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Abstract. In this paper, we investigate how location access patterns influence
the re-identification of seemingly anonymous data. In the real world, individu-
als visit different locations that gather similar information. For instance, multiple
hospitals collect health information on the same patient. To protect anonymity
for research purposes, hospitals share sensitive data, such as DNA sequences,
stripped of explicit identifiers. Separately, for administrative functions, identified
data, stripped of DNA, is made available. On a hospital by hospital basis, each
pair of DNA and identified databases appears unlinkable, however, links can be
established when multiple locations’ database are studied. This problem, known
as trail re-identification, is a generalized phenomenon and occurs because an in-
dividual’s location access pattern can be matched across the shared databases.
Data holders can not exchange data to find and suppress trails that would be re-
identified. Thus, it is important to assess the re-identification risk in a system in
order to develop techniques to mitigate it. In this research, we evaluate several
real world datasets and observe trail re-identification is related to the number of
people to places. To study this phenomenon in more detail, we develop a gen-
erative model for location access patterns that simulates observed behavior. We
evaluate trail re-identification risk in a range of simulated patterns and our find-
ings suggest that the skew of the distribution of people to places is one of the
main factors that drives trail re-identification.

1 Introduction

DNA sequences are becoming an integral part of electronic patient medical records
[1, 2]. Collections of detailed genomic data that are tied to clinical information are
poised to yield significant healthcare breakthroughs [3], ranging from personalized
medicine to drug discovery. However to share person-specific genomic data collections
for research, data holders must adhere to legal regulations, such the Privacy Rule of
the Health Insurance Portability and Accountability Act [4]. Though an individual’s
genome is unique, a database of DNA records, with no accompanying explicit demo-
graphic information or identifiers included, appears anonymous. But patients leave in-
formation behind at multiple institutions and the collections are autonomously con-
trolled. As a result, the location-access patterns, or trails, of an individuals DNA can
be extracted from shared databases. DNA trails are not necessarily re-identifiable, but
publicly available information, such as hospital discharge databases, are available and



reveal identified individuals’ trails. Uniqueness of an individuals discharge and DNA
trails leads to re-identification.

Healthcare is one realm in which trail re-identification poses a privacy threat [5],
but trails arise in many other environments [6, 7]. Though domains change the goal re-
mains constant: share data such that the identity of sensitive information, can not be
linked to the individual from which it was derived. Privacy protection methods have
been proposed and adopted, such as [8] and [9], which advocate the removal or encryp-
tion of explicit identifiers associated with sensitive data. However, such methods do not
prevent trail re-identification since the identities of the individuals are available in other
shared or public databases.

Trail re-identification is a real concern. Inability to address the problem will prevent
organizations, such as biomedical data holders, from sharing data [3,10]. As an alterna-
tive to ad hoc protection methods, we propose formally evaluating the re-identification
risk of a set of database entries prior to release.1 The actual number of re-identifications
can be measured as the number of shared database entries that are re-identifiable. Yet,
when data can not be shared prior to re-identification evaluation, we must approxi-
mate the number of re-identifications that can be made. To do so we need to isolate
the processes that influence re-identification, such as 1) the data generating process
(e.g. How do people visit places?) and 2) the re-identification process (e.g. How are
trails linked?) [12]. Then, for a given method of re-identification, substitute charac-
teristics of location access patterns, as opposed to the actual patterns, to estimate of
re-identification risk.

In this paper, we model the underlying processes governing trail re-identification
to evaluate risk in a distributed environment. We have two goals. First, we tie together
results from our previous case studies to conjecture how the number of people and lo-
cations in a system relates to the number of re-identifications that can be made. Second,
we step back from specific cases and develop a statistical model to examine why differ-
ent populations have varying degrees of re-identification in a distributed environment.
Using this model, we then simulate several fundamental location visit strategies em-
ployed by individuals in the real world and assess the re-identification risk they entail.

