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Abstract 
Socio-technical problems, such as how smallpox outbreaks would spread in and affect modern 

societies, often have complex interrelated parts that defy simple mathematical analyses. A 
promising toolkit to solve these problems is large-scale multi-agent models, whose subsets with 
stochastic and knowledge-intensive networked interactions are social agent models. The value of 
these models and their simulations increases significantly if they can effectively exploit existing 
data-streams and knowledge for validation and explain emergent behaviors. Most of the existing 
technology for validating computational models is designed for deterministic and/or small scale 
systems where it is often possible to obtain validation manually or semi-automatically by brute-
force. Large-scale social agent systems pose an entirely different set of challenges. Given the 
size of such systems, the vast quantities and variable quality of empirical data involved, 
automated validation and explanation approaches are crucial. In this paper, such an approach is 
described in the design of an automated validation and explanation tool called WIZER that 
utilizes knowledge-intensive simulation-aided search and inference techniques -- and 
knowledge-based control of simulation -- capable of principled exploration of the parameter and 
model space, constrained by empirical data and knowledge. WIZER inference engine is built 
upon our novel Probabilistic Argumentation Causal System, derived from Probabilistic 
Argumentation Systems and Causal Analysis. 
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“For we are lovers of the beautiful in our tastes and our strength lies, in our opinion, not in deliberation and 

discussion, but that knowledge which is gained by discussion preparatory to action. For we have a peculiar power 
of thinking before we act, and of acting, too, whereas other men are courageous from ignorance but hesitate upon 
reflection. And they are surely to be esteemed the bravest spirits who, having the clearest sense both of the pains 
and pleasures of life, do not on that account shrink from danger.” From Pericle’s Funeral Oration in Thucydides’ 
History of the Peloponnesian War). The Athenians however did not pursue vigorous quantitative approaches to 
properly debate and assess the matters at hand before action. There was a lack of probability theory, causal analysis, 
computational modeling & analysis, and proper validation of models. 

More than two millennia later, we are experiencing a major change in how we think about individuals, 
networks, organizations, and other societal systems due to the developments in computational analysis [Axelrod 
1997][Carley and Prietula 1999][Epstein and Axtell 1996][Lin and Carley 2003][Prietula 1998]. Recent years have 
seen a rapid increase of the use of multi-agent models to address complex socio-technical problems of societal 
systems and model assessment becomes a major concern. The assessment includes validation and explanation. 
Large-scale social agent systems pose a challenge for validation technologies. Given the size of such systems and 
the vast diversity of empirical data and knowledge involved, automated validation approaches are crucial.  

This paper describes the design of such an approach by tightly integrating simulation with inference engine, 
along with the simulation explanation facility, called WIZER, for What-If Analyzer. This tool will be described in 
the context of BioWar, a bioterrorism impact simulator on a city [Carley et. al. 2003]. 

 
Validation Experience 

In validating BioWar outputs with hand-crafted parametric studies, the complexity of ensuring "correct" results 
of agent-based simulation models was evident. Behaviors in BioWar are driven by stochastic processes whose 
parameters are given as input to each simulation. These parameters number in the dozens, hence varying all of them 
through the entire parameter space is all but impossible. We have thus consistently chosen just three or four variable 
parameters which have the largest impact on simulation results. Even with these few variables, each parametric 
study needs careful planning and execution. The lessons learned of our validation experience include: 

1. We need sophisticated analysis and response techniques to optimize the space over which parameters 
must be varied for correctness, and thus increase the number of parameters which can be studied. 

2. We need new approaches to simulation scaling so as to reduce the size of the simulations which 
produce validated output streams. 

3. We need tools to semi-automatically create and execute parametric studies to minimize the manual 
intervention currently required to perform these studies.  

WIZER will address points (1) and (3). 
 

WIZER 
WIZER is a tightly-coupled inference and simulation engine that extends response surface methodology [Myers 

and Montgomery 2002][Neddermeijer 2000][Gaston and Walton 1994] to deal with high dimensional, symbolic, 
stochastic, emergent [Rasmussen and Barrett 1995], and dynamic nature of large-scale social agent systems. It 
extends response surface methodology by performing knowledge-intensive data-driven search steps via an inference 
engine constrained by simulation, instead of just doing statistical and mathematical calculations. WIZER forms both 
knowledge-based control of simulation and simulation-assisted inferences, enabling reasoning about simulations and 
simulation-assisted reasoning. It facilitates the management of model assumptions, contradictory or incomplete data, 
and increases the speed & accuracy of model validation and analysis.  WIZER dataflow is shown in Figure 1. 



