEBETWEENNESS()

 76

distances, predecessors, and the shortest path counts are updated accurately for all the

affected nodes, betweenness values of the intermediate nodes that lie on the affected

paths are adjusted (Line 9 of INSERTBETWEENNESS). The second line of the

INSERTBETWEENNESS algorithm initializes auxiliary data that are only used during the

current update, and are not maintained across different updates.

5.3.2 INSERTUPDATEBETWEENNESS

The INSERTUPDATEBETWEENNESS algorithm examines the impact of the updated

edge {src → dest} on the network, for each affected sink or affected source node z. The

update process continues until there are no edges that were on the shortest paths that

would propagate the update further. The INSERTUPDATEBETWEENNESS algorithm consists

of three phases:

(i) If a strictly shorter path is found, the shortest path distance is updated. The

predecessors and the number of shortest paths are cleared. Betweenness values for the

intermediate nodes on the cleared paths are also reduced opportunistically. (Lines 7–14 of

INSERTUPDATEBETWEENNESS).

(ii) If the shortest paths have changed in any way (number or length), the predecessors

and the number of shortest paths are adjusted accordingly (Lines 15–25 of

INSERTUPDATEBETWEENNESS).

(iii) Propagation of the update across the network is continued if appropriate (Lines 26–

29 of INSERTUPDATEBETWEENNESS).

 77

Consider the case where the edge {x → y} is updated and we examine the impact

of this update on the network. In the first phase of the INSERTUPDATEBETWEENNESS

algorithm, assume that there is now a new shortest path from node x to node z passing

through the edge {x → y}, which is strictly shorter than the previously known shortest

path(s) from node x to node z (Lines 7–14 of INSERTUPDATEBETWEENNESS).

In this case, since a strictly shorter path from node x to node z is found, the

previously known shortest paths are not the shortest paths from node x to node z

anymore. Hence, the previously known number of shortest paths and the predecessors on

the shortest paths from node x to node z should be cleared (Line 11 of

INSERTUPDATEBETWEENNESS). Before we clear the number of shortest paths (σ (x, z)) and

update the distance from node x to node z (D (x, z)) to be equal to the new distance (alt),

we temporarily record their values in σold (x, z) and Dold (x, z) in Line 9 of the

INSERTUPDATEBETWEENNESS algorithm. In addition, the betweenness values of the old

predecessors because these intermediates do not have any contribution from (x, z) pair

anymore are reduced as well (Line 10 of INSERTUPDATEBETWEENNESS). This operation

should be performed before clearing the number of shortest paths and the predecessors on

the shortest paths from node x to node z, because once they are cleared, all the previously

known information about them is lost. Attempting to retrieve σold and Dold values returns

the temporarily stored values if they are stored and returns the current σ and D values

otherwise. The algorithm for the reduction of betweenness centrality values

(REDUCEBETWEENNESS) will be explained later in Chapter 5.3.3.

 78

 At the beginning of the first phase, we check if it is the first time a strictly shorter

path is found from node x to node z by checking if σold contains any information on the

pair (x, z) (Line 8 of INSERTUPDATEBETWEENNESS). We check σold because a change in

betweenness centrality values is required if the number of shortest paths from node x to

node z change even if the shortest distance from node x to node z does not necessarily

change. For every updated pair, we record the original number of shortest paths from

node x to node z known before the update started only once. This check ensures that

original information is not overridden by invalid, temporary information because during

the time the network update propagates the algorithm might go through states that

temporarily contain invalid information.

 Additional temporary information is kept to ensure accurate reduction of

betweenness centrality values for the nodes that were once on the shortest paths before

the network is updated. This is because such nodes are not on the shortest paths anymore

and cannot be reached by following the shortest paths in the network. Hence, information

should be kept about them temporarily until the network update is complete.

Since the original Ramalingam and Reps algorithm is concerned with only

updating the D values, in their algorithm, the AffectedVertices set only covers the nodes

with lower-cost paths to/from node z that pass through the modified edge {src → dest}.

However, for computing the betweenness centrality, we need to maintain the number of

shortest paths (σ) and the predecessors on the shortest paths (𝑃) accurately as well.

Hence, the alternative shortest paths of equal length should be accounted for and the

 79

AffectedVertices should be expanded to include the nodes that have new alternative

shortest path(s) to/from node z passing through the modified edge {src → dest}.

In the second phase of the INSERTUPDATEBETWEENNESS algorithm (Lines 15–25),

we check if the new shortest distance from node x to node z is now equal to the cost of

the alternative shortest path passing through the edge {x → y} (Line 15). If they are equal,

then we need to update the number of shortest paths from x to z and the predecessors on

these shortest paths. This part of the algorithm is completely new and is not covered in

the original Ramalingam and Reps algorithm, which focuses on finding strictly shorter

paths and excludes the shortest paths of equivalent length.

When updating the number of shortest paths from node x to node z, we increase

the number of shortest paths only by the number of shortest paths that are newly formed

due to the incremental update made on the network. Since this is an incremental

algorithm, the old set of shortest paths is already accounted for; we should not double

count them. To obtain the number of newly formed shortest paths from node x to node z,

only the number of shortest paths that use the modified or inserted edge {src → dest}

should be counted. The number of newly discovered paths is calculated as σ(x, src) * 1 *

σ(dest, z), and then added to the σ(x, z) to calculate the total number of shortest paths

from x to z. From src to dest, there may be other shortest paths that might already be

counted in. Hence, to avoid double counting, we only consider the modified edge, which

is represented with the ‘1’ in the above given formulation (Line 21 of

INSERTUPDATEBETWEENNESS).

 80

 In this phase of the algorithm, the predecessors on the shortest paths from node x

to node z are also updated due to formation of the new shortest paths that pass through

the edge {x → y}; which is the edge under investigation, retrieved from Workset. Hence,

Algorithm–12: INSERTUPDATEBETWEENNESS (G, src, dest, z, PairsDone)
Input: Network G(V, E), a newly inserted or modified edge {src → dest}, and an
affected node z.
Output: The shortest distances to z. The number of shortest paths and the
predecessors on these shortest paths are also updated.
1. Workset ←{src → dest} //Min-key priority queue w.r.t the distance of the head of the edge to src
2. VisitedVertices ← src
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x → y} ← pop (Workset)
6. alt ← C (x, y) + D (y, z)
7. if alt < D (x, z)
8. if <x, z> ∉ σold
9. Dold (x, z) ← D (x, z); σold (x, z) ← σ(x, z)
10. REDUCEBETWEENNESS (x, z)
11. σ(x, z) ← 0; 𝑃!(𝑧) ← ∅
12. if [u, z] ∈ PairsDone
13. Remove [x, z] from PairsDone
14. D (x, z) ← alt
15. if alt = D (x, z) and D (x, z) ≠ ∞
16. if [x, z] ∉ PairsDone
17. if <x, z>∉ σold
18. REDUCEBETWEENNESS (x, z)
19. if σ (x, z) ≠ 0
20. σold (x, z) ← σ (x, z)
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z))
22. Append x to 𝑃!(𝑦)
23. Append 𝑃!(𝑧) to 𝑃!(𝑧)
24. Insert [x, z] into PairsDone
25. Insert x into AffectedVertices
26. for u ∈ Pred (x) sorted w.r.t. edge costs in ascending order
27. if SP (u, x, src) and u ∉ VisitedVertices
28. push {u → x} into Workset
29. Insert u into VisitedVertices
30. return Affected Vertices

 81

the new shortest paths can be represented in the following form: x → y → vi…→…vn → z.

In this case, node x becomes a predecessor of node y, and the predecessors on the shortest

path(s) from node y to node z become the predecessors on the shortest path(s) from node

x to node z. The predecessors on the shortest path(s) denote the set of nodes that serve as

the last stop(s) before the final destination node, which is node z in this case. The

predecessors on the shortest paths are updated in Lines 22–23 of the

INSERTUPDATEBETWEENNESS algorithm.

It should be noted that the entry condition for the second phase of the

INSERTUPDATEBETWEENNESS algorithm (Line 15) is not a condition that is tied to the if

block between Lines 7–14. Once the condition in Line 7 (alt < D(x, z)) is satisfied (i.e. a

strictly shorter path is found), the value of D(x, z) is updated in Line 9 to be equal to the

newly found alternative distance alt. Therefore, the condition in Line 15 of the

INSERTUPDATEBETWEENNESS algorithm (alt = D(x, z)) is satisfied for all cases that

originally satisfied the conditional check at Line 7 (alt < D(x, z)).

The conditional check at Line 15 (alt = D(x, z)) covers additional cases where

there are newly formed alternative shortest paths whose lengths are equal to what is

already known. Such cases would not satisfy the condition on Line 7 which checks for

strictly shorter paths, but would still satisfy condition at Line 15 (alt = D(x, z)). This is a

part of the incremental betweenness algorithm that is not handled by the original

Ramalingam and Reps algorithm at all, and it is required for accurate maintenance of

betweenness centrality values. Since the second phase of the INSERTUPDATEBETWEENNESS

algorithm is satisfied by both strictly shorter paths and the shortest paths of equal length,

 82

in Line 25, we mark node x as one of the AffectedVertices whose predecessors should be

further checked in the third phase of the algorithm to understand if the incremental

network update has a wider impact on the network. In order not to reprocess the same

pair of nodes multiple times –which would inflate the number of shortest paths between

them otherwise–, we process only the node pairs that are not already processed and

inserted in PairsDone (Line 16 and Line 24 of INSERTUPDATEBETWEENNESS)

The third and final phase of the INSERTUPDATEBETWEENNESS algorithm (Lines 26–

29) is responsible for propagating updates further when required and pruning the parts of

the network that are not affected by the changes. An update in the network propagates in

the form of ripples that expand outwards as much as required starting at the modified or

inserted edge in the center. For each of the edges to/from the affected node x, it is

checked to see if they are on the shortest paths. In addition, a set of VisitedVertices is

held to ensure that no node is processed more than once due to the potential existence of

multiple paths that lead to the same node following different routes. Assume that node u

is a predecessor of node x. With SP(u, x, z), we test if the edge {u → x} is on the shortest

path(s) from node u to node z. If SP is true, and if the other end of the edge (node u) is

not in the list of already processed nodes, the edge {u → x} is inserted in the set of edges

that would need inspection for subsequent processing. In this case, the edge {u → x}

would carry the network update to the next ripple level and it is identified as an edge that

needs further processing. Therefore, the edge {u → x} is inserted into Workset in Line 28

of the INSERTUPDATEBETWEENNESS algorithm for subsequent processing.

 83

5.3.3 REDUCEBETWEENNESS

Within the INSERTUPDATEBETWEENNESS algorithm, the REDUCEBETWEENNESS

algorithm is invoked when the shortest path(s) from a node x to another node z change.

For each node pair whose shortest paths change, the REDUCEBETWEENNESS algorithm is

invoked only once and it opportunistically reduces the betweenness centrality values of

the intermediate nodes on the old set of shortest paths from node x to node z that no

longer qualify to be the shortest paths. To be able to construct the shortest paths, we only

store predecessors; we do not store the entire set of intermediate nodes on these paths, as

it would be prohibitively memory intensive.

The shortest paths from node x to node z are constructed on demand by following

the predecessors when the betweenness centrality values of the intermediate nodes on the

shortest path(s) from x to z are updated. However, since these shortest paths are

constructed on demand, there might be some parts of the shortest paths that might have

already been updated before the network update propagation reaches the shortest

paths/distance from x to z. In such cases, there will be some intermediate nodes that are

already cleared and that are not reachable anymore when we follow the predecessor

nodes to adjust the betweenness centrality values of the intermediates nodes on the old set

of shortest paths. The intermediate nodes that are deleted from the shortest paths are

temporarily stored in trackLost until the network update is complete.

 84

In the first phase of the REDUCEBETWEENNESS algorithm (Lines 1–23), first, the

betweenness value of each intermediate node v that still appears as an intermediate from

node x to node z is reduced and the contribution of the node pair (x, z) is removed from

Algorithm–13: REDUCEBETWEENNESS (x, z)
Input: A source node x and a destination node z whose intermediates on the shortest
paths from node x to node z will be cleared.
Output: The betweenness values of the original set of intermediate nodes on the
shortest paths from x to z are reduced.
1. if σold (x, z) = 0
2. return;
3. Known ← ∅ //A set of nodes
4. Stack ← ∅
5. for n ∈ 𝑃!(𝑧)
6. if D (x, z) ≠ Dold (x, n) + Dold (n, z)
7. continue;
8. else if x ≠ n & n ≠ z
9. 𝐶!(n) ← 𝐶!(n) – (σold (x, n) * σold (n, z) / σold (x, z))
10. Add <x, z, n> to trackLost
11. Add 𝑛 to Stack
12. Add 𝑛 to Known
13. while Stack ≠ ∅
14. 𝑝 ← pop (Stack)
15. Add 𝑝 to Known
16. for 𝑛 ∈ 𝑃!(𝑝)
17. if D (x, z) ≠ Dold (x, n) + Dold (n, z)
18. continue;
19. else if x ≠ 𝑛 & 𝑛 ≠ z & 𝑛 ∉ Known
20. 𝐶!(n) ← 𝐶!(n) – (σold (x, 𝑛) * σold (𝑛, z) / σold (x, z))
21. Add <x, z, n> to trackLost
22. Add 𝑛 to Stack
23. Add 𝑛 to Known
24. AlreadyDone ← (Known ∪ x)
25. if D (v, z) = Dold (x, v) + Dold (v, z) s.t. v1, v2 ∈ Known and <v1, v2, v> ∈ trackLost
26. if 𝑣 ∉ AlreadyDone
27. 𝐶!(v) ← 𝐶!(v) – (σold (x, v) * σold (v, z) / σold (x, z))
28. Add 𝑣 to AlreadyDone
29. Add <x, z, 𝑣> to trackLost

 85

the betweenness value of node v. In Lines 5–12, the immediate predecessors of node z on

the shortest paths from node x (𝑃!(𝑧)) are processed, and in Lines 13–23, the

intermediates that are found on the paths from node x to node z are processed.

When tracing intermediates on the shortest paths to construct the shortest paths on

demand, we start with the destination node. The first batch of nodes we find as the

intermediates on the shortest paths from node x to node z are the predecessors of node

z: 𝑃!(𝑧). Then for each node n ∈ 𝑃!(𝑧), we find the next level of precessors on the

shortest paths from node x to node n: 𝑃!(𝑛). The search for a shortest paths ends when we

hit the source node x itself. This way, the full path from node x to node z is constructed

on demand. Hence, when are about to update the betweenness centrality of an

intermediate node n, it should be checked that node n is an intermediate node, it is neither

the source, nor the destination node.

In the second phase of the REDUCEBETWEENNESS algorithm (Lines 24–29), the

intermediate nodes that are currently unreachable but originally belonged to the shortest

paths from node x to node z are processed. Their betweenness values are reduced as

required as well (Lines 27).

An intermediate node n might appear on multiple shortest paths from the same

source and destination pair and its betweenness value should not be reduced every time it

is encountered, it should be reduced once for a single source and destination pair (e.g. x

and z). Therefore, a set of intermediate nodes that are already processed is temporarily

stored to avoid processing such nodes several times.

 86

5.3.4 INCREASEBETWEENNESS

The INCREASEBETWEENNESS algorithm is the final step of the INSERTBETWEENNESS

algorithm. The INCREASEBETWEENNESS algorithm is responsible from finalizing the

adjustment of betweenness centrality values. By the time the INCREASEBETWEENNESS is

called from the INSERTBETWEENNESS algorithm (Line 10 of INSERTBETWEENNESS), all the

shortest paths, the number of distinct shortest paths, and the predecessors affected by the

incremental network update are accurately adjusted, and ready for being used for

updating the betweenness centrality values. By calling the REDUCEBETWEENNESS

algorithm, we have also reduced the betweenness centrality values of the intermediate

nodes on the invalidated shortest paths. Therefore, the only remaining action is to update

the betweenness centrality values for the new set of intermediate nodes on the updated

shortest paths that reach from the affected source nodes to the affected sink nodes.

During a network update, a node pair (x, z) is added to the σold set if their shortest

paths change in any way (length or number). For each node pair (x, z) that is recorded in

the σold set, there are a number of intermediate nodes that lie on the shortest paths from

node x to node z. For each intermediate node n that lies on the shortest paths from node x

to node z, we first compute how many of these paths pass through node n. Out of all the

shortest paths from node x to node z, (σ (𝑥, 𝑛) * σ (𝑛, 𝑧)) of them pass through node n.

Then, we increase the betweenness centrality value of node n by (σ (𝑥, 𝑛) * σ (𝑛, 𝑧) / σ (𝑥,

𝑧)); the fraction of shortest paths from node x to node z that pass through node n over the

total number of shortest paths from node x to node z (Line 8 and 16). Similar to the

REDUCEBETWEENNESS algorithm, again a set of already processed intermediates (e.g.

 87

Known) is stored temporarily. With the execution of INCREASEBETWEENNESS, incremental

update of betweenness centrality values is complete.

5.4 INCREMENTAL BETWEENNESS ALGORITHM: SHRINKING NETWORK

UPDATES

Next, the details of the part of the incremental betweenness algorithm that handles

the shrinking network updates (e.g. edge/node deletion or edge cost increase) are

discussed. There are five sub-algorithms that are used to achieve accurate maintenance

and incremental update of betweenness centrality values: DELETEBETWEENNESS,

Algorithm–14: INCREASEBETWEENNESS (σold)
Input: The set of affected node pairs whose shortest paths have changed.
Output: The betweenness values of the current intermediate nodes on the affected
paths are increased in accordance with the fraction of shortest paths they are on.
1. for (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) ∈ σold
2. Known ← ∅
3. Stack ← ∅
4. for 𝑛 ∈ 𝑃!"#(𝑑𝑒𝑠𝑡)
5. Add 𝑛 to Stack
6. Add 𝑛 to Known
7. if 𝑠𝑟𝑐 ≠ 𝑛 & 𝑛 ≠ 𝑑𝑒𝑠𝑡
8. 𝐶!(n) = 𝐶! (𝑛) + (σ (𝑠𝑟𝑐, 𝑛) * σ (𝑛, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡))
9. while Stack ≠ ∅
10. 𝑛 ← pop (Stack)
11. Add 𝑛 to Known
12. for 𝑝 ∈ 𝑃!"#(𝑛)
13. if 𝑝 ≠ 𝑠𝑟𝑐 & 𝑝 ≠ 𝑑𝑒𝑠𝑡 & 𝑝 ∉ Known
14. Add 𝑝 to Stack
15. Add 𝑝 to Known
16. 𝐶! (𝑝) = 𝐶! (𝑝) + (σ (𝑠𝑟𝑐, 𝑝) * σ (𝑝, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡))

 88

DELETEUPDATEBETWEENNESS, CLEARBETWEENNESS, ADJUSTNPS, and ADJUSTBETWEENNESS.

In the rest of this section, each sub-algorithm is discussed, respectively.

5.4.1 DELETEBETWEENNESS

When a shrinking network update is issued (e.g. edge/node deletion or edge cost

increase), the entry point of execution is the DELETEBETWEENNESS algorithm. The

DELETEBETWEENNESS algorithm calls the DELETEUPDATEBETWEENNESS algorithm several

times; first, to find the complete set of affected sink and source nodes, then, to update the

shortest paths to/from each affected sink/source node.

The DELETEBETWEENNESS algorithm resembles the INSERTBETWEENNESS algorithm.

However, it has minor differences. The most important difference is the call for an

algorithm called ADJUSTNPS, which is used to calculate the number of shortest paths

accurately. After all the shortest distances and the predecessors on the shortest paths are

updated accurately, the call to the ADJUSTNPS algorithm (Line 9 of DELETEBETWEENNESS)

finalizes the computation of the number of shortest paths and the call to the

ADJUSTBETWEENNESS algorithm (Line 10 of DELETEBETWEENNESS) completes the

computation of betweenness centrality values.

The data structures initialized in Line 2 of the DELETEBETWEENNESS algorithm are

initialized as data structures that are visible to all the algorithms used for handling the

shrinking network updates. The data structures initialized in Line 2 of the

DELETEBETWEENNESS algorithm have similar structures and usages similar to those in the

INSERTBETWEENNESS algorithm. The Dold and σold are implemented as hash maps. The keys

 89

for the data structure Dold are composed of the related <x, y> node identifiers, which holds

the original D(x, y) value before the network update has been issued. Similarly, the keys

for the data structure σold are composed of the related <x, y> node identifiers, which holds

the original σ(x, y) value before the network update has been issued. The data structure

used for trackLost is also a hash map whose keys are again constructed as the identifiers

of the related nodes <x, y>. The values held in trackLost are implemented as hash set,

holding the identifiers of the nodes that were previously intermediates on the shortest

paths from node x to node y, and that are not on the shortest paths any more.

5.4.2 DELETEUPDATEBETWEENNESS

The core of the incremental betweenness algorithm for handling the shrinking

network updates is the DELETEUPDATEBETWEENNESS algorithm.

Algorithm–15: DELETEBETWEENNESS (G, src, dest, c)
Input: Network G(V, E) for which betweenness values of all nodes (CB) are pre-
computed. A modified edge {src → dest} with a cost of c, where c > C(src, dest). The
cost parameter c is optional. If it is not provided in the argument list, it is set to ∞ by
default and the edge is deleted.
Output: Network G(V, E) updated with the changes on the edge {src → dest}. The
shortest distances between all nodes (D), the number of shortest paths, the predecessors
on the shortest paths and betweenness values of all nodes (CB) are also updated.
1. C(src, dest) ← c; 𝐶!(dest, src) ← c
2. σold ← []; Dold ← []; trackLost ← []
3. AffectedSinks ← DELETEUPDATEBETWEENNESS (𝐺!, dest, src, src)
4. AffectedSources ← DELETEUPDATEBETWEENNESS (G, src, dest, dest)
5. for s ∈ AffectedSinks
6. DELETEUPDATEBETWEENNESS (G, src, dest, s)
7. for s ∈ AffectedSources
8. DELETEUPDATEBETWEENNESS (𝐺!, dest, src, s)
9.	
 	
 ADJUSTNPS ()	

10. ADJUSTBETWEENNESS ()	

 90

Similar to the DELETEUPDATECLOSENESS algorithm, there are two distinct phases

of the DELETEUPDATEBETWEENNESS algorithm. The first phase of the

DELETEUPDATEBETWEENNESS algorithm is between Lines 2 – 7 while the second phase is

between Lines 8 – 40. The first phase of the algorithm identifies the set of affected nodes.

For betweenness centrality, the affected nodes are the nodes whose shortest paths to node

z have changed in terms of number or length. The shortest paths from a node x to another

node z may change only if the deleted/modified edge is an edge that used to lie on the

shortest path(s) from node x to node z. Such nodes are inserted into the AffectedVertices

set for further processing to find the new shortest paths from each node x to node z.

The second phase of the DELETEUPDATEBETWEENNESS algorithm determines the

new shortest path distances from all affected nodes to node z as well as the predecessors

on the shortest paths. In the second phase of the DELETEUPDATEBETWEENNESS algorithm,

the betweenness centrality values are also opportunistically updated for the node pairs

whose previously known shortest paths are invalidated.

In Line – 11, one of the AffectedVertices, node a, is removed from the

AffectedVertices for finding the new shortest path(s) from it to node z. If this is the first

time, the shortest paths from node a to node z are examined, we insert the node pair <a,

z> into σold and Dold to keep a record of their previously known shortest distance and

shortest path counts before any update is made on them. In Line – 14, by setting myMin

to infinity, we start with the assumption that we do not have a shortest path from node a

to node z anymore. Since a shrinking network update might result in disconnecting the

two nodes a and z and making node z unreachable from node a. In order for node a to

 91

reach to node z, there needs to be at least one immediate neighbor of node a that connects

node a to node z. Therefore, each successor b of node a is examined one by one to see

which node or nodes provide the shortest path(s) to node z and a running min is kept to

identify the minimum shortest path distance. If we are unable to find a new shortest path

that would pass from at least one of the successor nodes of node a, then there would be

no node b that would satisfy the condition on Line 16, and the value of myMin has to be

chosen as infinity. This process of discovering the new shortest path(s) from node a to

node z incrementally builds on the previous knowledge on the shortest paths as we would

need to know the shortest path distance from each successor node b to node z. Every time

we find a node b that satisfies one of the ‘shorter path’ (Line 19) or ‘equivalent to the

shortest path(s)’ (Line 21) conditions, the predecessors on the shortest paths from node a

to node z need to be updated. When a new path from node a to node z that is strictly

shorter than the currently known shortest paths is found (Line 19), the set of predecessors

on the shortest paths from node a to node z is cleared (Line 18), and the set of

predecessors from node b to node z is inserted instead. However, if node b is equal to

node z in Line 21 (i.e. node a can reach to node z in one hop and the shortest path is

actually the edge from node a to node z), only node a is inserted into the set of

predecessors on the shortest paths from node a to node z.

After all the successor nodes are examined, in Line 22, the shortest path distance

from node a to node z, D(a, z), is updated to hold the value of the running min, myMin.

In Line 24, node a is inserted into the priority queue that holds the distances to node z in

ascending fashion. A node is inserted into this priority queue only if its shortest distance

 92

to node z is changed and if it is still able to reach to node z with the possibility of

discovering a shorter path from node a to node z as the update continues to propagate in

the network.

The rest of the DELETEUPDATEBETWEENNESS algorithm, Lines 25 – 40, processes

this priority queue to see if the shortest distances can be further updated. In the first part

of the algorithm, if there is no node b that would satisfy the condition in Line 16 or Line

20, then no shortest paths from node a to node z were found and the shortest distance

from node a to node z is forced to be infinity. Starting with Line 25 of the

DELETEUPDATEBETWEENNESS algorithm, the shortest paths that are properly discovered

earlier in the algorithm are examined to see if new shortest paths that are even shorter can

be discovered. The impact of an incremental network update propagates in the form of

ripples expanding outward from the modification point of the update. Hence, it may be

possible to find shorter paths in the outer levels of these update ripples that use shorter

paths from earlier levels.

For each node a inserted in the priority queue Q_inc, we check the predecessors

of node a (c ∈ Pred(a)) and see if the newly discovered shortest distance from node a to

node z is useful in finding a shorter path from node c to node z. For each node c, we

check if the path from node c to node z which uses the edge {c → a} is shorter than or

equal to the currently known shortest paths from node c to node z.

 93

Algorithm–16: DELETEUPDATEBETWEENNESS (G, src, dest, z)
Input: Network G(V, E), deleted or modified edge {src → dest}, and an affected node z.
Output: The shortest distances (D) to the affected node z and the predecessors are updated.
1. AffectedVertices ← ∅
2. Workset ←{src};
3. while Workset ≠ ∅
4. u ←pop (Workset)
5. if u ∉ AffectedVertices then add u to AffectedVertices
6. for x ∈ Pred(u) such that SP(x, u, z)
7. add x into Workset
8. AffVert ← AffectedVertices.copy()
9. Q_inc ← ∅
10. while AffVert ≠ ∅
11. a ← extractMin(AffVert)
12. if(< 𝑎, 𝑧 > ∉ σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) > into σold and CLEARBETWEENNESS (a, z)
13. if (< 𝑎, 𝑧 > ∉ Dold) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) > into Dold
14. myMin ← ∞
15. for b ∈ Succ(a)
16. if (C(a, b) + D(b, z) < myMin)
17. myMin← C(a, b) + D(b, z)
18. 𝑃!(𝑧) ← ∅
19. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
20. else if (C(a, b) + D(b, z) = myMin & myMin ≠ ∞ & b ∉ AffectedVertices)
21. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
22. 𝐷(𝑎, 𝑧) ← myMin
23. if myMin ≠ ∞ & a ∉ Q_inc
24. add a into Q_inc
25. while Q_inc ≠ ∅
26. a ← extractMin(Q_inc)
27. for c ∈ Pred(a)
28. if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices)
29. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) > into σold and CLEARBETWEENNESS (c, z)
30. if (< 𝑐, 𝑧 > ∉ Dold) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) > into Dold

31. 𝑃!(𝑧) ← ∅
32. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
33. D(c, z) ← C(c, a) + D(a, z)
34. if c ∉ Q_inc
35. add c into Q_inc
36. else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices)
37. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) > into σold and CLEARBETWEENNESS (c, z)
38. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
39. if c ∉ Q_inc
40. add c into Q_inc
41. return AffectedVertices

 94

When a shorter path from node c to node z is found (Line 28), we also check if the

node c is not in the list of affected nodes (AffVert). If node c is not an element of

AffVert, we check if the node pair < c, z > has been updated before during the

propagation of the current network update. If it is the first time the shortest paths from

node c to node z are to be updated, to keep track of the original values known before the

network update started, the previously known shortest distance from node c to node z and

the shortest path count from node c to node z are inserted into Dold and σold, respectively.

In addition, the betweenness centrality values of the predecessors on the shortest paths

from node c to node z are reduced as required by the CLEARBETWEENNESS algorithm in

Line 29 of the DELETEUPDATEBETWEENNESS algorithm, and then cleared in Line 31. Lines

32 of the DELETEUPDATEBETWEENNESS algorithm updates the predecessors on the shortest

paths from node c to node z to include the predecessors on the shortest paths from node c

to node z that pass through node a while Line 33 updates D(c, z), the shortest distance

from node c to node z, to be the new shortest distance discovered through node a.

Following a similar reasoning to the first part of the algorithm, in Lines 34 – 35, node c is

inserted into the priority queue Q_inc to see if there are any shortest paths that might use

the shortest paths from node c to node z as their subpaths to reach to node z.

When an equivalent shortest path from node c to node z is found (Line 36) and

node c is not an element of AffVert, we go through steps that are similar to those we go

through when a new shorter path is found. First, we check if the node pair < c, z > has

been updated before during the propagation of the current network update. If it is the first

time the shortest paths from node c to node z are to be updated, to keep track of the

 95

original values, the previously known shortest path count from node c to node z is

inserted into σold. In addition, the betweenness values of the predecessors on the shortest

paths from node c to node z are reduced as required by calling the CLEARBETWEENNESS

algorithm in Line 37 of the DELETEUPDATEBETWEENNESS algorithm. However, different

from the case when a strictly shorter path is found, we do not clear the previously known

predecessors on the shortest paths from node c to node z. Following a similar reasoning to

the earlier parts of the algorithm, in Lines 39 – 40, node c is inserted into the priority

queue Q_inc to see if there are any shortest paths that might use the shortest paths from

node c to node z as their subpaths to reach to node z.

5.4.3 CLEARBETWEENNESS

The next algorithm we discuss is the CLEARBETWEENNESS algorithm which is

invoked from the DELETEUPDATEBETWEENNESS algorithm when a shortest path is

invalidated. The betweenness values of the intermediates on the invalidated path(s)

should be reduced before their relationships with the previously known shortest paths

become intractable. In other words, the main functionality of the CLEARBETWEENNESS

algorithm is to reduce the betweenness values of the intermediates that lie on the old set

of shortest paths from node a to node z, where nodes a and z are given as the input

parameters to the algorithm. The CLEARBETWEENNESS algorithm is invoked only once for

each node pair <a, z> when it is first discovered that the shortest path(s) from node a to

node z need to be updated during the propagation of the current shrinking network

update.

 96

The first part of the CLEARBETWEENNESS algorithm (Lines 1–7) processes the old

set of intermediate nodes that are currently accessible when the shortest path(s) from

node a to node z are traced. The betweenness centrality value of each intermediate node v

is reduced by the contribution of the shortest path(s) from node a to node z (Line 6) and

inserted into trackLost. Before their betweenness centrality values are modified, we do

check if the intermediate node v belongs to the original set of intermediates that existed

before the network update or if it is one of the new intermediates that became accessible

due to currently partially updated shortest paths from node a to node z. If node v is a new

intermediate node, it is skipped without further processing (Line 4). An intermediate node

v satisfies the following equality if it is an old intermediate:

Dold (a, v) + Dold (v, z) ?= Dold (a, z).

Other than the nodes that are still accessible by following the currently known

predecessors, there might be some other nodes that were once on the shortest paths from

node a to node z, but cannot be accessed now because some of the pointers are broken

when the current shrinking network update started propagating in the network. Such

nodes are processed in the second half of the CLEARBETWEENNESS algorithm (Lines 8–15).

These nodes are inserted into trackLost before they are cleared later in the

DELETEUPDATEBETWEENNESS algorithm when the predecessors of the invalidated shortest

paths are cleared. Lines 9–15 of the CLEARBETWEENNESS algorithm go through the entries

of trackLost to find the previously existing intermediates that cannot be found otherwise.

 97

Such intermediates are usually lost as a part of a subpath that is lost before the current

network update propagated this far.

Assume that there is a path in the following form: a.... →….x.… →.... interm

…→….y…→…..z. By the time the propagation of the shrinking network update reaches

the level of the shortest paths from node a to node z, the subpath(s) from node x to y

might have already been updated and the node interm may not necessarily be an

intermediate on the shortest path(s) from node x to node y anymore. Hence, we cannot

find the node interm as an intermediate for the shortest path(s) from node a to node z

although the node pair <a, z> still has a contribution on the betweenness centrality value

of the node interm. This is why we keep track of such cases in a separate data structure

(e.g. trackLost) and the betweenness values of such nodes are reduced later as required

Algorithm–17: CLEARBETWEENNESS (a, z)
Input: A source node a and a destination node z. The old set of shortest paths from a
to z need to be invalidated.
Output: Betweenness values of the intermediates on the previously known shortest
paths are reduced. The previous intermediates whose connections need to be broken
are maintained in trackLost.
1. if σ(a, z) ≠ 0
2. for v ∈ I(a, z)
3. if (Dold (a, v) + Dold (v, z) ≠ Dold (a, z))
4. continue
5. else if (a ≠ v & v ≠ z)
6. 𝐶!(𝑣) ← 𝐶𝐵(𝑣) – (σold (a, 𝑣) * σold (𝑣, z) / σold (a, z))
7. add <<a, z>, v> into trackLost
8. AlreadyDone ← I(a, z)
9. for (<x, y> ∈ trackLost.KeySet())
10. if (Dold (a, x) + Dold (x, y) + Dold (y, z) = Dold (a, z))
11. for interm ∈ trackLost<x, y>
12. if (interm ∉ AlreadyDone & Dold (a, interm) + Dold (interm, z) = Dold (a, z))
13. 𝐶!(interm) ← 𝐶𝐵(interm) – (σold (a, interm) * σold (interm, z) / σold (x, z))
14. add <<a, z>, interm> into trackLost
15. add interm into AlreadyDone

 98

(Line 13 of CLEARBETWEENNESS). In this example, we had the information that node

interm was an intermediate on the shortest path(s) from node x to node y. However, we

did not have direct information about node interm being an intermediate from node a to

node z. In Line 14 of the CLEARBETWEENNESS algorithm, we add the information that

interm is a lost intermediate of the shortest path(s) from node a to node z by inserting a

tuple of <<a, z>, interm> into trackLost. To avoid processing the same node multiple

times, we keep track of the intermediates that are already processed in the AlreadyDone

set.

5.4.4 ADJUSTNPS

The next algorithm that is discussed is the ADJUSTNPS algorithm. The ADJUSTNPS

algorithm is called from the DELETEBETWEENNESS algorithm after all the shortest path

distances and the predecessors on the shortest paths are updated accurately. The main

functionality of the ADJUSTNPS algorithm is to accurately update the number of shortest

for all modified shortest paths, either by length or number.

The ADJUSTNPS algorithm loops through the list of node pairs < a, z > whose

shortest paths changed in terms of length or number. Such node pairs are stored in σold

during the course of a shrinking network update propagation (Line 1).

There are two corner cases for the number of shortest paths. If the nodes a and z

are the same, then σ (𝑎, 𝑧) = 1 by definition. If the distance from node a to node z is

undefined (e.g. ∞), then there is no shortest path from a to z, and σ (𝑎, 𝑧) = 0. Lines 2 – 5

of the ADJUSTNPS algorithm handle these two conditions.

 99

The rest of the algorithm is the core of the ADJUSTNPS algorithm and handles the

common case. The key idea is the following. If, in a network, it is possible to reach from

node a to node z via multiple paths, then each path can be reconstructed separately

following the predecessors on the shortest paths. Hence, starting with the destination

node z, we push each of the predecessors on a stack at every level until the source node a

is reached. The number of times we hit the source node a is equal to the number of

distinct routes one can take, which is represented as the number of shortest paths from

Algorithm–18: ADJUSTNPS ()
Input: The list of source and destination nodes for the set of affected shortest paths.
Output: The numbers of shortest paths for all affected paths are updated.
1. for (𝑎, 𝑧) ∈ σold
2. if (a = z)
3. σ (𝑎, 𝑧) ←1
4. else if (D(a, z) = ∞)
5. σ (𝑎, 𝑧) ←0
6. else
7. Known ← ∅; Stack ← ∅
8. for 𝑛 ∈ 𝑃!(𝑧)
9. push 𝑛 to Stack
10. add 𝑛 to Known
11. counter ← 0
12. while Stack ≠ ∅
13. 𝑛 ← pop (Stack)
14. add 𝑛 to Known
15. if (n = a)
16. counter ← counter + 1
17. for 𝑝 ∈ 𝑃!(𝑛)
18. if (𝑝 ≠ 𝑎 & 𝑝 ≠ 𝑧)
19. push 𝑝 to Stack
20. if (𝑝 = 𝑎)
21. counter ← counter + 1
22. σ (𝑎, 𝑧) ← counter

 100

node a to node z. Every time an intermediate node is processed, we check if we hit node

a. If it is true, then the counter is incremented (Lines 15 – 16; Lines 20 – 21).

5.4.5 ADJUSTBETWEENNESS

The final step required for completing a shrinking network update is the

ADJUSTBETWEENNESS algorithm. It loops through the list of node pairs < a, z > where the

shortest paths from node a to node z changed in terms of length or number. For every

node pair, the shortest path distances, the intermediates on the shortest paths, and the

number of shortest paths are already computed before the ADJUSTBETWEENNESS algorithm

is called. The ADJUSTBETWEENNESS algorithm increments the betweenness value of each

intermediate node n by the fraction of the shortest paths from node a to node z that it lies

on. With this step, the incremental update of betweenness centralities for the shrinking

network updates is complete.

Algorithm–19: ADJUSTBETWEENNESS ()
Input: The list of node pairs between which the shortest paths are updated.
Output: Betweenness values of the intermediates on the affected shortest paths are
increased by the fraction of shortest paths they lie on.
1. for (𝑎, 𝑧) ∈ σold
2. for n ∈ I(𝑎, 𝑧)
3. if 𝑛 ≠ 𝑎 & 𝑛 ≠ 𝑧
4. 𝐶!(n) ← 𝐶𝐵(n) + (σ (a, n) * σ (n, z) / σ (a, z))

 101

5.5 DISCUSSION ON ALGORITHMIC COMPLEXITY

5.5.1 Run Time Analysis

Next, we discuss the time complexities of the algorithms proposed earlier in

Chapter 5.3 and Chapter 5.4, respectively.

Starting with the REDUCEBETWEENNESS and INCREASEBETWEENNESS algorithms, the

INCREASEBETWEENNESS algorithm runs a for-loop for σold many iterations and inside the

outer for loop, there is one for loop, and one while loop. These two loops should be

considered in combination because the intermediate nodes on the shortest paths from the

source to the destination are handled by one or the other loop and the distinction is

irrelevant. The complexity of the bodies of these loops are O(1), and they are executed

once for each intermediate node. So, the overall complexity of the procedure is O(|σold| I)

where I represents the total number of intermediates processed for all node pairs listed in

σold. In the REDUCEBETWEENNESS algorithm, the run time is dominated by the if-block at

the end (Lines 25 – 29 of REDUCEBETWEENNESS). This block performs a search over the

map of all known intermediate nodes on the shortest paths from node x to node z and uses

two intermediates at a time to form the key to the map. Hence, and its complexity is

O(I(x, z)2) where I(x, z) represents the number of intermediates on the on the shortest

paths from node x to node z.