The remainder of this paper is organized as follows. In the following section we re-
view the formal basis and methods for trail re-identification. The methods are amenable
to combinatoric proof, which suggests that the number of re-identifications scales with
the number of subjects and locations. However, with real world populations, we demon-
strate that such scaling does not exist. In addition, we show the power law feature of
online environments, as well as how highskew populations are generated. Next, we sim-
ulate and perform linkage analysis on several types of simulated datasets corresponding
to a range of distributions. Then, we investigate the relationship of trail re-identification
risk to information theoretic principles. Finally, this work addresses limitations and ex-
tensions for future research.

1 Provable solutions to guarantee trails can not be re-identified exist [11], but they require the
use of third parties, which are not always practical due to trust or regulatory constraints.
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2 Background

In this section we survey related research and provide an overview of several basic
concepts for the trail re-identification problem.

2.1 Related Work

In the past, it was generally believed that person-specific data collections could be
shared somewhat freely, provided none of the features of the data included explicit iden-
tifiers, such as name, address, or Social Security number. However, an increasing num-
ber of data detective-like investigations have revealed that collections of “de-identified”
data, derived from ad hoc protection models, can often be linked to other collections
that do include explicit identifiers to uniquely, and correctly, re-identify disclosed infor-
mation by personal name [13–17]. Fields appearing in both de-identified and identified
tables can link the two, thereby relating names to the subjects of the de-identified data.
For example, Sweeney’s analysis of the fields{date of birth, gender, 5-digit zip code},
which, until recently, commonly appeared in both de-identified databases and publicly
available identified data, such as voter registration lists, uniquely represented approxi-
mately 87% of the U.S. population [16].

Trail re-identification [5, 7] extends traditional re-identification and illustrates how
the pattern of locations people visit, or trails, can be used for linkage. First, we provide
an informal view of trail re-identification, which will be followed by a more formal
presentation of the problem. The main premise of trail re-identification is based upon
the observation that people visit different sets of locations where they can, and do, leave
behind similar pieces of de-identified information. The de-identified data can consist of
only one or very few fields. Each location visited collects and, subsequently, shares de-
identified data on people who visited their location. In addition, locations also collect
and share, in separate releases devoid of de-identified data, explicitly identified data
(i.e. name, residential address, etc.), thereby naming some people. Individually, a single
locations releases appear unrelatable, and thus identity and sensitive information appear
unlinkable. However, when multiple locations share their respective data, this allows for
trails, a characterization of the locations that an individual visited, to be constructed.
Similar patterns in the trails of de-identified and identified data can then be used for
linkage purposes.

The trail re-identification attack is related to other attack that have been studied in
anonymous communications, such as the interaction attack [18,19].

2.2 Elements of a Formal Re-identification Model

We now describe the problem in a more formal manner. LetL be a set of locations
collecting data. At each location, data is organized as a database, which we model as a
table of rows and columns. Each column corresponds to an attribute, which is a semantic
category of information that refers to people, machines, or other entities. Each row
contains attribute values specific to a person, machine, or other entity. A database is
represented byτ (A1, A2, . . . , Ap), where the set of attributes isAτ = {A1, A2, . . . ,
Ap} and each attribute is associated with its own domain of specific values. Each row
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in the database is ap-tuple, which we represent in vector form[a1, . . . , ap], such that
each valueai is in the domain of attributeAi. We define the size of the database as the
number of tuples and use cardinality, denoted with|τ |.

A databaseτ is said to beidentified if Aτ includes explicit identifying attributes,
such as name or residential address, or attributes known to be directly linkable to ex-
plicit identifiers. If τ is not identified, then it said to bede-identified. Data holding
locations attempt to protect the anonymity of sensitive data by stripping explicitly iden-
tifying attributes from sensitive data. In doing so, locations partition identified and de-
identified data and make separate database disclosures. As such, in our model, each data
holder releases a two-table vertical partition of its internal data by splittingτ into two
tablesψ(A1, . . . , Ai) andδ(Ai+1, . . . , Aj), with attributesAψ ⊂ Aτ andAδ ⊂ Aτ .
For illustration, several tables are depicted in Figure 1.