 
 

Figure 1. WIZER Dataflow 
 

As shown, WIZER includes Alert WIZER and WIZER Inference Engine. Alert WIZER determines which data 
streams are wrong and how they are wrong. WIZER Inference Engine takes the simulator’s influence diagram of 
what parameter influences which data and the empirical constraints and confidences on parameters to make a 
judgment on which parameters to change and how. This results in new parameters for the next simulation. This 
simulation in turn yields new outputs which are fed into Alert WIZER. A local response surface analysis is 
embedded, allowing simple virtual experiments for parametric study. This cycle repeats until sufficient validity is 
achieved based on user-defined criteria. Figure 2 shows the coupling between the expert system and the simulation 
system of WIZER. 

 
 

Figure 2. Components of the Coupled Simulation and Expert System 
 



As shown, the knowledge bases will be populated with the knowledge about the simulator, simulation 
outcomes, domain facts, assumptions, and problem solving strategies, among others. The knowledge bases will 
contain both knowledge (hard or certain rules and facts) and assumptions (soft or uncertain rules and facts). The 
assumption part is connected to the simulation so that its outcome will provide justification for the degree-of-support 
the assumption has. The explainer, as shown in the figure, takes the execution trace, the knowledge base, derived 
domain & simulation knowledge, and simulation instantiations (and possibly the empirical data streams) to provide 
explanations for subject matter experts. Subject matter experts could modify the knowledge bases assisted by the 
explainer and knowledge base modifiers. WIZER conducts inferences from the results of the application of 
statistical tests, which it has knowledge about and control.  

 
WIZER Inference Engine 

The basic design of WIZER Inference Engine is based upon a rule-based Probabilistic Argumentation Systems 
[Haenni et. al. 1999] for handling assumptions, simulation experiments for estimating and/or testing probability 
distribution of an assumption, and knowledge-base modifier & explainer for generating & modifying knowledge 
bases and explaining inferences. While the basic design is sufficient if knowledge engineers are able to check the 
causal relations [Pearl 2003][Pearl 2000] inherent in some rules, for big knowledge bases manual checks are 
cumbersome and prone to errors. Thus there is a need for automated and formal causal checking. This is addressed 
by our novel probabilistic argumentation causal system (PACS), which uses the probabilistic argumentation in 
causal analysis. Users of WIZER will be able to specify which rules are causal in nature and WIZER will also be 
able to suggest and do causal checks on some rules based on domain knowledge -- this can also be based on 
empirical data, but causal discovery from data [Heckerman et. al. 1997] is not the focus of this work. The advanced 
design of WIZER addresses this causality issue and includes both the rule-based and causality inferences. 

Basic Design 

While classical logic as it is cannot handle, represent and compute numerical uncertainty (as it represents 
Boolean logic only), it can be extended to handle the uncertainty by adding a certain type of propositional symbols 
called assumptions. With these assumptions, uncertain facts and rules can be modeled by allowing facts and rules 
to be true if specific assumptions are true. Letting Pn be proposition n, Table 1 shows the extension. 
 

Table 1. Representing Uncertainty using Assumptions 
Type of Knowledge Logical Representation Meaning 
A fact P1 P1 is true 
A rule P1 => P2 P1 implies P2 
An uncertain fact a1 => P1 If assumption a1 is true, then P1 

is true 
An uncertain rule a2 => (P1 => P2) or equivalently 

P1 /\ a2 => P2 
If assumption a2 is true, then P1 
implies P2 

 
The probability is simply assigned to an assumption. For example, if for the uncertain rule P1 /\ a1 => P2, the 

assumption a1 is known to hold with probability 0.4, then we may write prob(a1) = 0.4. Note that this is 
conceptually different from prob(P1 => P2) = 0.4. 

The symbolic support for hypothesis h, denoted sp(h, K), can be computed, which contains the disjunction of 
all symbolic arguments which allow to derive h if added to the knowledge base K. The reliability or degree of the 
support given by arguments is computed using the probabilities assigned to assumptions: dsp(h, K) = prob(sp(h, 
K)). Evidence against a hypothesis h, or reasons to doubt about h, is defined as the disjunction of all arguments 
supporting ~h and not supporting h, and is denoted by db(h, K). The inverse of doubt, the plausibility of h is 
defined as pl(h, K)=~db(h, K). The degree of plausibility is thus dpl(h, K) = prob(pl(h, K)).  