The overall run-time complexity of the INSERTUPDATEBETWEENNESS algorithm is

dominated by the complexity of the priority queue Workset. The Workset is used to track

all the affected nodes as the shrinking network update keeps propagating. The

 102

INSERTUPDATEBETWEENNESS algorithm essentially performs a traversal in the

neighborhood of every AffectedSink and AffectedSource, respectively. The work

performed inside the while loop is O(||Affected|| log ||Affected||) + I2) where ||Affected|| is

used to denote the sum of the number of the edges and the nodes in the subgraph formed

by AffectedSource and AffectedSink nodes’ neighborhoods. Finally, the

INSERTBETWEENNESS algorithm invokes the INSERTUPDATEBETWEENNESS algorithm for

each AffectedSink and AffectedSource node once, followed by a call for the

INCREASEBETWEENNESS algorithm, yielding O((|AffectedSink|+|AffectedSource|)

||Affected|| log ||Affected||) + I2 + |σold| I) time complexity overall.

For handling the shrinking network updates, the DELETEBETWEENNESS algorithm

is the entry point for execution. It has multiple invocations of

DELETEUPDATEBETWEENNESS and at the end; it also calls the ADJUSTNPS and

ADJUSTBETWEENNESS algorithms. The DELETEUPDATEBETWEENNESS algorithm calls the

CLEARBETWEENNESS algorithm, which as a result, has a contribution to the overall time

complexity of the DELETEUPDATEBETWEENNESS algorithm. Hence, the ADJUSTNPS, the

ADJUSTBETWEENNESS, and the CLEARBETWEENNESS algorithms’ time complexities are

independent of the other algorithms’ time complexities.

For the ADJUSTBETWEENNESS algorithm, the overall complexity of the procedure is

O(|σold| I) where I represents the total number of intermediates processed for all node

pairs listed in σold.

For the ADJUSTNPS algorithm, the time complexity analysis resembles that of the

INCREASEBETWEENNESS algorithm presented in Chapter 5.3. The ADJUSTNPS algorithm

 103

runs a for-loop for σold many iterations. Inside this outer for loop, there is one for loop and

one while loop. These two loops should be considered in combination because the

intermediate nodes on the shortest paths from the source to the destination are handled by

one or the other loop and the distinction is irrelevant. The complexity of the bodies of

these loops are O(1), and they are executed once for each intermediate node. Therefore,

the overall complexity of the procedure is O(|σold| I) where I represents the total number

of intermediates processed for all node pairs <a, z> listed in σold.

Similarly, the time complexity analysis of the CLEARBETWEENNESS algorithm is in

line with the time complexity analysis of the REDUCEBETWEENNESS algorithm presented

in Chapter 5.3. The run time of the CLEARBETWEENNESS algorithm is dominated by the if-

block at the end (Lines 9 – 15 of CLEARBETWEENNESS). This block performs a search over

the map of all known intermediate nodes on the shortest paths from node a to node z

(nodes a and z are the two parameters given as input to the algorithm) and uses two

intermediates at a time to form the key to the map. Hence, and its complexity is O(I(a,

z)2) where I(a, z) represents the number of intermediates on the on the shortest paths from

node a to node z.

The time complexity analysis for the DELETEUPDATEBETWEENNESS algorithm can

take the time complexity analysis of the DELETEUPDATECLOSENESS algorithm, presented

in Chapter 4.4.2. However, since the DELETEUPDATECLOSENESS algorithm makes calls to

the CLEARBETWEENNESS algorithm, its overall time complexity is different than that of the

DELETEUPDATECLOSENESS algorithm.

 104

In the DELETEUPDATEBETWEENNESS algorithm, the time complexity of the second

phase of the algorithm dominates the time complexity of the first phase of the algorithm.

The time complexity of the second phase of the algorithm is governed by the time

complexity of the AffVert and Q_inc priority queues maintained by the algorithm. The

Q_inc priority queue is a subset of the AffVert as only certain elements are added into it

conditionally in Line 24 of the DELETEUPDATEBETWEENNESS algorithm. The operations

performed on the while block starting on Line – 10 and the while starting on Line – 25

are similar in terms of time complexity. However, in the worst case, all the elements in

the AffVert are added into Q_inc. In the first while block the successors of each element,

and in the second while block, the predecessors of each element is checked, which results

in probing of the two hop neighborhood of the affected vertices with a time complexity of

O(||AffectedVertices||2,z) where the subscript 2 denotes the size of two-hop neighborhood

of all affected nodes and z refers to the last parameter of the algorithm (i.e. the node to

which the shortest path distances are updated). The insertions into and extractions from a

priority queue are on the order of logn for a priority queue of size n. Hence, these

operations will take O(|AffectedVertices| log|AffectedVertices|) time in total. The

CLEARBETWEENNESS algorithm, in the worst case, might be called for all the elements in

the AffectedVertices, covering all possible AffectedSource – AffectedSink node pairs,

which would result in O(I2) time complexity where I represents the total number of

intermediates processed for all node pairs listed in σold. Hence, the overall time

complexity of the DELETEUPDATEBETWEENNESS algorithm is O(||Affected||2,z + |Affected|

(log |Affected| + I2)+ I2 + |σold| I) where the set of affected nodes (Affected) is given by

 105

the combination of AffectedSink and AffectedSource nodes. Although the complexity of

each sub-algorithm can be precisely computed in terms of the changes made, in terms of

the upper bound worst-case time complexity, the incremental betweenness algorithm

does not do better than the Brandes’ betweenness algorithm. This is because, in the worst

case, the size of the Affected set can be as large as the entire node set of the network, and

σold can be on the order of O(n2).

5.5.2 Memory Consumption and Overhead Analysis

Next, we discuss the theoretical scaling argument of how the memory usage

scales with the problem size for the incremental betweenness centrality algorithm. The

Brandes’ betweenness algorithm takes O(n + m) space. The Brandes’ betweenness

algorithm finds the shortest paths from a certain source node and can reuse that space

while discovering the shortest path tree from another node. However, the incremental

betweenness centrality algorithm would not override such data as it needs the information

on all-pairs shortest paths and the predecessors readily available for issuing the

incremental network updates quickly. Hence, the incremental betweenness algorithm has

larger space requirements as discussed in detail below.

Similar to the incremental closeness algorithm, the incremental betweenness

centrality algorithm maintains the original graph and its transpose (reverse)

simultaneously. This duality is of critical importance for achieving a bounded

incremental update algorithm. Hence, the memory requirement increases to O(2m+2n) for

graph representation (i.e. the representation of nodes and edges). The duality is an

 106

algorithmic property inherited from the incremental all-pairs shortest paths algorithm

designed by Ramalingam and Reps.

The incremental betweenness centrality algorithm also needs an additional

memory space of O(n) for storing the betweenness centrality value of each node.

However, the betweenness attributes or other attributes do not need to be maintained for

the transpose network; they only need to be maintained for the original version of the

graph. Hence, the betweenness centrality values need to be stored only once in the

memory. The betweenness centrality is very costly to compute and needs several pieces

of additional information by definition. Betweenness centrality requires the number of

shortest paths and the predecessors on the shortest paths, which reflect as additional

memory space required by the betweenness algorithms.

Similar to the space the incremental closeness centrality algorithm needs to hold

the shortest distance values across all pairs of nodes, the space required for storing the

shortest path distances for the betweenness centrality is O(n2) in the worst case (i.e. O(n2)

distance matrix). To be more precise, for each node, there are 𝑛 − 1 other nodes in the

network it can reach out to. Hence, the precise upper bound for the number of node pairs

for whose distances are defined is 𝑛 𝑛 − 1 = 𝑛2, which is represented as O(n2) in the

worst case in the Big-O notation. We do not need to hold the information for 𝐷 𝑖, 𝑖 , 𝑖 ∈ 𝐺

as 𝐷 𝑖, 𝑖 is always equal to 0 by default. However, a lot of real life networks are very

sparse and the distance matrix does not even need to be stored as an O(n2) matrix; the

sparse representations are more preferable. In sparse networks, not every node is

reachable from every other node in the network. More precisely, the data structure that

 107

holds the shortest distance information has Conn(G) entries where Conn(G) represents

the number of node pairs in the network that have a finite shortest distance defined. This

analysis is valid for the number of shortest paths in the network. For the number of

shortest paths, we do not need to hold the information for 𝜎 𝑖, 𝑖 , 𝑖 ∈ 𝐺 as 𝜎 𝑖, 𝑖 is always

equal to 1 by default. In total, (2 * Conn(G)) entries are required to hold the shortest

distances and the number of shortest paths across all node pairs. The only piece of

information that needs to be maintained for the transpose of the graph is the shortest

distances defined on that version of the graph. This adds another Conn(G) entries to the

memory consumption.

Another piece of information the computation of betweenness centrality needs is

the predecessor nodes on the shortest paths (i.e. the information on the intermediate

nodes on a path) so that it can find the fraction of the shortest paths a node lies on. This

information only needs to be maintained for the original version of the graph. The

shortest path tree stemming from a node i can at most have n nodes and m edges in it.

This is the case where a node can access all other nodes in a network, and all the edges in

the network are used as parts of the shortest paths stemming from node i. The shortest

path tree stemming from a single node takes O(n + m) space. The incremental

betweenness centrality algorithm needs to maintain the predecessors on the shortest paths

from all nodes, which takes O(n2 + nm) space in the worst case. However, in most cases,

the information required for holding the shortest path trees requires less space. On

average, the number of predecessors on the shortest paths can be calculated as the

multiplication of the average shortest path length (in terms of number of hops), the

 108

average number of shortest paths, and Conn(G). Considering the information presented

on the network topologies in Chapter 7, for instance, the average shortest path lengths for

networks with 1000-5000 nodes remain in the range of 3.45 – 20.26, mostly staying less

than 13.0, which are values that are much smaller than the total number of nodes in the

network.

Overall, the worst-case space complexity of the incremental betweenness

centrality algorithm is (2n + 2m + n + 3Conn(G) + n2 + nm) which is represented as O(n +

m + Conn(G) + n2 + nm) in the Big-O notation. This space complexity can also be

represented as O(n2+ nm) given that (i) the worst case value of Conn(G) is O(n2) and (ii)

both n and m are of lower degree from n2 and nm.

In addition to the amount of data that needs to be stored permanently across

several different iterations of the incremental betweenness centrality algorithm, another

aspect of the memory consumption is the overhead: the amount of data that is temporarily

stored during the execution of a single incremental network update, and not maintained

across different updates.

There are four sub-algorithms that handle the growing network updates: the

INSERTBETWEENNESS, the INSERTUPDATEBETWEEENNESS, the REDUCEBETWEENNESS, and the

INCREASEBETWEENNESS algorithms.

The INSERTBETWEENNESS algorithm maintains four data structures that are

initialized at the beginning of the INSERTBETWEENNESS algorithm, created once, and

accessed by all other sub-algorithms of the incremental betweenness centrality that

handle the growing network updates: σold, Dold, trackLost, and PairsDone. The σold, Dold,

 109

and PairsDone are O(Conn(G)) in the worst case, however, in reality they are much

smaller. For their sizes, |AffectedSinks| × |AffectedSources| is a more realistic upper

bound. In addition, the Dold is likely to be smaller than σold because σold contains a key for

all pairs of nodes whose number of shortest paths or distances change while the Dold

contains only the pairs of nodes whose shortest distances change. The trackLost data

structure holds the information for the predecessors that were on the invalidated shortest

paths. If there are too many changes in the network, this data structure can potentially

become large. Its size can be described as O(I) where I represents the total number of

intermediates processed for all node pairs listed in σold.

In addition, the INSERTBETWEENNESS algorithm maintains two sets of nodes:

AffectedSinks and AffectedSources, which are of order O(n) each. These two objects are

stored during the entire lifetime of an incremental update and cleared once the network

update completes successfully.

In the INSERTUPDATEBETWEENNESS algorithm, lists of AffectedVertices and

VisitedVertices are maintained as well as a working set of edges (e.g. Workset). Both the

AffectedVertices and VisitedVertices might be of order O(n) while the Workset might be

of order O(m) in the worst case. Hence, the memory overhead per iteration in the worst

case is (2n + m), which can be represented as O(n + m). These data structures are only

maintained during the execution of the INSERTUPDATEBETWEENNESS algorithm and cleared

once the execution of the algorithm is complete.

The REDUCEBETWEENNESS algorithm utilizes information from σold, Dold, trackLost,

and PairsDone, and grows trackLost as needed, which are already discussed as a part of

 110

the INSERTBETWEENNESS algorithm. There are two data structures Known and Stack, and

they are used together: an item popped out of Stack is inserted into Known. The total size

of Known and Stack is on the order of O(n). However, the maximum size of these data

structures is the number of intermediates on the shortest paths from node x to node z,

which are the two input parameters given to the algorithm. On average, the number of

predecessors on the shortest paths from node x to node z can be calculated as the

multiplication of the average shortest path length (in terms of number of hops) and the

average number of shortest paths.

Finally, the INCREASEBETWEENNESS algorithm utilizes information from σold and its

execution is very similar to that of the REDUCEBETWEENNESS algorithm. Hence, their

analysis will be similar as well. For each node pair <a, b> in σold, there are two data

structures Known and Stack that are used together: an item popped out of Stack is inserted

into Known. The total size of Known and Stack is on the order of O(n). However, the

maximum size of these data structures is the number of intermediates on the shortest

paths from node a to node b, which are the two input parameters given to the algorithm.

On average, the number of predecessors on the shortest paths from node a to node b can

be calculated as the multiplication of the average shortest path length (in terms of number

of hops) and the average number of shortest paths.

Overall, the data structures initialized at the beginning of the INSERTBETWEENNESS

algorithm are maintained during the entire lifetime of an incremental network update,

which can be stated as the memory overhead of the incremental betweenness centrality

algorithm. The total upper bound for the space these data structures consume is

 111

((3*|AffectedSinks| × |AffectedSources|) + I), which can be represented as

O(|AffectedSinks| × |AffectedSources|) + I) in the Big-O notation.

Similar memory overhead analysis can be performed for temporarily stored data

for the algorithms that handle the shrinking network updates. The analysis done for the

components of the incremental betweenness centrality algorithm that handle the growing

network updates mostly holds for the sub-algorithm that handle the shrinking network

updates. There are five sub-algorithms that handle the shrinking network updates: the

DELETEBETWEENNESS, the DELETEUPDATEBETWEEENNESS, the CLEARBETWEENNESS, the

ADJUSTNPS, and the ADJUSTBETWEENNESS algorithms. The analysis done for the

DELETEBETWEENNESS algorithm is valid for the DELETEBETWEENNESS algorithm as well.

Similarly, the analysis done for the INCREASEBETWEENNESS algorithm holds for the

ADJUSTBETWEENNESS algorithm. The CLEARBETWEENNESS and the ADJUSTNPS, have

working principles and analyses that follow the same approach as the

REDUCEBETWEENNESS algorithm. Hence, they are not discussed separately here.

In the DELETEUPDATEBETWEENNESS algorithm, lists of AffectedVertices and

VisitedVertices are maintained and a set working nodes (e.g. Workset). The

AffectedVertices, VisitedVertices, and Workset are of order O(n) while in the worst case.

Hence, the memory overhead per iteration in the worst case is 3n, which can be

represented as O(n). These data structures are only maintained during the execution of the

DELETEUPDATEBETWEENNESS algorithm and cleared once the execution of the algorithm

is complete.

 112

As the analyses done on the performance and memory use suggest, different

network features have different effects on both the performance and memory

consumption. For instance, betweenness centrality needs the information on the

predecessors that lie on the shortest paths, which are actually the nodes on a shortest path

tree. If a network has low diameter and average shortest path length, this causes the

average and maximum depth of shortest path trees stemming from the each node in the

network to be short and the tree might potentially contain fewer nodes. Or, if a network

has several small, disconnected components, if a network its diameter and average

shortest path length are likely to be smaller than they would be otherwise. In addition,

Conn(G) is also likely to be smaller, which is one of the main values that make up the

memory consumption of the incremental centrality algorithms. Another effect this would

have is that the number of nodes that are affected by the incremental network update is

likely to be smaller, which reflects as increased performance as the percentage of the

affected nodes decreases.

Another feature that might affect the level of connectivity, Conn(G), which

represents the number of node pairs that are connected, is whether a network is directed

or undirected (bidirectional). When a network is undirected, if a node x can reach to

another node y, then node y can reach to node x as well. However, this is not necessarily

true when the edges in a network are directed. Hence, when a network is undirected

(bidirectional), Conn(G) is likely to be higher, which reflects as a potential increase in the

memory consumption and the percentage of nodes affected by an incremental network

update as well as a potential decrease in the performance speedup that can be obtained.

 113

5.5.3 Comments on Accuracy

The algorithms presented in this chapter build on the Ramalingam and Reps

dynamic shortest path algorithms proposed in [104] to incorporate the accurate

computation of betweenness centrality. In other words, the incremental betweenness

centrality algorithms presented in this chapter are designed to incur no loss in the

accuracy of betweenness centrality values.

A discussion that is similar to the discussion on the implementation of the

incremental closeness centrality also holds for the incremental betweenness centrality

implementation. It is important to handle the floating-point numbers with caution. In

order to ensure that the results produced by the incremental betweenness centrality

algorithm match the results produced by the non-incremental betweenness algorithms,

both the incremental and the non-incremental betweenness centrality algorithms should

handle the floating-point numbers using the same epsilon value, 𝜀. Two real numbers 𝑎

and 𝑏 are considered equal if 𝑎 − 𝑏 < 𝜀, where 𝑎 − 𝑏 denotes the absolute value of

(𝑎 − 𝑏). The conditions that test whether a path is a shortest path compare the length of

the path against the shortest distance to look for equality. Such conditional checks lie at

the heart of both the incremental and non-incremental algorithms and govern how the rest

of the network update propagates in the network and how the rest of the shortest path

trees are built. Hence, the conditional checks that test the equality/inequality of the

shortest path distances should be supported by an epsilon range. The epsilon value used

in our implementations was 10-7.

 114

For verification, every time the incremental algorithm was run, the standard non-

incremental algorithm (e.g. the Brandes’ algorithm) was also run and the results

compared. Once we took the same epsilon into account in both, the results of both the

incremental algorithm and the standard algorithm were identical in every case. Further

comments on verification can be found in Chapter 8.7.

5.6 DISCUSSION ON GENERALIZATION TO OTHER CENTRALITY METRICS

AND SHORTEST-PATH BASED PROBLEMS

 As described earlier, most social centrality metrics can be loosely classified into

two types: (i) social centrality metrics based on shortest-paths, and (ii) social centrality

metrics based on degree of nodes. The incremental centrality algorithms proposed in this

dissertation dynamically maintain the all-pairs shortest path information and auxiliary

data related to the centrality metrics. The proposed incremental betweenness algorithm

performs accurate maintenance of dynamic all-pair shortest paths along with the shortest

path counts and predecessor tracking. With modest extensions, the proposed algorithms

can be generalized to calculate other shortest-path based social centrality metrics such as

stress centrality [20], and flow-betweenness centrality [130].

There are other problem domains that benefit from information on the number of

shortest paths or predecessor tracking. Redundant path planning for fault tolerant

networks (whether they be communication or transportation networks), and analyzing

optimal game state transitions in artificial intelligence or game theory are among such

examples. In transportation/communication networks, the number of shortest paths

 115

represents the number of redundant but optimal routes between a pair of nodes, and

predecessors represent routing points. In game state analysis, the number of shortest paths

to a winning state represents the number of optimal winning strategies not foreclosed by

an opponent's moves, and predecessors indicate intermediate states as the game

progresses.

 116

CHAPTER 6 EXTENSIONS AND APPLICATIONS

The first part of this chapter describes extensions of incremental centrality metrics

to provide support for their approximations. The approximations discussed in this chapter

are in the form of k-centrality metrics where the shortest paths in a network are calculated

within k-hops of each node. In the second part of this chapter, a number of potential

applications (i.e. use cases) of the incremental centrality metrics are described including

clustering, vulnerability analysis, and resource allocation.

6.1 WHAT IS K-CENTRALITY?

The standard shortest path based centrality metrics consider all the shortest paths

in a network topology irrespective of the lengths of the shortest paths. When computing

local approximations for the shortest path based centrality metrics, one alternative is to

consider the shortest paths within a bounded distance. Consider the following scenario

where a social agent in a social network needs help to solve a problem. The social agent

is more likely to contact one of its friends, a friend of a friend, maybe someone those

people can introduce; but most likely it will not search for help beyond the first couple of

hops of its connections. In most cases, social agents are not even aware of the set of

contacts they can reach out to if they were to follow communication paths along multiple

hops. Such social behavior motivates the use of local approximations of the shortest paths

bounded within first k-hops instead of using global metrics that are computed across the

 117

entire network topology. This is also in line with the other findings available in the

current literature, which discuss that very long connections are not considered to be

realistic for friendship-like networks.

We name the approximations of the betweenness and closeness centrality that are

computed using the shortest paths within k-hops as k-betweenness and k-closeness,

respectively.

Figure 8 - Example network for k-centrality discussion.

Consider the example network depicted in Figure 8. Figure 8 represents a binary,

undirected (bidirectional) network where all existing edges’ costs and weights are equal

to 1. Assume that we need to compute k-closeness and k-betweenness for k = 3. In this

case, the shortest paths are computed within the first three hops of each node. The

shortest paths whose total costs are more than three hops are dropped from the

computations. Hence, when k = 3, not all the shortest paths across the entire network are

included in the computations of centrality metrics.

Next, the computations of k-closeness and k-betweenness for k = 3 are described

using node-B in Figure 8 as an example.

 118

To compute the k-closeness centrality of node-B for k = 3, the nodes that are

reachable from node-B in less than or equal to three hops are considered. In this case, the

following nodes contribute to the closeness centrality of node-B: A, D, C, E, and F.

To compute the k-betweenness centrality of node-B, the node pairs that contribute

to the k-betweenness centrality of node-B are as follows:

< A, D > < A, C > < C, D > < A, E > < D, E >

The node pairs listed above are the only node pairs that can reach to one another

in less than or equal to three hops and have node-B as an intermediate node on their

shortest paths. For instance, the shortest path between node-A and node-F is not included

even though node-F is within three hops of node-B. This is because it takes four hops in

total to reach from node-A to node-F and vice versa. Such paths would not be included in

the final computations of k-betweenness centrality for k = 3 where the computations are

restricted to include the shortest paths that are three hops or less. The shortest path

between node-B and node-F is also excluded from the computation of betweenness

centrality for node-B as node-B is an end node, not an intermediate node.

Similar to the examples discussed above, the k-centrality metrics traditionally

focus on the number of hops, where the networks are treated as binary networks, and the

edge costs are ignored. Using the edge weights becomes especially tricky (or even

misleading) when the edge costs can be fractional, using values that are less than 1. In

such networks, setting the k value to a commonly used, small value such as k = 2 or k = 3

might become confusing and problematic; potentially leading to unintended results. This

is because, the cost of a shortest path composed of several hundreds of edges with edge

 119

cost, say, 0.0001 would still satisfy the requirement that the shortest path distance should

be less than or equal to k. In such a case, the attempt to obtain an approximate value for

the centrality metrics would result in almost no approximation. Therefore, although we

provide generic pseudocodes that would work with both weighted and binary networks,

we recommend using k-centralities with the binary versions of networks.

As one last point, the longest possible shortest path in a network is observed in the

form of a chain, which can have at most n – 1 hops. When k = n – 1, the k-centrality

version of a shortest path based centrality metric corresponds to the standard version of

that shortest path based centrality.

In the current literature, there exist papers that specifically focus on k-centralities

(e.g. [18]). In [18], the authors combine the k-centrality computation for closeness and

betweenness centrality metrics in a single algorithmic framework and comment on the

details like normalization, implementation, and algorithmic complexity. As one example,

closeness centrality 𝐶! is normalized by the maximum possible closeness value

𝐶!!"# = 1 (𝑛 − 1), which belongs to the central node in a star-topology network of n

nodes. In [18], a normalization criterion is proposed for k-closeness centrality. In the case

of k-closeness, the number of nodes that can reach within k hops, 𝑛!, tends to be smaller

than the case where the number of hops on the shortest paths is not bounded. For k-

closeness, 𝐶!
!"#,! is adjusted as 𝐶!

!"#,! = 1 𝑛! and the raw k-closeness value is

normalized by 𝑛! (𝑛 − 1). Similar criteria are discussed for k-betweenness as well.

 120

In the context of k-centralities, there is more work on k-betweenness centrality

than there is on k-closeness centrality. Other studies that focus on k-betweenness

centrality and not mentioned so far in this dissertation in detail include [131], [132],

[133], and [134].

In [131], the authors deviate from the traditional interpretation of k-betweenness

centrality and define k-betweenness as a centrality metric that captures the additional

information provided by paths whose length is within k units of the shortest path length.

In other words, the authors extend and generalize the definition of betweenness centrality

to include additional, non-shortest paths according to an input parameter k and present a

new parallel algorithm to calculate this variant of betweenness centrality. In [132], the

authors from the same group as [131], build on the work presented in [131] and discuss

its application on social network data (e.g. Twitter).

In [133], the authors focus on two methods for approximating betweenness

centrality. One approximation method that is discussed in [133] specifically targets scale-

free networks and their topological properties. In scale-free networks, incoming new

nodes prefer attaching to the nodes with a high number of connections, which play the

role of “hubs”. The authors observed that centrality rankings tend not to change

dramatically unless the node a new edge emanates from is one of the central nodes. This

brings along a way of enabling lazy updates in dynamic networks while providing fairly

accurate centrality rankings. The second approximation method discussed in [133] is k-

betweenness centrality. In [134], the authors integrate these approximation methods into

an Internet Deployed P2P Reputation System and conclude that it is easier to

 121

approximate betweenness centralities in scale-free networks than it is in random networks

due to their topological properties. One of the real life datasets used in the evaluations in

this dissertation is also a real life P2P dataset.

6.2 K-CLOSENESS

This section discusses the algorithms designed for the incremental computation of

k-closeness centrality. The algorithms that are discussed in this section, Chapter 6.2.1 and

Chapter 6.2.2, are variants of the algorithms discussed in Chapter 4.3 and Chapter 4.4,

respectively. For completeness reasons, the pseudocodes that are modified from the

incremental closeness centrality algorithm for the incremental k-closeness centrality

algorithm are provided. The changes that are specifically made for the incremental

computation of k-closeness centrality are pointed out as well.

As mentioned in earlier chapters, the most commonly used way of computing

closeness centrality is to compute the all pairs shortest paths by running a single source

shortest path algorithm such as the Dijkstra’s algorithm using every node in the network

as the source node. Hence, before we start our discussion for converting the incremental

closeness centrality algorithm into incremental k-closeness centrality algorithm, we

briefly discuss how to convert the Dijkstra’s algorithm to work with k-hop shortest path

bounds.

 122

6.2.1 Dijkstra’s k-hop Shortest Path

Algorithm–20 provides the algorithm for k-hop single source shortest path

algorithm (e.g. the Dijkstra’s algorithm). To ensure that only the shortest paths that are

less than or equal to k are processed, Line – 12 of Algorithm–20 is modified to include a

condition which checks if the newly found shortest path is less than or equal to k. The

modification done is highlighted with bold font in Line – 12.

6.2.2 Incremental k-Closeness Centrality: Growing Network Updates

The changes required for converting incremental closeness centrality into

incremental k-closeness centrality are primarily about bounding the discovery of the

shortest paths to remain within k hops. Although the incremental closeness centrality

algorithm is composed of two sub algorithms, INSERTCLOSENESS and

Algorithm–20: SINGLE-SOURCE K-SHORTEST PATH (DIJKSTRA’S) ALGORITHM (G, src)
Input: A network G(V, E) and source node src.
Output: Shortest path distances from src to all nodes n V(G) are computed.
1. for v ∈ V(G)
2. d [v]← ∞
3. P[v] ← empty list
4. d [s] ← 0
5. Q ← w ∈ V(G)
6. while Q ≠ ∅
7. dequeue u ← Q
8. if d [u] = ∞
9. break;
10. for neighbor v of u
11. alt ← d [u] + C [u, v]
12. if alt < d [v] && alt ≤ k
13. d [v] ← alt
14. P[v] ← u
15. decrease-key v in Q

 123

INSERTUPDATECLOSENESS, the changes required for k-closeness centrality are made on the

INSERTUPDATECLOSENESS algorithm only.

Algorithm–21 provides the related pseudocode for the INSERTUPDATEKCLOSENESS

algorithm. The change required for converting incremental closeness centrality into

incremental k-closeness centrality to handle growing network updates is only at Line – 6

of Algorithm–21. In Line – 6 of the INSERTUPDATECLOSENESS algorithm, we check for

changes in the shortest path distances to see if there are any newly formed shorter paths.

In Line – 6 of the INSERTUPDATEKCLOSENESS algorithm, this check is performed along

Algorithm–21: INSERTUPDATEKCLOSENESS (G, src, dest, z)
Input: A network G(V, E), a newly inserted or modified edge {src → dest}, and an
affected node z.
Output: The shortest distances (D) to the affected node z are updated, and closeness
values (Cc) of the sources of the updated distances are also updated.
1. Workset ←{src → dest}
2. VisitedVertices ←src
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x →y} ← pop (Workset)
6. if C (x, y) + D (y, z) < D (x, z) && C (x, y) + D (y, z) ≤ k
7. Add x to AffectedVertices
8. TotDist(x) ← 1

𝐶𝑐(𝑥)

9. if D (x, z) ≠ ∞
10. TotDist(x) ← TotDist(x) – D (x, z) + C (x, y) + D (y, z)
11. else
12. TotDist(x) ← TotDist(x) + C (x, y) + D (y, z)
13. 𝐶!(𝑥) ←

!
!"#$%&#(!)

14. D (x, z) ← C (x, y) + D (y, z)
15. for u ∈ Pred(x)
16. if SP (u, x, src) and u ∉ VisitedVertices
17. push {u →x} into Workset
18. Insert u into VisitedVertices
19. return AffectedVertices

 124

with an additional check to ensure that only the shortest paths that are less than or equal

to k hops are included in the computations. The remainder of the

INSERTUPDATEKCLOSENESS algorithm is the same as the INSERTUPDATECLOSENESS

algorithm.

6.2.3 Incremental k-Closeness Centrality: Shrinking Network Updates

Next, we discuss the changes required for converting the part of the incremental

closeness algorithm that handles shrinking network updates to work with k-hop bounded

shortest paths. Similar to the modifications required to handle growing network updates,

to handle shrinking network updates in incremental k-closeness centrality, we modify

only the DELETEUPDATECLOSENESS algorithm. Algorithm–22 presents the pseudocode for

DELETEUPDATEKCLOSENESS algorithm. To arrive at the DELETEUPDATEKCLOSENESS

algorithm, there are two changes that need to be made on the DELETEUPDATECLOSENESS

algorithm: Line – 17 and Line – 28. These two lines are the points where a new shortest

path is discovered after an edge on a shortest path has been removed or modified and

there is now the possibility of finding a new shortest path. In both of the modified lines,

additional conditional checks are inserted to ensure that the sum of the cost of the

examined edge and the cost of the rest of the path remains within k hops if this shortest

path is to be included in the rest of the computations.

 125

Algorithm–22: DELETEUPDATEKCLOSENESS (G, src, dest, z)
Input: Network G(V, E), deleted or modified edge {src → dest}, and an affected node z.
Output: The shortest distances (D) to the affected node z and the closeness values of the sources of the
updated distances are updated.
1. AffectedVertices ← ∅
2. atLeastOneExists ←false
3. for x ∈ Succ(src)
4. if SP(src, x, z)
5. atLeastOneExists ←true
6. break;
7. if atLeastOneExists = false
8. Workset ← {src};
9. while Workset ≠ ∅
10. u ← pop (Workset)
11. Add u to AffectedVertices
12. for x ∈ Pred(u) such that SP(x, u, z)
13. if (all y ∈ Succ(x) such that SP(x, y, z) and y ∈ AffectedVertices)
14. push x into Workset
15. PriorityQueue ← ∅
16. for a ∈ AffectedVertices
17. minDst ←min({C(a, b) + D(b, z) | {a → b} ∈ E(N) & b ∉ AffectedVertices & C(a, b) + D(b, z) ≤ k}, {∞})
18. TotDist(a) ← !

!!(!)

19. if D(a, z) ≠ ∞
20. TotDist(a) ← TotDist(a) – D(a, z)
21. D(a, z) ← minDst
22. if D(a, z) ≠ ∞
23. TotDist(a) ← TotDist(a) + D(a, z)
24. Insert (PriorityQueue, a, D(a, z))

25. 𝐶!(𝑎) ←
!

!"#$%&#(!)

26. while PriorityQueue ≠ ∅
27. a ← extractMin(PriorityQueue)
28. for c ∈ Pred(a) such that C(c, a) + D(a, z) < D(c, z) & C(c, a) + D(a, z) ≤ k
29. TotDist(c) ← !

!!(!)

30. if D (c, z) ≠ ∞
31. TotDist(c) ← TotDist(c) – D(c, z)
32. D(c, z) ←C(c, a) + D(a, z)
33. if D (c, z) ≠ ∞
34. TotDist(c) ← TotDist(c) + D(c, z)
35. 𝐶!(𝑐) ←

!
!"#$%&#(!)

36. if c ∈ PriorityQueue
37. DecreaseKey (PriorityQueue, c, D(c, z))
38. else
39. Insert (PriorityQueue, c, D(c, z))
40. return AffectedVertices

 126

The INSERTCLOSENESS and the DELETECLOSENESS algorithms remain unchanged

except for calling the INSERTUPDATEKCLOSENESS and the DELETEUPDATEKCLOSENESS

algorithms instead of the INSERTUPDATECLOSENESS and the DELETEUPDATECLOSENESS

algorithms, respectively. Hence, their pseudocodes are not included in this chapter.

6.3 K-BETWEENNESS

This section discusses the algorithms designed for the incremental computation of

k-betweenness centrality. The term “k-betweenness centrality” was introduced by

Borgatti and Everett [23]. The k-betweenness centrality of a node is defined as the sum of

the dependencies of pairs that are at most k hops apart from one another [23]. In [47],

Brandes provides the pseudocode for computing k-betweenness centrality, which is

presented as a modification of the original Brandes’ algorithm. Chapter 6.3.1 presents the

k-betweenness algorithm as discussed by Brandes in [47].

The algorithms that are discussed in Chapter 6.3.2 and Chapter 6.3.3 are

variations of the algorithms discussed in Chapter 5.3 and Chapter 5.4, respectively. For

completeness reasons, we provide the full pseudocode for the modified incremental k-

betweenness centrality algorithms and point out the specific changes made for the

incremental computation of k-betweenness centrality.

6.3.1 Brandes’ k-Betweenness Algorithm

In [47], Brandes provides the pseudocode for computing k-betweenness centrality

by modifying his original algorithm that is published in [28]. The only change made to

 127

the original betweenness algorithm of Brandes is the inclusion of the check for the

distance being less than or equal to k. In Line – 15 of the Brandes’ k-betweenness

algorithm (Algorithm–23), we need to check that the distance to node w is less than k

before we insert it into the queue for further processing as a part of the path discovery.

Since this check is enforced for all nodes and all paths, the shortest paths are enforced to

be bounded by k-hops.

Algorithm–23: BRANDES’ K-BETWEENNESS ALGORITHM (G)
Input: A network G(V, E).
Output: k-betweenness values of all nodes n V(G) are computed.
1. CB [] ← 0, v ∈ V(G)
2. for s ∈ V(G)
3. S ← empty stack
4. P[w] ← empty list, w ∈ V(G)
5. σ [t] ← 0, t ∈ V(G); σ [s] ← 1
6. d [t] ← -1, t ∈ V(G); d [s] ← 0
7. Q ← empty queue
8. enqueue s into Q
9. while Q ≠ ∅
10. dequeue v ← Q
11. push v into S
12. for neighbor w of v
13. if d [w] < 0
14. d [w] ← d [v] + 1
15. if d [w] ≤ k
16. enqueue w into Q
17. if d [w] = d [v] + 1
18. σ [w] ← σ [w] + σ [v]
19. append v into P[w]
20. δ [v] ← 0, v ∈ V(G)
21. while S ≠ ∅
22. pop w ← S
23. for v ∈ P[w]
24. δ [v] ← δ [v] + ! [!]

! [!]
 .(1 + δ [w])

25. if w ≠ s
26. CB [w] ← CB [w] + δ [w]

 128

6.3.2 Incremental k-Betweenness Centrality: Growing Network Updates

Next, we discuss the changes required for converting the part of the incremental

betweenness centrality algorithm that handles growing network updates to work with k-

hop bounded shortest paths. As observed in the k-closeness centrality algorithms as well

as the Brandes’ k-betweenness algorithm, the modifications required to limit the shortest

paths to be less than or equal to k hops are done as a part of the path discovery process.

Since the path discovery is handled as a part of the INSERTUPDATEBETWEENNESS

algorithm, we provide the pseudocode for the modified version of the

INSERTUPDATEBETWEENNESS algorithm as the INSERTUPDATEKBETWEENNESS algorithm.

The REDUCEBETWEENNESS and the INCREASEBETWEENNESS algorithms remain the same.

Thus, their pseudocodes are not included again in this chapter. The INSERTBETWEENNESS

algorithm needs to invoke the INSERTUPDATEKBETWEENNESS algorithm instead of the

INSERTUPDATEBETWEENNESS algorithm to compute the k-betweenness centrality

incrementally. Since this is a trivial change, the pseudocode for the modified version of

the INSERTBETWEENNESS algorithm is not included in this chapter.

There are two conditional checks inserted into the INSERTUPDATEBETWEENNESS

algorithm to arrive at the INSERTUPDATEKBETWEENNESS algorithm: Line – 7 and Line – 15

of the INSERTUPDATEKBETWEENNESS algorithm presented below. Originally, Line – 7

checks if the path with the alternative distance alt (i.e. the distance alt is obtained by

summing up the cost of the edge under examination and the cost of the rest of the shortest

path to the affected node z) is shorter than the previously known shortest path(s).

 129

Similarly, Line – 15 checks if the alternative distance alt is equal to the currently

known shortest path length to see if it is a newly found shortest path. Both of these lines

are entry conditions for two cases of the path discovery phase: (i) the discovery of strictly

Algorithm–24: INSERTUPDATEKBETWEENNESS (G, src, dest, z, PairsDone)
Input: Network G, newly inserted/modified edge {src → dest}, an affected node z.
Output: The shortest distances to z. The number of shortest paths and the
predecessors on these shortest paths are also updated.
1. Workset ←{src → dest} //Min-key priority queue w.r.t the distance of the head of the edge to src
2. VisitedVertices ← src
3. AffectedVertices ← ∅
4. while Workset ≠ ∅
5. {x → y} ← pop (Workset)
6. alt ← C (x, y) + D (y, z)
7. if alt < D (x, z) & alt ≤ k
8. if <x, z> ∉ σold
9. Dold (x, z) ← D (x, z); σold (x, z) ← σ(x, z)
10. REDUCEBETWEENNESS (x, z)
11. σ(x, z) ← 0; 𝑃!(𝑧) ← ∅
12. if [u, z] ∈ PairsDone
13. Remove [x, z] from PairsDone
14. D (x, z) ← alt
15. if alt = D (x, z) & D (x, z) ≠ ∞ & alt ≤ k
16. if [x, z] ∉ PairsDone
17. if <x, z>∉ σold
18. REDUCEBETWEENNESS (x, z)
19. if σ (x, z) ≠ 0
20. σold (x, z) ← σ (x, z)
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z))
22. Append x to 𝑃!(𝑦)
23. Append 𝑃!(𝑧) to 𝑃!(𝑧)
24. Insert [x, z] into PairsDone
25. Insert x into AffectedVertices
26. for u ∈ Pred (x) //sorted w.r.t. edge costs in ascending order
27. if SP (u, x, src) and u ∉ VisitedVertices
28. push {u → x} into Workset
29. Insert u into VisitedVertices
30. return Affected Vertices

 130

shorter paths and (ii) the discovery of the shortest paths of equal length. In the

INSERTUPDATEKBETWEENNESS algorithm, these conditions are supplemented by additional

(alt ≤ k) checks to ensure that the newly found shortest paths also obey the restriction for

the shortest paths to be less than or equal to k hops.