2.3 The Trail Re-Identification Problem

Given the tables of a particular type (e.g. the sensitive data tables), we can construct
a matrixX that is referred to as a trail matrix. The trail matrixX is the join of all
locations’ tables over a set of related attributes, such as when we trace an individuals
DNA sequence from one location to another.2 This matrix has a row for each distinct
data element and|L| columns, one for each location. Values in the matrix are drawn
from {1, 0, ∗}. A “1” a cell denotes the data element for the row definitely visited the
location corresponding to the column, while a “0” denotes a definite non-visit. A “*” is
an ambiguous value and indicates that we are unsure if the data element was collected
at the location. We useX[x, :] to denote the trail of data elementx in trail matrixX.

The basis behind trail re-identification is that there exist two different types of data
collected at the set of locations in the environment. Thus two trail matrices,X andY ,
can be constructed, and it assumed that both trail matrices are drawn from the same
population of entities. An example of trail matrices are depicted in Table 2(a).

Fig. 1.Sample disclosures for four locations.

2 This join can be constructed from traditional record linkage algorithms for tables with common
attributes [20,21].
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The main distinguishing feature of trail re-identification algorithms is their charac-
terization of data completeness. Trail matrices are said to beunreserved, if an entity’s
data is always collected and disclosed from a location. In some situations, a location can
collect data of both types, but it undercollects (or underreports) data of one type (i.e.
the data is not in the location’s table). In this case, trail matrixX is said to bereserved
to Y if the trail of each entity in matrixX, X[x, :] can be transformed into the entity’s
correspondingY [y, :] in matrix Y by replacing only *’s with 0’s and 1’s. When this
transformation can be performed,X[x, :] is said to be a subtrail (represented with the
� symbol) ofY [y, :]. Similarly, yY is said to be the supertrail ofX[x, :], or Y [y, :] �
X[x, :]. Figure 2(a) provides an example of trail matrices whereX is reserved to matrix
Y . NoticeY [actg, :] � X[Alice, :] andY [actg, :] � X[Charlie, :].

(a) Trail MatrixY is reserved toX. (b) Trail Re-identification.

Fig. 2. (a) Trail matrices built from Fig. 1. (b)Bob is re-identified toctga in the first iteration.

Recall, the goal of trail re-identification is to match the rows of two trail matrices to
re-identify sensitive data to identity. In related research, [5, 7] introduced an algorithm
called REIDIT (RE-Identification of Data In Trails) to perform such a task, such that
every match is guaranteed to be a correct re-identification. Informally, REIDIT works
as follows. First, we construct a|Y | × |M | matrix, calledM , such that cellM [i, j] = 1
if iY � jX , and 0 otherwise. When we find a row or column that has only one cell
M [i, j] = 1, we re-identify the corresponding data elements in the cell. We iterate this
process until no more matches can be made. Figure 2(b) illustrates the initial matrix
for Figure 2(a) and the first trail re-identification ofctga to Bob is made. In the next
iterationactgwill be re-identified toAlice, and so on.

3 Empirical Evidence: Lesson Learned

We assessed the feasibility of trail re-identification in several different domains. The
first population we studied consisted of individuals visiting physical hospitals for treat-
ment. The second population consisted of individuals visiting sites on the World Wide
Web (i.e. a virtual world) for performing various functions, such as purchasing goods.

Healthcare Case Study. We analyzed the trails of DNA database records in a dis-
tributed healthcare environment. The observations were hospital discharge data for the
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state of Illinois from 1990 to 1997 [22]. Trails were derived for eight different patient
populations, each with a distinctive DNA-based disorder. In these populations, the enti-
ties were hospital patients and the locations were hospitals. The size of the populations
ranged from 4 to 8,000 patients over 8 to 200 hospitals and the distribution of individ-
uals to hospitals varies from uniform to approximately Gaussian, which are relatively
low skew.

Internet Case Study. We studied the trails of IP addresses in a distributed online
environment. The dataset used in this study was compiled by the Homenet project at
Carnegie Mellon University, who provide families in the Pittsburgh area with Internet
services in exchange for the monitoring and recording of the families’ online services
and transactions [23]. We studied URL access data collected over a two-month period
that included 86 households and 144 individuals. Each individual was provided with a
unique login and password for fine-grained monitoring. Overall, approximately 5,000
distinct website domains and 66,000 distinct pages were accessed. We analyzed the
traffic at each domain with respect to the number of distinct visitors and discovered a
generalized Zipf distribution, which represents high skew.

In both case studies, we found that re-identification rates correlate with the average
number of people visiting a location. When we investigated this relationship in more
detail, we found particular types of locations influence trail re-identification. For exam-
ple, we ranked the popularity of each location by the number of distinct subjects visiting
the location. When we measured trail re-identification from the least popular location
to a location with a specific popularity, we found the re-identification rate correlated
the average number of people per location. The result is shown in Figure 3, where we
depict re-identification rates for three different populations. In Figure 3, the term “dis-
covered” corresponds to the number of individauls’ data that are observed given the set
of locations that trails are constructed from. As we increase the number of locations
considered, we increase the number of individuals that have their data discovered, but
not necessarily re-identified.

The first two populations are derived from the healthcare case study. The first corre-
sponds to a population afflicted with cystic fibrosis (CF) and the second to a population
afflicted with phenylketonuria (PK). These two cases establish a comparison between
the feasibility of trail re-identification on a population in which the number of subjects
per location is relatively large (CF - approximately 6.60), with a population in which
the average is closer to a single subject per location (PK - approximately 1.35). The
third population corresponds to the online Homenet dataset, where the ratio of subjects
per location is relatively small (approximately 0.017).

We observe that as the ratio of subjects per location grows large, such as in the CF
dataset shown in Figure 3(a), we find evidence of an exponential relation between the
number of locations considered (theX axis), and the number of people that are trail re-
identifiable (theY axis). As the ratio becomes negligible, as observed in the Homenet
dataset in Figure 3(c), we find evidence of a logarithmic relation between the number
of locations considered and the number of trail re-identifications. Furthermore, the PK
dataset in Figure 3(b) supports this trend; in this case the ratio of people to locations
is approximately 1, and we find evidence of a linear relation between the number of
locations considered and the number of trail re-identifications.

6



(a) CF (b) PK (c) Homenet

Fig. 3.Trail re-identification in unreserved systems for case studies. Number of locations increase
from least-visited to most-visited.

The evidence from the case studies suggests that different types of location access
patterns have an effect on trail re-identification. In the following section we study the
degree to which specific types of access distributions influence re-identification.

4 Simulation Experiments and Results

There are many aspects of location-based information which influence trail re-identifi-
cation. The main contributing components include the number of subjects, the number
of locations, the distribution of subjects to locations, as well as the parameters con-
trolling said distributions. In this research, we concentrate on the number of locations
and the distributions guiding subject access to these locations. For our analysis, we fix
the number of subjects to 1000. We simulate uniform and high skew distributions of
subjects per location. We simulate both unreserved systems, i.e. neither trail matrix has
*’s, and reserved systems, where one trail matrix has *’s. From an operational point
of view, in the simulation of unreserved systems, we generate two equivalent trail ma-
trices. In the simulation of reserved systems, instead, we generate trail matrices for an
unreserved environment, and then we change all 0’s in a matrix to *’s. For each distri-
bution type and parameterization, these populations are allocations to sets of locations
over the range of 3 to 40 locations.

Uniform Simulation. In this setting, subjects visit locations with uniform probability.
We control the average number of subjects per locations, by specifying the probabil-
ity that a subject visits each location,p ∈ [0.1]. This sampling mechanism is from a
location perspective. From a subject perspective, however, given that subjects act in-
dependently and there is no difference among locations, each subject’s trail is a string
of 0s and 1s, where the probability of observing a 1 at each location is also given by
p ∈ [0, 1]. We perform different simulations by fixingp on a grid in.3