6.3.3 Incremental k-Betweenness Centrality: Shrinking Network Updates

Next, we discuss the changes required for converting the part of the incremental

betweenness centrality algorithm that handles shrinking network updates to work with k-

hop bounded shortest paths. The CLEARBETWEENNESS, ADJUSTNPS, and

ADJUSTBETWEENNESS algorithms remain unchanged while the DELETEBETWEENNESS

algorithm has straightforward modifications where the invocations of the

DELETEUPDATEBETWEENNESS algorithm are replaced by the invocations of the

DELETEUPDATEKBETWEENNESS algorithm. Hence, only the pseudocode for the

DELETEUPDATEKBETWEENNESS algorithm (Algorithm–25) is provided in this chapter.

In the DELETEUPDATEKBETWEENNESS algorithm, there are four different points

where restricting conditions for the shortest paths to be less than or equal to k hops are

inserted: Line – 16, Line – 20, Line – 28, and Line – 36. The changes in Line – 16 and

Line – 20 of the DELETEUPDATEKBETWEENNESS algorithm are a part of the path discovery

process after a line has been removed or modified. Line – 16 checks for strictly shorter

paths while Line – 20 checks for the shortest paths of equivalent length.

 131

Algorithm–25: DELETEUPDATEKBETWEENNESS (G, src, dest, z)
Input: Network G(V, E), deleted or modified edge {src → dest}, and an affected node z.
Output: The shortest distances (D) to the affected node z and the predecessors on these shortest paths are
updated. The k-betweenness values of the intermediates on the invalid paths are reduced.
1. AffectedVertices ← ∅
2. Workset ←{src};
3. while Workset ≠ ∅
4. u ←pop (Workset)
5. if u ∉ AffectedVertices then add u to AffectedVertices
6. for x ∈ Pred(u) such that SP(x, u, z)
7. add x into Workset
8. AffVert ← AffectedVertices.copy()
9. Q_inc ← ∅
10. while AffVert ≠ ∅
11. a ← extractMin(AffVert)
12. if (< 𝑎, 𝑧 > ∉ σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) > into σold and CLEARBETWEENNESS (a, z)
13. if (< 𝑎, 𝑧 > ∉ Dold) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) > into Dold
14. myMin ← ∞
15. for b ∈ Succ(a)
16. if (C(a, b) + D(b, z) < myMin & (C(a, b) + D(b, z)) ≤ k)
17. myMin← C(a, b) + D(b, z)
18. 𝑃!(𝑧) ← ∅
19. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
20. else if (C(a, b) + D(b, z) = myMin & myMin ≠ ∞ & b ∉ AffectedVertices & myMin ≤ k)
21. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
22. 𝐷(𝑎, 𝑧) ← myMin
23. if myMin ≠ ∞ & a ∉ Q_inc
24. add a into Q_inc
25. while Q_inc ≠ ∅
26. a ← extractMin(Q_inc)
27. for c ∈ Pred(a)
28. if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k)
29. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) > into σold and CLEARBETWEENNESS (c, z)
30. if (< 𝑐, 𝑧 > ∉ Dold) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) > into Dold

31. 𝑃!(𝑧) ← ∅
32. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
33. D(c, z) ← C(c, a) + D(a, z)
34. if c ∉ Q_inc
35. add c into Q_inc
36. else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k)
37. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) > into σold and CLEARBETWEENNESS (c, z)
38. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
39. if c ∉ Q_inc
40. add c into Q_inc
41. return AffectedVertices

 132

The changes in the Line – 28 and Line – 36 are a part of the second phase of the

shortest path discovery process where new shortest paths are searched for using the other

shortest paths that are discovered in the first phase. Line – 28 checks for strictly shorter

paths while Line – 36 checks for the shortest paths of equivalent length.

Chapter 8.3.4 and Chapter 8.4.3 discuss the performance improvements of the

incremental k-centrality algorithms in detail for synthetic and real-life networks,

respectively. Consider the following performance result example. For a 5000-node Erdos-

Renyi network, the k-betweenness centrality based on the Brandes’ algorithm runs 64.1

times faster than the original Brandes’ betweenness algorithm for k = 2. Then, with the

incorporation of the incremental approach, the incremental k-betweenness algorithm runs

64049 times faster than the k-betweenness algorithm based on the Brandes’ algorithm.

Such a significant performance improvement comes from the fact that the number of

affected nodes for the incremental k-betweenness centrality is very small. After updating

a small number of shortest paths in a restricted area, the incremental k-betweenness

algorithm terminates. However, the non-incremental version of the k-betweenness

algorithm needs to compute the shortest paths from every single one of 5000 nodes even

if the shortest paths are restricted to k hops. Hence, the centrality algorithms benefit

significantly from the incremental algorithm design, especially when the shortest paths

are restricted to remain within k hops, forcing the portion of the network affected by the

incremental network update to be small. The results presented in Chapter 8.3.4 and

Chapter 8.4.3 focus on demonstrating the performance improvements observed due to

incorporation of the incremental algorithm design. Therefore, the results presented in

 133

Chapter 8.3.4 and Chapter 8.4.3 compare the performance benefits of the incremental k-

centrality algorithms over the k-betweenness algorithm based on the Brandes’

betweenness algorithm and the k-closeness algorithm based on the Dijsktra’s shortest

path algorithm. The performance benefits that only come from the k-hop approximations

of the global centrality measures computed across the entire network have been

demonstrated earlier in the literature in different contexts in a number of papers including

[18], [135], and [136]. The findings of Pfeffer and Carley in [18] suggest that k-

centralities have substantial improvements in small-world type of networks where the

networks are highly clustered and there are relatively long paths. On the contrary, in [18],

the authors show that preferential attachment networks benefit less from k-hop

approximations of centralities due to relatively shorter average path distances. Both of

these results are inline with our findings as further detailed in Chapter 8.3.4.

The memory improvements primarily stem from restricting the depth of the shortest

path trees built from each source node to remain less than or equal to k. Unless restricted

to remain within the first k hops, the depths of the shortest path trees might go as high as

the diameter of the network, which can be very long especially in small-world type of

networks, as shown in the network properties in Table 6, Table 7, and Table 8 in Chapter

7.1. This is especially helpful for the computation of betweenness centrality, which

requires information on the intermediate nodes that lie on the shortest paths in a network.

 134

6.4 DISCUSSION ON THE ANALYSIS OF K-CENTRALITIES

The runtime and memory consumption analyses done for the incremental

closeness centrality algorithm (Chapter 4.5) and the incremental betweenness centrality

algorithm (Chapter 5.5) are valid for the incremental k-closeness and the incremental k-

betweenness algorithms as well. However, a lot of the complexities are expressed in

terms of the sizes of affected sink and source node sets, the number of shortest paths, and

the average shortest path length.

When the shortest paths in a network are bounded to remain within k hops, the

percentages of affected nodes drop substantially as discussed later in the results section in

Chapter 8. For instance, the percentages of affected nodes drop from 0.89% - 68.31%

range to 0.32%-3.47% range for the incremental betweenness centrality when k = 3 is

used as the bounding parameter.

In addition, some of the nodes that were connected by long, multi-hop paths

before are not necessarily connected anymore when the paths connecting them cannot be

any longer than k hops. This reflects as a reduction in Conn(G) which is used to denote

the number of node pairs that are connected across the entire network topology.

Moreover, the depth of a shortest path tree stemming from any node in the

network cannot be any longer than k hops. However, when the shortest paths are not

bounded to remain within k hops, the maximum depth of a shortest path tree stemming

from a node is equal to the diameter of the network. Considering the network statistics

presented in Table 6 and Table 7 in Chapter 7 for the controlled experiments with the

 135

synthetic networks, the average shortest path lengths for synthetic network with 1000-

5000 nodes are in the range of 3.45-20.26 hops while the diameters of the same networks

are in the range of 10-102 hops. Although both the average shortest path length and the

diameter values are much lower than (𝑛 − 1)(i.e. the theoretical worst case upper bound

for the length of a shortest path in a network), they are still considerably longer than 2 or

3 hops, which would be the maximum when k = 2 or k = 3 is used as the bounding

parameter; offering significant opportunity for improvement via the use of k-centralities

in terms of memory consumption and speedup for very large problem sizes.

6.5 EXAMPLE APPLICATIONS OF INCREMENTAL CENTRALITY ALGORITHMS

This section examines a number of potential use cases for the incremental

centrality algorithms in different contexts. First, we discuss how clustering algorithms

can benefit from the incremental computation of the betweenness centrality. Then, we

discuss the use of incremental centrality algorithms in real life, physical networks (e.g.

wireless mesh networks). Rather than focusing on how fast incremental centrality metrics

can be computed on such topologies, we focus on how they can be used in real-life

wireless networks.

6.5.1 Example Use Case in Clustering (Community Detection)

In this dissertation, a modified version of the Girvan-Newman algorithm is

investigated based on the proposed incremental betweenness algorithm. The Girvan-

Newman clustering algorithm is a hierarchical, divisive graph-clustering algorithm that

 136

uses edge betweenness and generates a dendrogram as output [19] [119]. It successively

partitions the graph based on edge betweenness centrality. Edge betweenness is a variant

of regular vertex betweenness where an edge’s betweenness depends on the fraction of

the shortest paths using that edge across all pairs of nodes. The main steps of the Girvan-

Newman clustering algorithm are as follows [19]:

1. Calculate the edge-betweenness for all edges in the network.

2. Remove the edge with the highest edge-betweenness.

3. Recalculate the edge-betweenness of all the edges for the remaining topology.

4. Repeat from the 2nd step until no edges remain on the graph.

The Girvan-Newman clustering algorithm has been widely used and a number of

variants of it have been proposed so far. This algorithm has been used for several types of

networks, especially in the context of biological networks and social networks [137].

In [136] and independently later in [135] the use of k-betweenness in clustering

has been investigated and modifications of the Girvan-Newman clustering algorithm have

been discussed. In [136], the k-hop limited version of the local flow betweenness is used

while in [135], the k-hop limited version of the classical betweenness is used. Both in

[136] and [135], the main arguments were speeding up the execution time and focusing

on local groups so that a change in a far apart group does not necessarily affect clustering

of another group.

The authors of [136] focus on validating the groupings formed incorporating the

k-hop limited version of the local flow in the Girvan-Newman clustering algorithm. The

 137

proposed clustering algorithm is validated using a corpus of instant messages that called

MLog and a larger IBM intranet, global dataset. The resulting clusters were evaluated by

the appropriate executive subject-matter experts of IBM through surveys and feedback

and found to reflect the business relations quite accurately.

On the other hand, in [135], Gregory investigates the performance improvements

that can be achieved by using the k-hop limited approximation of the betweenness

centrality instead of using the regular (i.e. full or global) betweenness centrality to

discover communities in a network. In a 1133-node real-life network, the performance

improvement achieved over the Girvan-Newman clustering algorithm is 312x when k = 2

while the performance improvement increases up to 1325x when the network size is

10680 nodes in terms of total execution time.

The modifications done on the Girvan-Newman clustering algorithm also include

performing fuzzy (overlapping) clustering [138]. Steve Gregory, the author of [138], later

found that the fuzzy clustering algorithm he proposed based on the Girvan-Newman

algorithm is very slow and, in [139], he extends his previous work ([138]) to propose a

faster overlapping algorithm that combines the use of k-betweenness and fuzzy grouping

on top of the Girvan-Newman clustering algorithm. Steve Gregory finds that a lot of the

real-life networks are indeed too large for the clustering algorithms that repeated use the

global version of the betweenness centrality and provides performance results using only

k = 3 and k = 2 instead. The author also observes that using k = 3 or k = 2 makes more of

a performance difference in larger networks (7000+ nodes) than in smaller networks

(300-2000 nodes). In addition, the author also discusses that using the k-hop limited

 138

version of the betweenness centrality in clustering provides fairly accurate groupings in

most cases. However, its accuracy decreases with respect to using the full (global)

betweenness centrality when the diameters of the groups are larger than the k parameter

value selected.

 The main disadvantage of the Girvan-Newman clustering algorithm is its time

complexity. This is also the reason why several variants of the Girvan-Newman

clustering algorithm have been proposed to use k-betweenness to make it faster. The time

complexity of the Girvan-Newman algorithm is O(m2n), where m is the number of edges

and n is the number of nodes in the network. The Girvan-Newman algorithm loops

through the main steps of the algorithm m times and Step-3 takes O(mn) time for binary

network. If the costs of the edges are taken into account, then Step-3 takes O(mn +

n2logn); yielding O(m2n + mn2logn) overall time complexity for the Girvan-Newman

algorithm. However, in the worst case, the maximum possible number of edges, m, is

O(n2). Therefore, the overall time complexity of the Girvan-Newman clustering

algorithm can also be stated as O(n5).

Due to the high complexity of the Girvan-Newman clustering algorithm, it is not

always feasible to use it in larger networks. In addition to its high time complexity, it is

also an iterative algorithm, repeatedly recomputing the betweenness values from scratch

over and over again. These characteristics suggest that the Girvan-Newman clustering

algorithm can benefit from an incremental retrofit that incorporates the incremental

betweenness algorithm proposed in Chapter 5.4.

 139

The rest of this section first discusses how to convert the incremental betweenness

algorithm proposed in Chapter 5.4 to have a different accounting so that the betweenness

values are calculated for the edges instead of the nodes. Then, a modified version of the

Girvan-Newman algorithm is presented which incorporates the incremental edge

betweenness algorithm in its main steps.

6.5.1.1 Incremental Edge Betweenness with Shrinking Network Updates

The Girvan-Newman clustering algorithm iteratively removes the edges from a

network and recalculates the edge betweenness values for the remaining edges. Hence, to

incorporate the incremental algorithm design into the Girvan-Newman clustering

algorithm, modifying only the parts of the incremental betweenness centrality algorithm

that handle the shrinking network updates for the computation of edge betweenness

centrality is sufficient.

In particular, to make the incremental betweenness centrality work with the

Girvan-Newman clustering algorithm, the betweenness centrality values should be

maintained for each edge in the network instead of each node in the network. In short, the

only difference between the incremental node betweenness and the incremental edge

betweenness algorithms is how the accounting for the betweenness centrality values is

done. For edge betweenness centrality, a betweenness value should be stored for each

edge in the network instead of each node in the network. In addition, when the shortest

paths are updated due to an incremental network update, instead of adjusting the

 140

betweenness values of all the intermediate nodes, the edge betweenness values of all the

edges on the updated shortest paths should be adjusted.

As explained earlier in Chapter 5.4, the part of the incremental betweenness

algorithm that handles shrinking network updates consists of the following sub-

algorithms: DELETEBETWEENNESS, DELETEUPDATEBETWEENNESS, CLEARBETWEENNESS,

ADJUSTNPS, and ADJUSTBETWEENNESS.

Out of these five sub-algorithms, the ADJUSTNPS algorithm remains the same,

with no modifications. The ADJUSTNPS algorithm is responsible from adjusting the

number of shortest paths between node pairs, and it does not have anything to do with

how the accounting for the betweenness values is done. The DELETEBETWEENNESS and

DELETEUPDATEBETWEENNESS algorithms remain primarily the same except for a couple

of lines where the edge betweenness versions of the CLEARBETWEENNESS and the

ADJUSTBETWEENNESS algorithms are invoked. The pseudocodes for the modified

DELETEBETWEENNESS and the DELETEUPDATEBETWEENNESS algorithms are also provided

for completeness reasons. To avoid confusion, the edge betweenness versions of these

two algorithms are renamed as the DELETEEDGEBETWEENNESS and the

DELETEUPDATEEDGEBETWEENNESS, respectively.

The CLEARBETWEENNESS and the ADJUSTBETWEENNESS algorithms are the main

parts of the incremental betweenness centrality algorithm where the betweenness

centrality values are modified. The pseudocodes for the modified CLEARBETWEENNESS

and ADJUSTBETWEENNESS algorithms are also presented and the changes relevant for the

edge betweenness computation are discussed in detail. To avoid confusion, the versions

 141

of these algorithms that are designed for the edge betweenness computation are also

renamed as CLEAREDGEBETWEENNESS and ADJUSTEDGEBETWEENNESS, respectively.

6.5.1.1.1 DELETEEDGEBETWEENNESS ALGORITHM

The DELETEEDGEBETWEENNESS algorithm (Algorithm-26) is a modification of the

DELETEBETWEENNESS algorithm (Algorithm-15) presented in Chapter 5.4.1. The

difference of the DELETEEDGEBETWEENNESS algorithm from the DELETEBETWEENNESS

algorithm is that the DELETEEDGEBETWEENNESS algorithm invokes the edge betweenness

versions of the algorithms that were initially presented in Chapter 5.4 for the incremental

betweenness centrality at the node level.

Algorithm-26: DELETEEDGEBETWEENNESS (G, src, dest, c)
Input: Network G(V, E) for which betweenness values of all edges (BE) are pre-
computed. A modified edge {src → dest} with a cost of c, where c > C(src, dest). The
cost parameter c is optional. If it is not provided in the argument list, it is set to ∞ by
default and the edge is deleted.
Output: Network G(V, E) updated with the changes on the edge {src → dest}. The
shortest distances between all nodes (D), the number of shortest paths, the predecessors
on the shortest paths and betweenness values of all edges (BE) are also updated.
1. C(src, dest) ← c; 𝐶!(dest, src) ← c
2. σold ← []; Dold ← []; trackLost ← []
3. AffectedSinks ← DELETEUPDATEEDGEBETWEENNESS (𝐺!, dest, src, src)
4. AffectedSources ← DELETEUPDATEEDGEBETWEENNESS (G, src, dest, dest)
5. for s ∈ AffectedSinks
6. DELETEUPDATEEDGEBETWEENNESS (G, src, dest, s)
7. for s ∈ AffectedSources
8. DELETEUPDATEEDGEBETWEENNESS (𝐺!, dest, src, s)
9.	
 	
 ADJUSTNPS ()	

10. ADJUSTEDGEBETWEENNESS ()	

 142

Algorithm-27: DELETEUPDATEEDGEBETWEENNESS (G, src, dest, z)
1. AffectedVertices ← ∅
2. Workset ←{src};
3. while Workset ≠ ∅
4. u ←pop (Workset)
5. if u ∉ AffectedVertices then add u to AffectedVertices
6. for x ∈ Pred(u) such that SP(x, u, z)
7. add x into Workset
8. AffVert ← AffectedVertices.copy()
9. Q_inc ← ∅
10. while AffVert ≠ ∅
11. a ← extractMin(AffVert)
12. if(< 𝑎, 𝑧 > ∉ σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) > into σold and CLEAREDGEBETWEENNESS (a, z)
13. if (< 𝑎, 𝑧 > ∉ Dold) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) > into Dold
14. myMin ← ∞
15. for b ∈ Succ(a)
16. if (C(a, b) + D(b, z) < myMin)
17. myMin← C(a, b) + D(b, z)
18. 𝑃!(𝑧) ← ∅
19. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
20. else if (C(a, b) + D(b, z) = myMin & myMin ≠ ∞ & b ∉ AffectedVertices)
21. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
22. 𝐷(𝑎, 𝑧) ← myMin
23. if myMin ≠ ∞ & a ∉ Q_inc
24. add a into Q_inc
25. while Q_inc ≠ ∅
26. a ← extractMin(Q_inc)
27. for c ∈ Pred(a)
28. if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices)
29. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) > into σold and CLEAREDGEBETWEENNESS (c, z)
30. if (< 𝑐, 𝑧 > ∉ Dold) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) > into Dold

31. 𝑃!(𝑧) ← ∅
32. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
33. D(c, z) ← C(c, a) + D(a, z)
34. if c ∉ Q_inc
35. add c into Q_inc
36. else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices)
37. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧,𝜎(𝑐, 𝑧) > into σold and CLEAREDGEBETWEENNESS (c, z)
38. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
39. if c ∉ Q_inc
40. add c into Q_inc
41. return AffectedVertices

6.5.1.1.2 DELETEUPDATEEDGEBETWEENNESS ALGORITHM
The DELETEUPDATEEDGEBETWEENNESS algorithm (Algorithm-27) is a version of

 143

the DELETEUPDATEBETWEENNESS algorithm (Algorithm-16) presented in Chapter 5.4.2.

Only three lines are modified to convert the DELETEUPDATEBETWEENNESS algorithm into

the DELETEUPDATEEDGEBETWEENNESS algorithm: Line 12, Line 29, and Line 37. The

changes are marked with bold font.

6.5.1.1.3 CLEAREDGEBETWEENNESS ALGORITHM

Assume that an edge that lies on the shortest path(s) from a node a to another

node z is removed and the previously known shortest path became disconnected and it

cannot be the shortest path any more. The CLEAREDGEBETWEENNESS algorithm is

responsible from reducing the edge betweenness values of the edges that lie on the

previously known shortest paths from node a to node z, which are not the shortest paths

any more. The CLEAREDGEBETWEENNESS algorithm has two phases. The second phase of

the algorithm starts at Line 8 of Algorithm–28.

In Line 3 of Algorithm–28, each edge {s → t} that appears as a part of the

currently-known shortest path(s) is an element of the list IE(a, z). IE(a, z) denotes the list

of edges that form the shortest paths from node a to node z just before the invalidation of

the old set of shortest paths from a to z. Line 4 checks if the edge {s → t} was originally a

part of the shortest paths from node a to node z, before any update is made on the

network. Since IE(a, z) returns the current list of the edges that appear to be on the

shortest paths from node a to node z, it may contain some newly inserted edges which

were not in the original set of edges that constitute the shortest paths from node a to node

z before any incremental update is made on the network. If the edge {s → t} is in the list

 144

of original set of the edges that constitute the shortest paths from node a to node z, then

its edge betweenness value (BE({s → t})) is reduced by the original contribution of the

node pair <a, z> to the edge betweenness value of the edge {s → t}.

This contribution is calculated as the fraction of the original set of shortest paths

from node a to node z that pass through the edge {s → t}. This fractional value is

computed by breaking the shortest paths from node a to node z into several pieces. The

old number of shortest paths from node a to node z that pass through the edge {s → t} is

represented as the and computed as the multiplication of the old number of shortest paths

from node a to node s and the old number of shortest paths from node t to node z. Then,

this value is divided by the total number of shortest paths from node a to node z: (σold (a,

s) * 1 * σold (t, z)) / σold (a, z). To ensure that only the edge {s → t} is considered among all

Algorithm–28: CLEAREDGEBETWEENNESS (a, z)
Input: A source node a and a destination node z. The old set of shortest paths from a
to z need to be invalidated.
Output: The edge betweenness values of the edges on the previously known shortest
paths are reduced.
1. AlreadyDone ← ∅
2. if σ(a, z) ≠ 0
3. for each edge {s → t} ∈ IE(a, z)
4. if (Dold (a, s) + C(s, t) + Dold (t, z) = Dold (a, z))
5. add {s → t} into AlreadyDone
6. BE({s → t}) ← BE({s → t}) – (σold (a, s) * 1 * σold (t, z) / σold (a, z))
7. add <<a, z>, {s → t}> into trackLost
8. for (<x, y> ∈ trackLost.KeySet())
9. if (Dold (a, x) + Dold (x, y) + Dold (y, z) = Dold (a, z))
10. for each edge {s → t} ∈ trackLost<x, y>
11. if (Dold (a, s) + C(s, t) + Dold (t, z) = Dold (a, z) & {s → t} ∉ AlreadyDone
12. add {s → t} into AlreadyDone
13. BE({s → t}) ← BE({s → t}) – (σold (a, s) * 1 * σold (t, z) / σold (a, z))
14. add <<a, z>, {s → t}> into trackLost

 145

possible shortest paths from node a to node z, the number of shortest paths from node s to

node t is replaced with 1.

 In the second phase of the CLEAREDGEBETWEENNESS algorithm, we look for the

edges on the original set of shortest paths that are not visible in the current list of edges

that make up the currently known shortest paths. An edge {s → t} which was originally a

part of the shortest paths from node a to node z might be updated and removed when a

sub-path from node x to node y is updated: 𝑎. . .→ 𝑥… 𝑠 → 𝑡 … → 𝑦… → 𝑧. In Line 9

of Algorithm–28, we check if the shortest paths from node x to node y were sub-paths of

the shortest paths from node a to node z. If the condition in Line 9 is satisfied, then, Line

11 checks if the edge {s → t} was originally a part of the shortest paths from node a to

node z. Note that {s → t} is different from the edge {s → t} used in the first phase of the

algorithm; it is rather an overloaded use of the notation for an edge. If both conditions

hold, then the same of set of operations that was applied in the first phase (Lines 5 – 7) is

applied for the edge {s → t} in Lines 12 – 14 as well: (i) inserting {s → t} into the

AlreadyDone set, which is a set of edges that are already processed for the <a, z> node

pair and the set AlreadyDone is not maintained across invocations of this algorithm (ii)

reducing the edge betweenness value of the edge {s → t} by the original contribution of

the node pair <a, z>, and (iii) inserting the edge {s → t} into the trackLost set which is

maintained during the entire propagation of a network. Since the edges (e.g. {s → t}) that

were on the previously known shortest paths which are not the shortest paths anymore

can no longer be reached by following the predecessors, there is need for a mechanism to

 146

keep track of such edges. Therefore, the trackLost set contains key-value pairs where the

key consists of the node pair (e.g <a, z>) whose shortest paths are about to be invalidated,

and the value contains the list of edges on the invalidated paths.

6.5.1.1.4 ADJUSTEDGEBETWEENNESS ALGORITHM

The ADJUSTEDGEBETWEENNESS algorithm (Algorithm–29) is a fairly

straightforward algorithm. The ADJUSTEDGEBETWEENNESS algorithm loops through the

set of node pairs <a, z> that had their shortest paths changed either in terms of number or

length (i.e. the node pairs listed in σold). For each node pair <a, z>, the shortest paths are

constructed on demand by following the predecessors and the edges on these shortest

paths are represented as IE(𝑎, 𝑧). Then, the edge betweenness value of each edge {s → t}

in IE(𝑎, 𝑧) is increased by the fraction of shortest paths from node a to node z that use the

edge {s → t}.

6.5.1.1.5 INCREMENTAL EDGE K-BETWEENNESS ALGORITHM

The algorithms discussed earlier in this chapter (Chapter 6.5.1.1.1 - Chapter

6.5.1.1.4) can also be used to calculate the k-hop limited version of the edge betweenness

centrality.

Algorithm–29: ADJUSTEDGEBETWEENNESS ()
Input: The list of node pairs between which the shortest paths are updated.
Output: The edge betweenness values of the edges on the affected shortest paths are
increased by the fraction of shortest paths they lie on.
1. for (𝑎, 𝑧) ∈ σold
2. for each edge {s → t} ∈ IE(𝑎, 𝑧)
3. BE({s → t}) ← BE({s → t}) + (σ (a, s) * 1 * σ (t, z) / σ (a, z))

 147

Algorithm–30: DELETEUPDATEEDGEBETWEENNESS-K (G, src, dest, z)
1. AffectedVertices ← ∅
2. Workset ←{src};
3. while Workset ≠ ∅
4. u ←pop (Workset)
5. if u ∉ AffectedVertices then add u to AffectedVertices
6. for x ∈ Pred(u) such that SP(x, u, z)
7. add x into Workset
8. AffVert ← AffectedVertices.copy()
9. Q_inc ← ∅
10. while AffVert ≠ ∅
11. a ← extractMin(AffVert)
12. if(< 𝑎, 𝑧 > ∉ σold) then add < 𝑎, 𝑧,𝜎(𝑎, 𝑧) > into σold and CLEAREDGEBETWEENNESS (a, z)
13. if (< 𝑎, 𝑧 > ∉ Dold) then add < 𝑎, 𝑧,𝐷(𝑎, 𝑧) > into Dold
14. myMin ← ∞
15. for b ∈ Succ(a)
16. if (C(a, b) + D(b, z) < myMin & (C(a, b) + D(b, z)) ≤ k)
17. myMin← C(a, b) + D(b, z)
18. 𝑃!(𝑧) ← ∅
19. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
20. else if (C(a, b) + D(b, z) = myMin & myMin ≠ ∞ & b ∉ AffectedVertices & myMin ≤ k)
21. if b = z ? Append a to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
22. 𝐷(𝑎, 𝑧) ← myMin
23. if myMin ≠ ∞ & a ∉ Q_inc
24. add a into Q_inc
25. while Q_inc ≠ ∅
26. a ← extractMin(Q_inc)
27. for c ∈ Pred(a)
28. if (C(c, a) + D(a, z) < D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k)
29. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) > into σold and CLEAREDGEBETWEENNESS (c, z)
30. if (< 𝑐, 𝑧 > ∉ Dold) then add < 𝑐, 𝑧,𝐷(𝑐, 𝑧) > into Dold

31. 𝑃!(𝑧) ← ∅
32. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
33. D(c, z) ← C(c, a) + D(a, z)
34. if c ∉ Q_inc
35. add c into Q_inc
36. else if (C(c, a) + D(a, z) = D(c, z) & c ∉ AffectedVertices & C(c, a) + D(a, z) ≤ k)
37. if(< 𝑐, 𝑧 > ∉ σold) then add < 𝑐, 𝑧, 𝜎(𝑐, 𝑧) > into σold and CLEAREDGEBETWEENNESS (c, z)
38. if a = z ? Append c to 𝑃!(𝑧): Append 𝑃!(𝑧) to 𝑃!(𝑧)
39. if c ∉ Q_inc
40. add c into Q_inc
41. return AffectedVertices

 148

This can be achieved by modifying only the DELETEUPDATEEDGEBETWEENNESS

algorithm to include the conditional checks in the DELETEUPDATEKBETWEENNESS

algorithm for discovering the shortest paths within k-hops. The changes are minor and the

modified lines are marked in bold in the DELETEUPDATEEDGEBETWEENNESS-K algorithm

(Algorithm-30). Since the changes related to the k-hop centrality were discussed earlier

in Chapter 6.3.3 they are not discussed here again.

6.5.1.2 Incremental k-Betweenness Clustering Algorithm

This section discusses an incremental k-betweenness clustering algorithm, which

is a modified version of the Girvan-Newman clustering algorithm. The proposed

incremental k-betweenness clustering algorithm differentiates from the original Girvan-

Newman clustering algorithm in three ways:

1. The edge betweenness values are calculated incrementally using the

incremental k-betweenness algorithm for edges that handles the shrinking

network updates (Chapter 6.5.1.1.5) instead of using the regular Brandes’ k-

betweenness algorithm (Chapter 6.3.1).

2. Instead of using the global version of the edge betweenness that is computed

over the entire network topology, its local approximate version (edge k-

betweenness) is used.

3. Instead of having to remove all the edges in the network until no edges

remain, a certain number of edges to be removed can be passed as a

 149

parameter to the algorithm, providing flexibility for early termination

condition.

The idea of using the k-hop limited, approximate version of the edge betweenness

centrality instead of regular edge betweenness is based on the following reasons.

First, both the vertex betweenness and the edge betweenness are metrics that are

calculated at the global level, and they are affected very much by any change in the

network. In the prior literature, betweenness has been shown to be to a fragile metric [44]

that changes easily as the shortest paths in the network change [45]. Thus, a change in the

network topology due to the removal of an edge has implications on the local clustering

of a cluster, which may actually be a cluster that is far away from the change made on the

network. See Figure 9 for an abstract visual description of the idea.

Figure 9 - Far away changes on the network tend to have local implications.

This was also the main motivation argument of the clustering algorithm based on

the local flow betweenness proposed in [136]. The results produced by the k-hop limited

 150

edge betweenness centrality have been successfully validated against real-life

organizational datasets in [136].

Second, the memory requirement of the Girvan-Newman clustering is very large.

Since the edge betweenness values used for the Girvan-Newman clustering algorithm are

maintained per each edge in the network instead of per each node in the network, the

memory requirement of the edge betweenness is usually larger than that of the vertex

(node) betweenness. Moreover, the Girvan-Newman clustering algorithm generates a

dendrogram as an output, which is additionally maintained in the memory as a tree with n

nodes, where n is the number of nodes in a network. Since the incremental betweenness

algorithms require larger memory than their non-incremental counter parts, this would

only exacerbate the memory requirements. Hence, using an approximate version of the

betweenness centrality will help reducing the memory requirements while speeding up

the computation time as well.

Third, depending on the network structure, removing the edge with the highest

edge betweenness might trigger a worst case update where a significant number of

shortest paths in the network are updated and all the nodes in the network are inserted

into the sets of affected source or affected sink nodes. Such a widespread network update

may sweep away the potential benefits of using an incremental algorithm, leaving too

little room for speedup while significantly increasing the memory requirements.

However, when the changes are forced to remain within a number of hops surrounding

each edge, then the network update is prevented from potentially generating a worst-case

 151

update, which propagates to the entire network. Hence, using the k-hop limited

approximation of the edge betweenness centrality for clustering provides a good solution.

The idea of giving the flexibility to remove a certain number of edges from the

network stems from the implementation of the Girvan-Newman clustering algorithm in

JUNG Java graph library [140]. While providing additional flexibility to stop the iteration

of recalculating edge betweenness values at an earlier point, the output produced by the

INCREMENTALBETWEENNESSCLUSTERING algorithm is exactly the same as the original

Girvan-Newman clustering algorithm when the number of edges to be removed is equal

to the total number of edges in the network. Removing the edges with the highest edge

betweenness centrality values tend to partition the network. Hence, as more edges are

removed, the resulting clusters become smaller and more cohesive.

Stopping the iteration of edge removals at an earlier point before all the edges in

the network are removed is similar to creating a full dendrogram and cutting it at the level

where the iterations have stopped. A dendrogram is usually represented as a tree in the

memory with n leaf nodes, where n is the number of nodes in the network. Since it takes

substantial extra memory, it is also possible not to build a dendrogram if it is allowed to

stop removing the edges earlier before no edges remain in the network. In such a case, a

plausible option for generating output is to run weak component clustering which finds

all the weak clusters in a network. A weak cluster is defined as the maximal subgraph

where all pairs of nodes in the subgraph are reachable from one another in the underlying

undirected subgraph (i.e. regardless of edge orientation).

 152

The INCREMENTALBETWEENNESSCLUSTERING algorithm (Algorithm-31) produces

the same results as the original Girvan-Newman clustering algorithm if the following

three changes are made:

• The call for the BRANDESEDGEKBETWEENNESS algorithm on Line–5 of the

INCREMENTALBETWEENNESSCLUSTERING algorithm is replaced with a call for the

BRANDESEDGEBETWEENNESS algorithm.

• The call for the INCREMENTALEDGEKBETWEENNESS algorithm on Line–7 of the

INCREMENTALBETWEENNESSCLUSTERING algorithm is replaced with

• The number of edges to be removed is given as |E(G)|.

Chapter 8.6 evaluates the performance of the versions of the

INCREMENTALBETWEENNESSCLUSTERING, and compare it against the original Girvan-

Newman clustering algorithm and a modified version of the Girvan-Newman algorithm

Algorithm–31: INCREMENTALBETWEENNESSCLUSTERING(G, removeCnt)
Input: Network G(V, E) and the number of edges to be removed.
Output: Clusters of nodes formed after removeCnt many edges are removed.
1. edgeToRemove ← null
2. maxBtw ← -1
3. for (i = 0; i < removeCnt; i ++)
4. if (i = 0)
5. BRANDESEDGEKBETWEENNESS(G)
6. else
7. INCREMENTALEDGEKBETWEENNESS (G, edgeToRemove)
8. edgeToRemove ← null
9. maxBtw ← -1
10. for (Edge e : E(G))
11. if (BE(e) > maxBtw)
12. maxBtw ← BE(e)
13. edgeToRemove ← e
14. clusterSet ← weakComponentClustering(G)

 153

which uses the BRANDESEDGEKBETWEENNESS. This way, it is possible to comment on

what percentage of the performance improvements comes from the use of approximate

edge k-betweenness and what percentage comes from the use of incremental algorithm.

6.5.2 Example Use Cases in Wireless Network Analysis

Another use case of the incremental centrality metrics beyond social networks is

in physical networks. This section discusses the uses of the incremental betweenness and

the incremental closeness centrality computations in network management and resource

allocation in wireless mesh networks. A wireless mesh network (WMN) is a multi-hop

communication network in which the nodes (routers) are self-organized (i.e., without

needing a central coordinator) to form a mesh topology to provide communication over

multiple wireless links without requiring an external authority imposing a planned

structure. Over the last decade, wireless mesh networking technology has emerged as an

important enabling technology to provide better services in wireless networks [3]. A

wireless mesh network is composed of mesh routers, gateways, and mesh clients.

Gateways are the nodes that have access to the Internet, and the other nodes have to route

through multiple hops to get access to the Internet. Mesh clients represent the end users

such as mobile devices or laptops.

In our evaluations, we use a real-life wireless mesh network that is provided by

the University of California, Santa Barbara (UCSB) MeshNet on-campus WMN

deployment. The UCSB MeshNet is a multi-radio 802.11 a/b network consisting of 38

PC-nodes deployed indoors on five floors of a typical office building in the UCSB

 154

campus. The data contains 2 sub-networks, each consisting of 19 nodes. In our

evaluations, we use one of the 19-node sub-networks.

Figure 10 - UCSB Meshnet Topology (19-node subnetwork). All node labels in the figure are
preceded with 10.2.1. to form their IP addresses.

Figure 10 depicts the topology of the 19-node sub-network while Table 5 shows

the five top-ranked nodes in terms of the degree centrality, the closeness centrality, and

the betweenness centrality along with their corresponding normalized centrality values

presented in parentheses.

Table 5 - Social centrality rankings of the nodes in UCSB MeshNet.

Degree Centrality Closeness Centrality Betweenness Centrality
10.2.1.5 (0.556) 10.2.1.5 (0.720) 10.2.1.5 (0.176)
10.2.1.106 (0.556) 10.2.1.106 (0.692) 10.2.1.100 (0.153)
10.2.1.100 (0.500) 10.2.1.102 (0.643) 10.2.1.106 (0.146)
10.2.1.102 (0.500) 10.2.1.101 (0.643) 10.2.1.102 (0.107)
10.2.1.101 (0.500) 10.2.1.20 (0.621) 10.2.1.101 (0.086)

6.5.2.1 Wireless Network Management: Vulnerability & Network Security

Social centrality metrics can aid system administrators or automated management

systems to better analyze the state of a WMN, and manage it in a more effective manner

 155

[141]. Social centrality metrics can provide answers for questions like: (i) Which nodes

are more critical from a robustness point of view? (ii) Loss of which nodes would have a

significant impact on the connectivity of the network? This section investigates the

impact of social network analysis on reliability assessment. To discuss how we can use

incremental centrality metrics in wireless network analysis and the impact of social

centrality metrics on the communication routes (in terms of average number of hops

packets travel in the network), we perform coordinated attacks. In other words, we issue

shrinking network updates and introduce progressive failures to the central nodes.