3 In theory, any number of points on the[0, 1] interval will suffice.
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Zipf Simulation. In this setting, subjects visit locations according to Zipf distributions,
which lead to the desired high skew in the location access patterns. The set of available
locations is denoted byL, and the population of subjects visiting those locations is
denoted byS. The expected number of subjects who visit locationli ∈ L is equal to
the mean of the corresponding distribution, e.g., equals|S| · r−αi , whereri is the rank
of li’s popularity, andα is a real number greater than zero. Whenα equals 1, then
the distribution is a true Zipf and whenα < 1 the Zipf distribution is said to be in a
generalized form. Given the high skew of the distribution, the log-log plot of “number
of visitors” to “location rank” is linear, while theα coefficient serves as a dampening
factor on the slope of the fitted curve. As with the uniform distribution, the Zipf is
studied by varying the parameterα over the same interval[0, 1], and sample points, as
thep parameter of the uniform distribution. Note that the exponent of a Zipf distribution
is allowed to vary in the larger interval,α ∈ (0,∞), with α = 0 corresponding to the
case of a Zipf distribution that degenerates into a Uniform distribution, andα = 1
corresponding to the case of moderate skew. Thus, our choice of studying the exponent
in the smaller interval[0, 1] allows us to explore how the re-identification risk changes
as location access patterns smoothly change from uniform to skewed. An exponent
larger than one would not add much to our study, beside adding coverage of different
degrees of skewness, hence it is reasonable to truncate the range ofα at1. For example,
the empirical evidence we presented in Section 3 supports (estimated) Zipf exponents
as large asα = 0.6. For each tested data point, such as〈|L| = 10, p = 0.3〉, we generate
100 populations. Populations that are guided by the Zipf distribution are generated using
the formula described above.

4.1 Distribution Effect on Re-identification

The resulting 10-point plots for unreserved and reserved systems are depicted in Figures
4 and 5. In these plots the mean percentage and plus/minus one standard deviation4 for
the 100 simulated populations are depicted. Thex-axis corresponds to the parameter of
the distribution in question and they-axis corresponds to values of the mean percent of
the population that is trail re-identified.

From the re-identification plots, though there is no direct way to compare the pa-
rameterizations of the uniform and Zipf distribution, there are several interesting ob-
servations that can be made. First with respect to both the unreserved and reserved
systems, it is apparent that the uniform distribution consistently yields a larger number
of re-identifications than the Zipf distribution. This can be seen by comparing the re-
identification maximum, or peaks, in the left and right panels. Consider Figure 4, for
example, in a situation with 10 locations, we re-identify a maximum of approximately
40% of the subjects distributed uniformly (which occurs whenp = 0.5), as opposed to
around 16% of the subjects that are distributed in Zipf high skew (which occurs when
α = 0.4). This finding is consistent across all systems as the number of the locations in
consideration is increased.

Second, we consider a less readily observable feature that directly relates to the
general success of re-identification, given a specific distribution for location access pat-

4 In Figure 4, the error bars are too small to be visible.
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(a) Uniform Distribution (b) Zipf Distribution

Fig. 4.Re-identification of simulated unreserved location access distributions.

(a) Uniform Distribution (b) Zipf Distribution

Fig. 5.Re-identification of simulated reserved location access distributions.

terns. To compare distribution archetypes, such as uniform vs. Zipf, we measure the
area under the re-identification curve. This is calculated as the total area under the 10-
point mean re-identification curve (average number of re-identifications in 100 simu-
lated populations). The results of this calculation with respect to distributions and al-
gorithm results are presented in Figures 6(a) and 6(b). Though the uniform distribution
always yields the larger maximum number of re-identifications, the Zipf distribution is
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almost always the more linkable when considering all parameterizations. This is ob-
viously so in the case of the reserved system, where Figure 6(b) shows that the Zipf
always dominates. Similarly, in an unreserved system, Zipf is both the initial and in-
evitable dominant. However, this analysis reveals an unanticipated and intriguing find-
ing. In certain ranges, the uniform distribution is dominant to the Zipf! In Figure 6(a),
this finding is observed between approximately 8 and 18 locations.

The flip in distribution linkage capability dominance occurs for two reasons. First,
Zipf dominates when there are not many locations in consideration because it is more
difficult to realize complete vectors of all 1’s. Second, Zipf dominates as the number of
locations increase because it is easier for lesser accessed locations, which is what the
newly considered locations are, to convert an unlikely trail into an extremely unlikely
trail.

(a) Unreserved (b) Reserved

Fig. 6.Area under the mean re-identification curves for simulated populations.

4.2 Information and Re-Identifiability of a Distributed System

In this section we relate the re-identifiability of trails in a distributed system to the
Shannon entropy of the set of trails. [24,25]

Each trail is a Boolean vector of 0’s and 1’s, and, as such, we can compute its
entropy as measure of information. If we consider all the possible trails with a given in-
formation score, we note that the more entropic a trail is, i.e., the more random looking
an individual’s location access pattern is, the larger is the set of trails that relate to it.
Therefore, entropy is a measure that inversely relates to a notion of distinguishability of
one trails from others. To what extent does this notion of distinguishability relate to the
notion of distinguishability (via uniqueness and re-identifiability) we studied in the pre-
vious section? In other words, there are many random looking location access patterns
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with high entropy, and fewer random looking location access patterns with low entropy,
and we are interested in assessing to what extent we can relate the indistinguishability
of trails according to their entropy score with the indistinguishability of trails from the
standpoint of existing re-identification algorithms. If so, this would suggest that a low
entropy systems leads to a low risk of re-identification.

For our purposes, let us assume we have the trail matrix that maps a population of
subjectsS to a set of locationsL. Also, let fl be the proportion of subjects inS that
visit locationl. Then, the entropy for locationl,H(l), equals

H(l) = −fl · log
(
fl

)
−(1− fl) · log

(
1− fl

)
.

Under the assumption that individuals decide whether to visit each location indepen-
dently of other locations, the entropy of the set of location access patterns of the popu-
lationS to the set of available locationsL is given byH(L) =

∑|L|
l=1H(l).

(a) Uniform Distribution (b) Zipf Distribution

Fig. 7.Entropy plots corresponding to parameter values in the left and right panels of Figure 4.

In order to assess whether entropy and re-identifiability are capturing the same no-
tion of distinguishability we need to compute a measure of correlation among the cor-
responding scores, as the number of locations changes. In an additional set of exper-
iments, we observed that the entropy curves display a behavior that is similar to that
of the percentage of people re-identified, displayed in Figures 4 and 5. In Figure 7 we
report the results for the unreserved case.

Here we perform a formal correlation study of these two sets of behaviors by in-
troducing a distance metric,σ, between two curves, which measures the absolute dif-
ference of their areas modulo a scaling factor. The scaling factor is proportional to the
ratio between the peaks of the two curves. Let us denote the entropy curve byE(i),

11



and the actual linkage curve byR(i), wherei is a point in the grid,G, for the in-
terval [0, 1] we used to generate the re-identification curves in Figures 4 and 5. Let
max(R) = R(i∗) wherei∗ = arg max{R(i), i ∈ G}, and letmax(E) = E(j∗) where
j∗ = arg max{R(j), j ∈ G}. The scaling factor is thenmax(R)

max(E) , and the distance met-
ric, σ, is defined as follows,

σ(E,R) =
10∑
i=1

σi(E,R) =
10∑
i=1

∣∣ E(i)
max(R)
max(E)

−R(i)
∣∣ .

Note that wheneveri∗ = j∗, i.e., whenever the entropy and re-identification curves
peak at the same pointi∗ = j∗ on the gridG, it follows thatσi(E,R) = 0. That is,

σi(E,R) =
∣∣ E(i)

max(R)
max(E)

−R(i)
∣∣ =

∣∣ E(i∗)
R(i∗)
E(i∗)

−R(i∗)
∣∣= 0.