Simulated Failure Scenarios: For each centrality metric of interest (e.g.

betweenness centrality, closeness centrality, and degree centrality), we incrementally

compute the nodes with the highest centrality values by applying shrinking network

updates. At each step:

1. Compute the centrality values of the nodes in the network

2. Identify the node with the highest centrality value

3. Remove the node with the highest centrality value

4. Restart from Step-1 to recompute the centrality values of the remaining nodes.

Instead of recomputing centrality values from scratch after each change in the

network, we issue the node removals as shrinking network updates in the network, and

incrementally compute the centrality values. This makes vulnerability analysis a prefect

use case for incremental centrality metrics. For the UCSB Meshnet network, we select up

to the first five nodes with the highest centrality.

 156

Technical Details on the Simulations: For each experiment, we simulate the

same uniform traffic scenario where every node generates a constant bit rate (CBR)

connection to every other node, resulting in O(n2) connections. All the connections start

at the 25th second and end at the 125th second and the CBR rate is fixed at 500 bps for all

connections. The simulations last 200 seconds. The amount of total traffic that is

generated is kept the same. These experiments follow the methodology in [142], [143].

In the simulations, we used the Optimized Link State Routing protocol (OLSR) as

the routing protocol. It is a proactive link state routing protocol where each node stores

next-hop destinations for all nodes in the network using the shortest-hop paths. To

compute the incremental social centrality metrics, we learn the shortest path related

information from the OLSR routing protocol. In the case of node removals, the behavior

of OLSR routing protocol is consistent across different runs on the same network

topology (e.g., when node x is removed in two different runs, the newly formed shortest

paths are consistent across different runs.)

Simulation Results: Figure 11 shows the impact of central nodes’ failures on the

average number of hops packets traverse to reach their destinations. Random, the baseline

case, shows the average of 10 experiments where the failing nodes are selected randomly.

Closeness centrality identifies nodes that have rapid access to information by

being close to many other nodes on average. On the other hand, betweenness centrality

detects nodes that are on the shortest paths for many other nodes, which are usually the

nodes that can partition the network. Therefore, in Figure 11, when one or two nodes fail,

the impact of betweenness centrality is less than that of closeness centrality because the

 157

original topology is relatively well connected and it is not immediately partitionable.

However, as the number of failing nodes increases, the residual topologies have longer

paths causing the steep increase in the betweenness centrality results.

Figure 11 - Increase in average number of hops as top ranked nodes are progressively removed.

Simulations on a larger network: To show that our results are generalizable to

larger networks, we perform simulations on a 200-node network as well, and

progressively remove up to 40 nodes (20%). The results in Figure 12 justify the relative

ranking of centrality metrics to be betweenness, closeness and degree centrality in terms

of their importance for network reliability. In other words, the metric that is most

effective in degrading network performance in a coordinated attack is betweenness

centrality. This behavior is consistent with other work on the literature that assesses the

effectiveness of centrality metrics in coordinated attacks [42].

 158

Figure 12 - Increase in average number of hops as top ranked nodes are progressively removed
from a 200-node wireless mesh network topology.

6.5.2.2 Resource Allocation: Channel Access Scheduling
Another case study we investigate is the use of dynamic computation of centrality

metrics in resource allocation in wireless mesh networks. In particular, we focus on

channel access scheduling designed at the MAC layer. The MAC layer protocols that are

available in the literature can be broadly classified into two groups: contention based

protocols and scheduling based protocols. In contention-based protocols, nodes contend

for channel access and collisions are possible. 802.11 MAC protocol [144], which is

based on carrier sense multiple access/collision avoidance (CSMA/CA), is one of the

most well known examples of contention based MAC protocols. The second group of

MAC protocols, the scheduling-based protocols, schedules the access of nodes or links to

the channel in advance. TDMA based protocols that operate in discrete slotted time and

typically arrange the transmission of the nodes or links in the network based on a

schedule constitute examples of scheduling-based protocols [145].

Recent WMN standards such as WiMAX [146] and 802.11s [147] consider

Spatial-TDMA (STDMA) based MAC mechanisms and WMNs operate in multi-hop

 159

environments. In STDMA based schemes, two nodes that are in non-conflicting parts of

the network (i.e. nodes that are located far apart from one another) can be scheduled to

transmit simultaneously.

As a part of this case study, we propose an STDMA-based channel access

scheduling scheme that uses closeness centrality at its heart. In particular, we investigate

how much we can improve the end-to-end throughput at the user level if we use closeness

centrality to prioritize nodes accessing the wireless medium such that the nodes that are

ranked higher in terms of closeness centrality are prioritized over others. We prefer using

closeness centrality because, by definition, it is used to describe information propagation

efficiency and it is an appropriate metric for optimizing the efficiency of communication

networks, including WMNs. In addition, the computation of closeness requires fewer

resources compared to other social centrality metrics because Eigenvector centrality has a

recursive implementation and betweenness requires additional information on all shortest

paths in the network.

Closeness-based Scheduling Scheme: The proposed channel access scheduling

algorithm is a lottery based slot assignment where the nodes’ closeness values are used as

their approximate priorities. The goal is to improve throughput by assigning more slots to

more central nodes. Each node generates as many pseudorandom lottery ticket numbers

as its closeness value for each time slot. Since the nodes with higher closeness values

hold more lottery tickets, their probability for winning the lottery for a particular time slot

is higher. To give an example, if a node’s closeness value is 10, then it joins the elections

with 10 tickets. If another node has closeness value 2, it joins the elections with 2 tickets.

 160

The node that has the highest ticket number for that slot is the winner of the slot and is

the node that has the right to transmit and a node with a higher number of tickets has a

higher chance of winning. With this kind of scaling, the probability of each node to win

a slot will be approximately proportional to its closeness priority. Further details can be

found in [3].

Technical Details on the Simulations: The simulations are performed in ns-2.31

using data rates from 650 bits/sec up to 1350 bits/sec. We measure end-to-end delay and

end-to-end throughput calculated across all data packets (excluding control packets)

generated during the simulations. WMNs have fairly static topologies. Therefore, only

the static topologies are simulated. At the routing layer, the Optimized Link State

Routing protocol (OLSR) is used as the routing protocol. For the incremental closeness

calculations performed in real time, periodical OLSR HELLO packets are broadcast

every 2ms. Hence, node mobility and topology changes are accounted for in the closeness

centrality computations.

Simulation Results: Next, the performance of the proposed socially aware

scheduling scheme is evaluated. For the baseline scheme, a similar framework is used

where only the prioritization scheme is modified. In the baseline case, each node

generates a random number of lottery tickets, rather than closeness many tickets. In other

words, each node has an equal chance of being the winning node that earns transmission

right during each time slot. At each time slot the winning node is selected randomly

following no particular prioritization. In other words, in the baseline case, nodes generate

random weights instead of using their closeness centrality values as their weights.

 161

Figure 13 - Delay vs. Throughput (When closeness centrality is used in prioritization, the
throughput increases by 15%).

Figure 13 presents the performance results on the tradeoff between delay and

throughput, justifying the throughput advantage brought by the use of social centrality

metrics. According to the results presented in Figure 13, the packet delivery ratio

increases by about 15% for the same amount of delay incurred when closeness centrality

is used in prioritization of the packets.

 162

CHAPTER 7 DATASETS

This chapter describes the datasets used for performance evaluation in this

dissertation. Both synthetic and real-life networks of different sizes, topologies, and

average degrees have been used. Chapter 7.1 describes the used synthetic networks while

Chapter 7.2 describes the real life networks.

7.1 SYNTHETIC NETWORKS

This section describes the synthetic networks used in the performance

evaluations. There two main goals of using synthetic networks in performance

evaluations. First, using a set of networks with controlled topologies enables us to

evaluate the impact of the network topology on the performance benefits that can be

obtained using the incremental algorithms proposed in this dissertation. Second, by

changing the network size and average degree, it is possible to evaluate how the

performance benefits of the incremental algorithm scale with the increasing network size

and average node degree.

To evaluate the impact of network topology, synthetic networks with three

different topologies are used: preferential attachment networks [10], Erdos-Renyi

networks [11], and small-world networks [12].

 163

7.1.1 Preferential Attachment Networks

Barabasi and Albert have proposed the preferential attachment graph generation

model for generating graphs with heavy-tailed degree distributions, which is observed in

many real life networks including the Internet, World Wide Web (WWW), and many

social networks [10]. The preferential attachment graph generation model has two phases:

growth and preferential attachment [148]. In the growth phase, starting with a small

number of nodes (mo starting nodes), new nodes are added one at a time, with m edges (m

< mo) to link the newly added node to the nodes that are already in the network. In the

preferential attachment phase, when the incoming nodes are about to choose the nodes to

connect to, the current degrees of already existing nodes are taken into account. Nodes

that have a higher number of existing connections are more likely to receive more/new

connections. In sociology, this phenomenon is called the Matthew effect (or accumulated

advantage), which is based on a phrase from Bible and originally used to explain the

issues with fame, status, and advantages of economic capital [149]. This phenomenon is

also known as ‘rich get richer’. Numerical studies indicated that networks generated with

this model evolve into a scale-free (scale invariant) state with power-law degree

distribution [148]. In such networks, several nodes have very little number of connections

(low degrees) while very few nodes act as major hubs with too many connections,

resulting in power-law degree distributions.

 164

7.1.2 Erdos-Renyi Networks

In their original 1959 article, Erdos and Renyi describe a random network with m

edges and n nodes where a fixed number of edges are drawn uniformly at random from

n(n – 1) / 2 possible edges [11]. A similar approach for the generation of random graphs

was also discussed by Edgar Gilbert in 1959 where each edge is created independently

with probability p, where 0 < p < 1 [150]. In other words, p represents the fraction of

edges that appear in a network out of all possible n(n – 1) / 2 edges. Since all edges

(relationships) form independently from the others, the networks (graphs) generated with

Erdos-Renyi or Gilbert model do not usually match well with the topologies of real-life

networks. In real life networks, there are additional interaction mechanisms such as

transitivity or introductions that influence the formation of new connections, causing real

life networks’ topologies to be very different from random graphs. However, due to their

ease of analysis, Erdos-Renyi networks are usually included in network studies as a

standard way of making comparisons with the state of the art literature.	

7.1.3 Small World Networks

In 1998, Watts and Strogatz introduced a model that starts with a regular lattice

(ring) of n nodes and then modified by rewiring [12]. Small world networks model

communities where most nodes are not neighbors of one another and most nodes are

confined to their own neighborhoods, however, due to existence of random connection

formed via rewiring, most nodes can reach one another in a small number of hops. In the

generation process of small world networks, initially, there is a ring of n nodes and each

 165

node is connected to its 2r nearest neighbors. This regular ring is modified by rewiring

each edge randomly and independently with a rewiring probability p, where 0 < p < 1.

The topology changes with the increased rewiring probability p, which reflects as

increased randomness and reduction in the average distance (i.e. characteristic path

length).

7.1.3.1 Selecting a rewiring probability (p) value

Small world networks are discussed to model complex real world networks

nicely, and there exist studies that study the extent different networks exhibit small world

network characteristics. In the paper [151], the authors design a metric called ‘small-

world-ness’, a score that determines how small-world like a network is and assigns scores

to them accordingly. The authors also examine 30 different real life networks and found

that 27 of them exhibited small-world network properties to varying degrees. Another

approach to determine the appropriateness of small-world network model for the real life

networks is to fit the small world network model to the real data and extract the

parameter values from the model. In [152], the authors study 1000-node neuron networks

from brain and the impact of the structure on memory/recall and observe that when the

rewiring parameter p = 0.3, the performance of the network start converging and the

optimal value is obtained when p = 0.4.

In [153], the author examines the ethnocentrism phenomenon which refers to the

tendency to behave differently towards strangers based only on whether they belong to

the in-group or the out-group and how the social agents perform in social networks (i.e.

 166

how much they cooperate or interact with their neighbors). The authors find that the

optimal settings are observed in small neighborhoods with few random connections (p <

0.3), and when the rewiring probability p > 0.3, the networks are greatly reconnected and

the social agents perform worse than they perform in regular lattice networks.

Another study, [154], studies the spread of rumor in social networks on an

underlying small world structure using three p different values: p = 0.05, p = 0.19, and p

= 0.3. The experiments with rumor spread suggest that when the p value is too small (p =

0.05), the rumor dies too soon, and when the p = 0.3, the behavior of the rumor spread

depends on whether or not a shortcut is reached. The authors suggest that they obtain

their optimal results when p = 0.19.

Another paper from the field of economic research ([155]) studies the self-

organizing, Ising-like model of financial markets with underlying small world networks

of interacting agents. The authors find that using the rewiring probability p = 0.3 can

reproduce main stylized facts including price dynamics, evolution of returns; producing

the most accurate results. Considering all the examples mentioned above from different

fields, the general inclination of the authors is that smaller p values (p < 0.4) usually work

well in different contexts, especially when p ≤ 0.3. In our experiments, we use p = 0.3.

7.1.4 Directed Cycles

Directed cycles are formed as a variant of small-world networks using the same

parameters and the network generation algorithm. The only difference between directed

cycles and small world networks is that in directed cycles, the edges are directed while in

 167

small world networks the edges are undirected or bidirectional. Therefore, when the

edges are directed in one direction only, the resulting network is a big ring of nodes, with

random bounds in it. Such networks have been studied in the literature in different

contexts before and they appear under various names including ‘directed small world

networks’, ‘asymmetric small world networks’, ‘rings with random bounds’, and

‘directed cycles’ [156] [157] [158] [159]. In the rest of this dissertation, we refer to these

networks as ‘directed cycles’. Since such networks have directed edges, they tend to form

very long shortest paths for the node pairs that cannot benefit from the existence of

random shortcuts. Therefore, in such networks the diameter of the network can get very

large as we see later in this section, which can form an example for a pathological case

for the incremental centrality algorithm forcing them to update shortest paths that are too

long. To be able to provide direct comparisons between small world networks and

directed cycles, we again use p = 0.3 for generating directed cycles.

7.1.5 Synthetic Network Set

In order to understand how the performance benefits of the incremental centrality

algorithms scale with the increasing network size and average node degree, two sets of

synthetic networks from the abovementioned network topologies are used. The average

degree of a network is a measure that compares the number of edges against the number

of nodes in the network. It is computed as (2 |E(G)| / |N(G)|) as each edge contributes to

the degree of both nodes it is connecting.

 168

First, for each synthetic network topology, the number of nodes is varied from

1000 to 5000 with a step size of 2000, and the average degree is fixed to 6. For small

world networks, the rewiring probability is 0.5. Table 6 lists basic statistical information

about the synthetic networks generated with different topology generation models and

network sizes.

In the second set of synthetic networks, for each synthetic network topology, the

number of nodes is fixed to 3000, and the average number of nodes is varied from 4 to 8

with a step size of 2. Table 7 lists basic statistical information for the networks with

varied average number of nodes, similar to the information presented in Table 6.

Table 6 - Network statistics for varying network sizes. There are additional metrics that are
measured but not listed. For all the networks in this table minimum betweenness is 0, network
fragmentation is 0, and the average degree is 6.

Topology Size Max Btw Avg. Btw
Std. Dev.

Btw
Min
Deg

Max
Deg

Std.Dev
Deg

Diam
eter

Char.
Path

Length
Clustering
Coefficient

Pref. Attach. 1000 1953.97 94.37 177.47 3 89 6.822 10 3.45 0.014
Pref. Attach. 3000 5183.26 197.59 434.83 3 233 8.064 14 4.126 0.007
Pref. Attach. 5000 12987.22 292.48 749.01 3 212 8.251 16 4.442 0.005
Erdos-Renyi 1000 25429.36 4777.28 4249.81 1 14 2.498 15 6.305 0.003
Erdos-Renyi 3000 76713.80 18136.74 10087.35 2 13 1.572 14 7.086 0.001
Erdos-Renyi 5000 108061.53 32073.39 16062.96 2 11 1.362 14 7.492 0.001
Small World 1000 7376.179 1809.59 1184.202 3 11 1.292 8 4.623 0.212
Small World 3000 31788.719 6617.851 4378.002 3 11 1.271 9 5.413 0.208
Small World 5000 71757.523 12079.138 7844.011 3 12 1.237 9 5.833 0.216
Directed Cycles 1000 13112.60 3544.12 2379.46 3 11 1.292 38 8.38 0.106
Directed Cycles 3000 75111.21 14986.28 10954.08 3 11 1.271 57 11.37 0.104
Directed Cycles 5000 145539.10 28762.20 21557.20 3 12 1.237 77 12.98 0.108

According to the topological statistics presented in Table 6, in preferential

networks, the maximum number of connections nodes can attain (Max Deg.) is

substantially higher in preferential attachment networks; resulting in high deviation of

 169

node degrees (Std. Dev. Degree). In addition since there are few nodes with very high

number of connections, a substantial portion of the nodes in preferential attachment

networks are directly connected to such nodes. Hence, the shortest paths in such networks

are relatively shorter when compared to the networks that are generated using the other

graph generation models. The networks generated by the Barabasi-Albert graph

generation model have systematically lower average path lengths than a random network.

The average path length for Barabasi-Albert preferential attachment networks increases

approximately logarithmically with the increasing network size, following

𝐴𝑣𝑔.𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ ~ !" |!(!)|
!" !" |!(!)|

.

Table 7 - Network statistics for varying average node degrees. There are additional metrics that
are measured but not listed. For all the networks in this table minimum betweenness is 0, network
fragmentation is 0, and the number of nodes is fixed to 3000 nodes.

Topology
Avg
Deg Max Btw Avg. Btw

Std.Dev.
Btw

Min
Deg

Max
Deg

Std.Dev
Deg

Diam
eter

Char.
Path

Length
Clustering
Coefficient

Pref. Attach. 4 5673.02 76.60 270.60 2 141 5.841 12 3.89 0.0058
Pref. Attach. 6 5183.26 197.59 434.83 3 233 8.064 14 4.126 0.007
Pref. Attach. 8 11264.55 414.08 855.95 4 238 10.388 15 4.269 0.009
Erdos-Renyi 4 247466.93 18077.70 24650.83 1 11 1.904 30 10.622 0.0009
Erdos-Renyi 6 76713.80 18136.74 10087.35 2 13 1.572 14 7.086 0.0010
Erdos-Renyi 8 77281.40 14015.49 10985.36 1 20 2.879 14 5.907 0.0012
Small World 4 98401.898 9477.128 6988.962 2 11 1.002 13 7.320 0.179
Small World 6 31788.719 6617.851 4378.002 3 11 1.271 9 5.413 0.208
Small World 8 25648.943 5492.811 3194.403 4 15 1.445 7 4.663 0.231
Directed Cycles 4 119074.50 19577.90 19271.70 2 11 1.002 102 20.26 0.090
Directed Cycles 6 75111.21 14986.28 10954.08 3 11 1.271 57 11.37 0.104
Directed Cycles 8 50415.84 10557.80 6886.33 4 15 1.445 39 8.10 0.115

On the other hand, small world networks have higher local clustering (e.g.

clustering coefficient) and have relatively small shortest path lengths while the directed

 170

cycles have very long paths in the network (diameter and characteristic path length) to

reach to far nodes when they are unable to utilize a random shortcut in the network.

Considering the information presented in Table 7, several observations are in

order. As the average node degree increases, the characteristic path length (average path

length) increases in the preferential attachment network while it decreases for the Erdos-

Renyi networks, Small-World networks, and the directed cycles. This is primarily

because how different network topologies tend to be structured. For instance, for the

small world networks and the directed cycles, the increased number of connections

increases the immediate neighborhood sizes for all the nodes in the network as well as the

number of rewired shortcut edges. Both of these factors contribute to the decreased

shortest path length. For preferential attachment networks, the differences in the

characteristic path lengths are not too big, as preferential attachment networks tend to

have relatively small shortest path lengths. In addition, in all network types studied

above, the clustering coefficient increases along with the increasing average node degree.

Table 8 - Network statistics for additional 1000-node directed cycles, varying rewiring
probability p from 0.2 to 1.00 with a step size of 0.2 (Avg. degree = 6).

p Max Btw
Avg.
Btw

Std. Dev.
Btw

Min
Deg

Max
Deg

Std. Dev.
Deg

Diam
eter

Char. Path
Length

Clustering
Coefficient

0.2 34020.93 4305.77 3104.97 3 9 1.028 35 9.711 0.154

0.4 15036.88 3183.39 2395.88 3 12 1.423 30 8.017 0.071
0.6 14763.34 2268.86 2463.76 3 11 1.575 31 7.789 0.024
0.8 6779.73 833.58 1161.97 3 12 1.715 22 6.444 0.005
1.0 1026.5 100.79 144.32 3 13 1.765 12 3.862 0.003

Apart from these two sets of synthetic networks, further investigation is

performed on the directed cycles as they are well known to have varying topological

 171

characteristics, depending on the chosen rewiring probability, p. A sweep of p values

covering the range of 0.2 – 1.0 with a step size of 0.2 is performed on 1000-node small

world networks and directed cycles, with an average degree of 6.

Table 8 lists the topological features and basic network statistics for 1000-node

directed cycles. As the rewiring probability increases, the network becomes more

random. As a result, the network diameter and the average path length are reduced along

with the clustering coefficient. In addition, the deviation in the distribution of node

degrees increases as the nodes’ connections become more random, starting to lose the

initial lattice structure that exists at their initialization phases.

7.2 REAL-LIFE NETWORKS

Apart from the synthetic networks, the performances of the proposed incremental

centrality algorithms are also evaluated with a number of real-life networks that grow

over time and are of different scales and topologies.

The real-life networks used in the evaluations are prepared as weighted networks

where the cost of an edge is inversely proportional to the strength of the relationship it

models. That is, multiple updates for the same pair of nodes are consolidated in a single

edge. For instance, if communications/interactions from node x to node y have been

recorded twice up to a certain point, then the edge {x → y} has the cost of 1/2. When a

third update from node x to node y is recorded, then the cost of the edge {x → y} is

updated to be 1/3. Next, the real-life datasets that are used in performance evaluations are

described in detail.

 172

7.2.1 SocioPatterns Dataset

SocioPatterns dataset was collected during the ACM Hypertext 2009 conference,

where the SocioPatterns project deployed the Live Social Semantics application [8].

During the conference, the participants volunteered to wear Radio Frequency

Identification (RFID) embedded badges. The RFID badges had coverage of 1 – 1.5

meters, and human bodies acted as RF shields, which allows identification of primarily

face-to-face contacts. The power and frequency of the RFID badges were adjusted such

that face-to-face communication can be captured with more than 99% reliability. For

about 2.5 days, communication between RFID badges is recorded every 20 seconds based

on the RFID packet exchanges observed among any two participants’ badges.

Figure 14 - SocioPatterns network topology.

The resultant social network is a bi-directional, weighted, dynamic contact

network of 113 conference attendees with 20,818 dynamic communication updates. This

 173

dataset is further explored in [160]. Figure 14 shows the topology of the SocioPatterns

social network.

7.2.2 OnlineForum: Facebook-like Social Network

This dataset was collected from an online community for students at University of

California, Irvine [14] [13]. This dataset contains 59,835 time stamped online messages

sent among 1,899 users. The information on the sender, the receiver, and the length (how

many characters) was recorded for each message. After self-loops and the messages with

zero length are removed, there were 58,827 messages left in the dataset. The final form of

the network is a directed, weighted, dynamic social network and its topology is depicted

in Figure 15.

Figure 15 - OnlineForum (Facebook-like Social Network) network topology.

7.2.3 HEP Co-authorship Network

HEP co-authorship dataset is the co-authorship network that has been derived

 174

from the High Energy Physics Theory dataset (HEP-TH), which is a publicly available

dataset, compiled by arXiv [161] for the KDD Cup’03 competition [162]. The authorship

network contains 21,917 edges among 7,508 researchers who are the authors of 29,555

high-energy physics papers that were added to the arXiv online library from 1992 to

2003. A detailed exploration of this dataset has been performed in [15]. Figure 16 shows

the final topology of the network, while Figure 17 shows an earlier snapshot of the

network when the network was still in growth phase. Out of 7508 nodes, 5786 of them

are in the core component of the network. Since transitivity and social networking is very

important for the formation of coauthorship relationships, there is a significant level of

triangulation observed, which is more visible in the earlier version of the network drawn

in Figure 17.

Figure 16 - HEP Coauthorship network
topology.

Figure 17 - An earlier version of the HEP
Coauthorship network topology.

 175

7.2.4 P2P Communication Network

P2P Communication network is a peer-to-peer file sharing dataset collected on a

server running the OpenNap [163] file sharing system. The P2P communication network

was collected on two campus networks: the University of Brescia (UNIBS) and the

Politecnico di Torino (POLITO). The traces contain the Internet usage data from

informed participants who agreed to continue their normal Internet usage during the

course of the experiment [17].

Figure 18 - P2P Communication network topology.

Out of this dataset, I extracted P2P traffic, generated by several different file

sharing and communication based P2P applications including amule, bittorrent, edonkey,

and Skype. I derive P2P communications and file transmissions and model them as a

network where nodes represent the users and links represent the

communication/transmission between those two users. The resultant network contains

6843 nodes, and 7572 edges and its topology is presented in Figure 18.

 176

7.2.5 Retweet Network on Iran Sanction News

Iran Twitter dataset is compiled by G.R. Boynton from Iowa State University, and

consists of tweets posted online following two different pieces of news on Washington

Post [16]:

• WASHINGTON -- Secretary of State Hillary Rodham Clinton says the United States
and its partners seeking new sanctions against Iran have come up with a draft
proposal for a new round of penalties. (10:50 AM EDT Tuesday, May 18, 2010)

• The U.N. Security Council voted 12 to 2 to impose a fourth round of sanctions on
Iran, bringing to a close months of diplomatic efforts by the Obama administration to
penalize Tehran for building a covert nuclear facility and accelerating its enrichment
of uranium. (11:32 AM EDT Wednesday, June 9, 2010).

Figure 19 - Iran retweet network topology.

The Twitter stream covers dates between May 18, 2010 and June 15, 2010. There

are 4546 tweets posted online on this topic and 707 of them are retweets using the RT

feature provided by Twitter. The retweet network extracted from this dataset contains 809

nodes and 665 links, and it is a very sparse network (See Figure 19).

 177

7.2.6 Real-Life Network Datasets

Table 9 shows basic topological features and network statistics of the real-life

datasets used in performance evaluations. As shown in Table 9, these networks have

substantially different topological features and sizes. For instance, P2P network has

almost no clustering and the distribution for the degrees of nodes is highly right skewed

(max = 2185, min = 1, average = 2.21). The average number of connections nodes have is

so small despite the large maximum value, which means that there is only a handful of

nodes that are connected to a good portion of nodes, while the majority of the nodes are

have a couple of connections.

Table 9 - Topological features of real-life networks. ‘D? U?’ column displays information on the
directionality of edges in the networks. D represents directed networks while U represents
undirected (bidirectional) networks.

Network

 D?
U? Nodes Edges

Avg
Deg

Min
Deg

Max
Deg

Std.
Dev.
Deg Diameter

Char. Path
Length

Clust.
Coeff

SocioPatterns U 113 4392 38.87 1 98 18.35 3 1.6562 0.534
OnlineForum D 1897 20290 21.40 3 339 35.61 8 3.1966 0.085

HEP Coauthorship U 7507 38804 5.16 3 64 6.147 15 5.7426 0.459
P2P D 6843 7572 2.21 1 2185 38.33 3 1.2481 0

Twitter (Iran) D 809 665 1.644 1 39 2.349 5 1.404 0.016

On the other hand, although HEP Co-authorship and P2P Communication

networks are comparable in terms of the number of nodes they have, HEP Co-authorship

network exhibits more of the expected characteristics of social networks. For instance, it

has higher local clustering and the phenomenon of six-degrees of separation is also

observed. Another dataset whose topology is highly influenced by the social networking

concepts is SocioPatterns networks, where there is again high clustering and transitivity

 178

in the connections people make. In addition, in terms of network size (number of nodes)

this set of networks provide a good sample covering both the small networks a lot of

social analysts are interested in and the larger networks that have become popular more

recently due to availability of online data collections.

 179

CHAPTER 8 EXPERIMENTS AND RESULTS

This chapter first describes the coding environment used for the implementation

of the algorithms proposed in this thesis. Then, the performance benefits of the proposed

incremental centrality algorithms obtained on the synthetic and real-life networks are

reported.

8.1 IMPLEMENTATION ENVIRONMENT

As the implementation environment, I have extended the GraphStream [164],

which is an open source, dynamic graph library written in Java. GraphStream provides a

framework to handle the evolution of graphs, and provides support for the addition,

removal, and modification of nodes and edges [164] [165]. The performance results are

collected on a machine with 3.20Ghz Intel Xeon CPU and 256 GB RAM.

8.2 EXPERIMENT DESIGN

To measure the performance of the incremental centrality algorithms for handling

growing network updates, 100 edges are randomly selected from each network and the

initial computation of the centrality values is done on the incomplete version of the

network that has all but 100 edges. Then, each of these 100 edges is inserted

incrementally. The average performance in terms of execution time over the repeated

invocations of traditional baseline algorithm (e.g. the Dijkstra’s algorithm for the

closeness centrality and the Brandes’ algorithm for the betweenness centrality) is

 180

calculated by averaging the execution time of each incremental update. For instance, if

the incremental centrality algorithm takes 5 seconds on average to complete a set of

updates and it takes 30 seconds on average for the non-incremental algorithm to complete

the same set of updates, we conclude that the incremental algorithm is 6x faster than the

corresponding non-incremental baseline algorithm on average.

Similar experiments have been designed for measuring the performance of the

proposed incremental centrality algorithms for shrinking network updates as well. In the

experiments performed for shrinking network updates, we start with the complete version

of the network and incrementally remove the same set of edges used in the experiments

for growing network updates. Therefore, we have a way of comparing how different

types of network updates affect the performance. The performance results reported in the

next section (Chapter 8.3) are obtained on networks with different topologies (e.g.

preferential attachment networks [10], Erdos-Renyi networks [166], small-world

networks [167], and directed cycles) and different network sizes (e.g. 1000, 3000, and

5000) and average node degrees (e.g. 4, 6, and 8). Herein, the network size is represented

in terms of the number of nodes in a network. For small world networks and directed

cycles, the rewiring probability is 0.3. However, through a set of additional experiments

presented in Chapter 8.3.6, the impacts of the rewiring probability on the network

topology and the performance improvements achieved by the incremental centrality

algorithms are discussed.

Aside 1 – Adding random edges in a network may result in losing the scale-free

properties of a preferential attachment network. While it is unlikely that adding or

 181

removing 100 edges will impact the network topology, for the smallest networks the

random addition of edges may move the network somewhat away from scale free slightly

and this might dilute the impact of the scale free networks. Considering this potential side

effect, instead of adding or removing 100 random edges, we start with a scale free

network and then remove 100 edges randomly selected out of the entire network

topology. Then, these edges are gradually added back in. Thus, the network becomes

closer to a pure scale free form.

Next, using the 1000-node preferential attachment network (avg. deg = 6) as an

example, we check the distribution of node degrees in the two versions of the network

when it is with and without those 100 edges randomly selected out of the entire network

topology to observe if they still exhibit the scale free property. Figure 20 - Figure 23

present the distribution of edges before and after the removal of the 100 edges randomly

selected out of the network topology. As it can be observed by comparing Figure 20 with

Figure 22 and Figure 21 with Figure 23, removal of 100 edges does not disturb the

distribution of node degrees.

Mathematically, the distribution of a random variable x obeys a power law if its

probability distribution satisfies 𝑝 𝑥 ∝ 𝑥!! where α is the characterizing scaling

exponent which typically lies in the range of 2 < 𝛼 < 3 for power law data. More

precisely, when the data is discrete, which is the case in our dataset, 𝑝 𝑥 = Pr 𝑋 =

𝑥 = 𝐶𝑥!! where C is a constant. Various studies have shown that if an empirical dataset

follows a power-law distribution, it usually only does so for values of x, where 𝑥 >

𝑥!"# [168]. In the cases where 𝑥!"# is not known in advance, accurate estimation of 𝑥!"!

 182

is very important for estimating α accurately. If the value chosen for 𝑥!"# is too low, then

we would try to fit power laws to a part of the dataset which does not necessarily follow

power laws. Similarly, if the value chosen for 𝑥!"# is too high, then we are effectively

reducing the size of the dataset, making it prone to statistical errors [169].

Figure 20 - In-degree distribution of the 1000-
node preferential attachment network with 100
of its edges missing.

Figure 21 - Log-log scale of in-degree
distribution of the 1000-node preferential
attachment network with 100 of its edges
missing. (Same data as in Figure 20).

Figure 22 - In-degree distribution of the 1000-
node preferential attachment network
(Complete topology, avg. degree = 6).

Figure 23 - Log-log scale of in degree
distribution of the 1000-node preferential
attachment network (Complete topology,
average degree = 6). Same data as in Figure 23.

 183

Detection and Characterization of Power Laws

Estimating 𝒙𝒎𝒊𝒏: To estimate the lower bound of a power law distribution, we

use the method proposed by Clauset et al. in [170]. The basic idea is to choose the value

of 𝑥!"# such that the maximum absolute distance between the CDF functions of the

original data and the pruned data (which contains only 𝑥 > 𝑥!"#) is minimized. The goal

is to make the distribution of the original dataset and the best fitted power law as similar

as possible.

Estimating α: For estimating the characterizing scaling exponent, we use the

method described in [168], which essentially describes a maximum likelihood estimator

that is equivalent to a discrete version of the Hill estimator [171]. Mathematically, the

estimated α, 𝛼 is calculated as α = 1 + n ln xi
xmin

n
i=1

-1
.

Table 10 - Parameters for the power law fit for the degree distribution of the smallest (1000-node)
preferential attachment network.

 𝒂 𝒙𝒎𝒊𝒏 L
Incomplete Topology 2.44 10 1.0406e+04
Complete Topology 2.44 10 1.0468e+04

When Clauset’s power-law fitting method is applied both on the complete

network topology and the version of the network with 100 missing edges, the following

𝑥!"#,𝑎, and L (log-likelihood of 𝑥 > 𝑥!"#) values are obtained as presented in Table 10.

Since 𝑎 and 𝑥!"# values are unaffected, especially the 𝑎 value, we conclude that

experiments with the removal and insertion of 100 edges randomly selected out of the

 184

entire network topology do not cause the preferential attachment networks to lose their

topological properties.

Aside 2 – It is possible to run the growing and shrinking network updates in

combination, in any order. The reason to show the performance improvements separately

in the following tables is to provide opportunities for comparison of the performances of

the incremental centrality algorithms for the shrinking and growing network updates.

8.3 PERFORMANCE RESULTS WITH SYNTHETIC NETWORKS

This section reports the performance of the incremental centrality algorithms

obtained on the synthetic networks and discusses the performance results in line with the

topological features of the synthetic networks. In the rest of this section, the synthetic

networks that are described in Chapter 7.1 are used for performance measurements.

8.3.1 Incremental Closeness Centrality Performance Results

The performance values reported in Table 11 describe the speedup obtained by

the incremental closeness algorithm over the repeated invocations of the Dijkstra’s

algorithm used for computing closeness centrality, averaged across 100 incremental

updates on the network as described in Chapter 8.2. The standard deviations for the

performance improvements are added in parenthesis for each corresponding average

performance value. Table 11 also shows the percentage of the total number of nodes that

are affected by the growing and the shrinking network update types. The total number of

 185

affected nodes is calculated as the size of the set formed as the combination of

AffectedSinks and AffectedSources nodes.

Table 11 - Performance improvements of the incremental closeness algorithm over the repeated
invocations of computing closeness centrality using the Dijkstra’s algorithm obtained on
networks with different topologies/sizes described in Chapter 7.1. Average node degree is 6.

Topology Growing Network
Updates

Shrinking Network
Updates

 Closeness
Speedup

Closeness
Affected %

Closeness
Speedup

Closeness
Affected %

Preferential Attachment - 1000 900 x
(732.53) 3.79 467.70 x

(905.96) 2.93

Preferential Attachment - 3000
14714.43 x

(7298.64) 2.13 3447.89 x
(12233.78) 1.51

Preferential Attachment - 5000 47738.81 x
(27076.62) 1.33 10150.29 x

(48386.73) 0.97

Erdos-Renyi - 1000
123.07 x

(1146.17) 60.86 58.37 x
(1018.59) 43.71

Erdos-Renyi - 3000
515.35 x
(485.18) 69.02 169.83 x

(148.08) 41.31

Erdos-Renyi - 5000 890.56 x
(1158.4) 70.66 304.44 x

(389.26) 41.21

Small World - 1000
233.49 x

(5671.12) 50.10
118.71 x

(3838.12) 17.51

Small World - 3000 642.45 x
(80695.62) 52.39

338.81 x
(27515.92) 18.5

Small World - 5000
2015.87 x

(145931.31) 50.69
822.01 x

(91968.11) 17.97

Directed Cycles - 1000
309.62 x

(1221.32) 26.27
106.27 x

(1207.63) 20.82

Directed Cycles - 3000 740.44 x
(15275.67) 26.17

243.70 x
(12120.51) 21.47

Directed Cycles - 5000
1822.83 x

(54345.94) 26.54
495.39 x

(38131.80) 22.17

Consider the results presented in Table 11. First, the performance improvements

obtained over the baseline are higher for the growing network updates than for the

shrinking network updates. However, in general, the number of affected nodes is lower

 186

for the shrinking network updates. The DELETEUPDATECLOSENESS algorithm maintains a

priority queue while the INSERTUPDATECLOSENESS algorithm does not and the

DELETEUPDATECLOSENESS algorithm is significantly more complicated than the

INSERTUPDATECLOSENESS algorithm. Therefore, the overall algorithmic complexity and

the actual execution time are higher for shrinking network updates.

Second, the incremental closeness algorithm, both for the growing and the

shrinking network updates, performs best with the preferential attachment networks. It is

also observed that other parameters shown in Table 6 such as network diameter and

characteristic path length are inversely related with the performance obtained. For

instance, in preferential attachment networks, characteristic path length, diameter, and the

clustering coefficient are lower compared to other topologies. When the shortest paths in

a directed network are short (i.e. contain a number of hops) and there is not much

redundancy, an update on the shortest paths cannot propagate very far, resulting in quick

return from the update and a very limited number of affected nodes (e.g. less than 5% in

the case of preferential attachment networks).

On the other hand, the average length of the shortest paths in small world

networks is not high either. However, the small world networks have undirected

(bidirectional) edges. Thus, the number of shortest paths between any two nodes is likely

to be higher. Hence, there is a large difference in the portion of the network affected by

the growing and the shrinking network updates. Consider the following example. There

are three shortest paths from node a to node b. Then, an edge on one of these shortest

paths is removed. Although one of these shortest paths is not a shortest path from node a

 187

to b anymore, there are still two more paths that would serve as the shortest paths, and the

update terminates relatively quickly. Now, consider the opposite case. There are again

three shortest paths from node a to node b. Then, a direct edge connecting node a to node

b is inserted and all the previously known shortest paths should be invalidated and the

rest of the shortest paths in the network that use the shortest path from node a to node b

as their subpaths should also be updated. Therefore, it is likely that the portion of a small

world network that is affected by an incremental growing network will be higher than the

portion of the same network that is affected by its corresponding shrinking network

update.

Third, comparing the speedup obtained on different networks, speedup obtained

using the incremental closeness algorithm increases with the increased network size. The

largest improvements are again observed with preferential attachment networks because

the incremental algorithms are able to prune a larger portion of the network from

subsequent computations in preferential attachment networks.

When the standard deviations on the performance improvements are examined in

detail, additional observations on the performance behavior of the incremental closeness

centrality algorithm can be made. First, the highest deviations are observed in the

directed cycles and small world networks. This is reasonable given that both network

types benefit from the existence of rewired shortcuts. Second, there are some networks on

which the standard deviations for the performance of the incremental closeness centrality

algorithm is very large compared to the average performance obtained on the same

 188

network. This is because in those networks some of the incremental network updates

completed very quickly, which causes the deviation to be very large.

Table 12 - Performance improvements of the incremental closeness algorithm over the repeated
invocations of the Dijkstra’s algorithm for computing closeness centrality obtained on with
different network topologies and different average node degree values as described in Chapter
7.1. The number of nodes is fixed at 3000.

Topology Avg
Deg.

Growing Network
Updates

Shrinking Network
Updates

 Closeness
Speedup

Closeness
Affected %

Closeness
Speedup

Closeness
Affected %

Preferential Attachment 4 13384.83 x
(30947.95) 0.95 3344.98 x

(5952.6) 0.79

Preferential Attachment 6
14714.43 x

(7298.64) 2.13 3447.89 x
(12233.78) 1.51

Preferential Attachment 8 15259.79 x
(51827.04) 3.19 3694.61 x

(10063.46) 1.86

Erdos-Renyi 4
288.15 x

(114.565) 54.70 89.74 x
(93.174) 48.33

Erdos-Renyi 6
515.35 x
(485.18) 69.02 169.83 x

(148.08) 41.31

Erdos-Renyi 8 885.19 x
(2480.52) 59.48 321.66 x

(1174.89) 30.16

Small World 4
471.70 x

(58927.40) 63.23
129.20 x

(39859.40) 36.09

Small World 6 710.11 x
(80695.62) 52.39

338.81 x
(27515.92) 18.5

Small World 8
1492.96 x
(1698.92) 45.63

829.57 x
(1161.88) 11.61

Directed Cycles 4
393.86 x

(150095.88) 31.18
118.75 x

(74590.23) 29.84

Directed Cycles 6
740.44 x

(15275.67) 26.17
243.70 x

(12120.51) 21.47

Directed Cycles 8
2391.75 x

(25320.00) 18.50
928.00 x

(10223.88) 12.69

Although the actual values of standard deviations depend very much on the

interaction of the random network update with the rest of the network topology, the

 189

general trend is that the deviation on the shrinking network updates is lower than the

deviation on the growing network updates as it takes longer to complete the shrinking

network updates in general.

Next, Table 12 presents performance results collected in a similar fashion to those

presented in Table 11. In Table 12, different from the results presented in Table 11, the

average degrees of networks are varied from 4.0 to 8.0 with a step size of 2.0 for each

synthetic network topology type while the number of nodes is fixed at 3000 nodes for all.

The standard deviations for the performance improvements are added in parenthesis for

each corresponding average performance value.

For preferential attachment networks, there is a slight performance improvement

with the increasing average degree; however, this trend is not as pronounced as it is with

the other network topologies. In Erdos-Renyi networks, the performance improvements

of the incremental closeness algorithm increases with the increased average degree, both

for growing and shrinking network updates. Yet, this is not necessarily strictly in line

with the percentage of affected nodes as the randomness of the connections in Erdos-

Renyi networks may result in different proportions of the network getting affected by the

issued network update. For small world networks and directed cycles, the performance

improvements again increase with the increasing average degree as the percentage of

nodes affected by the network updates decrease.

Overall, when the number of immediate connections per node increases, the

network is denser but this does not necessarily mean that the shortest paths in the network

become longer. As presented earlier in Table 7, in Erdos-Renyi networks, small world

 190

networks, and especially in directed cycles, the increased average node degree provides

opportunities for including more random connections that connect far apart nodes,

reducing the characteristic (average) shortest path lengths and the diameters of the

networks. This effect, as a result, reflects as a substantial increase in the performance

improvements obtained by the incremental closeness centrality algorithm over computing

the closeness centrality with the Dijkstra’s algorithm [109].

8.3.2 Incremental Betweenness Centrality Performance Results

Next, the performance of the proposed incremental betweenness centrality

algorithm is examined. The design and preparation of the experiments are the same as

those used for the incremental closeness centrality algorithm, as discussed earlier in

Chapter 8.2. The incremental network updates are the same as those used in the timing

experiments done with the incremental closeness centrality algorithm, presented earlier in

Chapter 8.3.1. The non-incremental baseline algorithm is the Brandes’ betweenness

algorithm [28], which is the best performing betweenness algorithm used in standard

implementations.

Table 13 and Table 14 list the average speedups obtained by the incremental

betweenness centrality algorithm over the Brandes’ algorithm both for the growing and

the shrinking network updates along with the percentages of the total number of nodes

that are affected. The percentages of affected nodes are calculated in terms of the size of

the combination of the two sets, AffectedSinks and AffectedSources. The standard

 191

deviations for the performance improvements are added in parenthesis for each

corresponding average performance value.

In particular, the performance results in Table 13 show how the performance

improvements of the incremental betweenness centrality algorithm change along with the

changing network size and topology. On the other hand, Table 14 reports the changes in

the performance improvements along with the changing average node degree and the

network topology.

Similar to the performance results obtained with the incremental closeness

algorithm in Chapter 8.3.1, the performance results presented in both tables indicate that

the incremental betweenness algorithm provides the highest performance benefits on the

preferential attachment networks and the lowest performance improvements on the

directed cycles. Directed cycles provide examples of pathological test cases for the

incremental centrality algorithms because they tend to have very long diameters and

relatively large average (characteristic) shortest path lengths both of which increase the

lengths of the shortest paths to be updated.

Comparing the network statistics (Table 6) and the performance results obtained

on different networks (Table 13), the speedup obtained using the incremental

betweenness update algorithm increases with the increased network size. It is also

observed that other parameters such as network diameter, characteristic path length, and

average/min/max unscaled betweenness centrality values are inversely correlated with the

performance obtained; the longer the shortest paths are in a network, the lower the

performance improvements are in that network.

 192

Table 13 - Performance improvements of the incremental betweenness algorithm over repeated
invocations of the Brandes’ betweenness algorithm obtained on networks with different
topologies/sizes described in Chapter 7.1.

 Growing Network Updates Shrinking Network Updates
Topology Betweenness

Speedup
Betweenness
Affected %

Betweenness
Speedup

Betweenness
Affected %

Preferential Attachment - 1000 178.65 x
(971.51) 3.54

173.84 x
(967.36) 3.63

Preferential Attachment - 3000 971.40 x
(9021.75) 1.98

740.13 x
(8809.35) 1.95

Preferential Attachment - 5000 3760.48 x
(33818.54) 1.16

2415.18 x
(32011.24) 1.14

Erdos-Renyi - 1000 7.99 x
(996.81) 62.89

6.60 x
(997.09) 62.48

Erdos-Renyi - 3000 18.97 x
(40.22) 67.77

15.08 x
(14.89) 68.08

Erdos-Renyi - 5000 31.18 x
(66.51) 68.31

24.87 x
(53.91) 68.32

Small World - 1000
8.77 x

(12.25) 61.03
7.87 x

(12.98) 61.03

Small World - 3000 20.94 x
(27.16) 61.63

17.13 x
(25.95) 61.63

Small World - 5000
36.32 x
(51.01) 60.73

29.38 x
(50.51) 60.73

Directed Cycles - 1000
3.78 x

(803.30) 44.14
1.79 x

(622.95) 43.98

Directed Cycles - 3000 4.26 x
(6342.75) 42.07

2.22 x
(4508.81) 41.65

Directed Cycles - 5000
6.47 x

(15361.89) 43.87
2.92 x

(15324.96) 43.12

Considering the network characteristics presented in Table 6, it is observed that in

the preferential attachment networks, the characteristic path length and the diameter are

substantially lower compared to the other topologies. And, the shortest paths in the

directed cycles are substantially longer, yielding performance results that are much lower

compared to the other network types as the performance results in Table 13 suggest.

 193

Table 14 - Performance improvements of the incremental betweenness algorithm over repeated
invocations of the Brandes’ algorithm obtained on networks with different topologies and
different average node degrees as described in Chapter 7.1. The number of nodes is fixed at 3000.

Topology Avg
Deg.

Growing Network
Updates

Shrinking Network
Updates

 Betweenness
Speedup

Betweenness
Affected %

Betweenness
Speedup

Betweenness
Affected %

Preferential Attachment 4 1856.54 x
(3865.926) 0.90

1672.78 x
(2979.49) 0.89

Preferential Attachment 6 971.40 x
(9021.75) 1.98

740.13 x
(8809.35) 1.95

Preferential Attachment 8 916.52 x
(6119.21) 2.69

627.16 x
(3331.99) 2.68

Erdos-Renyi 4 14.02 x
(66324.74) 56.26

9.23 x
(53451.25) 55.67

Erdos-Renyi 6 18.97 x
(40.22) 67.77

15.08 x
(14.89) 68.08

Erdos-Renyi 8
29.95 x
(154.4) 58.43

22.80 x
(164.28) 58.50

Small World 4 14.23 x
(27.64) 72.89

11.24 x
(26.17) 72.89

Small World 6
20.94 x
(27.16) 61.63

17.13 x
(25.95) 61.63

Small World 8
28.14 x
(28.41) 54.89

23.34 x
(27.96) 54.89

Directed Cycles 4 0.88 x
(29674.85) 38.52

1.09 x
(17844.20) 36.98

Directed Cycles 6
4.26 x

(6342.75) 42.07
2.22 x

(4508.81) 41.65

Directed Cycles 8 14.60 x
(4273.70) 37.74

7.19 x
(2743.57) 37.75

Apart from the lengths of the shortest paths, the average betweenness value

(unscaled) and the network size are also very important factors, especially the network

size. As mentioned earlier, the performance benefits of the incremental betweenness

update algorithm increases with the increasing network size. When the average

betweenness values are examined (Table 6), it is observed that the difference across

 194

different topologies is very large. This is because in preferential attachment networks,

compared to other network topologies, there are fewer intermediate nodes that are on the

shortest paths. Hence, when there is a network update, there are fewer nodes whose

betweenness values should be adjusted. When most of the shortest paths in a network

consist of a couple of hops only (i.e., when it takes a social agent only a number of

intermediaries to reach out to the majority of the network), then there are fewer nodes

that lie on the shortest paths and the overall depth of the shortest path tree is shorter. As a

result, there are fewer predecessors to be tracked and maintained when there is need for

reconstructing the shortest paths in the network.

Finally, the percentages of nodes that are affected are higher for the incremental

betweenness centrality than for the incremental closeness centrality. The closeness

centrality is only affected by the changes in the shortest distances in a network. For the

incremental closeness centrality, only the nodes that have strictly shorter or strictly longer

paths to/from them are inserted into the sets of affected sinks/sources. On the other hand,

for the incremental betweenness centrality, not only the changes in the shortest distances

but also the changes in the number of shortest paths affect the centrality values. Hence,

for the incremental betweenness centrality, there are more reasons to include nodes in the

set of affected nodes, resulting in a larger percentage of affected nodes overall. Since the

incremental betweenness centrality algorithm needs to maintain more information (e.g.

tracking predecessors, maintaining the number of shortest paths), the performance of the

incremental closeness centrality algorithm is higher than that of the incremental

 195

betweenness centrality algorithm (Compare the performance results in Table 11 with

Table 13 and the performance results in Table 12 with Table 14).

8.3.3 How do the Hub Nodes Affect the Performance of Incremental Centrality
Algorithms in Preferential Attachment Networks?
‘Preferential attachment’ is a network generation model that leads to the

generation of scale free networks with heavy-tailed, power-law degree distributions. In

such networks, there are very few nodes with a large number of connections (e.g. hubs)

while the majority of the nodes in the network have very few connections. Figure 24

presents the in-degree distribution of the nodes in a 3000-node preferential attachment

network with an average degree of 6. Figure 25 presents the same data in log-log scale.

The preferential attachment network whose degree distribution is presented in

Figure 24 and Figure 25 have a number of hub nodes. Next, the hub nodes with the

highest number of connections are listed in Table 15.

Figure 24 - The distribution of nodes' in-degree
values in 3000-node preferential attachment
network with average degree 6.

Figure 25 - Log-log scale plot for the in-
degree distribution depicted in Figure 24.

 196

Table 15 - List of the hub nodes in 3000-node preferential attachment network with average node
degree 6.

Rank Node ID #(Connections) Rank Node ID #(Connections)
1 0 233 11 9 54
2 6 110 12 21 54
3 1 107 13 82 50
4 3 99 14 31 47
5 11 94 15 30 43
6 2 82 16 16 42
7 7 79 17 24 41
8 15 78 18 54 41
9 17 59 19 8 38
10 4 58 20 25 38

One question that stems from the existence of hub nodes in a network is ‘How do

the incremental centrality algorithms perform when a network update that involves one of

the hub nodes is issued?’ A hub node x might be the head or the tail of a modified edge

{x → y} or it might be on the shortest paths that are affected by the modification of an

edge {a → b}. This section attempts to answer the question posed through detailed

examination of the performance results for the incremental betweenness centrality

algorithm. Similar observations hold for the performance of the incremental closeness

centrality, however, the performance differences across different updates are more

pronounced for the incremental betweenness centrality.

How the existence of hub nodes affects the performance is a result of the network

structure, the position of the incremental network update with respect to the position of

the hub nodes, and the direction of connections into/out of the hub nodes. When the

updated edge {x → y} ends at a hub node y with many incoming connections and no

outgoing connections, the update terminates immediately. However, when both updates

 197

are made on nodes with high number of connections, then the incremental update takes

longer to complete because such nodes are expected lie on many shortest paths. Hence, a

change in the network that involves a hub node is expected to trigger a big wave of

changes if it has enough many outgoing connections on top the incoming connections it

has. In addition, when a hub node is marked as an affected node, then its immediate

neighbors should be traversed to see if the incremental network update should propagate

further by adding one or more its immediate neighbors in the list of affected nodes as

well. Since hub nodes have a lot of connections, it is expected that traversing its

immediate neighbors will take longer than traversing the immediate neighbors of a node

with only a couple of immediate connections.

Figure 26 - Distribution of execution times for 100 incremental edge insertions.

Out of the 100 randomly selected network updates, there were only 6 updates that

took significantly longer than the rest of the updates. In particular, %80 of the individual

 198

updates completed in less than 16 milliseconds, and there are only 6 updates that took

more than 75 milliseconds, with only 2 updates taking longer than 200 milliseconds.

Figure 26 shows the distribution of execution times for 100 incremental edge insertions.

Insertion of the edge {129 → 37} is the update that took the longest. For instance,

node-129 has 24 incoming connections and 2 outgoing connections while node-37 has 18

incoming connections and 3 outgoing connections. Before the insertion of the edge {129

→ 37} that would connect node-129 and node-37 directly, these two nodes were

connected through 4 different shortest paths of length 3.0 as shown in Figure 27.

Figure 27 - Shortest paths from node-129 to node-37 before the insertion of the edge {129→37}.

For instance, when the edge {129 → 37} is inserted the old set of shortest paths

should be invalidated and all the shortest paths that use these invalidated shortest paths as

their subpaths should also be invalidated. Another important point to notice is that

although node-129 and node-37 are average nodes with not too many or not too few

 199

connections, there are two major hubs on their shortest paths: node-0 (233 connections)

and node-2 (82 connections), which cause the slowdown in the completion of this

particular update when the shortest paths that pass through them are to be updated. In

conclusion, when the hub nodes lie on the affected paths and are inserted into the set of

affected nodes, then the network update takes longer than average. The execution time

tends to increase with the increased number of hub nodes inserted into the sets of affected

nodes.

8.3.4 Incremental k-Centrality Performance Results

Next, the performance of the incremental k-closeness and k-betweenness

centrality algorithms are examined. In the performance results presented in Table 16 and

Table 17, we use k = 2 and k = 3, respectively. The baseline algorithms (the Dijkstra’s

algorithm [109] for the closeness centrality and the Brandes’ algorithm [28] for the

betweenness centrality) are also bounded by the k hop limit. The experiments are

designed as described in Chapter 8.2. Hence, to avoid repetition, they are not described

here again. In Table 16 and Table 17, PF stands for preferential attachment networks, ER

stands for Erdos-Renyi networks, SW stands for small world networks, and DC stands for

directed cycles. Each network topology type is appended by a number: 1, 3, or 5, which

denote the network size in terms of the number of nodes and stand for 1000 nodes, 3000

nodes, and 5000 nodes, respectively.

Considering the performance results provided in Table 16 and Table 17, it is

observed that the incremental centrality algorithms provide performance benefits that are

 200

on the order of thousands. There are three main trends that stand out: (i) the incremental

k-closeness algorithm provides higher performance benefits than the incremental k-

betweenness algorithm, (ii) the incremental k-centrality algorithms provide higher

performance improvements for the growing network updates than they do for the

shrinking network updates, and (iii) the performance benefits of the incremental

centrality algorithms increase with the increasing network size. All of these observations

are in line with the results presented earlier.

However, there is one major difference that can only be observed in the behavior

of k-centralities. When the shortest paths are not limited by k hops, the maximum

performance benefits are obtained on the preferential attachment networks (Chapter 8.3.1

and Chapter 8.3.2). However, in k-centralities, the incremental centrality algorithms

provide the minimum performance benefits in the preferential attachment networks and

the maximum performance benefits in the small world networks. In other words, the

ordering of the topologies in terms of how much they benefit from the incorporation of

the incremental approach is reversed when the shortest paths are limited within k hops

both for the incremental algorithms and the baseline algorithms.

The performance benefits of the incremental k-centralities depend on how much

work they can avoid. In preferential attachment networks, the shortest paths are mostly

composed of a couple of hops, with relatively smaller average characteristic path length

and network diameter compared to the other network topologies. With the introduction of

the limiting parameter k, the shortest paths become even shorter but the amount of work

 201

that can be avoided is not as high as the work that can be avoided in other network

topologies.

Table 16 - Performance benefits of the proposed incremental k-centrality algorithms and the
portion of the network affected by these changes obtained on preferential attachment, Erdos-
Renyi, small world networks, and directed cycles. Avg. degree = 6, k = 2.

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2)

T
Closeness
Speedup

Closeness
Affected%

Betweenness
Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

PF1 4007.39 x
(2660.30) 1.77

1169.57 x
(708.83) 0.73

2318.95 x
(1689.62) 0.67

561.91 x
(415.49) 1.68

PF3 67536.43 x
(70166.31) 0.74

12252.17 x
(8936.66) 0.29

26128.53 x
(34690.16) 0.27

4660.43 x
(4350.67) 0.72

PF5 175671.04 x
(144434.28) 0.36

33434.23 x
(19134.80) 0.14

150069.59 x
(95076.37) 0.13

17114.77 x
(9173.12) 0.35

ER1 8434.33 x
(8192.99) 2.45

2214.27 x
(1657.40) 0.77

9349.37 x
(5936.06) 0.76

1095.16 x
(1500.38) 2.44

ER3 93542.53 x
(40662.82) 0.85

19922.55 x
(6648.24) 0.27

84290.54 x
(29807.10) 0.26

7674.98 x
(2773.54) 0.85

ER5 356374.65 x
(104205.84) 0.53

64049.13 x
(17893.89) 0.16

394281.47 x
(117711.62) 0.16

21370.51 x
(7166.96) 0.53

SW1 3505.08 x
(3323.48) 3.91

700.38 x
(313.34) 1.02

4576.60 x
(3080.00) 0.85

286.24 x
(211.32) 4.05

SW3 50380.67 x
(40131.32) 1.40

5698.70 x
(2223.15) 0.35

53706.20 x
(36106.66) 0.30

1944.95 x
(1192.21) 1.48

SW5 245023.50 x
(199487.08) 0.78

22649.73 x
(8159.11) 0.20

246886.51 x
(156819.89) 0.17

6356.84 x
(3776.83) 0.82

DC1 8013.70 x
(8339.80) 1.55

1832.06 x
(1460.83) 0.68

5939.09 x
(4855.54) 0.57

1005.99 x
(1720.02) 1.63

DC3 140584.58 x
(63424.38) 0.53

22107.68 x
(7744.64) 0.23

125663.72 x
(40038.24) 0.19

10258.06 x
(4859.67) 0.56

DC5 639784.95 x
(246368.46) 0.30

87351.19 x
(28524.46) 0.13

630523.27 x
(157903.27) 0.11

33937.61 x
(14724.15) 0.32

In the incremental k-centralities algorithms, the highest performance benefits are

obtained on directed cycles. In directed cycles, some nodes are connected by the

shortcuts in the network formed by rewiring. However, there are also other node pairs

whose shortest paths do not include any shortcut edges and such shortest paths tend to be

 202

very long. When the shortest paths are confined to the 2-hop or 3-hop neighborhood of

each node, most of the very long shortest paths are eliminated from computations. In

addition, how far a network update can propagate across the network is very limited as

well (limited to the k-hop neighborhood only).

Table 17 - Performance benefits of the proposed incremental k-centrality algorithms and the
portions of the network affected by these changes obtained on preferential attachment, Erdos-
Renyi, small world networks, and directed cycles. Avg. degree = 6, k = 3.

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3)

T
Closeness
Speedup

Closeness
Affected%

Betweenness
Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

PF1 1933.86 x
(2460.15) 2.79

467.76 x
(424.54) 1.71

980.19 x
(957.92) 1.42

318.11 x
(389.35) 2.60

PF3 12305.23 x
(56123.57) 1.27

3880.92 x
(4845.24) 0.73

12345.63 x
(8129.59) 0.61

1619.92 x
(2190.31) 1.19

PF5 70359.54 x
(55104.65) 0.64

13972.58 x
(7995.69) 0.35

29268.18 x
(22821.96) 0.31

6301.81 x
(4698.60) 0.59

ER1 2648.67 x
(6388.20) 6.99

665.23 x
(1342.86) 2.45

8741.28 x
(5309.33) 2.38

321.24 x
(1114.04) 6.92

ER3 25453.04 x
(18069.07) 2.55

5917.13 x
(3475.05) 0.85

100799.68 x
(27376.85) 0.85

2058.77 x
(10260.79) 2.56

ER5 96010.96 x
(45713.23) 1.60

18529.29 x
(8188.16) 0.52

377138.79 x
(100462.26) 0.52

6298.02 x
(2769.37) 1.59

SW1 1054.90 x
(4155.52) 13.16

182.17 x
(157.09) 4.15

955.40 x
(3168) 3.29

76.80 x
(77.80) 14.61

SW3 14267.99 x
(41931.26) 5.15

1294.52 x
(966.03) 1.48

10661.16 x
(27570.41) 1.27

431.51 x
(382.85) 5.85

SW5 53772.04 x
(139668.06) 2.84

4574.47 x
(3486.16) 0.82

48955.05 x
(113508.33) 0.69

1405.23 x
(1291.21) 3.24

DC1 6760.30 x
(6372.81) 2.94

1097.46 x
(1506.50) 1.67

5346.76 x
(4207.69) 1.28

625.45 x
(1751.89) 3.47

DC3 80953.65 x
(38993.78) 1.01

8812.74 x
(5324.65) 0.56

51067.62 x
(37778.30) 0.45

4666.67 x
(2620.77) 1.19

DC5 288379.42 x
(135771.75) 0.58

34715.31 x
(20091.47) 0.32

229305.42 x
(158129.62) 0.25

14197.06 x
(9886.13) 0.67

The abovementioned factors result in a dramatic increase in the speedup that can

be achieved by incremental k-centrality algorithms as well as a dramatic decrease in the

 203

percentage of the nodes that are affected by the incremental network updates. Consider

the percentages of the networks affected by the incremental network updates as listed in

Table 13, Table 14, Table 16, and Table 17. When the shortest paths are not bounded by

any k-hop limits, the percentages of the affected nodes are in the range of 42.07% -

68.32% (for Table 13) and 36.98% - 72.89% (for Table 14) if only the Erdos-Renyi,

small-world and directed cycles networks are accounted for. These ranges extend to

1.16% - 68.32% (for Table 13) and 0.89% - 72.89% (for Table 14) if the preferential

attachment networks are included as well. When the shortest paths are restricted to

remain within k hops, these values change as follows. The percentages of the affected

nodes remain within 0.11% - 3.91% for all network types (Table 16) for k = 2 while for k

= 3, these affected percentages remain within 0.25% - 14.61% (Table 17).

When the results in Table 16 and Table 17 are compared against one another, it is

observed that the performance benefits of the incremental k-centralities are higher when k

= 2 and the percentages of affected nodes are lower. However, in most cases the total

percentages of affected nodes are less than 10-15%, mostly staying within less than 5%

of the entire network. The underlying reasons are the same as those resulting in high

performance benefits. When the shortest paths are confined to k-hop neighborhood, how

far a network can propagate across the network is also limited.

Next, in Table 18 and Table 19, the performance results of the incremental k-

betweenness and incremental k-closeness algorithms, for networks with varying average

node degrees are presented, using the k-hop limits k = 2 and k = 3, respectively. The

performance results presented in Table 18 and Table 19 collected on networks with 3000

 204

nodes and varying average node degrees (e.g. 4.0, 6.0, and 8.0). Considering the

incremental k-betweenness results, the performance improvements provided by the

incremental k-betweenness algorithm over the Brandes’ k-betweenness algorithm

decreases with the increasing average node degree.

Table 18 - Performance benefits of the proposed incremental k-closeness algorithm over k-
closeness algorithm and portion of the network affected by these changes obtained on preferential
attachment, Erdos-Renyi, small world networks, and directed cycles (k = 2, number of nodes =
3000). The first column (e.g. T) lists the topology names along with their average node degrees.

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2)

T
Closeness
Speedup

Closeness
Affected%

Betweenness
Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

PF4
42393.01 x
(49332.76) 0.19

18835.73 x
(10743.23) 0.39

18338.90 x
(28261.15) 0.19

6344.60 x
(5411.19) 0.38

PF6
67536.43 x
(34690.16) 0.74

12252.17 x
(8936.66) 0.29

26128.53 x
(70166.31) 0.27

4660.43 x
(4350.67) 0.72

PF8
88628.43 x
(69466.50) 0.32

10587.64 x
(7429.73) 0.95

28990.65 x
(35282.93) 0.29

2706.76 x
(3307.44) 0.90

ER4
112938.19 x
(115455.15) 0.18

28141.80 x
(21516.05) 0.42

105115.30 x
(96063.50) 0.19

15175.37 x
(16955.21) 0.42

ER6
93542.53 x
(40662.82) 0.85

19922.55 x
(6648.24) 0.27

84290.54 x
(29807.10) 0.26

7674.98 x
(2773.54) 0.85

ER8
67272.73 x
(57479.85) 0.32

13440.00 x
(8457.19) 1.35

79497.84 x
(50806.15) 0.32

3611.11 x
(3120.86) 1.35

SW4
80986.09 x
(55057.35) 0.72

11547.87 x
(4282.55) 0.25

68229.48 x
(37660.91) 0.23

4619.78 x
(2522.49) 0.73

SW6
50380.67 x
(40131.32) 1.40

5698.70 x
(2223.15) 0.35

53706.20 x
(36106.66) 0.30

1944.95 x
(1192.21) 1.48

SW8
48238.49 x
(33250.30) 2.06

4235.30 x
(564.37) 0.43

46067.38 x
(26961.08) 0.33

1005.81 x
(564.37) 2.26

DC4
205357.14 x
(130529.90) 0.33

32911.39 x
(19353.79) 0.18

179316.73 x
(67508.42) 0.16

19609.63 x
(13187.93) 0.33

DC6
140584.58 x

(63424.38) 0.53
22107.68 x

(7744.64) 0.23
125663.72 x

(40038.24) 0.19
10258.06 x

(4859.67) 0.56

DC8
127924.53 x

(56549.32) 0.68
19087.64 x

(7900.49) 0.27
125663.72 x

(31835.46) 0.20
7260.27 x
(3496.14) 0.75

When k = 2, the largest performance improvements are observed in the directed

cycles, followed by the Erdos-Renyi networks, preferential attachment networks, and

 205

small world networks. This is also in line with the percentage of the nodes affected by the

incremental updates. In all three different types of networks, the performance

improvements decrease with the increasing average node degree. This is because when

there are more immediate neighbors connected to each node, an incremental network

update is inevitably felt by more nodes in the network.

Table 19 - Performance benefits of the proposed incremental k-betweenness algorithm over k-
betweenness algorithm implemented as in Brandes and the portion of the network affected by
these changes obtained on preferential attachment, Erdos-Renyi, small world networks, and
directed cycles (k = 3, avg. degree = 6). The first column (e.g. T) lists the topology names along
with their average node degrees.

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3)

T
Closeness
Speedup

Closeness
Affected%

Betweenness
Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

PF4
20235.23 x
(49632.85) 0.60

11662.51 x
(7664.97) 0.38

16813.56 x
(27306.46) 0.36

4986.82 x
(4115.51) 0.58

PF6
12305.23 x
(56123.57) 1.27

3880.92 x
(4845.24) 0.73

12345.63 x
(8129.59) 0.61

1619.92 x
(2190.31) 1.19

PF8
36385.76 x
(73620.80) 1.80

2996.25 x
(4460.23) 0.91

9720.92 x
(8793.33) 0.7

1427.46 x
(2753.62) 1.62

ER4
57248.21 x

(140441.29) 0.89
14303.40 x
(23260.63) 0.42

54836.49 x
(98033.33) 0.42

6205.19 x
(18471.12) 0.89

ER6
25453.04 x
(18069.07) 2.55

5917.13 x
(3475.05) 0.85

100799.68 x
(27376.85) 0.85

2058.77 x
(10260.79) 2.56

ER8
15889.83 x
(18687.31) 5.24

2917.32 x
(3415.20) 1.35

12176.84 x
(16390.85) 1.32

824.32 x
(975.16) 5.21

SW4
23769.90 x
(47122.22) 1.91

3262.50 x
(2417.90) 0.73

19485.04 x
(35948.19) 0.67

1532.71 x
(1308.55) 2.00

SW6
14267.99 x
(41931.26) 5.15

1294.52 x
(966.03) 1.48

10661.16 x
(27570.41) 1.27

431.51 x
(382.85) 5.85

SW8
10072.24 x
(12263.00) 9.01

886.12 x
(595.87) 2.26

7431.26 x
(9028.73) 1.76

220.35 x
(173.73) 10.97

DC4
101742.36 x
(133504.69) 0.53

19638.21 x
(21366.49) 0.33

97027.70 x
(79794.33) 0.29

10534.19 x
(15765.61) 0.56

DC6
80953.65 x
(38993.78) 1.01

8812.74 x
(5324.65) 0.56

51067.62 x
(37778.30) 0.45

4666.67 x
(2620.77) 1.19

DC8
51720.16 x
(32805.24) 1.48

6220.12 x
(4535.26) 0.76

39479.64 x
(17969.89) 0.54

2672.00 x
(2490.92) 1.92

 206

When k = 3, similar to the case where k = 2, the performance improvements

decrease with the increasing average node degree. However, when k = 2, most of the

longer shortest paths are eliminated while k = 3 retains some of the longer shortest paths.

The impact of the structure of the shortest paths become more visible and the

performance improvements are lower than the performance improvements obtained when

the limiting parameter k = 2.

For both k = 2 and k = 3, the percentages of affected nodes are lower for the

incremental k-closeness centrality than they are for the incremental k-betweenness

centrality. Similar observations are made for the other results and this effect stems from

the difference in the definitions of the closeness and betweenness centrality. The

incremental updates for the closeness centrality only propagate when the shortest

distances in a network change while the incremental updates for the betweenness

centrality have additional reasons for propagation such as the changes in the number of

shortest paths, apart from the shortest distance changes.

For the incremental k-closeness centrality, since directed cycles have very long

shortest paths, limiting the shortest paths into k hops provides substantial performance

improvements, yielding the highest performance improvements across all types of

synthetic networks simulated.

Unlike the behavior of the incremental k-betweenness centrality, the incremental

k-closeness centrality shows different trends of performance improvements for different

network topologies. For the incremental k-betweenness centrality, the performance

improvements consistently decrease with the increasing average node degree in the

 207

networks. There are more edges emanating from each node on average. Hence, there are

potentially a larger number of shortest paths that are of equivalent length. This would

cause the incremental k-betweenness algorithm to search for and update a larger number

of paths while the same situation might help incremental k-closeness for an early

termination of an update. Consider the following scenario. From node x to node y, there

are three different shortest paths: p1, p2, and p3. Then, an edge e, which was on the path

p1, is removed. In such a case, the k-betweenness centrality values of all the intermediates

on the remaining shortest should be updated. However, in the case of incremental k-

closeness centrality, one of the shortest paths is removed but there are other shortest paths

to rely on which would keep the shortest distance from node x to node y same as before.

While the specific values for the speedups obtained over the baseline algorithms

depend very much on the network topology and the shortest paths in the networks, the

key takeaway point is that in the computations of the k-betweenness and k-closeness

centralities, the incremental algorithms provide the best performance improvements in

directed cycles, followed by the Erdos-Renyi, followed by the preferential attachment

networks, and the small world networks. This is the reverse of the trend observed in non-

approximate versions of the betweenness and closeness centrality computations, and is

related with the amount of work that can be pruned with the incorporation of the

incremental computation approach.

Small world networks have a number of properties that cause them to behave

slightly differently than the other network types. Small world networks have low average

shortest path lengths, the networks are highly clustered compared to the other network

 208

types, and their edges are undirected, all of which help increasing the connectivity in the

network. Hence, the k-hop neighborhood of a node might be more crowded than it is for

the other network types that have the same number of nodes and the same average node

degree, which reflects as higher portions of networks being affected and a higher number

of shortest paths to be updated.

8.3.5 Discussion on the Memory Consumption

This section discusses observations on the memory consumption of the algorithms

the experiments were run with. As previously mentioned in Chapter 4.5 and Chapter 5.5,

the overall memory consumptions of the incremental centrality algorithms are higher than

their corresponding baseline algorithms (the Dijsktra’s algorithm [109] for computing

closeness centrality and the Brandes’ algorithm [28] for computing betweenness

centrality).

The maximum memory consumption statistics are collected for each run. In the

following set of figures (Figure 28 - Figure 33), the memory consumption of the

incremental closeness algorithm is compared against the Dijkstra’s algorithm for

computing closeness centrality. In the next set of figures (Figure 34 - Figure 39), the

memory consumption of the incremental betweenness algorithm is compared against the

Brandes’ algorithm. The figures on the left hand side show memory consumption results

for the varying number of nodes and keeping the average node degree at 6.0. The figures

on the right hand side show similar information for the varying average node degrees

 209

while keeping the number of nodes at 3000. All these figures show the maximum

memory consumption in GBs.

As mentioned earlier, all the experiments were done on a machine with 256 GB

main memory. Hence, the memory consumption did not hit the physical memory limit of

the machine. The source codes for all algorithms are written under the same coding

infrastructure, in GraphStream, a pure Java-based dynamic graph library [164].

In Java, garbage collection is automated. Although it is possible to call for

garbage collection explicitly in the source code using System.gc() function call, this does

not necessarily enforce the execution of garbage collection [172] [173]. Since the

experiments were run on a machine that has 256GB of memory, the garbage collection is

almost never executed as the memory consumption does not necessarily get close to the

actual limits and this is why very high, climbing memory consumption is observed.

Therefore, while the numbers presented in the figures below are not very representative

of an implementation with ideal memory management, there are still some conclusions

that can be drawn.

First, for the closeness centrality, the network topology type does not change the

maximum memory consumption observed; the memory consumption is consistent across

preferential attachment, Erdos-Renyi, and directed cycles. This is primarily because the

information on the intermediates that lie on the shortest paths is not maintained; only the

shortest distances and closeness values are kept. However, it is higher for small world

networks. This is because the undirected edges in small world networks are kept as two

separate directed edges in opposite directions, which increases the number of edges

 210

stored in the memory. Second, both the number of nodes and the sparsity of the networks

are important in determining the amount of memory consumed, but, among these two

factors, what makes the real difference in how much memory is needed is the number of

nodes in a network. For computing the k-closeness centrality, bounding the shortest paths

by k hops does not necessarily affect the amount of memory used up because the amount

of memory to keep all the nodes and edges is still needed as well as the shortest distances

among nodes and the closeness centrality value of each node.

On the other hand, slightly different trends are observed for the memory

consumption of the betweenness computation. Both for the Brandes’ betweenness

algorithm and the incremental betweenness centrality algorithms, the number of nodes in

the network is a more important factor than the average node degree, similar to the results

observed with closeness centrality. However, since the intermediates on the shortest paths

are also kept in the memory, the topology of the network is also a factor. In addition, for

betweenness centrality, bounding the shortest paths within k hops helps by reducing the

amount of memory further as there are fewer shortest paths with relatively low number of

intermediates to be maintained, compared to regular non-approximate version of the

betweenness. When the memory consumption results of the k-betweenness is compared

against that of the regular betweenness centrality, it is still possible to notice some impact

of the topology on the amount of memory consumed. Yet, the differences across different

network topologies are less pronounced when the shortest paths are bounded to remain

within k hops.

 211

Figure 28 - Memory statistics comparing the
incremental closeness algorithm with the
Dijkstra's algorithm for closeness.

Figure 29 - Memory statistics comparing the
incremental closeness algorithm with the
Dijkstra's algorithm for closeness.

Figure 30 - Memory statistics comparing the
incremental closeness algorithm with the
Dijkstra's algorithm for closeness. Both are
bounded by k = 2.

Figure 31 - Memory statistics comparing the
incremental closeness algorithm with the
Dijkstra's algorithm for closeness. Both are
bounded by k = 2.

Figure 32 - Memory statistics incremental
closeness algorithm with the Dijkstra's algorithm
for closeness. Both are bounded by k = 3.

Figure 33 - Memory statistics incremental
closeness algorithm with the Dijkstra's algorithm
for closeness. Both are bounded by k = 3.

 212

Figure 34 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes’ algorithm.

Figure 35 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes’ algorithm.

Figure 36 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes’ algorithm. Both are bounded by k = 2.

Figure 37 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes’ algorithm. Both are bounded by k = 2.

Figure 38 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes’ algorithm. Both are bounded by k = 3.

Figure 39 - Memory statistics comparing the
incremental betweenness algorithm with the
Brandes' algorithm. Both are bounded by k = 3.

 213

The actual numbers of memory usage can be very much affected by the

programming language and the computing platform (e.g. CPU, RAM, how much of the

main memory is reserved as RamDisk) on which the experiments are run. For instance,

for Java, the Java Virtual Machine (VM) arguments also change how the memory

allocation is done and how much memory is allocated for identical runs executed on the

same physical machine. In our case, the same set of runs was observed to have different

memory consumption values in different machines, and in the same machine with

different VM arguments. A lot of the memory consumption observed in the figures

above are governed by the memory allocation behavior, and would reflect the topology,

size, and density differences better if the algorithms were implemented in another

language where memory allocation can be managed at fine-grain resolution. Hence, we

do not elaborate further on the memory consumption and take the memory consumption

analysis done in Chapter 4.5 and Chapter 5.5 as ground.

8.3.6 Additional Performance Results with Directed Cycles

Both in small world networks and directed cycles, the network topology and the

speedup values of the incremental centrality algorithms vary substantially depending on

the rewiring probability p even when the number of nodes and the average node degree

are kept the same. In directed cycles, each node has a number of immediate neighbors.

Some of the other nodes that are not within the immediate neighborhood of a node can be

reached in a small number of steps following the shortcuts formed in the network while

for accessing the others long paths in the form of chains that cannot benefit from the

 214

existence of the shortcuts should be traversed.