The resulting information from the shape metric is summarized in Figure 8. As val-
ues for shape tends toward 0, the curves converge. As expected, the curves tend toward
convergence as the number of locations increase. Yet after convergence begins to come
into the line of sight, a counter-intuitive phenomenon occurs. Specifically, after a cer-
tain number of locations are considered for a particular distribution, theE andR curves
begin to diverge from each other. This is an artifact of the limits of re-identifiability. No-
tice that in Figure 4, when a lesser number of locations are considered the linkage curve
has a well defined peak. This peak corresponds to the parameter at which the distribu-
tion is most amenable to linkage. But this peak is only discernible when less than all of
the trails are linked. Thus, when the system is fully linked at multiple parameterizations
of the distribution, the linkage curve plateaus at 100% at its peak, while the entropy
continues to be well defined. This limit to linkage causes the observed linkage curve to
be improperly matched to the entropy of the system. There is no divergence observed,
but rather a limit to independent use of the entropy metric.

(a) Unreserved (b) Reserved

Fig. 8.Shape metric for similarity in simulated distributions and entropy.
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The shape metric allows for the discovery of another notable feature that captures
how the distribution type influence different trail linkage algorithms. Note that in the
unreserved system, the uniform distribution converges earlier than the Zipf distribution.
In contrast, when subject to the reserved system, the uniform distribution converges
after the Zipf distribution. Ah, a paradox! At first consideration, one would expect that
one distribution type, either uniform or Zipf, would converge earlier in both algorithms.
However, this paradox results from how trails are generated under the two distributions
as well as how the re-identification method leverages trails. First, consider the linkage
algorithms. In an unreserved system, the re-identification method looks for a unique
bit pattern because there are no *’s. So both 1’s and 0’s are contributing evenly to
the re-identification process. This is why the re-identification curve for the uniform
distribution is balanced and has no shift around the midpoint ofp . In other words, the
percent re-identified is approximately equivalent for +/-x around the parameterization
of p = 0.5. With respect to an reserved environment though, a * value in a trail functions
as fuzzy bit, since it can be used as either a 0 or a 1. Thus, asp tends toward 1, trails
with a lesser number of unambiguous values become more difficult to re-identify. As a
consequence, the re-identification curve shifts away from high values ofp which allow
for trails with large amounts of 1’s. The Zipf distribution should be hindered by this
problem as well, but because it allows for locations to have different entropy values,
the Zipf reveals more re-identifications. Thus, the total quantity of re-identifications the
Zipf is capable of tends to be greater than the uniform. If one wanted to validate this
claim, it is simple to observe that the average number of re-identifications, but not the
maximum, for the Zipf is greater than the uniform.

5 Discussion

The above analysis provide a wealth of insight into the effects of location access patterns
on the degree to which trail re-identification can be achieved in a distributed system.
It also provides intuition into the relation between re-identifiability of a set of trails
and the information they carry, as measured by the corresponding Shannon entropy.
In this section we briefly address some findings of particular interest. After discussing
revelations from our investigations, we consider some of the limitations and possible
extensions of our framework. We conclude by presenting a conjecture that emerges
from consideration of the empirical evidence we presented in Section 3.

5.1 Location Access Patterns and Re-identification

One of the more interesting findings of our experiments is that high-skew location ac-
cess patterns yield higheroverall re-identification when compared with low-skew loca-
tion access patterns. This result holds despite the fact that low-skew distributions lead
to a larger number ofpeakre-identifications, with respect to the parameter underlying
the distribution of location access patterns, as well as for any given number of locations
in the distributed environment. Further, this result holds in both situations where there
is certainty about the information collected and released at the various locations, i.e. the

13



unreserved case, and in situations where there is uncertainty about the information col-
lected and released at the various locations. This finding has immediate implications for
the design of solutions to limit trail re-identification in disclosed databases. For exam-
ple, one solution we could employ is to entrust an independent third party to identify the
set of locations that contribute the most to the skewness of location access patterns, and
prevent them from releasing some, or all, of their de-identified data. By doing so, we do
not need to provide the third party with data per se, as is the case in prior solutions [11],
but rather essential components of the distribution of people to places. Nonetheless, risk
analysis is not a substitute for formal privacy protection to prevent trail re-identification,
which can be subject to rigorous proof. Re-identification risk provides a proxy by which
we can develop provable protection models.