Directed cycles have different topological characteristics and performance values

depending on the chosen rewiring probability p. As p value moves closer to 1.0, the

randomness in the network increases, turning the network into more of a random

network. As presented earlier in Chapter 7.1.5, the differences observed in the

characteristics of the directed cycles are larger than those observed in the small world

networks. This enables us to observe how the performances of the proposed incremental

centrality algorithms change along with the changing network characteristics easier in

directed cycles. Hence, in this section, we examine how the performance of the proposed

centrality algorithms change when the rewiring probability p changes, which in turn

changes both the clustering coefficient and the structure of the shortest paths as reflected

by the diameter and the characteristic (average) shortest path lengths.

Table 20 - Network statistics for additional directed cycles based network, sweeping rewiring
probability (Size = 1000 nodes, avg. degree = 6. Same as Table 8 in Chapter 7.1).

p Max Btw
Avg.
Btw

Std. Dev.
Btw

Min
Deg

Max
Deg

Std. Dev.
Deg Diameter

Char.
Path
Length

Clustering
Coefficient

0.2 34020.93 4305.77 3104.97 3 9 1.028 35 9.711 0.154

0.4 15036.88 3183.39 2395.88 3 12 1.423 30 8.017 0.071
0.6 14763.34 2268.86 2463.76 3 11 1.575 31 7.789 0.024
0.8 6779.73 833.58 1161.97 3 12 1.715 22 6.444 0.005
1.0 1026.5 100.79 144.32 3 13 1.765 12 3.862 0.003

The following set of tables (Table 21 – Table 24) report performance results for a

sweep of the rewiring probability, p, in the range of 0.2 to 1.0 with a step size of 0.2, on

1000-node directed cycles networks, with an average degree of 6. Table 21 presents the

performance results obtained with the proposed incremental closeness centrality while

 215

Table 22 presents the corresponding performance results of the proposed

incremental betweenness algorithm on 1000-node directed cycles.

Table 21 - Performance benefits of the incremental closeness algorithm obtained on directed
cycles and the percentages of the networks affected by these changes (1000 nodes, average
degree = 6).

Growing Network

Updates
Shrinking Network

Updates

p
Closeness
Speedup

Closeness
Affected %

Closeness
Speedup

Closeness
Affected %

0.2 280.88 x 22.903 121.45 x 18.659
0.4 298.49 x 29.494 126.94 x 22.552
0.6 341.23 x 26.876 122.34 x 21.511
0.8 761.37 x 14.003 234.25 x 11.817
1.0 7246.77 x 2.274 2188.96 x 2.091

Table 22 - Performance benefits of the incremental betweenness algorithm obtained on directed
cycles and the percentages of the networks affected by these changes (1000 nodes, average
degree = 6).

Growing Network

Updates
Shrinking Network

Updates
p Betweenness

Speedup
Betweenness
Affected %

Betweenness
Speedup

Betweenness
Affected %

0.2 1.42 x 47.780 0.80 x 47.264
0.4 9.09 x 36.268 7.29 x 36.634
0.6 17.95 x 28.004 15.34 x 27.089
0.8 57.47 x 13.063 43.74 x 12.892
1.0 974.19 x 2.238 688.53 x 2.270

As shown in Table 20, the general trend is that along with the increasing rewiring

probability, the clustering coefficient, the diameter, and the characteristic path length

reduce. This reflects as an increase in the speedups of the incremental closeness

algorithm as presented in Table 21. In addition, the speedup obtained over the repeated

invocations of the Dijkstra’s algorithm increases with the reducing percentage of affected

 216

nodes, in line with the other results presented earlier in this chapter. Similar reasoning

holds for the results presented in

Table 22 for the incremental betweenness algorithm. However, the speedups obtained with the
incremental algorithms are significantly higher for the closeness centrality than they are for the
betweenness centrality as presented in Table 21 and

Table 22.

One interesting point is that when the rewiring probability p is very low, the

shortest paths in the network tend to be very long because of the nodes that cannot be

connected through the shortcuts in the network. Hence, when there is an update in the

network, which results in a change that affects one of those longer, no-shortcuts kind of

paths, it might become very costly to update all the predecessors on the path and the

related information. Hence, when the rewiring probability p = 0.2, the speedup for the

growing networks is very low (only 1.42x) while the non-incremental, Brandes’

betweenness algorithm performs slightly better than the incremental algorithm for

shrinking network updates (0.80x) due to the superfluous work the incremental

betweenness algorithm has to do in this case.

Table 23 - Performance benefits of the incremental k-centrality algorithms and the percentages of
the networks affected by these changes obtained on the directed cycles (k = 2, 1000 nodes, avg.
degree = 6).

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2)

p
Closeness
Speedup

Closeness
Affected%

Betweenness
Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

0.2 10654.97x 1.388 1896.79x 0.656 7284.59x 0.495 792.66x 1.47
0.4 18280.59x 1.676 2656.63x 0.686 10163.28x 0.637 1028.50x 1.70
0.6 18305.36x 1.652 3140.03x 0.674 10318.20x 0.651 1294.06x 1.66
0.8 18357.80x 1.575 3174.32x 0.686 13134.49x 0.68 1336.51x 1.55
1.0 24903.89x 1.052 4172.75x 0.574 14034.04x 0.57 1851.82x 1.05

 217

Table 24 - Performance benefits of the incremental k-centrality algorithms and the percentages of
the networks affected by these changes obtained on the directed cycles (k = 3, 1000 nodes, avg.
degree = 6).

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3)
p Closeness

Speedup
Closeness

Affected%
Betweenness

Speedup
Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

0.2 4648.45x 2.380 740.56x 1.493 2839.03x 1.045 412.64x 2.90
0.4 5930.71x 3.455 1239.29x 1.719 3474.23x 1.547 619.20x 3.66
0.6 6025.94x 3.400 1274.09x 1.676 4253.95x 1.578 663.20x 3.48
0.8 6746.01x 3.005 1383.60x 1.571 4124.95x 1.524 736.41x 2.92
1.0 12205.53x 1.521 2305.77x 1.044 5975.05x 1.026 1491.10x 1.52

However, this observation does not hold for k-centralities. The following tables,

Table 23 (k = 2) and Table 24 (k = 3), present the performance results of the incremental

algorithms for the k-centralities in directed cycles. Since the percentages of affected

nodes remain less than 5% of the entire network, in k-centralities, we observe speedups

that are on the order several hundreds to thousands.

8.3.7 Performance on Larger Networks

One important point about larger networks is that it takes too long for them to

compute the centrality measures, especially when one wishes to recompute the centrality

measure with every change on networks that are changing over time. And, the

performance improvements that were obtained on networks with short

average/characteristic shortest path lengths (typical of real-world social networks) are

substantial (See performance results obtained on preferential attachment networks

presented in Table 11 in Chapter 8.3.1). One key use of incremental algorithms for larger

networks is that they can substitute for the traditional closeness algorithms for computing

 218

centralities for the very large networks even after all the updates in the networks are final.

In other words, incremental closeness algorithms support both on-the-fly computation on

dynamic networks and faster computation of the metric on large, static networks.

Table 25 - Performance improvements for the results presented in Figure 40.

#(Nodes) #(Edges) Performance
10,000 30,000 14.78 x
20,000 60,000 24.17 x
30,000 90,000 26.28 x
40,000 120,000 29.53 x

Figure 40 - Performance of incremental closeness computation vs. the computation of closeness
centrality via the Dijsktra’s algorithm on large preferential attachment networks. The Dijsktra’s
algorithm is executed only once after all updates completed.

We support this claim by the results presented in Figure 40, in which traditional

closeness centrality computation using the Dijkstra’s algorithm [109] is executed only

once instead of modeling the growth of the network. In the results presented in Figure 40

and Table 25, four different preferential attachment networks are used where the number

 219

of nodes is varied between 10,000 and 40,000 with a step size of 10,000. The average

node degree is 6.

This set of experiments “pretend” to build the network incrementally by invoking

the INSERTCLOSENESS algorithm once for each edge in the network and compare its

performance against computing closeness centrality by running the Dijkstra’s algorithm

only once from each node in the network on the final, static version of the network. Since

many real-life, large-scale networks exhibit scale-free behavior and the best performance

improvements with incremental closeness centrality are obtained on preferential

attachment networks, this set of experiments use preferential attachment networks.

According to the results presented in Table 25, computing closeness centrality with

repeated invocations of the INSERTCLOSENESS algorithm performs 15-30x better than

using traditional non-incremental algorithms only once (e.g. the Dijkstra’s algorithm).

The incremental centrality algorithms work best on mid-scale networks with

several thousands of nodes and edges with frequent network updates. In an attempt to see

what is possible in a reasonable time using the hardware already described above, we

have run two additional exploratory experiments with the incremental closeness centrality

algorithm and the incremental betweenness centrality algorithm. These experiments were

run on larger networks in the same fashion as the other experiments described earlier in

this section: experiments that build a network from scratch by inserting each edge one at

a time, incrementally. To be consistent with the other experiments presented earlier in

this section, we have again used directed, preferential attachment networks and set the

average node degree as 6. In this additional set of experiments, only the incremental

 220

algorithms are run, and their static non-incremental counterparts are not run for

comparison.

Figure 41 - Incremental closeness centrality algorithm execution time per edge insertion in
milliseconds versus the number of edges inserted. The numbers of edges are represented in
thousands, where ‘1200’ on the x-axis represents 1,200,000 edges. The execution time per edge
insertion is given in milliseconds, 2500 represents the 2.5 seconds.

The results of this exploratory experiment suggest that the incremental closeness

centrality algorithm run on the available hardware (in particular a machine with 256GB

of RAM) can easily handle a network with 100.000 nodes and 600,000 edges. Then, we

tried another run on a larger network with 250,000 nodes and 1,500,000 edges. Figure 41

and Figure 42 present the execution time of the incremental closeness centrality

algorithm per edge insertion in this larger experiment versus the number of edges and the

number of nodes, respectively. In these figures, the numbers of edges and nodes are

 221

presented in thousands. The ‘1200’ on the x-axis of Figure 41 represents 1,200,000 edges

while ‘200’ on the x-axis of Figure 42 represents 200,000 nodes.

Figure 42 - Incremental closeness centrality algorithm execution time per edge insertion in
milliseconds versus the number of nodes inserted. The numbers of nodes are represented in
thousands, where ‘200’ on the x-axis represents 200,000 nodes. The execution time per edge
insertion is given in milliseconds, 2500 represents the 2.5 seconds.

Before being able to insert all the edges into the 250,000-node network, the

system started swapping at around 165,000 nodes and 1,000,000 edges. This is why the

execution times oscillate between low and high values after the number of edges in the

network reach 1,000,000 and the time required for each edge insertion increased

dramatically on average. The higher execution time values represent the execution times

for the network updates that are affected by swapping and the lower values represent the

execution times of the updates that were executed when the memory was freed up. This

 222

data point is not exhaustive, but it suggests that on a machine with 256GB of physical

memory can process incremental closeness centrality on preferential attachment based

social networks with degree of 6 and somewhere between 150,000 to 200,000 nodes.

Figure 43 - Incremental betweenness centrality algorithm execution time per edge insertion in
milliseconds versus the number of edges inserted. The numbers of edges are represented in
thousands, where ‘200’ on the x-axis represents 200,000 edges. The execution time per edge
insertion is given in milliseconds, 30,000 represents the 30 seconds.

Similar results were also collected for the behavior of the incremental

betweenness centrality algorithm, as presented in Figure 43 and Figure 44. Figure 43 and

Figure 44 present the execution time of the incremental closeness centrality algorithm per

edge insertion versus the number of edges and the number of nodes, respectively. In these

figures, the numbers of edges and nodes are given in thousands. The ‘200’ on the x-axis

of Figure 43 represents 200,000 edges while ‘40’ on x-axis of Figure 44 represents

40,000 nodes.

 223

Figure 44 - Incremental betweenness centrality algorithm execution time per node insertion in
milliseconds versus the number of nodes inserted. The numbers of nodes are represented in
thousands, where ‘40’ on the x-axis represents 40,000 nodes. The execution time per edge
insertion is given in milliseconds, 30,000 represents the 30 seconds.

For the case of betweenness centrality, the fact that additional information must

be stored for the incremental computations, the corresponding network sizes are much

smaller for the betweenness centrality. For betweenness centrality, the execution time per

edge insertion starts increasing considerably when the network reaches 30,000 nodes and

180,000 edges. Once the network becomes larger than 35,000 nodes and 225,000 edges,

the execution time of running the incremental betweenness algorithm on a new edge is

observed to increase dramatically. However, the cause of this slowness is not the physical

memory limits; the system does not yet swap due to lack of memory. Rather, it is slow

because as the network gets larger, the algorithm needs to update several pieces of

information including the number of shortest paths, the shortest distances, and the

 224

predecessors on the shortest paths. In other words, the amount of information the

algorithm needs to update has increased substantially with the increased node/edge size,

which results in slower update progression.

As one final note, it is also observed that, in terms of memory requirements, the

stack size is more important for the incremental betweenness centrality than it is for the

incremental closeness centrality for such larger networks. This is because there are more

sub-algorithms for the incremental betweenness centrality than for the incremental

closeness centrality. Hence, the number of sub-algorithms invoked during the execution

of incremental betweenness centrality tends to be much larger than it is for the

incremental closeness centrality, which might call for a larger stack size to be allocated

for the execution of the incremental betweenness centrality.

8.4 RESULTS WITH REAL-LIFE NETWORKS

This section evaluates the performance of the proposed incremental centrality

algorithms on the real life networks that are described in Chapter 7.2 and interprets the

obtained performance results in line with the topological features of the networks.

In a similar fashion to the experiments with synthetic networks, for growing

network updates, an earlier version of the network is formed which has all the

information except 100 edges. Then, those edges are inserted incrementally one by one.

Similarly, to obtain performance results with shrinking network updates, we start with the

complete version of the network and remove the same set of 100 edges that were used in

the timing runs with the growing network updates. The performance of the incremental

 225

closeness algorithm is compared against the Dijkstra’s algorithm while the performance

of the incremental betweenness centrality is compared against the Brandes’ algorithm as

baseline algorithms. When measuring the performance of the k-centralities, the baseline

algorithms are also bounded by k hop limits.

8.4.1 Incremental Closeness Centrality Performance Results

First, the performance of the incremental closeness centrality algorithm is

discussed. Table 26 and Table 27 present the performance results of the incremental

closeness algorithm collected on real life networks that are described in Chapter 7.2. In

the performance results presented in Table 26, the networks were modeled as weighted

networks while Table 27 presents the performance results collected on the unweighted

(binary) versions of the same real-life networks. Both Table 26 and Table 27 provide the

percentages of the total number of nodes that are affected by the network updates.

Table 26 - Performance improvements of the incremental closeness algorithm over computing
closeness centrality using repeated invocations of the Dijkstra's algorithm, collected on real-life
networks described in Chapter 7.2. Information on the affected portion of the network is also
provided. The results presented in this table are obtained on the weighted versions of the
networks.

 Growing Network Updates Shrinking Network Updates

Network
Closeness
Speedup

Closeness
Affected%

Closeness
Speedup

Closeness
Affected%

SocioPatterns 452.31 x 2.51 49.00 x 4.19
Twitter (Iran) 21769.19 x 0.33 11650.32 x 0.33
Email 1917.84 x 5.41 585.01 x 4.58
HEP Coauthorship 8328.39 x 6.84 3732.56 x 6.16
P2P 356527.35 x 0.04 23494.72 x 0.04

 226

Considering the performance results presented in Table 26, in general, similar to

the results obtained on the synthetic networks, the performance benefits of the proposed

incremental closeness algorithm increase with the increasing network size and growing

network updates yield higher performance benefits than the corresponding shrinking

network updates. However, how much performance improvement can be obtained is also

a factor of the structure of the shortest paths in the network and the portion of the

network that is affected.

For instance, in the P2P file transfer network, there are very few nodes that serve

files for download to the other users, and the majority of the network consist of users that

do not share files and are only there for downloading file that are of interest for them.

Hence, the shortest paths in this network are very short. The average shortest path length

is 1.24, slightly more than a single hop, which reflects as an enormous speedup that is

obtained over the non-incremental algorithm. Thus, the majority of the edges are on the

shortest paths for the nodes they are connecting and the speedup that can be obtained on

such a network in the case of shrinking networks is lower, as it is also shown in Table 26.

This is because, most of the time we remove an edge {x → y}, we actually make a change

on the shortest paths, and the algorithm probes all other neighbors of the node x to see if

it is possible to find another path to y and which one is the shortest if any. Given that the

network has hub-like nodes that have very high degree centrality (max degree = 2185),

probing for the new shortest path might take longer when an edge is removed than it

takes when an edge is inserted.

 227

Similar behavior is observed in the Twitter dataset collected on Iran sanctions. In

the Iran Twitter dataset, the average shortest path is 1.4, and it is a very sparse network as

well. This is why it breaks the pattern of increased performance benefits with the

increasing network size and provides substantial speedup with the use of incremental

centrality algorithms.

Another interesting observation is that the affected portion of the network is

higher when there is higher impact of personal acquaintances or in-person

communication due to the way the networks are structured. In such networks, there is

usually higher transitivity and clustering. Transitivity refers to the probability of two

nodes i and k being connected given that there exist an edge (i, j) and (j, k), and this is a

kind of behavior one would expect to observe in a conference-like environment. For

instance, the clustering coefficient of the SocioPatterns network is 0.534 while the

clustering coefficient for the Iran retweet network is 0.016.

Table 27 - Performance improvements of the incremental closeness algorithm over computing
closeness centrality using repeated invocations of the Dijkstra's algorithm, collected on real-life
networks described in Chapter 7.2. Information on the affected portion of the network is also
provided. The results presented in this table are obtained on the unweighted (binary) versions of
the networks.

 Growing Network Updates Shrinking Network Updates

Network
Closeness
Speedup

Closeness
Affected%

Closeness
Speedup

Closeness
Affected%

SocioPatterns 339.51 x 64.21 115.79 x 1.90
Twitter (Iran) 25411.20 x 0.33 4177.58 x 0.33
Email 6728.97 x 20.01 1680.93 x 4.11
HEP Coauthorship 4395.16 x 23.55 679.55 x 18.89
P2P 301301.33 x 0.04 20662.69 x 0.04

 228

Next, Table 27 presents the performance results similar to the results presented in

Table 26. In Table 27, the presented results are collected on the unweighted versions of

the real-life networks. Although they are relatively close, the performance results

presented in Table 27 are different from the performance results presented in Table 26, as

well as the percentages of the affected nodes in each network.

When the networks are unweighted, all edges have the same edge cost. Assigning

costs to the edges causes the structure of the shortest paths to be different. Consider the

abstract example depicted in Figure 45. The cost of each edge is written on top of the

edge.

Figure 45 - Example network to demonstrate how the use of edge costs might change the
structure of the shortest paths in a network.

In the network drawn in Figure 45, there are four possible paths from node src to

node dest. Out of these four possible paths, only the path {𝑠𝑟𝑐 → 𝐴 → 𝐵 → 𝐶 → 𝑑𝑒𝑠𝑡} is

the shortest path with a total path cost of 0.8 when the edge costs written on the edges are

taken into account. However, when the same network is modeled as an unweighted

network where the edge costs are ignored, the structure of the shortest paths change

 229

dramatically. In the unweighted version of the network depicted in Figure 45, there are

three distinct shortest paths, each with a total path cost of 3: {𝑠𝑟𝑐 → 𝐷 → 𝐸 → 𝑑𝑒𝑠𝑡},

{𝑠𝑟𝑐 → 𝐹 → 𝐺 → 𝑑𝑒𝑠𝑡}, and {𝑠𝑟𝑐 → 𝐻 → 𝐾 → 𝑑𝑒𝑠𝑡}. Another effect of ignoring the

edge costs is that when the edge costs are less than or equal to 1 as is the case with the

real-life networks used in these experiments, the shortest paths in the unweighted, binary

version of the network might have paths with lower number of hops as demonstrated in

the example network depicted in Figure 45.

In addition to potentially changing the structure of shortest paths and the shortest

distances, ignoring the edge costs might lead to a higher number of equivalent shortest

paths in the network, resulting in a higher percentage of affected nodes when an

incremental growing network update is issued on the network. While the chances are

lower to get multiple paths with exactly the same cost when the edge costs come from a

large range of values, it is relatively easier to get multiple paths of the same cost when the

path costs are determined in terms of number of hops. As demonstrated in Table 27, the

most dramatic changes in the percentages of the affected nodes are observed in the

SocioPatterns and HEP Co-authorship networks. This is because, the percentages of

affected nodes are especially higher for the growing network updates on the better-

connected networks with higher clustering coefficients and undirected edges where there

are more redundant paths and a higher number of nodes are reachable from each node.

The redundancy in the shortest paths reflects as a lower percentage of the affected

nodes in the SocioPatterns, Twitter, and Email networks because removal of an edge

 230

from one of the shortest paths does not necessarily change the shortest distances between

nodes, as there might be other shortest paths to fall back.

In the HEP Co-authorship network, the percentage of the affected nodes is also

higher for the shrinking network updates, which can be interpreted as a certain feature

(e.g. funneling) of the shortest path structure in the coauthorship networks. Funneling is a

concept that has been discussed in the context of co-authorship networks. Newman found

that most of the shortest paths to a particular scientist pass through a disproportionately

small number of his or her collaborators [174]; this phenomenon was later termed as

“funneling” [175]. When funneling is observed frequently, the shortest paths mostly

converge at some point (i.e. at a funneling node), which results in the change of most of

the shortest paths in the case of decremental updates. This can also be observed from the

higher percentage of affected nodes for the shrinking network updates in HEP Co-

authorship network where funneling is an important concept.

8.4.2 Incremental Betweenness Centrality Performance Results

Next, the performance of the incremental betweenness centrality algorithm is

discussed. Table 28 and Table 29 present the performance results of the incremental

betweenness algorithm collected on real life networks. In the performance results

presented in Table 28 the networks were modeled as weighted networks while Table 29

presents performance results collected on the unweighted (binary) versions of the same

networks. Both Table 28 and Table 29 provide the percentages of the total number of

nodes that are affected by the network updates.

 231

Table 28 - Performance improvements of the incremental betweenness algorithm over repeated
invocations of the Brandes’ algorithm, collected on real-life networks described in Chapter 7.2.
Information on the affected portion of the network is also provided. The results presented in this
table are obtained on the weighted versions of the networks.

 Growing Network Updates Shrinking Network Updates

Network
Betweenness

Speedup
Betweenness
Affected %

Betweenness
Speedup

Betweenness
Affected %

SocioPatterns 113.67 x 2.64 24.66 x 12.63
Twitter (Iran) 8429.88 x 0.32 6681.51 x 0.33
Email 217.79 x 13.54 163.70 x 14.41
HEP Coauthorship 233.27 x 33.55 160.71 x 27.39
P2P 53722.49 x 0.04 29753.69 x 0.04

Similar to the incremental closeness performance results, the highest performance

benefits are obtained on P2P communication network and the Iran retweet network while

the SocioPatterns dataset provides the lowest speedup. However, the general trend is that

the performance benefits increase with the increasing network size for networks of

similar structures.

In addition, the impact of real social community structure and how this affects the

affected percentages of the networks is more visible for the incremental betweenness

centrality (Table 28) than it is for the incremental closeness centrality (Table 26).

Comparing the affected percentages of the networks provided in both tables, it is

observed that the percentage of a network that is affected by the incremental betweenness

centrality updates is usually higher than the percentages affected by the incremental

closeness centrality updates. As mentioned earlier, this is because incremental

betweenness centrality handles changes both in the length and the number of the shortest

 232

paths in a network while the incremental closeness centrality algorithm focuses only on

the changes in the lengths of the shortest paths.

When the performances of both incremental centrality algorithms are compared,

the performance benefits of the incremental closeness centrality algorithm is higher than

that of incremental betweenness centrality, which is in line with the results obtained on

the synthetic networks. Similar observations hold for the performance results presented in

Table 29. The differences in the interpretation and scale of the performance results

presented in Table 29 against the performance results presented in Table 28 stem from

the structural differences in the shortest paths as discussed in the interpretation of

performance differences for incremental closeness centrality algorithm in Chapter 8.4.1.

Table 29 - Performance improvements of the incremental betweenness algorithm over the
repeated invocations of the Brandes' algorithm, collected on real-life networks. Information on
the affected portion of the network is also provided. The results presented in this table are
obtained on the unweighted (binarized) versions of the networks.

 Growing Network Updates Shrinking Network Updates

Network
Betweenness

Speedup
Betweenness
Affected %

Betweenness
Speedup

Betweenness
Affected %

SocioPatterns 8.73 x 44.14 8.12 x 44.17
Twitter (Iran) 8442.96 x 0.32 6734.63 x 0.33
Email 14.05 x 42.55 12.57 x 42.58
HEP Coauthorship 64.66 x 44.66 48.16 x 44.64
P2P 54536.88 x 0.04 29428.90 x 0.04

The performance values and the percentage of affected nodes are different in

unweighted versions of the networks, when compared to the results collected on their

weighted versions. Due to increased redundancy in the number of shortest paths in

SocioPatterns, Email, and HEP Coauthorship networks, the performance improvements

 233

of the incremental betweenness algorithm over the Brandes’ algorithm has dropped down

while the percentages of the affected nodes have increased substantially. On the other

hand, the performance results remain similar in weighted and unweighted version of the

Twitter and P2P networks where the redundancy of shortest paths is not a significant

factor.

When comparing the performance results obtained for the incremental closeness

(Table 27) and incremental betweenness (Table 29) algorithms on the unweighted

versions of the networks, it is observed that the percentages of affected nodes for

shrinking network updates demonstrate different behaviors. This is observed due to

differences in the definitions of closeness and betweenness centrality metrics. In

betweenness, the number of equivalent shortest paths from one node to another is

important while closeness only need information on the shortest distances. Assume that

an edge e which lies on a shortest path from a node x to another y is removed. When one

of the shortest paths from a node x to node y changes, the betweenness values of all the

intermediate nodes on the shortest paths from node x to node y change. However, in

closeness centrality, when one of the shortest paths from node x to y changes, if there are

other shortest paths which would keep the shortest distance from node x to y as is, then

the incremental network update concludes without adding more nodes into the set of

affected nodes. Hence, the sets of affected nodes for the incremental betweenness

algorithm handling shrinking network updates are substantially larger than those for the

incremental closeness algorithm handling shrinking network updates. In addition, due to

the reasons discussed above, unlike incremental closeness centrality algorithm, the

 234

percentages of the affected nodes for the incremental betweenness algorithm handling

shrinking network updates are comparable to those for the incremental betweenness

algorithm handling growing network updates.

8.4.2.1 Additional Notes on the Performance of the Incremental Betweenness

Centrality Algorithm on Co-authorship Dataset

An accepted way of evaluating the performance of the incremental algorithms in

the literature is to issue a number of random incremental updates on the network and to

report the average performance across all the random updates [56]. When a batch of

random updates is issued on a network, there is an implicit assumption that all random

updates are equally likely to be observed. However, this is usually not the case for the

real-life networks whose properties are studied in depth in prior literature. Certain types

of updates are more likely to occur than the others in real life networks.

For instance, authorship networks have well-understood properties that are

previously documented in the literature [169] [15]:

• Links in co-authorship networks are reciprocal (i.e., symmetric).

• The link weights between two authors in co-authorship networks can increase

over time if two authors have further collaboration.

• Vertices and edges added to the citation/co-authorship networks are permanent

and cannot be removed at a later time.

• The already formed part of the network is mostly static; in most cases, only the

leading edge of the network changes over time.

 235

A lot of real life networks, including authorship networks, have time information

for every piece of action taken. For instance, an authorship network have such

information available from the date/year the authors publish a paper. When the entire

lifetime of a network is considered, there are usually different social agents that are active

during different periods of time. For instance, when an authorship network for a certain

research field is considered, there are usually new people that join the network, who are

likely to be M.S. or Ph.D. students that start their graduate school career. In co-authorship

networks, a lot of the authors publish only a couple of papers during their graduate school

career and then their publications cease. On the other hand, there are usually a core set of

academicians that publish a substantial number of papers, and form the shortest paths at

the core of the network. Such core-authors usually tend to be the authors that have

published a lot of papers together and established the research field. The core-authors

also stop publishing after a certain number of years. However, since the relationships

between them are very strong compared to the authors in the rest of the network, the

paths that pass through the core set of authors tend to remain as the shortest paths in the

network for a long time.

Depending on the phase an authorship network is in, these observations might

have different implications on the shortest paths in the network and how an incremental

update propagates in a co-authorship network. For instance, if an authorship network is in

early growth stages, the shortest paths are likely to be modified every time a new

edge/node is inserted. However, when the research field is more established, it is likely

that a relationship between two newer authors will not affect all the shortest paths in the

 236

network; which causes the incremental network update not to propagate too far in the

network.

Another likely-to-occur update type is a new node joining a network, which

represents, for instance, a graduate student. Usually, such new nodes join the network

through a funneling node (which is likely to be the student’s advisor) through which all

the shortest paths to/from this new node pass [174]. When such a new node joins the

network, the shortest paths to/from this new node should be discovered from scratch,

which usually affects the entire component the funneling node (potentially the node

representing the advisor) is a part of. This situation potentially increases the percentage of

the network affected by this incremental network update.

Instead of inserting 100 edges that are selected randomly out of the entire network

topology, when we issue last 100 updates on the same authorship network in the order the

updates arrive at the network in real life, the performance of the incremental betweenness

centrality algorithm over the Brandes’ betweenness algorithm is different. For instance,

when the last 100 updates are issued on the HEP authorship network considering the

timestamps of the network updates, the incremental betweenness algorithm runs 357.96

times faster than the Brandes’ algorithm and 42.08% of the network is affected on

average. However, when the 100 updates are randomly selected out of all network

updates, the incremental betweenness algorithm performs 233.27 times faster than the

Brandes’ betweenness algorithm and the 33.55% of the network is affected on average as

presented in Table 28.

 237

As one last point, since the published papers are archived permanently, in

authorship networks, only growing network updates are observed: insertion of new edges

and nodes, and edge cost decrease. No shrinking network updates are observed for the

authorship networks in real life.

8.4.2.2 Performance Comparison against the QuBE Algorithm

Next, the performance of the proposed incremental betweenness algorithm is

compared against the performance of a recent betweenness algorithm called QuBE [56].

The idea of the QuBE algorithm [56] depends on estimating the nodes whose

betweenness values might change due to an update in a network while avoiding

computation of all-pairs shortest paths. In contrast, the incremental betweenness

algorithm proposed in this dissertation depends on the dynamic maintenance of all-pairs

shortest paths and the related auxiliary data, which might be useful in other problems

beyond betweenness as discussed earlier in Chapter 5.6.

The QuBE algorithm covers edge insertions/deletions, leaving out node insertions

and deletion and edge cost modifications for weighted network types. In contrast, our

algorithm supports edge cost modifications for the weighted networks as well as support

for node insertion and removal.

Providing support for weighted networks makes the algorithm design harder as it

introduces several additional cases to be handled. Consider the following simple

example. Assume that there is a path from node x to node y. Then, an incremental

network update inserts a direct edge from node x to node y. In binary networks, it is

 238

obvious that no path from node x to node y can be smaller than a direct edge from x to y,

and several changes on the shortest paths can be kept up to date only by accounting for

the number of hops. However, in weighted networks, when an edge {x→ y} from node x

to node y is inserted, it is not necessarily given that this newly inserted edge will be on

the shortest paths. Depending on the cost of the edge {x→ y} and the previously known

shortest path length from node x to node y, it may or may not be. Hence, it will still be

necessary to check the paths of equivalent length before ruling out all previously known

shortest paths between x and y due to the insertion of a direct edge {x→ y}, which

increases the complexity of the algorithm design.

Next, the performance of the incremental betweenness centrality algorithm

proposed in this dissertation is compared against the QuBE algorithm using the same

datasets Lee et al. used in their QuBE paper [56]. We select two of their datasets: the

dataset on which QuBE performs the best (Eva), and the dataset on which QuBE

performs the worst (CAGrQc).

Table 30 - Performance comparison of QuBE and our proposed algorithm.

Network Type #(Node) #(Edge) QuBE

Incremental
Betweenness

Eva [176] Ownership 4457 4562 2418.17 25425.87
CAGrQc [177] Collaboration 4158 13422 2.06 67.86

Table 30 reports the average performance results for 100 random updates on the

networks. Both the QuBE algorithm and the incremental betweenness centrality

algorithm proposed in this dissertation are compared against the Brandes’ algorithm as

 239

baseline. Our algorithm performs 10-30 times better than the QuBE algorithm while

providing substantial improvements over the Brandes’ algorithm.

8.4.3 Incremental k-Centrality Performance Results

Next, the performances of the incremental k-closeness and k-betweenness

centrality algorithms on real life networks are discussed. For the performance evaluations

with the incremental k-centrality algorithms, the unweighted (binary) versions of the real

life networks are used. In the performance results presented in Table 31 and Table 32, the

bounding parameter k is set as k = 2 and k = 3, respectively. The baseline algorithms (the

Dijkstra’s algorithm [109] for closeness centrality and the Brandes’ algorithm [28] for

betweenness centrality) are also bounded by k hops. The experiments are designed in a

similar fashion to those in Chapter 8.4.1 and Chapter 8.4.2 (i.e. 100 random edge

insertions and their removals). Hence, to avoid repetition, they are not described here

again.

Table 31 - Performance benefits of the incremental k-centrality algorithms obtained on real-life
networks and the portions of the networks affected by these changes (k = 2).

 Growing Network Updates (k = 2) Shrinking Network Updates (k = 2)
Topology Closeness

Speedup
Closeness

Affected%
Betweennes
s Speedup

Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

Socio
Patterns 616.86 x 64.21 10.17 x 43.85 471.55 x 1.90 12.66 x 43.90

Twitter (Iran) 7985.74 x 0.31 9808.72 x 0.29 4259.78 x 0.29 7876.06 x 0.31

Email 6114.62 x 17.51 327.61 x 3.72 5691.02 x 1.45 118.77 x 27.85

HEP Coauthor 233476.79 x 1.15 38011.02 x 0.22 224353.97 x 0.15 6958.46 x 1.54

P2P 312118.62 x 0.04 53980.70 x 0.03 21023.51 x 0.03 26442.56 x 0.04

 240

Both Table 31 and Table 32 provide performance results and percentages of the

affected nodes both for the incremental k-closeness and the incremental k-betweenness

algorithms. To understand how the incremental k-centrality algorithms improve over the

incremental centrality algorithms, the performance results presented in this section (Table

31 and Table 32) should be compared against the performance results presented earlier in

Table 27 (incremental closeness centrality performance results collected over the

unweighted versions of the real-life networks) and Table 29 (incremental betweenness

centrality performance results collected over the unweighted versions of the real-life

networks).

Table 32 - Performance benefits of the incremental k-centrality algorithms obtained on real-life
networks and the portion of the networks affected by these changes (k = 3).

 Growing Network Updates (k = 3) Shrinking Network Updates (k = 3)
Topology Closeness

Speedup
Closeness

Affected%
Betweenness

Speedup
Betweenness
Affected %

Closeness
Speedup

Closeness
Affected %

Betweenness
Speedup

Betweenness
Affected %

Socio
Patterns 603.89 x 64.21 8.23 x 44.14 466.58 x 1.90 9.66 44.17

Twitter (Iran) 5902.69 x 0.32 9764.90 x 0.31 3807.37 x 0.31 6949.98 0.33

Email 4558.35 x 19.97 34.04 x 30.26 2224.55 x 3.52 30.69 39.74
HEP Coauthor 35248.73 x 4.63 3640.68 x 1.55 23075.61 x 0.78 845.69 7.35

P2P 290828.22x 0.04 52633.31 x 0.04 20027.29 x 0.04 29980.52 0.04

First, the performance of the incremental k-closeness centrality algorithm is

discussed. Considering performance results presented in Table 31 (k = 2) and Table 32 (k

= 3), it is observed that performance improvements of the incremental k-centrality

algorithms are higher when the bounding parameter k is lower in general. However, the

specific performance values are affected by the amount of work that can be avoided by

setting k to a lower value. For instance, in the Email and HEP Coauthorship networks, the

 241

performance difference is dramatic when k = 3 or k = 2. The average shortest path length

for the Email network is 3.2 while the HEP coauthorship network has an average path

length of 5.76. Since the Email and HEP Coauthorship networks tend to have longer

shortest paths, this as a result, causes a large fraction of nodes to be affected. Hence,

bounding the shortest paths within k hops helps improving the performance substantially,

and the performance difference is also visible when k is updated from k = 3 to k = 2.

However, the other real-life networks (especially the P2P network) have relatively low

average shortest path lengths, less than 2.0. The average path length is 1.65 for the

SocioPatterns network, 1.4 for the Iran Twitter network, and 1.24 for the P2P

communication network. Hence, although there are slight improvements with the limiting

k value decreasing, the performance is not all that different when k is updated from k = 3

to k = 2.

The percentage of affected nodes remain the same as the incremental closeness

centrality (no limiting k is set) when k = 3, and have small reductions when k = 2 for the

SocioPatterns, Twitter (Iran), and P2P networks. Considering the average shortest path

lengths are less than 2.0, such an outcome is reasonable. However, we do observe

substantial reductions in the size of the affected nodes set for the Email and HEP

Coauthorship network. For instance, for the part of the incremental closeness algorithm

that handles the growing network updates, the percentage of affected nodes is 23.55% of

the HEP Coauthorship network. This percentage reduces to 4.63% when k = 3, and to

1.15% when k = 2. Hence, the performance improvements of the incremental closeness

algorithm over the corresponding versions of the Dijsktra’s algorithm increase from

 242

4395.16x (over the Dijkstra’s algorithm) to 35248.73x (over the Dijkstra’s algorithm with

k = 3), and to 233476.79x (over the Dijkstra’s algorithm with k = 2), respectively.

Similar observations hold for the performance results for the incremental k-

betweenness centrality. The performance and the percentage of affected nodes remain

similar to the incremental betweenness centrality with no limiting k in SocioPatterns,

Twitter (Iran), and P2P networks while the performance improvements again become

larger with decreasing k. The most dramatic performance improvements for the

incremental k-betweenness centrality are observed for the HEP coauthorship network,

which is larger than the other networks, and benefit more from k-hop limit as its shortest

paths tend to be longer on average. Comparing the performance results of the incremental

k-closeness and incremental k-betweenness algorithms, the incremental k-closeness

algorithm provides higher performance improvements over its baseline because it has

fewer pieces of information to maintain and the percentage of affected nodes are lower.

8.5 SUMMARY: PERFORMANCE TRENDS

This section discusses how the performances of the incremental centrality

algorithms scale with varying network sizes and different network features. First, the

performance scaling on synthetic networks is discussed in Chapter 8.5.1 and Chapter

8.5.2. Then, the performance scaling on real-life networks is discussed in Chapter 8.5.3

and Chapter 8.5.4. Finally, Chapter 8.5.5 discusses the performance trends observed in

real-life and synthetic networks in comparison to one another.

 243

Chapter 8.5.1 and Chapter 8.5.3 discuss performance scaling of the incremental

centrality algorithms with respect to network size while Chapter 8.5.2 and Chapter 8.5.4

discuss performance scaling considering other network features. Performance scaling

with respect to the network size is presented and discussed separately because the

network size is the main driving factor for the performance scaling and the memory

consumption.

8.5.1 Network Size and Performance Trends in Synthetic Networks
This subsection analyzes the performance trends of the incremental centrality

algorithms with respect to the network size on synthetic networks.

Earlier in Chapter 8.3.2, the performance values of the incremental betweenness

centrality algorithm were presented in Table 13 for the growing network updates for

preferential attachment, Erdos-Renyi, small world networks, and directed cycles. Figure

46 visualizes the same information and presents the performance values in logarithmic

scale. Similarly, Figure 47 presents the performance of the incremental closeness

centrality algorithm based on the data in Table 11 using logarithmic scale for the

performance values.

Since preferential attachment performance improvements are at a different scale,

when they are displayed in the same figure with the other network types, the trends for

the other network types are not clearly visible. Hence, the performance values are drawn

in logarithmic scale. In these figures (Figure 46 and Figure 47), the x-axis shows the

number of nodes and y-axis shows the log-10 of the speedup obtained by the incremental

centrality algorithm over its non-incremental, traditional baseline algorithm.

 244

Figure 46 - Performance of the incremental betweenness centrality algorithm for the data in Table
13. Growing network updates on the preferential attachment, small world, Erdos-Renyi networks,
and directed cycles are analyzed.

Figure 47 - Performance of the incremental closeness centrality algorithm for the data in Table
11. Growing network updates on the preferential attachment, small world, Erdos-Renyi networks,
and directed cycles are analyzed.

 245

Below is a list of the equations for the curves fitted to the data presented in Figure

46 and Figure 47. For clarity, the regression equations are listed below. These equations

are obtained by plugging the network size (in terms of the number of nodes) as the x-

values (e.g. 1000, 3000, and 5000) and the actual performance improvement values (not

the logarithmic) as the y-values:

Polynomial curves fitted on the performance of the incremental closeness

centrality algorithm:

• y = 0.0024x2 – 2.698x + 1196.8 (Preferential Attachment)

• y = 0.0001x2 – 0.2775x + 390 (Small World)

• y = 8e-05x2 – 0.11x + 337.63 (Directed Cycles)

• y = -2e-06x2 + 0.2045 – 79.375 (Erdos-Renyi)

Polynomial curves fitted on the performance of the incremental betweenness

centrality algorithm:

• y = 0.0002x2 – 0.6015x + 530 (Preferential Attachment)

• y = 4e-07x2 + 0.0045x + 3.88 (Small World)

• y = 2e-07x2 – 0.0006x + 4.1888 (Directed Cycles)

• y = 0.0058x + 2.0833 (Erdos-Renyi)

The regression equations obtained for the performance of the incremental

closeness and betweenness centrality algorithms resemble one another. However, the

constants for the curves fitted to the incremental closeness centrality algorithm are larger

than those in the curves fitted to the performance of the incremental betweenness

 246

centrality. All equations are polynomial and are selected to fit all the data points in the

curves.

Finally, for the network size data points analyzed in this dissertation, the general

tendency is that, as the network sizes increase, the densities of the networks tend to get

smaller and the performance benefits of the incremental centrality algorithms increase.

However, if the network to be analyzed becomes very large, then the hardware capacity

and the requirements for the memory consumption would govern the limits of this trend.

8.5.2 Network Features and Performance on Synthetic Networks
Next, in Chapter 8.5.2, we discuss how the performances of the incremental

centrality algorithms scale with the other network features. To be able to analyze these

aspects, we primarily benefit from the information provided in the network statistics

tables in Chapter 7.1.5 and the performance results presented earlier in this section on

synthetic networks.

In particular, we select some of the network features that are expected to have an

impact on the performance of the incremental centrality algorithms such as the average

shortest path length, diameter, and the clustering coefficient and draw their scatter plots

against the performance values. More precisely, we generate multiple scatter plots using

the average shortest path length vs. the performance of the incremental betweenness

centrality algorithm or the diameter vs. the performance of the incremental closeness

centrality algorithm, and so on. Once we have the scatter plots ready, we perform

regression analysis and try fitting curves on them to be able to comment on the general

trends observed.

 247

Table 33 - Network statistics for varying network sizes accompanied by the performance
improvements of the incremental closeness centrality algorithm. The average degree is 6.

Topology Size

Density Avg. Btw
Min
Deg

Max
Deg

Diam
eter

Char.
Path

Length
Clustering
Coefficient

Closeness
Speedup

Pref. Attach. 1000 0.003 94.37 3 89 10 3.45 0.014 900

Pref. Attach. 3000 0.001 197.59 3 233 14 4.126 0.007 14714.43
Pref. Attach. 5000 0.0006 292.48 3 212 16 4.442 0.005 47738.81
Erdos-Renyi 1000 0.003 4777.28 1 14 15 6.305 0.003 123.07
Erdos-Renyi 3000 0.001 18136.74 2 13 14 7.086 0.001 515.35
Erdos-Renyi 5000 0.0006 32073.39 2 11 14 7.492 0.001 890.56
Small World 1000 0.003 1809.59 3 11 8 4.623 0.212 233.49
Small World 3000 0.001 6617.851 3 11 9 5.413 0.208 642.45
Small World 5000 0.0006 12079.138 3 12 9 5.833 0.216 2015.87
Directed Cycles 1000 0.003 3544.12 3 11 38 8.38 0.106 309.62
Directed Cycles 3000 0.001 14986.28 3 11 57 11.37 0.104 740.44
Directed Cycles 5000 0.0006 28762.20 3 12 77 12.98 0.108 1822.83

Table 34 - Network statistics for varying average node degrees accompanied by the performance
improvements of the incremental betweenness centrality algorithm. The average degree is 6.

Topology Size

Density Avg. Btw
Min
Deg

Max
Deg

Diam
eter

Char.
Path

Length
Clustering
Coefficient

Betweenness
Speedup

Pref. Attach. 1000 0.003 94.37 3 89 10 3.45 0.014 178.65
Pref. Attach. 3000 0.001 197.59 3 233 14 4.126 0.007 971.40
Pref. Attach. 5000 0.0006 292.48 3 212 16 4.442 0.005 3760.48
Erdos-Renyi 1000 0.003 4777.28 1 14 15 6.305 0.003 7.99
Erdos-Renyi 3000 0.001 18136.74 2 13 14 7.086 0.001 18.97
Erdos-Renyi 5000 0.0006 32073.39 2 11 14 7.492 0.001 31.18
Small World 1000 0.003 1809.59 3 11 8 4.623 0.212 8.77
Small World 3000 0.001 6617.851 3 11 9 5.413 0.208 20.94
Small World 5000 0.0006 12079.138 3 12 9 5.833 0.216 36.32
Directed Cycles 1000 0.003 3544.12 3 11 38 8.38 0.106 3.78
Directed Cycles 3000 0.001 14986.28 3 11 57 11.37 0.104 4.26
Directed Cycles 5000 0.0006 28762.20 3 12 77 12.98 0.108 6.47

Combining the information provided on Table 6 (network statistics for synthetic

networks –varied by size–) and Table 11 (performance results for the incremental

 248

closeness centrality algorithm), Table 33 is obtained. Similarly, Table 34 combines

information from Table 6 and Table 13 (performance results for the incremental

betweenness centrality algorithm).

Using the information provided in Table 33 and Table 34, I have generated

multiple scatter-plot figures to show how the performance improvements change with the

changing network parameters. The scatterplots (Figure 48 - Figure 71) are accompanied

by non-linear regression equations (trend lines) that would provide the best possible

match, as close as possible to all data points in the graph. Although the actual

performance values are different, the general performance trends for the incremental

closeness and betweenness centrality algorithms are similar. Thus, I first provide figures

comparing the performance values of the incremental closeness centrality algorithm

(Figure 48 - Figure 59 for the information presented in Table 33) and then the figures for

the performance of the incremental betweenness centrality algorithm (Figure 60 – Figure

71 for the information presented in Table 34) against the network features. To be

consistent with the results presented earlier in Chapter 8.5.1 and to make the figures more

visible, the y-axes are also drawn in logarithmic scale. For comparison purposes, the

scatter plots with linear y-axes are also included. In particular, Figure 48 - Figure 53

show log-10 of the performance of the incremental closeness centrality algorithm versus

various network features and Figure 54 - Figure 59 show their counterparts drawn in

linear y-axes. Similarly, Figure 60 - Figure 65 show log-10 of the performance of the

incremental betweenness centrality algorithm versus various network features and Figure

66 - Figure 71 show their counterparts drawn in linear y-axes.

 249

For the data presented in Figure 48 - Figure 71, regression equations are fit in an

attempt to better explain the trends. In the regression equations, x-value represents the

network feature under investigation such as the clustering coefficient, the average

shortest path length, or the network diameter while the y-value represents either the

performance improvement or the log-10 of the performance improvement of the

incremental centrality algorithms depending on the figure.

Figure 48 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Average betweenness centrality.

 250

Figure 49 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Global clustering coefficient.

Figure 50 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Characteristic path length.

 251

Figure 51 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Network diameter.

Figure 52 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Network density.

 252

Figure 53 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Maximum node degree.

Figure 54 - Performance improvement of the incremental closeness centrality algorithm vs.
Average betweenness centrality.

 253

Figure 55 - Performance improvement of the incremental closeness centrality algorithm vs.
Global clustering coefficient.

Figure 56 - Performance improvement of the incremental closeness centrality algorithm vs.
Characteristic path length.

 254

Figure 57 - Performance improvement of the incremental closeness centrality algorithm vs.
Network diameter.

Figure 58 - Performance improvement of the incremental closeness centrality algorithm vs.
Network density.

 255

Figure 59 - Performance improvement of the incremental closeness centrality algorithm vs.
Maximum node degree.

The next set of figures present the performance scaling of the incremental

betweenness algorithm. First, the set of figures with logarithmic scale on the performance

axes are presented (Figure 60 - Figure 65). Then, their counterparts with linear scale are

presented for comparison purposes (Figure 66 - Figure 71).

Figure 60 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Average betweenness centrality.

 256

Figure 61 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Global clustering coefficient.

Figure 62 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Characteristic path length.

 257

Figure 63 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Network diameter.

Figure 64 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Network density.

 258

Figure 65 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Maximum node degree.

Figure 66 - Performance improvement of the incremental betweenness centrality algorithm vs.
Average betweenness centrality.

 259

Figure 67 - Performance improvement of the incremental betweenness centrality algorithm vs.
Global clustering coefficient.

Figure 68 - Performance improvement of the incremental betweenness centrality algorithm vs.
Characteristic path length.

 260

Figure 69 - Performance improvement of the incremental betweenness centrality algorithm vs.
Network diameter.

Figure 70 - Performance improvement of the incremental betweenness centrality algorithm vs.
Network density.

 261

Figure 71 - Performance improvement of the incremental betweenness centrality algorithm vs.
Maximum node degree.

The trends observed for the incremental betweenness and incremental closeness

centrality algorithms are similar. For instance, Figure 50 and Figure 62 suggest that the

performance improvements of the incremental centrality algorithms increase with the

decreasing average shortest path length. This is reasonable as there are fewer nodes on

the shortest paths to be updated on average. This would also cause the memory

consumption to be lower as there are fewer nodes to be tracked as predecessors when

constructing shortest paths trees with lower depth on average.

One surprising results is the relationship of the maximum node degree and the

performance of the incremental centrality algorithms (Figure 53 and Figure 65). For the

same average node degree, increased maximum degree implies a network structure that is

moving towards having hub nodes with many connections as in preferential attachment

and scale-free networks. Although all the previous performance results suggested higher

 262

performance benefits for the preferential attachment networks, it is striking to see the

impact through the maximum node degree.

Finally, Table 35 summarizes our findings about how different network properties

affect the performance of the incremental centrality algorithms on synthetic networks. A

sample row in Table 35 is read as follows. While the diameter of a network decreases, the

performance benefits of the incremental centrality algorithms are expected to increase

and the memory consumption is expected to decrease.

For most of the network features, the memory consumption and performance

improvements go hand in hand: the memory consumption decreases while the

performance improvements increase. For instance, when the shortest paths in a network

are not very long, the average shortest path length is relatively small. Lower average

shortest path lengths result in fewer affected nodes, which causes the performance

improvements of the incremental algorithms to be higher. In addition, lower average

shortest path length also causes the shortest path trees that are stored in the background to

contain fewer nodes and to have low depth.

Table 35 - Table summarizing how different network features affect the performance of the
incremental centrality algorithms on synthetic networks.

Network Feature

Performance

Memory

Clustering Coefficient: Decrease Increase Governed by others
Max. Degree: Increase Increase Governed by others
Avg. Shortest Path Length: Decrease Increase Decrease
Diameter: Decrease Increase Decrease
Density: Decrease Increase Decrease
Size: Increase Increase Increase
Density: Decrease Increase Increase

 263

8.5.3 Network Size and Performance Trends on Real-Life Networks

This section discusses the regression analysis performed on how the performances

of the incremental centrality algorithms scale with the network size on the real life

datasets. The discussion presented in this section is the counterpart of the regression

analysis performed on synthetic networks in Chapter 8.5.1.

Figure 72 presents the performance improvements of the incremental betweenness

centrality algorithm collected on real life networks using growing network updates.

Figure 73 presents similar results for the closeness centrality algorithm. The performance

improvements range from 113x to 53722x for the incremental betweenness centrality

algorithm and range from 452x to 356527x for the incremental closeness centrality

algorithm. Thus, the performance values are drawn on logarithmic scale to ensure that all

data points are clearly visible. Figure 72 and Figure 73 (real-life networks) are the

counterparts of Figure 46 and Figure 47 (synthetic networks).

As suggested by the results presented both in Figure 72 and Figure 73, out of

these five networks, two networks (e.g. Group-I: Iran Retweet network and P2P file

communication network) above the general trend line behave differently than the

remaining three networks (e.g. Group-II: SocioPatterns network, Email network, and

HEP Co-authorship network) that remain below it.

 264

Figure 72 - Performance of the incremental betweenness centrality algorithm in real life networks
for the growing network updates vs. Network size.

Figure 73 - Performance of the incremental closeness centrality algorithm in real life networks for
the growing network updates vs. Network size.

There is no regression curves found that would fit all data points and present a

clear trend. Hence, separate curves are fitted for the Group-I and Group-II networks as

 265

follows. In the equations presented below, the y values denote the performance

improvements of the incremental algorithm over its non-incremental static counterpart.

The x values represent the network size in terms of number of nodes.

Incremental Betweenness Centrality:

y = 0.1625x – 303.3 (Group-I: Iran Retweet, P2P Communication)

y = 29.826 ln(x) – 23.091 (Group-II: SocioPatterns, Email, HEP Coauthorship)

Incremental Closeness Centrality:

y = 0.0599x + 398.83 (Group-I: Iran Retweet, P2P Communication)

y = 4e-05x2 + 0.7338x + 368.53 (Group-II: SocioPatterns, Email, HEP

Coauthorship)

These above formulated equations have a number of implications on how the

performances of the incremental centrality algorithms scale with network size while

accounting for different properties of networks. First, considering the constants in the

above given equations, the incremental closeness centrality is more likely to provide

higher benefits as the network size (in terms of the number of nodes) increases. Second,

the performance of the incremental betweenness centrality algorithm scales with a

logarithmic equation (e.g. the ln function) for the Group-II networks, which implies that

the performance benefits become more incremental with the increasing network size.

However, it is the opposite for the Group-I networks, which is supported by a linear

scaling trend. This is because the overall structures of the Group-I networks in are

different from those in Group-II networks. Group-I networks benefit from sparsity of the

networks and the social structure that causes most of the relationship to be in one

 266

direction. However, in two out of three Group-II networks are undirected and Email

network has a lot of connections that go in both directions. Altogether, these properties

cause the percentages of affected nodes to be higher in Group-II network than in Group-I

networks, which is also reflected in the scaling of performance improvements as the

regression analysis suggested.

8.5.4 Network Features and Performance on Real-life Networks
Next, we discuss how the performances of the incremental centrality algorithms

scale with the other network features on real life networks. This section is the counterpart

of Chapter 8.5.2 that analyzes and discusses how the performances of the incremental

centrality algorithms scale with varying network features for synthetic networks. To be

able to analyze these aspects, we primarily benefit from the information provided in

network statistics in Chapter 7.2.6 and the real-life networks’ performance results that are

presented earlier in this chapter.

Table 36 - Network statistics for real-life networks accompanied by the performance
improvements of the incremental closeness centrality algorithm.

Network

 D?
U? Nodes Edges

Den
sity

Avg.
Btw.

Max
Deg

Diam
eter

Char.
Path
Len

Clust.
Coef

Closeness
Speedup

SocioPatterns U 113 4392 0.35 36.752 98 3 1.66 0.53 452.31
OnlineForum D 1897 20290 0.0056 7159.92 339 8 3.2 0.08 1917.84

HEP Coauthorship U 7507 38804 0.00068 15620.65 64 15 5.74 0.46 8328.39
P2P D 6843 7572 0.00016 0.33 2185 3 1.25 0 356527.35

Twitter (Iran) D 809 665 0.00102 0.464 39 5 1.4 0.02 21769.19

Combining the information provided on Table 9 (network statistics for real life

networks) and Table 26 (performance results for the incremental closeness centrality

 267

algorithm), we obtain Table 36. Similarly, Table 37 combines information from Table 9

and Table 28 (performance results for the incremental betweenness centrality algorithm).

Table 37 - Network statistics for real-life networks accompanied by the performance
improvements of the incremental betweenness centrality algorithm.

Network

 D?
U? Nodes Edges

Density

Avg.
Btw.

Max
Deg

Diam
eter

Char.
Path
Len

Clust.
Coef

Betweenness

Speedup
SocioPatterns U 113 4392 0.35 36.752 98 3 1.66 0.53 113.67
OnlineForum D 1897 20290 0.0056 7159.92 339 8 3.2 0.08 217.79

HEP Coauthorship U 7507 38804 0.00068 15620.65 64 15 5.74 0.46 233.27
P2P D 6843 7572 0.00016 0.33 2185 3 1.25 0 53722.49

Twitter (Iran) D 809 665 0.00102 0.464 39 5 1.4 0.02 8429.88

Using the information provided Table 36 and Table 37, I have again generated

multiple scatter-plot figures to show how the performance improvements change with the

changing network parameters. The scatterplots (Figure 74 - Figure 97) are accompanied

by non-linear regression equations (trend lines) that would provide the best possible

match, as close as possible to all data points in the graph. Although the actual

performance values are different, the general performance trends for the incremental

closeness and betweenness centrality algorithms are similar. Thus, I first provide figures

comparing the performance values of the incremental closeness centrality algorithm

(Figure 74 - Figure 85 for the information presented in Table 36) and then the figures for

the performance of the incremental betweenness centrality algorithm (Figure 86 - Figure

97 for the information presented in Table 37) against the network features. To be

consistent with the results presented earlier in Chapter 8.5.1, Chapter 8.5.2, and Chapter

8.5.3 and to make the figures more visible, the y-axes of the figures used in main

 268

discussion are again drawn in logarithmic scale, accompanied by their equivalents in

linear scale for comparison purposes. In particular, Figure 74 - Figure 79 show log-10 of

the performance of the incremental closeness centrality algorithm versus various network

features and Figure 80 - Figure 85 show their counterparts drawn in linear y-axes.

Similarly, Figure 86 - Figure 91 show log-10 of the performance of the incremental

betweenness centrality algorithm versus various network features and Figure 92 - Figure

97 show their counterparts drawn in linear y-axes.

For the data presented in Figure 74 - Figure 97, regression equations are fit in an

attempt to better explain the trends. In the regression equations, x-value represents the

network feature under investigation such as the clustering coefficient, the average

shortest path length, or the network diameter. The y-value represents either the logarithm

of the performance improvement or the performance improvement of the incremental

centrality algorithms.

 269

Figure 74 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Average betweenness centrality.

Figure 75 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Global clustering coefficient.

 270

Figure 76 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Characteristic path length.

Figure 77 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Network diameter.

 271

Figure 78 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Network density.

Figure 79 - Log-10 of the performance improvement of the incremental closeness centrality
algorithm vs. Maximum node degree.

 272

Figure 80 - Performance improvement of the incremental closeness centrality algorithm vs.
Average betweenness centrality.

Figure 81 - Performance improvement of the incremental closeness centrality algorithm vs.
Global clustering coefficient.

 273

Figure 82 - Performance improvement of the incremental closeness centrality algorithm vs.
Characteristic path length.

Figure 83- Performance improvement of the incremental closeness centrality algorithm vs.
Network diameter.

 274

Figure 84 - Performance improvement of the incremental closeness centrality algorithm vs.
Network density.

Figure 85 - Performance improvement of the incremental closeness centrality algorithm vs.
Maximum node degree.

 275

The next set of figures present the performance scaling of the incremental

betweenness algorithm. The set of figures with logarithmic y-axes (Figure 86 - Figure 91)

are presented first, followed by the figures with linear performance axes (Figure 92 -

Figure 97) for comparison purposes.

Figure 86 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Average betweenness centrality.

Figure 87 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Global clustering coefficient.

 276

Figure 88 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Characteristic path length.

Figure 89 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Network diameter.

 277

Figure 90 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Network density.

Figure 91 - Log-10 of the performance improvement of the incremental betweenness centrality
algorithm vs. Maximum node degree.

 278

Figure 92 - Performance improvement of the incremental betweenness centrality algorithm vs.
Average betweenness centrality.

Figure 93 - Performance improvement of the incremental betweenness centrality algorithm vs.
Global clustering coefficient.

 279

Figure 94 - Performance improvement of the incremental betweenness centrality algorithm vs.
Characteristic path length.

Figure 95 - Performance improvement of the incremental betweenness centrality algorithm vs.
Network diameter.

 280

Figure 96 - Performance improvement of the incremental betweenness centrality algorithm vs.
Network density.

Figure 97 - Performance improvement of the incremental betweenness centrality algorithm vs.
Maximum node degree.

Considering the trend lines fit on the performance results presented in the figures

above, the maximum degree and the network density have trend lines that closely match

 281

the data presented. Although the other network features have some visible trends, most of

the time, these network features interact with one another and cause the actual

performance values to deviate from the expected values. Table 38 summarizes the

general trends on how specific network features would steer the performances of the

incremental centrality algorithms. In general, the trends observed on the real life and

synthetic networks are in line with one another, which will be discussed next in Chapter

8.5.5 in detail.

Table 38 - Table summarizing how different network features affect the performance of the
incremental centrality algorithms on real life networks.

Network Feature

Performance

Memory

Max. Degree: Increase Increase Governed by others
Density: Decrease Increase Decrease
Size: Increase Increase Increase
Clustering Coefficient: Decrease Increase Governed by others
Avg. Shortest Path Length: Decrease Increase Decrease
Diameter: Decrease Increase Decrease
Fragmentation: Increase Increase Decrease

8.5.5 Comparative Discussion on Performance Trends in Synthetic and Real-Life
Networks

This section discusses the performance trends observed in synthetic and real-life

networks together in an attempt to compare between the synthetic network data and the

real-life network data and comment on how well the performance trends on the synthetic

data reflect the performance trends of the real-life networks.

It is observed that the trends observed in real life and synthetic networks are

comparable as outlined in Table 35 and Table 38. However, there are minor differences.

For instance, the clustering coefficients in real life networks have the potential to be

 282

higher than those in the synthetic networks. Another difference is that in real life

networks, the networks’ diameters are short, i.e., less than 15 hops. However, in synthetic

networks, especially for directed cycles, the diameters can become artificially long,

exceeding 100 hops.

In real-life networks is that a substantial portion of relationships among social

agents is mutual and modeled as undirected (bidirectional) networks. The impact of

converting a network from directed to undirected is different in different networks. In

most real life networks, the average shortest path lengths and diameters are low as

discussed earlier. When the network is converted to an undirected network from a

directed network, this usually results in higher number of pairs that can reach out to one

another and higher clustering coefficient, without having too much impact on the lengths

of the shortest paths. Converting the relationships from directed to undirected also results

in an increased number of nodes affected when an incremental update such as an edge

insertion is issued on the network. This usually reflects as decreased performance

benefits when the network is undirected compared to directed networks. However, on an

artificially created network, the impact might be different. For instance, the small world

networks are undirected versions of the directed cycles. The small world networks’

shortest path lengths are very low compared to those in the directed cycles, reducing the

network diameter from 102 (3000-node directed cycles with avg. node degree 4) to 13

(3000-node small world network with avg. node degree 4). In contrast to what we

observe for most real life networks, we observe that small world networks have higher

 283

performance benefits than directed cycles due to decreased shortest path lengths on

average.

In addition, real-life networks might have fragmentation and disconnected

components that would help increasing the performance obtained with incremental

algorithms on such networks. Among the datasets we have used, only two networks have

considerable, non-zero fragmentation: Iran retweet network has 0.86 fragmentation and

the co-authorship network has 0.239 fragmentation. The synthetic networks are modeled

to reflect the claimed network sizes as the entire node space; hence, they have zero

fragmentation. Since we have only two data points for fragmentation, we don’t have

enough data points and they are not included in the scatter plots. Yet, the impact of the

fragmentation can be understood from the very high performance improvements obtained

on the Iran retweet network despite the fact that it is a small network with less than 1000

nodes.

Apart from the differences discussed so far, there are also similarities that are well

covered, which causes similar trends to be observed in both real life and synthetic

networks when regression analysis is performed on the scatter plots of different network

features. As a specific example, the performances of the incremental centrality algorithms

on the P2P file transfer network resemble the performance trends of the directed

preferential attachment networks. This is because both the preferential attachment

networks and the P2P file transfer network are modeled as directed networks. In addition,

they both have central, hub nodes with very large number of connections and very few

 284

nodes with high betweenness centrality values, resulting in low average betweenness

centrality across the entire network.

8.6 INCREMENTAL BETWEENNESS CLUSTERING PERFORMANCE RESULTS

In this section, the performance of the clustering algorithm that is discussed in

Chapter 6.5.1 is evaluated. The performance results presented in Table 39 and Table 40

are collected as follows. For each network used in the evaluations, using the

corresponding k-hop limit, the edge betweenness centrality values are calculated. Then,

1000 edges are removed either by recomputing the edge betweenness values using the

incremental edge k-betweenness algorithm or by using the Brandes’ edge k-betweenness

algorithm. The performance results compare the total (cumulative) execution time that

includes (i) the initialization of the edge k-betweenness centrality values, (ii) searching

for the edge with the maximum edge betweenness to remove in the next iteration, and

(iii) re-computation of the edge k-betweenness values after the removal of the edge with

the largest edge k-betweenness centrality value.

As explained earlier in Chapter 6.5.1.2, using the incremental edge betweenness

algorithm within the edge betweenness based clustering might trigger worst-case network

updates. This is because the edge betweenness based clustering algorithms (e.g. the

Girvan-Newman clustering algorithm and its variants) remove the edge with the highest

edge betweenness centrality value, which is the edge that tends to lie on many shortest

paths. The removal of such an edge may result in a big change in the network, which, in

turn, might trigger an update for all the shortest paths in the network. To ensure that the

 285

possibility of the worst case updates which would minimize the potential performance

benefits of the incremental centrality is ruled out, using the k-hop limited approximation

of the edge betweenness centrality is recommended in this thesis. Therefore, the results

presented in this section focus on comparing the performance of the edge betweenness

based clustering algorithm using the incremental and the non-incremental (Brandes’)

edge betweenness algorithms with k hop limits. In the results presented in Table 39 and

Table 40 the performance improvements of the proposed clustering algorithm discussed

are around 100x – 200x for 1000 edge removals. However, since there are other parts of

the algorithm accounted for such as initialization and the search for the maximum edge

betweenness centrality value, the performance improvement values do not smoothly

increase with the increasing network size or the average node degree. Therefore, as a part

of the results presented in Table 39 and Table 40, the actual execution times are included

as well. The actual execution times were collected in terms of nanoseconds, and

converted to seconds for presentation in Table 39 and Table 40.

In Table 39, the evaluations for the preferential attachment, Erdos-Renyi, small-

world, and directed cycles network topologies for increasing network sizes (e.g. 1000,

3000, and 5000) are presented. All networks have an average node degree of 6. For

instance, PF1 stands for preferential attachment network with 1000 nodes while SW5

stands for small world network with 5000 nodes.

 286

Table 39 - Performance results for the clustering algorithm based on incremental k-betweenness
compared against the clustering algorithm based on k-betweenness, collected on synthetic
networks.

 (k = 2) (k = 3)

T
Brandes

k-btw (sec)
Incremental
k-btw (sec)

Performance
Improvement

Brandes
k-btw (sec)

Incremental
k-btw (sec)

Performance
Improvement

PF-1 925.65 6.61 139.98x 1002.34 8.58 116.81x
PF-3 9411.91 57.33 164.16x 9696.87 65.34 148.41x
PF-5 39940.17 249.94 159.79x 43935.9 415.37 105.77x
ER-1 952.29 5.91 161.09x 998.63 7.51 132.93x
ER-3 10180.22 83.9 121.33x 13434.94 109.03 123.23x
ER-5 46442.98 263.49 176.26x 49698.67 308.65 161.02x
SW-1 1004.88 8.04 124.98x 1203.82 15.77 76.33x
SW-3 9793.34 59.85 163.63x 12436.9 84.77 146.71x
SW-5 37075.02 262.23 141.38 x 58208.12 293.24 198.49x
DC-1 978.56 5.69 171.93x 998.29 6.81 146.64x
DC-3 8374.41 56.98 146.96x 9119.83 58.87 154.92x
DC-5 42406.91 255.89 165.72x 43632.24 277.58 157.18x

In Table 40, the evaluations for the preferential attachment, Erdos-Renyi, small-

world, and directed cycles network topologies for varying average node degrees (e.g. 4,

6, and 8) are presented. All networks have 3000 nodes. For instance, PF4 stands for

preferential attachment network with 3000 nodes and average degree of 4 while SW8

stands for small world network with 3000 nodes and average degree of 8.

Finally, in Table 41, the performance results collected on the real life networks

are presented. In these results, 100 edges are removed, and similar to the synthetic

networks’ performance results presented in Table 39 and Table 40, the total execution

times are compared which includes the initial computation of the edge betweenness

values, selecting the edge with the maximum edge betweenness value.

 287

Table 40 - Performance results for the clustering algorithm based on incremental k-betweenness
compared against the clustering algorithm based on k-betweenness, collected on synthetic
networks.

 (k = 2) (k = 3)

T
Brandes

k-btw (sec)
Incremental
k-btw (sec)

Performance
Improvement

Brandes
k-btw (sec)

Incremental
k-btw (sec)

Performance
Improvement

PF-4 8222.77 53.76 152.94x 9258.58 53.85 171.93x
PF-6 9411.91 57.33 164.16x 9696.88 65.33 148.41x
PF-8 8907.49 60.36 147.56x 11119.39 97.87 113.61x
ER-4 8505.08 53.62 158.63x 9045.75 57.73 156.69x
ER-6 10180.22 83.9 121.33x 13434.94 109.02 123.23x
ER-8 9883.49 56.83 173.89x 12624.59 73.91 170.79x
SW-4 8780.47 58.78 149.37x 9273.4 61.69 150.32x
SW-6 9793.34 59.85 163.63x 12436.9 84.77 146.71x
SW-8 12890.4 63.56 202.81x 18012.4 135.17 133.25x
DC-4 9227.45 60.94 151.40x 11150.38 53.86 207.01x
DC-6 9119.83 56.98 160.04x 8374.41 58.87 142.26x
DC-8 11488.83 89.83 127.90x 13457.54 101.65 132.39x

The results presented in Table 41 present the performance improvements obtained

over the clustering performed using the regular Brandes’ edge betweenness algorithm.

Imagine a missing column for the clustering algorithm that uses the Brandes’ edge

betweenness algorithm with all the values set as 1x. Hence, it is possible to see how much

of the performance improvement comes from the use of k-betweenness algorithm, and

how much of the performance improvement comes from adding the benefits of the

incremental algorithm design. The performance results presented in Table 41 show that

the majority of the performance improvements come from the incorporation of the

incremental algorithm in the edge betweenness based clustering. The larger performance

improvements are observed in cases where the introduction of the k-hop limits can prune

some of the extra work that would have been performed otherwise.

 288

Table 41 - Performance results for the clustering algorithms based on the incremental k-
betweenness and the Brandes' k-betweenness. Collected on real-life networks.

 (k = 2) (k = 3)
Topology Brandes

k-betweenness
Incremental

k-betweenness
Brandes

k-betweenness
Incremental

k-betweenness
Socio Patterns 1.438 x 11.676 x 1.395 x 5.397 x
Twitter (Iran) 1.18 x 28.291 x 1.04 x 30.368 x
Email 2.95 x 79.656 x 1.05 x 1.05 x
HEP Coauthor 5.698 x 30.867 x 2.58 x 24.280 x
P2P 1.002 x 18.037 x 1.002 x 17.753 x

As one last point, the performance improvements presented for the real life

networks are lower than those presented for the synthetic networks because the number

of edges removed in the experiments done with real networks is lower than the number of

edges removed in synthetic network experiments. Different numbers of edges are selected

for removal from synthetic and real life networks so that it would also be possible to

comment on how the numbers of recomputations affect the absolute values of

performance improvements. The results presented in Table 39, Table 40, and Table 41

imply that the performance improvements obtained by the incorporation of the

incremental k-betweenness computation increase with the increasing number of removed

edges.

8.7 COMMENTS ON VERIFICATION

During the initial phases of algorithm development, I have used several small

networks of 5 to 10 nodes that model different network structures such as cliques, chains,

star topology, cycles, and various combinations of those to cover various basic network

 289

structures and potential corner cases. One I started running experiments with the larger

networks that were used in the results presented in this dissertation, I initially recorded

the betweenness and the closeness centrality values from the incremental centrality

algorithms and from the non-incremental algorithms (the Brandes’ algorithm for

betweenness and the Dijkstra’s algorithm for closeness) to compare the results generated

at each step after every incremental network update. Since writing all the centrality

values at each network update to the disk takes a long time, after getting satisfactory

results with the accuracy results, I have started using the following verification method: I

have recorded the betweenness/closeness centrality values only once after all 100

network updates complete for both the incremental centrality algorithms and their non-

incremental counterparts, and compared both result files against one another. Since the

incremental centrality values build on the results from prior runs, if there is a discrepancy

in the algorithm, the centrality values at the end of 100 updates tend to be way off from

the value suggested by the non-incremental, baseline algorithm. This is a good way for

validating the results as well as identifying and debugging the potential bugs in the

algorithm during the design and development stage.

A small sample from the betweenness centrality values generated on a 1000-node

directed cycle network with p = 0.2 is presented in Table 42. The betweenness centrality

values presented in Table 42 are recorded after 100 edge insertion updates are issued on

the network.

 290

Table 42 - Comparison of output from the incremental and non-incremental betweenness
centrality algorithms.

Incremental Betweenness Algorithm Brandes’ Betweenness Algorithm
Node ID Betweenness Centrality Node ID Betweenness Centrality

0 0.0 0 0.0
1 2.5 1 2.5

986 3.5 986 3.5
989 6.0 989 6.0
3 8.333333333333332 3 8.333333333333332

971 2.8333333333333335 971 2.8333333333333335
974 6.0 974 6.0
4 5.833333333333333 4 5.833333333333333
2 0.0 2 0.0
5 2.833333333333333 5 2.833333333333333

870 7.833333333333332 870 7.833333333333333
6 3.8333333333333335 6 3.8333333333333335

817 5.5 817 5.5
7 4.333333333333333 7 4.333333333333333
8 5.333333333333334 8 5.333333333333333
9 9.5 9 9.5

The centrality values do match across the incremental and non-incremental

algorithm, with very minor differences in how the floating-point values are handled (See

the centrality values for node-870 and node-8). However, we consider the betweenness

centrality values of such nodes equal. Similar results were obtained for the

shrinking/growing network updates for closeness centrality, betweenness centrality, and

their k-hop limited approximations; however, they are not included here for brevity.

 291

CHAPTER 9 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the key findings of this dissertation and discusses

several additional ideas that are particularly promising as future research directions.

9.1 SUMMARY OF FINDINGS

 This dissertation proposes incremental centrality algorithms that perform dynamic

maintenance of closeness and betweenness centrality values while providing support for

new edge/node insertions and deletions and edge cost modifications. The goal is to avoid

re-computations involved in the analysis of dynamic social networks and reflect changes

triggered by an incremental network update as efficiently as possible. The performance

results collected on different synthetic and real-life networks indicate that incremental

computations of social centrality metrics is a high-performance method, providing

substantial performance improvements in revealing temporal patterns of closeness

centrality and betweenness centrality.

Closeness centrality was selected as the first metric of interest because its

computation is only dependent on the shortest distances across the nodes, which is the

core information required by all other shortest path based social centrality metrics. The

other metric that is selected as the metric of interest is the betweenness centrality due to

its wide application across several fields.

 292

In general, the incremental centrality algorithms proposed in this dissertation

increases the speed with which the centrality metrics can be calculated for all nodes in a

network, exploiting the classical tradeoff between memory and speed.

Considering the performance results presented in Chapter 8, several observations

are in order. First, the performance gains increase with the increasing network size. In

larger networks, the opportunity for early pruning is larger, which in turn results in

increased performance benefits.

Another point of observation is that the network topology is an important factor in

the performance improvements the incremental centrality algorithms provide. The

performance results obtained on real-life networks suggest that the structure of the

shortest paths in a network might differ considerably from the binary, unweighted version

of the same network depending on the weights/costs of the edges. The difference between

the binary, unweighted version and the weighted version of the same network is

especially higher if the weights of the edges come from a large range of values. Hence,

the performance improvements of the incremental centrality algorithms obtained on the

binary and the weighted versions of the same network tend to be different from one

another.

The impact of topology on the performance benefits of the incremental centrality

algorithms were also visible in experiments performed with the synthetic networks. The

incremental centrality algorithms obtain the best performance improvements on the

preferential attachment networks. The performance improvements were inline with the

average shortest path length and the diameter of the network; increasing with the

 293

decreased shortest path length in general. Such behavior also impacts how much

performance improvement can be obtained by the incremental k-centralities. When the

shortest paths in a network are relatively short (i.e. composed of a small number of hops),

there is not too much room for opportunity for early pruning due to limiting the shortest

paths to remain within the first k hops. In the case of incremental k-centralities, the best

performance benefits are obtained on small world networks while the performance

benefits obtained on the preferential attachment networks are lower.

Considering the behaviors of the incremental centrality algorithms both in real-

life and synthetic networks, it is observed that the performance trends of the incremental

centrality algorithms are similar for the real world and synthetic networks. In general, the

performance improvements increase with increasing network size, increasing node

maximum degree, and decreasing network density. Moreover, the performance

improvements decrease with the increasing average betweenness centrality, increasing

average shortest path length, increasing network diameter, and increasing global

clustering coefficient.

It is also observed that most real life networks have low diameters and average

shortest path lengths. Hence, networks with very long diameters such as the directed

cycles are less likely to be observed when real-life relationships are modeled. In addition,

real life networks benefit more from fragmentation and the existence of disconnected

components, which helps to increasing the performance improvements obtained by the

incremental algorithms.

 294

Another trend in real-life networks is that a substantial portion of relationships

among social agents is mutual and modeled as undirected (bidirectional) networks. The

impact of converting a network from directed to undirected is different in different

networks. In most real life networks, the average shortest path lengths and diameters are

low as discussed earlier. When the network is converted to an undirected network from a

directed network, this usually results in higher number of pairs that can reach out to one

another and higher clustering coefficient, without having too much impact on the lengths

of the shortest paths. Converting the relationships from directed to undirected also results

in an increased number of nodes affected when an incremental update such as an edge

insertion is issued on the network. This usually reflects as decreased performance

benefits when the network is undirected compared to directed networks. However, on an

artificially created network, the impact might be different. For instance, the small world

networks are undirected versions of the directed cycles. The small world networks’

shortest path lengths are very low compared to those in directed cycles, reducing the

network diameter from 102 (3000-node directed cycles with avg. node degree 4) to 13

(3000-node small world network with avg. node degree 4). In contrast to what we

observe for most real life networks, we observe that small world networks have higher

performance benefits than directed cycles due to decreased shortest path lengths on

average.