Further, we find there is a strong correlation between the entropy of the system and
re-identification. In particular, the lower the entropy in a the set of trails, the more indi-
vidual trails can be re-identified. This correlation is stronger for distributed systems with
more locations, but hold for smaller systems as well. With respect to minimizing risk,
our experiments suggest that in order to predict the number of trail re-identifications
that can be made, the distribution of location access patterns, or the entropy, should
be modelled. In pursuing these strategies, it becomes crucial that the information which
released is reliable. In fact, reliability of the information bears relevance to the expected
quality of the estimates of both the parameters underlying the distribution of location
access patterns, and the entropy of the set of trails of the population of interest.

5.2 Limitations and Extensions

An aspect of our analysis that requires further attention is the correlation between the
entropy of a set of trails and the number of re-identifications that can be made. However
intriguing, the fact that low entropy systems correlate with high re-identifiability, our
experiments offer little intuition into what mechanism may link the two phenomena in a
causal manner. We cannot explain “in what sense” low entropy location access patterns
explain re-identifiability.

Though this research provides a theoretical investigation into how particular dis-
tributions of location access patterns influence trail re-identification, there are certain
caveats of the simulation design which limit the extension of these results. First, the en-
tropy computations are carried out under the assumption that individuals decide whether
to visit each location independently. As a consequence, our simulations do not com-
pletely replicate the behavior of real world populations. This is because in the real
world most entities are not random agents visiting locations independently. Rather they
can play an active role in choosing which locations to visit. This manifests in the form
of correlations between locations in the patterns of access. As a consequence of this
dependence, the resulting location access patterns can be different than those obtained
under the independent locations assumption. For example, individuals may tend to visit
multiple locations in co-location patterns. As a result of such location access behavior,
the re-identification capability of the synthetic populations used in this research may be
inflated.

Second, the distributions used in this study consist of homogenous populations, such
that location access to all locations adheres to a single distribution. However, we should
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ask, “What is the effect of mixture models of populations on trail re-identification?”
For instance, to what extent is re-identification facilitated when half the population is
uniformly distributed while the other half is Zipf distributed? It is possible to speculate
on the results, but it is a complex problem that is difficult to reason. As a result, another
feasible direction for research into the fundamentals of trail re-identification is to study
the effect of mixture models of distributions on re-identification.

5.3 A Conjecture: Re-identification Risk Through Subject-Location Ratio

The empirical evidence presented in Section 3 suggested we explore how different dis-
tributions of individuals’ location access patterns influences the number of re-identi-
fications in a distributed environment. However, in the case studies it is the ratio of
subjects per location that correlates strongly with the number of re-identifications. In
particular we observed that: (i) as the ratio of subjects per location grows large, we find
evidence of an exponential relation between the number of locations considered and
the number of people that are trail re-identifiable, in the CF dataset; (ii) as the ratio
becomes negligible, we find evidence of a logarithmic relation between the number of
locations considered and the number of trail re-identifications, in the Homenet dataset;
and (iii) when the ratio of subjects per location is approximately 1, we find evidence
of a linear relation between the number of locations considered and the number of trail
re-identifications, in the PK dataset.

The evidence from the case studies also suggests that the number of re-identifications
can be explained by a simpler relation centered around the ratio of subjects per location.
This may be due to statistical limiting phenomena that occur in the re-identification of
individuals in a distributed environment. This will require further investigation. Specif-
ically, if we denote the ratio of subjects per location with|S||L| , we conjecture that the

number of re-identifications,R, can be expressed asR ∝ f(S,L)
|S|
|L| . Therefore, if the

exponent is greater than, equal to, or less than 1, the function may replicate the observed
shape of the relations shown in Figure 3.

6 Conclusions

In this paper we proposed a model to estimate re-identification risk when an individ-
ual’s data is distributed across a set of locations. Specifically, we introduced methods
and metrics for studying the effect of different location access behaviors on trail re-
identification. We provided experimental evidence that implies the skew of the dis-
tributions of location access patterns is one of the main factors that influences re-
identification. Though our models are based on simulation, this work provides a foun-
dation for both basic and applied trail linkage research. One possible extension to this
work is to study distributions with location dependencies, as well as mixture models of
location access distributions.
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