As discussed in Chapter 8.6, the incremental k-centrality algorithms are quite

effective at improving the performance of the clustering algorithms that use edge

betweenness to partition the network into clusters (e.g. the modified Girvan-Newman

 295

clustering algorithm). However, the performance improvements obtained with the

clustering algorithm that uses the incremental edge betweenness algorithm instead of the

edge betweenness algorithm based on the Brandes’ betweenness algorithm do not justify

the additional algorithmic complexity and memory used for its computation. This is

because modifying the edge with the maximum edge betweenness can trigger updates

where almost the entire network is affected. Such a problem is avoided when the shortest

paths are restricted to stay within first k hops. Hence, we recommend the use of

incremental k-centrality algorithms in clustering.

As one final note, an additional use case for the incremental closeness algorithm

is to use it on a large static network. By “pretending” that the network is being built

incrementally, one can apply the incremental closeness algorithm and calculate closeness

centrality more quickly than one can do using the non-incremental algorithm only once.

In an attempt to see what is possible in a reasonable time, we have run two

additional exploratory experiments with the incremental closeness centrality algorithm

and the incremental betweenness centrality algorithm.

The results of these exploratory experiments suggest that the incremental

closeness centrality algorithm run on the available hardware (a quad-core PC with 256GB

of RAM) can easily handle a network with 100,000 nodes and 600,000 edges. Then, we

tried another run on a network with 250,000 nodes and 1,500,000 edges. Before being

able to complete the entire run, the system started swapping at around 165,000 nodes and

1,000,000 edges. Once the number of edges in the network reached 1,000,000, the time

required for each edge insertion increased dramatically on average due to this swapping.

 296

This data point is not exhaustive, but it suggests that a PC with 256GB of physical

memory can process incremental closeness centrality on preferential attachment based

social networks with degree of 6 and somewhere between 150,000 to 200,000 nodes.

The corresponding network sizes are much smaller for the betweenness centrality.

For betweenness centrality, the execution time per edge insertion starts increasing

considerably when the network reaches 30,000 nodes and 180,000 edges. Once the

network becomes larger than 35,000 nodes and 225,000 edges, the execution time of

running the incremental betweenness algorithm on a new edge is observed increase

dramatically. Note, this increase in execution time per insertion is necessarily a memory

limit in this case but a result of the structure of the problem.

Finally, the ability for fast incremental computations of how power, influence,

and centralities change in a dynamic network enables the use of incremental centrality

metrics to rapidly identify over-time change and to set up alerts. In conclusion,

incremental algorithm design offers the potential to allow dynamic social network

analysis to be applied to real time data, and to much larger datasets than would have been

possible using traditionally static centrality metric computational methods.

9.2 FUTURE WORK

Inline with the behavior of most incremental algorithms, the algorithms presented

in this dissertation are costly in terms of memory requirements. Hence, they are primarily

geared towards mid-scale networks that are composed of several thousands to tens of

thousands of nodes. To make them work with large-scale networks whose numbers of

 297

nodes are mostly on the order of millions, parallelization and approximation are among

the possible directions.

Parallelization: With the advents in the multi-core technology, support for

multithreaded execution and utilization of computing resources is important, and as

previously discussed in Chapter 2.1.3, there are a number of research studies that already

focus on parallelizing betweenness algorithms for large-scale networks. Therefore, one

fruitful future research direction for the work presented in this dissertation is the design

of parallel, incremental centrality algorithms based on the incremental centrality

algorithms proposed in this dissertation.

The incremental centrality algorithms proposed in this dissertation are based on

the idea of identifying the set of nodes that are affected by an incremental network update

and the subgraph defined by these nodes, which is usually a subset that is much smaller

than the entire network. For instance, assume that there are two incremental network

updates issued one after another and they propagate on totally disparate parts of the

network. In such a case, these two incremental network updates can be issued in totally

parallel with no problem because the subsets those two incremental network updates

work on would have no overlap. However, for the cases when there is some overlap

between the affected parts of the network for two different updates, the updates should be

handled with care. For such a case, one reasonable approach is to use CREW (Concurrent

Read Exclusive Write) based parallelization techniques that would allow reading

different variables concurrently but would allow only one process to write to an

individual cell. If the write-protection is to be achieved with atomic locks instead, then

 298

metadata common across all network updates such as the shortest path distances, the

centrality values, the number of shortest paths, and the predecessors on the shortest paths

need to be protected.

Approximation: This dissertation discusses the approximations of the

incremental centrality algorithms through the k-centrality extensions in Chapter 6, where

the number of hops the shortest paths are composed of should be less than or equal to k.

However, as mentioned earlier in Chapter 2.1.3, there are other methods for

approximating the centrality metrics such as the methods discussed in [57] [58], which

are based on sampling a number of source (seed) nodes to calculate the shortest paths

from. Towards this end, an interesting direction is to attempt combining seed based

approaches with incremental algorithm design, which would selectively propagate the

incremental updates in a network depending on the relationship of the source of an update

with the set of sampled seed nodes. The evaluation of the accuracy (validation) for such

an approximation method is also necessarily, posing another interesting but challenging

problem. Another direction in this context is to combine the incremental updates with the

adaptive sampling of seed nodes where the set of sampled seed nodes evolve based on the

frequency and topological position of the incremental updates issued dynamically in the

network.

Extensions to other centrality metrics: Apart from parallelization and

approximation techniques, there are also other directions the work presented in this

dissertation can be extended to. As previously mentioned in Chapter 5.6, one other

potential future work direction is to design incremental centrality algorithms for other

 299

shortest path based centrality metrics such as the stress centrality [20] or the information

centrality [178].

Stress centrality is defined as the number of shortest paths that pass through a

node across all pairs of nodes in a network. Betweenness centrality is defined as the

fraction of shortest paths that pass through a node across all pairs of nodes in a network.

The definition and computation of stress centrality are very similar to that of betweenness

centrality. Hence, the incremental betweenness centrality algorithm can be converted to

compute the stress centrality only by changing the lines where the betweenness centrality

of a node is modified.

The information centrality of a node [178] is defined as the harmonic mean of the

‘bandwidth’ for all the shortest paths originating from the node whose centrality is being

calculated. The bandwidth of a path is calculated as the inverse of its path length. This

metric is always mentioned in relation to the closeness centrality, as it also needs

information on the inverse of the shortest paths lengths. The algorithm for the

incremental computation of the information centrality can be obtained by modifying the

lines inserted into the Ramalingam and Reps dynamic all-pairs shortest paths algorithm to

support the computation of closeness centrality.

 300

BIBLIOGRAPHY

[1] S. Wasserman and K. Faust, Social Network Analysis. Cambridge, UK: Cambridge
University Press, 1994.

[2] S. A. Levin, "Ecosystems and the Biosphere as Complex Adaptive Systems,"
Ecosystems, vol. 1, no. 5, pp. 431--436, 1998.

[3] M. Kas et al., "What if Wireless Routers were Social? Approaching Wireless Mesh
Networks from a Social Networks Perspective," IEEE Wireless Communications,
vol. 19, no. 6, pp. 36-43, December 2012.

[4] S. Nanda and D. Kotz, "Social Network Analysis Plugin (SNAP) for Mesh
Networks," in WCNC, 2011.

[5] E. Otte and R. Rousseau, "Social network analysis: a powerful strategy, also for the
information sciences," Journal of information Science, vol. 28, no. 6, pp. 441-453,
2002.

[6] M. Batty, "The Size, Scale and Shape of Cities," Science, vol. 319, no. 5864, pp.
769--771, 2008.

[7] M. Kas et al., "Analyzing scientific networks for nuclear capabilities assessment,"
Journal of the American Society for Information Science and Technology (JASIST),
vol. 63, no. 7, pp. 1294-1312, April 2012.

[8] SocioPattern Project. (2009) Hypertext 2009 Dynamic Contact Network Dataset.
[Online]. http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-
network/

[9] K. I. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim, "Classification of Scale-free
Networks," Proceedings of the National Academy of Sciences of the United States
of America (PNAS), vol. 99, no. 20, pp. 12583–12588, October 2002.

[10] A.L. Barabasi and R. Albert, "Emergence of Scaling in Random Networks,"
Science, vol. 286, no. 5439, pp. 509-512, 1999.

[11] P. Erdos and A. Renyi, "On the Evolution of Random Graphs," Magyar Tud. Akad.
Mat. Kutató Int. Közl, vol. 5, pp. 17-61, 1960.

[12] D. Watts and S. Strogatz, "Collective Dynamics of ‘Small-World’ Networks,"
Nature, vol. 393, pp. 440-442, 1998.

[13] T. Opsahl, "Structure and Evolution of Weighted Networks," School of Business
and Management, Queen Mary College University of London, London, Ph.D.
Thesis 2009.

[14] T. Opsahl and P. Panzarasa, "Clustering in weighted networks," Social Networks ,
vol. 31, no. 2, pp. 155-163, 2009.

[15] M. Kas, K. M. Carley, and L. R. Carley, "Trends in science networks:
understanding structures and statistics of scientific networks," Social Network
Analysis and Mining (SNAM), vol. 2, no. 2, pp. 169-187, 2012.

 301

[16] G. R. Boynton. (2010, May) G. R. Boynton's New Media and Politics. [Online].
http://ir.uiowa.edu/polisci_nmp/108/

[17] F. Gringoli et al., "GT: picking up the truth from the ground for Internet traffic,"
Computer Communication Review, vol. 39, no. 5, pp. 13--18, October 2009.

[18] J. Pfeffer and K. M. Carley, "k-Centralities: Local Approximations of Global
Measures Based on Shortest Paths," in WWW, 2012, pp. 1043-1050.

[19] M. Girvan and M. E. J. Newman, "Community structure in social and biological
networks," Proceedings of the National Academy of Sciences, vol. 99, no. 12, p.
7821, 2002.

[20] A. Shimbel, "Structural parameters of communication networks," Bulletin of
Mathematical Biology, vol. 15, no. 4, pp. 501--507, 1953.

[21] N. E. Friedkin, "Theoretical foundations for centrality measures," The American
Journal of Sociology, vol. 96, no. 6, pp. 1478--1504, 1991.

[22] U. Brandes and D Fleischer, "Centrality measures based on current flow," in
Symposium on Theoretical Aspects of Computer Science (STACS), Stuttgart,
Germany, 2005, pp. 533--544.

[23] S. P. Borgatti and M. G. Everett, "A graph-theoretic perspective on centrality,"
Social Networks, vol. 28, no. 4, pp. 466--484, 2006.

[24] D. Shah and T Zaman, "Rumors in a Network: Who's the Culprit?," IEEE
Transactions on Information Theory, vol. 57, no. 8, pp. 5163--5181, 2011.

[25] P. Bonacich, "Power and Centrality: A Family of Measures," The American
Journal of Sociology, vol. 92, no. 5, pp. 1170-1182, March 1987.

[26] G. Sabidussi, "The centrality index of a graph," Psychometrika, vol. 31, no. 4, pp.
581--603, 1966.

[27] L. C. Freeman, "A Set of Measures of Centrality based on Betweenness,"
Sociometry, vol. 40, no. 1, pp. 35-41, 1977.

[28] U. Brandes, "A Faster Algorithm for Betweenness Centrality," Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163--177, 2001.

[29] T. Opsahl, F. Agneessens, and J. Skvoretz, "Node Centrality in Weighted
Networks: Generalizing Degree and Shortest Paths," Social Networks, vol. 32, no.
1, pp. 245--251, 2010.

[30] A. M. Berman, "Lower and upper bounds for incremental algorithms," Computer
Science, The State University of New Jersey at Rutgers, New Brunswick, NJ, PhD
Dissertation 1992.

[31] I. McCulloh and K. M. Carley, "Longitudunal Dynamic Network Analysis: Using
the Over Time Viewer Feature in ORA," Institute for Software Research, Carnegie
Mellon University, Pittsburgh, Technical Report CMU-ISR-09-118, 2009.

[32] T. M. Newcomb, The acquaintance process. New York, NY, USA: Holt, Rinehart
& Winston, 1961.

 302

[33] S. Sampson, Crisis in a Cloister (Doctoral Dissertation). Ithaca, NY, USA: Cornell
University, 1969.

[34] J. Tang, C. Mascolo, M. Musolesi, and Vito Latora, "Exploiting Temporal
Complex Network Metrics in Mobile Malware Containment," in Proceedings of the
12th IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Lucca, Italy, 2011, pp. 1--9.

[35] U. Brandes, P. Kenis, and D. Wagner, "Communicating Centrality in Policy
Network Drawings," Transactions on Visualization and Computer Graphics, vol. 9,
no. 2, pp. 241-253, 2003.

[36] R. Yang and L. Zhuhadar, "Extensions of closeness centrality?," in Proceedings of
the 49th Annual Southeast Regional Conference, Kennesaw, GA, 2011, pp. 304--
305.

[37] K. Okamoto, W. Chen, and X. Y. Li, "Ranking of closeness centrality for large-
scale social networks," in Proceedings of the 2nd International Frontiers of
Algorithmics Workshop (FAW), Changsha, China, 2008, pp. 186--195.

[38] D. Eppstein and J. Wang, "Fast approximation of centrality," in Proceedings of the
twelfth annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Washington, D.C., United States, 2001, pp. 228--229.

[39] S. Borgatti, K. M. Carley, and D. Krackhardt, "Robustness of Centrality Measures
under Conditions of Imperfect Data," Social Networks, vol. 28, no. 2, pp. 124--136,
2006.

[40] A.E. Sariyuce, K. Kaya, E. Saule, and U.V. Catalyurek, "Incremental Algorithms
for Network Management and Analysis based on Closeness Centrality," Technical
Report Uploaded on arXiv 2013.

[41] L. Leydesdorff, "Betweenness Centrality as an Indicator of the Interdisciplinarity of
Scientific Journals," Journal of the American Society for Information Science and
Technology, vol. 58, no. 9, pp. 1303--1319, 2007.

[42] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, "Attack Vulnerability of Complex
Networks," Physical Review E, vol. 65, no. 5, p. 056109, May 2002.

[43] M. Kitsak et al., "Betweenness Centrality of Fractal and Nonfractal Scale-free
Model Networks and Tests on Real Networks," Physical Review E, vol. 75, no. 5,
p. 056115, May 2007.

[44] T. L. Frantz, M. Cataldo, and K. M. Carley, "Robustness of centrality measures
under uncertainty: Examining the role of network topology," Computational and
Mathematical Organization Theory, vol. 15, no. 4, pp. 303-328, December 2009.

[45] L. Gulyas, G. Horvath, T. Cseri, Z. Szakolczy, and G. Kampis, "Betweenness
Centrality Dynamics in Networks of Changing Density," in 19th International
Symposium on Mathematical Theory of Networks and Systems (MTNS),
Budapest,Hungary, 2010.

[46] M. Everett and S.P. Borgatti, "Ego Network Betweenness," Social Networks, vol.

 303

37, no. 1, pp. 31--38, January 2005.
[47] U. Brandes, "On Variants of Shortest-Path Betweenness Centrality and Their

Generic Computation," Social Networks, vol. 30, no. 2, pp. 136--145, May 2008.
[48] H. Kim and R. Anderson, "Temporal node centrality in complex networks,"

PHYSICAL REVIEW E, vol. 85, no. 026107, pp. 1-8, 2012.
[49] K. Lerman, R. Ghosh, and J. H. Kang, "Centrality Metric for Dynamic Networks,"

in Proceedings of the Eighth Workshop on Mining and Learning with Graphs
(MLG), Washington, DC, 2010, pp. 70-77.

[50] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia, "Analysing
information flows and key mediators through temporal centrality metrics," in
Proceedings of the 3rd Workshop on Social Network Systems (SNS), Paris, France,
2010.

[51] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, "Temporal distance metrics for
social network analysis," in Proceedings of the 2nd ACM Workshop on Online
Social Networks (WOSN), Barcelona,Spain, 2009, pp. 31-36.

[52] H. Habiba, C. Tantipathananandh, and T. Berger-Wolf, "Betweenness centrality
measure in dynamic networks," Department of Computer Science, University of
Illinois at Chicago, Chicago, 2007.

[53] A. Berger, M. Muller-Hannemann, S. Rechner, and A. Zock, "Efficient
computation of time dependent centralities in air transportation networks," in
Proceedings of the 5th international conference on WALCOM: algorithms and
computation, 2011, pp. 77-88. [Online].
http://dl.acm.org/citation.cfm?id=1966169.1966183

[54] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, "Heuristics for
Speeding up Betweenness Centrality Computation," in ASE/IEEE International
Conference on Social Computing and on Privacy, Security, Risk and Trust , 2012,
pp. 302-311.

[55] O. Green, R. McColl, and D. A. Bader, "A fast algorithm for streaming
betweenness centrality," in International Conference on Privacy, Security, Risk and
Trust (PASSAT) and International Conference on Social Computing (SocialCom),
Amsterdam, Netherlands, 2012, pp. 11-20.

[56] M. J. Lee, J. Lee, J. Y. Park, R.H. Choi, and C. W. Chung, "QUBE: a Quick
algorithm for Updating BEtweenness Centrality," in Proceedings of the 21st
international conference on World Wide Web (WWW), Lyon,France, 2012, pp. 351-
-360.

[57] D. Bader, S. Kintali, K. Madduri, and M. Mihail, "Approximating Betweenness
Centrality," Algorithms and Models for the Web-Graph, vol. 4863, pp. 124--137,
2007.

[58] R. Geisberger, P. Sanders, and D. Schultes, "Better Approximation of Betweenness
Centrality," in Workshop on Algorithm Engineering and Experiments (ALENEX),

 304

2008.
[59] T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, and A. Iamnitchi, "K-path

centrality: A new centrality measure in social networks," in 4th Workshop on
Social Network Systems, Salzburg, Austria, 2011, p. Article 1.

[60] D.A Bader and K. Madduri, "Parallel algorithms for evaluating centrality indices in
real-world networks," in International Conference on Parallel Processing (ICPP),
2006, pp. 539-550.

[61] K. Madduri, D. Ediger, K. Jiang, D.A. Bader, and D. Chavarria-Miranda, "A Faster
Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating
Betweenness Centrality on Massive Datasets," in IEEE International Symposium
on Parallel & Distributed Processing (IPDPS) , Rome, 2009, pp. 1-8.

[62] G. Tan, D. Tu, and N. Sun, "A parallel algorithm for computing betweenness
centrality," in Internation Conference on Parallel Processing (ICCP), 2009, pp.
340-347.

[63] N. Edmonds, T. Hoefler, and A. Lumsdaine, "A Space-Efficient Parallel Algorithm
for Computing Betweenness Centrality in Distributed Memory," in International
Conference on High Performance Computing (HiPC), Dona Paula, 2010, pp. 1--10.

[64] G. Tan, V. C. Sreedhar, and G. R. Gao, "Analysis and performance results of
computing betweenness centrality on IBM Cyclops64," The Journal of
Supercomputing, vol. 56, no. 1, pp. 1-24, 2011.

[65] P. R. Pande and D. A. Bader, "Computing betweenness centrality for small world
networks on a GPU," in Poster at 15th High Performance Embedded Computing
Conference, Lexington,MA, 2011.

[66] S. Jin et al., "A Novel Application of Parallel Betweenness Centrality to Power
Grid Contingency Analysis," in International Symposium on Parallel & Distributed
Processing (IPDPS), Atlanta, GA, 2010, pp. 1-7.

[67] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, "Incremental CAD," in
Proceedings of the 2000 IEEE/ACM International Conference on Computer-Aided
Design, 2000, pp. 236--244.

[68] J. Cong and M. Sarrafzadeh, "Incremental Physical Design," in Proceedings of the
2000 International Symposium on Physical Design (ISPD), 2000, pp. 84-92.

[69] G. S. Taylor and J. K. Ousterhout, "Magic's incremental design-rule checker," in
Proceedings of the 21st Design Automation Conference (DAC), Washington, DC,
1984, pp. 160-165.

[70] B. Alpern, R. Hoover, B. K, Rosen, P. F. Sweeney, and F. K. Zadeck, "Incremental
evaluation of computational circuits," in Proceedings of the First Annual SIAM
Symposium on Discrete Algorithms, Philedelphia, PA, 1990, pp. 32-42.

[71] J. Doyle, "A truth maintenance system," Artificial Intelligence, vol. 2, no. 3, pp.
231–272, November 1979.

[72] J. de Kleer, "An assumption based TMS," Artificial Intelligence, vol. 28, no. 2, pp.

 305

127-224, March 1986.
[73] A. Howard, M. J. Mataric, and G. S. Sukhatme, "An Incremental Self-Deployment

Algorithm for Mobile Sensor Networks," Autonomous Robots, Special Issue on
Intelligent Embedded Systems, vol. 13, no. 2, pp. 113--126, September 2002.

[74] Z. Liang and Y. Li, "Incremental support vector machine learning in the primal and
applications," Neurocomputing, vol. 72, no. 10, pp. 2249–2258, June 2009.

[75] A. Gijsberts, "Incremental Learning for Robotics with Constant Update
Complexity," Department of Communication, Computer, and System Sciences,
University of Genoa, Ph.D. Thesis 2011.

[76] W. Pugh and T. Teitelbaum, "Incremental computation via function caching," in
16th ACM Symposium on Principles of Programming Languages (POPL), Austin,
TX, 1989, pp. 315-328.

[77] L. A. Lombardi and B. Raphael, "LISP as the language for an incremental
computer," in The programming Language LISP: Its Operation and Applications.
Cambridge, MA, USA: M.I.T. Press, 1964, pp. 204-219.

[78] M. Burke and L. Torczon, "Interprocedural optimization: eliminating unnecessary
recompilation," Transactions on Programming Languages and Systems, vol. 15,
no. 3, pp. 367-399, 1993.

[79] G. Ramalingam and R. Thomas, "A categorized bibliography on incremental
computation," in Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), New York, NY, 1993, pp. 502-
510.

[80] U. A. Acar, G. E. Blelloch, M. Blume, and K. Tangwongsan, "An experimental
analysis ofr self-adjusting computation," in Programming Language Design and
Implementation (PLDI), Ottawa, Canada, 2006, pp. 96-107.

[81] M. Carlsson, "Monads for incremental computing," in Proceedings of the 7th
SIGPLAN International Conference on Functional Programming, 2002, pp. 26-35.

[82] U. A. Acar, G. E. Blelloch, and R. Harper, "Adaptive functional programming," in
Proceedings of the 29th Annual Symposium on Principles of Programming
Languages, 2002, pp. 247-259.

[83] A. Gupta and I. S. Mumick, "Maintenance of Materialized Views: Problems,
Techniques, and Applications," IEEE Quareterly Bulletin on Daqta Engineering,
vol. 18, no. 2, 1995, Special Issue on Materialized Views and Data Warehousing.

[84] L. Baekgaard and L. Mark, "Incremental computation of nested relational query
expressions," Transactions on Database Systems, vol. 20, no. 2, pp. 111 - 148 ,
June 1995.

[85] A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross, "Implementing
incremental view maintenance in nested data models," in 1997, Proceedings of the
International Workshop on Database Programming Languages, pp. 202-221.

[86] J. Liu, M. Vincent, and M. Mohania, "Incremental evaluation of nest and unnest

 306

operators in nested relations," in roceedings of the Second International Symposium
on Cooperative Database Systems for Advanced Applications (CODAS),
Wollongong, Australia, 1999, pp. 264-275.

[87] D. Gluche, T. Grust, C. Mainberger, and M.H. Scholl, "Incremental updates for
materialized views user-defined functions," in Proceedings of the 5th International
Conference on Deductive and Object Oriented Databases, 1997.

[88] M. A. Ali, A. A. A. Fernandes, and N. W. Paton, "Incremental maintenance of
materialized OQL views," in International Workshop on Data Warehousing and
OLAP (DOLAP), Washington, D.C, USA, 2000.

[89] H. Nakamura, "Incremental Computation of Complex Object Queries," in
Proceedings of the 16th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, Tampa, FL, USA, 2001, pp.
156-165.

[90] B. Fortz and M. Thorup, "Internet traffic engineering by optimizing OSPF
weights," in Proceedings of 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol. 2, 2000, pp. 519--528.

[91] P. Bhatotia, M. Dischinger, R. Rodrigues, and U. A. Acar, "Slider: Incremental
Sliding-Window Computations for Large-Scale Data Analysis," CITI,
Universidade Nova de Lisboa, Lisbon, Technical Report 2012.

[92] M, Dischinger et al., "Glasnost: Enabling End Users to Detect Traffic
Differentiation," in Proceedings of the 7th Conference on Networked Systems
Design and Implementation (NSDI), 2010.

[93] G. A. Cheston, "Incremental algorithms in graph theory," Department of Computer
Science, University of Toronto, Toronto, Ph.D. Dissertation 1976.

[94] W. Fan et al., "Incremental Graph Pattern Matching," in Proceedings of the
International Conference on Management of Data (SIGMOD), vol. 11, Athens,
Greece, 2011, pp. 925-936.

[95] D. Conte, P. Foggia, C. Sansone, and M. Vento, "Thirty years of graph matching in
pattern recognition," International Journal of Pattern Matching and Artificial
Intelligence, vol. 18, no. 3, pp. 265-298, May 2004.

[96] C. M. Hoffmann and M. J. O'Donnell, "Pattern Matching in Trees," Journal of
ACM, vol. 29, no. 1, pp. 68--95, January 1982.

[97] G. Frederickson, "Data structures for online updating of minimum spanning trees,"
SIAM Journal of Computing, vol. 14, no. 4, pp. 781-798, November 1985.

[98] S. Liu, D. Epley, and W. Decker, "An Incremental Distributed Minimum Directed
Spanning Tree Algorithm," in Parallel and Distributed Computing and Systems
(PDCS), Phoenix, AZ, USA, 2005.

[99] G.F. Italiano, "Finding paths and deleting edges in directed acyclic graphs,"
Information Processing Letters, vol. 28, no. 1, pp. 5-11, May 1988.

[100] J. A. La Poutre, "Maintenance of triconnected components of a graph,"

 307

Proceedings of the 19th International Colloqium on Automata, Languages, and
Programming, pp. 354-365, July 1992.

[101] V. King and G. Sagert, "A fully dynamic algorithm for maintaining the transitive
closure," in Proceedings of the 31st Annual Symposium on Theory of Computing
(STOC), Atlanta, GA, USA, 1999a, pp. 492-498.

[102] C. Demetrescu and G. F. Italiano, "A New Approach to Dynamic All Pairs Shortest
Paths," Journal of the ACM (JACM), vol. 51, no. 6, pp. 968--992, November 2004.

[103] V. King, "Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs," in 40th Annual Symposium on Foundations of
Computer Science, 1999b, pp. 81--89.

[104] G. Ramalingam and T. Reps, "On the Computational Complexity of Incremental
Algorithms," Computer Science, University of Wisconsin at Madison, Madison,
Technical Report 1991.

[105] G. Ramalingam and T. Reps, "On the Computational Complexity of Dynamic
Graph Problems," Theoretical Computer Science, vol. 58, no. 1-2, pp. 233-277,
1996.

[106] J. Moy. (1998, April) OSPF Version 2. Online. [Online].
http://tools.ietf.org/html/rfc2328

[107] T. Reps. (2011, December) Thomas W. Reps -- Past Research Accomplishments.
[Online]. http://pages.cs.wisc.edu/~reps/past-research.html

[108] C. Demetrescu and G. F. Italiano, "Experimental Analysis of Dynamic All Pairs
Shortest Path Algorithms," ACM Transactions on Algorithms (TALG), vol. 2, no. 4,
pp. 578 - 601, 2006.

[109] E.W. Dijkstra, "A note on two problems in connexion with graphs," Numerische
mathematik, vol. 1, no. 1, pp. 269--271, June 1959.

[110] M. R. Anderberg, Cluster analysis for applications. New York, NY, USA:
Academic Press Inc., 1973.

[111] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper Saddle River,
NJ, USA: Prentice Hall Inc., 1988.

[112] A. K. Jain, "Data clustering: a review," ACM Computing Surveys (CSUR), vol. 31,
no. 3, pp. 264-323, 1999.

[113] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for
discovering clusters in large spatial databases with noise," in In Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining, 1996, pp.
226-231.

[114] C. Fraley and A. E. Raftery, "How many clusters? Which clustering method?
Answers via model-based cluster analysis," The computer journal, vol. 41, no. 8,
pp. 578-588, 1998.

[115] G. Fung, "A comprehensive overview of basic clustering algorithms," June 2001.

 308

[116] R. Sibson, "SLINK: an optimally efficient algorithm for the single-link cluster
method," The Computer Journal, vol. 16, no. 1, pp. 30-34, 1973.

[117] T. Sorensen, "A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the
vegetation on Danish commons," Biol. Skr., vol. 5, pp. 1-34, 1948.

[118] D. Defays, "An efficient algorithm for a complete link method," The Computer
Journal, vol. 20, no. 4, pp. 364-366, 1977.

[119] M. E. J. Newman and M. Girvan, "Finding and evaluating community structure in
networks," Physical Review E, vol. 69, no. 2, p. 026113, 2004.

[120] M. Chavent, Y. Lechevallier, and O. Briant, "DIVCLUS-T: a monothetic divisive
hierarchical clustering method," Computational Statistics and Data Analysis, vol.
52, no. 2, pp. 687-701, 2007.

[121] N. Yuruk, M. Mete, X. Xu, and T. A. J. Schweiger, "A Divisive Hierarchical
Structural Clustering Algorithm for Networks," in IEEE ICDM Workshop on
Mining Graphs and Complex Structures, In conjunction with the Seventh IEEE Int.
Conf. of Data Mining, Omaha, NE, 2007.

[122] P. N. Tan, M. Steinbach, and V. Kumar, "Cluster Analysis: Basic Concepts and
Algorithms," in Introduction to Data Mining.: Pearson Education India, 2006, pp.
487-568.

[123] R. Xu and D. Wunsch II, "Survey of Clustering Algorithms," IEEE Transactions
on Neural Networks, vol. 16, no. 3, pp. 645-678, May 2005.

[124] L. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338--353, 1965.
[125] S. Fortunato, "Community detection in graphs," Physics Reports, vol. 486, no. 3,

pp. 75-174, 2010.
[126] R.W. Floyd, "Algorithm 97: Shortest path," Communications of the ACM, vol. 5,

no. 6, p. 345, June 1962.
[127] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.
[128] S. Even and H. Gazit, "Updating distances in dynamic graphs," Methods of

Operations Research, vol. 49, pp. 371--387, 1985.
[129] A. M. Berman, M. C. Paull, and B. G. Ryder, "Proving relative lower bounds for

incremental algorithms," Acta Informatica, vol. 27, no. 7, pp. 665-683, 1990.
[130] D.R. White and D. Smith, "Flow Centralities: Do they Predict the Economic Rise

and Fall of States?," in INSNA Sunbelt Conference, San Diego, CA, 1988.
[131] K. Jiang, D. Ediger, and D. A. Bader, "Generalizing k-Betweenness Centrality

Using Short Paths and a Parallel Multithreaded Implementation," in International
Conference on Parallel Processing (ICPP), Vienna, Austria, 2009, pp. 542 - 549.

[132] D. Ediger et al., "Massive Social Network Analysis: Mining Twitter for Social
Good," in The 39th International Conference on Parallel Processing (ICPP), San

 309

Diego, CA, USA, 2010, pp. 583-593.
[133] D. Gkorou, J. Pouwelse, and D. Epema, "Efficient Approximate Computation of

Betweenness Centrality," in Advanced School for Computing and Imaging (ASCI),
Veldhoven, Netherlands, 2010.

[134] D. Gkorou, J. Pouwelse, and D. Epema, "Betweenness Centrality Approximations
for an Internet Deployed P2P Reputation System," in International Parallel and
Distributed Processing Symposium Workshops (HotP2P), 2011, pp. 1627 - 1634.

[135] S. Gregory, "Local Betweenness for Finding Communities in Networks," Computer
Science, University of Bristol, Bristol, UK, Technical Report 2008.

[136] F. Salvetti and S. Srinivasan, "Local Flow Betweenness Centrality for Clustering
Community Graphs," in 1st Workshop on Internet and Network Economics
(WINE), vol. 3828, Hong Kong, 2005, pp. 531-544.

[137] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, "Defining and
identifying communities in networks," PNAS, vol. 101, no. 9, pp. 2658–2663,
March 2004.

[138] S. Gregory, "An Algorithm to Find Overlapping Community Structure in
Networks," in Knowledge Discovery in Databases: PKDD, vol. 4702, 2007, pp. 91-
102.

[139] S. Gregory, "A Fast Algorithm to Find Overlapping Communities in Networks,"
Machine Learning and Knowledge Discovery in Databases, vol. 5211, pp. 408-423,
2008.

[140] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. (2003) The JUNG (Java
Universal Network/Graph) Framework. [Online]. http://jung.sourceforge.net/doc/

[141] S. Nanda and D. Kotz, "Localized Bridging Centrality for Distributed Network
Analysis," in ICCCN, 2008.

[142] M. Kas, I. Korpeoglu, and E. Karasan, "OLSR-aware channel access scheduling in
wireless mesh networks," Journal of Parallel and Distributed Computing, vol. 71,
no. 9, pp. 1225-1235, September 2011, Special Issue on Advancement of Research
in Wireless Access and Mobile Systems.

[143] M. Kas, I. Korpeoglu, and E. Karasan, "OLSR-aware distributed channel access
scheduling for wireless mesh networks," in Wireless Communications and
Networking Conference (WCNC), Budapest, Hungary, 2009, pp. 1-6,
DOI:10.1109/WCNC.2009.4917841.

[144] IEEE Standards, "Draft of Wireless LAN Medium Access Control (MAC) and
Phyical Layer Specifications," Institute of Electrical and Electronics Engineers,
802.11, 1997.

[145] M. Kas, I. Korpeoglu, and E. Karasan, "Utilization-based dynamic scheduling
algorithm for wireless mesh networks," EURASIP Journal on Wireless
Communications and Networking, vol. 2010, p. 312828, October 2010, Open
Access: http://jwcn.eurasipjournals.com/content/2010/1/312828.

 310

[146] IEEE Standards, "IEEE Standard for Local and Metropolitan Area Networks Part
16: Air Interface for Fixed Broadband Wireless Access Systems," Institute of
Electrical and Electronics Engineers, 2004.

[147] IEEE 802.11s Task Group, "Draft Amendment to Standard for Information
Technology - Telecommunications and Information Exchange Between Systems -
LAN/MAN Specific Requirements- Part 11: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications:Amendment: ESS Mesh,"
Institute of Electrical and Electronics Engineers, 2006.

[148] R. Albert and A. L. Barabasi, "Statistical mechanics of complex networks,"
REVIEWS OF MODERN PHYSICS, vol. 74, no. 1, pp. 47-97, January 2002.

[149] R. K. Merton, "The Matthew Effect in Science," Science, vol. 159, no. 3810, pp.
56-63, 1968.

[150] E. N. Gilbert, "Random graphs," Ann. Math. Statist., vol. 30, pp. 1141-1144, 1959.
[151] M.D. Humphries and K. Gurney, "Network ‘Small-World-Ness’: A Quantitative

Method for Determining Canonical Network Equivalence," PLoS One, vol. 3, no.
4, 2008.

[152] J.W. Bohland and A.A. Minai, "Efficient associative memory using small-world
architecture," Neurocomputing, pp. 489-496, 2001.

[153] F. Jansson, "Pitfalls in Spatial Modelling of Ethnocentrism: A Simulation Analysis
of the Model of Hammond and Axelrod," Journal of Artificial Societies and Social
Simulation, vol. 16, no. 3, p. 2, June 2013.

[154] D.H. Zanette, "Critical behavior of propagation on small-world networks,"
February 2008.

[155] H. Zhao, J. Zhou, A. Zhang, G. Su, and Y. Zhang, "Self-organizing Ising model of
artificial financial markets with small-world network topology," Europhysics Letter
(EPL), vol. 101, no. 1, December 2012.

[156] A Ramezanpour and V. Karimipour, "Simple models of small world networks with
directed links," Department of Physics, Sharif University of Technology, Tehran,
Iran, Tech Report 2008.

[157] J. Xu, "Markov Chain Small World Model with Asymmetric Transition
Probabilities," Electronic Journal of Linear Algebra, vol. 17, pp. 616-636,
November 2008.

[158] W. Liao et al., "Small-world directed networks in the human brain: multivariate
Granger causality analysis of resting-state fMRI," Neuroimage, vol. 54, no. 4, pp.
2683-94, February 2011.

[159] C.P. Zhu, S.J. Xiong, Y.J. Tian, N. Li, and K.S. Jiang, "Scaling of Directed
Dynamical Small-World Networks with Random Responses," Physical Review
Letters, vol. 92, no. 24, pp. 218702:1-4, May 2004.

[160] L. Isella et al., "What's in a crowd? Analysis of face-to-face behavioral networks,"
Journal of Theoretical Biology, vol. 271, no. 1, pp. 166–180, February 2011.

 311

[161] Cornell University. (2011, January) Cornell University Library (arXiv). [Online].
http://arxiv.org/

[162] (2003, August) SIGKDD CUP. [Online].
http://www.sigkdd.org/kdd2003/kddcup.html

[163] OpenNap. (2011, November) OpenNap: Open Source Napster Server. [Online].
http://opennap.sourceforge.net/

[164] GraphStream Team. (2010) GraphStream. [Online]. http://graphstream-project.org/
[165] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, "Graphstream: A tool for bridging

the gap between complex systems and dynamic graphs," in Satellite Conference
within the 4th European Conference on Complex Systems, Dresden, Germany,
2007, pp. 1-10.

[166] A. Renyi and P. Erdos, "On Random Graphs," Publicationes Mathematicae, vol. 6,
1959.

[167] D.J. Watts and S.H. Strogatz, "Collective Dynamics of ‘Small-World’ Networks,"
Nature, vol. 393, 1998.

[168] Cosma Rohilla Shalizi, M.E.J. Newman Aaron Clauset, "Power-Law Distributions
in Empirical Data," 2009.

[169] M. Kas, "Structures and Statistics of Citation Networks," Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, MS Thesis 2011.

[170] C. Moore and M. E. J. Newman A. Clauset, "On the Frequency of Severe Terrorist
Attacks," vol. 51, no. 58, 2007.

[171] B. M. Hill, "A Simple General Approach to Inference about the Tail of a
Distribution," vol. 3, no. 5, 1975.

[172] Oracle. (2011) JAVA API. [Online].
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html

[173] StackExchange. (2012, July) System.gc() in Java. [Online].
http://stackoverflow.com/questions/66540/system-gc-in-java

[174] M. E. J. Newman, "Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality.," Physical Review E, vol. 64, no. 1, p. 016132, 2001.

[175] I. Gorodezky and Y. Tang, "The funneling phenomenon in a coauthorship
network," Center for Applied Mathematics (CAM), Cornell University, Ithaca, NY,
Project Report 2008.

[176] K. Norlen, G. Lucas, M. Gebbie, and J. Chuang, "EVA: Extraction, visualization
and analysis of the telecommunications and media ownership network," in
International Telecommunications Society 14th Biennial Conference, 2002.

[177] J. Leskovec, J. Kleinberg, and C. Faloutsos, "Graph evolution: Densification and
shrinking diameters.," ACM Trans. KDD, vol. 1, no. 2, pp. 1-41, 2007.

[178] K. Stephenson and M. Zelen, "Rethinking centrality: Methods and examples,"
Social Networks, vol. 11, no. 1, pp. 1--37, 1989.

 312