The above described Probabilistic Argumentation Systems (PAS), which subsumes Assumption-based Truth 
Maintenance Systems, Bayesian Networks, classical probability theory, and Dempster-Shafer theory of evidence 
[Haenni 2001][Haenni et. al. 1999]. The inference computation in Probabilistic Argumentation Systems is mainly 
the computation of quasi-supports based on resolution and variable elimination [Haenni 2001][Haenni et. al. 1999]. 

Note that we only have the probability number, not the probability distribution nor the procedure to arrive at the 
probability distribution. WIZER extends the Probability Argumentation Systems by: 

• Providing a mechanism to arrive at probability distributions using simulation experiments driven by 
empirical data.  



• Allowing an enhanced inference by letting the inference engine run simulations (e.g., response surface 
analyses) in the middle of its inferences if needed.  

• Allowing what-if tests using simulation experimentations 
• Bounding the inferences (the number of arguments) by simulation system, real data, domain 

knowledge, and problem-solving knowledge. 
• Elucidating types of uncertainty affecting resulting probability distributions 
• Integrating knowledge-base modifier and inference explainer 

while preserving the classical logic of PAS. 
 

Advanced Design 

The basic design as described earlier is based on rule based systems. It hence has an unfortunate artifact of 
producing incorrect inferences if knowledge engineers do not take special precautions in encoding the rules. This 
artifact is easily shown by the following incorrect inference from two correct rules using a correct inference 
mechanism (chaining): 

 Rule 1:  If the lawn is wet, then it rained 
 Rule 2:  If we break the water main, then the lawn gets wet 
 Inference: If we break the water main, then it rained 

Thus there is a need to explicitly represent causality – which includes representing actions instead of just 
observations and formally addressing confounding -- which has fortunately been formalized and mathematized 
[Pearl 2003][Jewell 2003]. Incorporating causality would enable users to make adjustment to the above rules: 

 Cause 1:  Raining caused the lawn to be wet 
 Cause 2:  Breaking the water main causes the lawn to be wet 
 Inference: None 

As can be seen, Rule 1 was encoded erroneously if causal relations are to be taken into account. While 
erroneous in its cause-effect relation, Rule 1 can still be useful as a suggestion. Thus we needed both the rule-based 
and the causal inferences, so this advanced design covers the basic design described earlier. 

Causal analysis involves causation (encoding of behavior under interventions), interventions (surgeries on 
mechanisms), and mechanism (stable functional relationships). Causal model consists of actions (B will be true if we 
do A), counterfactuals (B would be different if A were true), and explanation (B because of A). Counterfactuals do 
not address necessity (ignoring aspects of sufficiency and failing in presence of other causes) and coarseness 
(ignoring structure of intervening mechanisms and failing when other causes are preempted), but they are remedied 
with sustenance [Pearl 2003][Pearl 2000]. Sustenance methods include causal beam, temporal preemption & 
dynamic beams. All this machinery allows us to specify A caused B.  

If it were to account for probability of causation, this causal model as it is [Pearl 2003][Pearl 2000] specifies 
Bayesian priors to encode the probability of an event given another event. It does not distinguish between different 
kinds of uncertainty. It is unable to model ignorance, ignores contradictions, and is inflexible in expressing 
evidential knowledge without the use of probability distribution format. With the intended use of WIZER to do 
validation with often incomplete, contradictory, and uncertain environments & knowledge and with the need to 
clearly delineate between assumptions and facts, it needs a novel causal model borrowing concepts from 
Probabilistic Argumentation Systems (PAS). Table 2 shows the encoding of the certain facts and causations for 
causal analysis augmented with PAS-like assumption management. Let Pn be proposition n. 

 
Table 2. Assumptions Encoding for Causality 

Type of Knowledge Logical Representation Meaning 
A fact P1 P1 is true 
A causation P1 caused P2 P1 caused P2 
An uncertain fact a1 => P1 If assumption a1 is true, then P1 

is true 
An uncertain causation a2 => (P1 caused P2)  If assumption a2 is true, then P1 

caused P2 
 

We call the above the probabilistic argumentation causal systems (PACS). The causal inference formalism is based 
upon sustenance’s causal and dynamic beams with temporal preemption in causal graph, with the ability to specify 
ignorance, degree of support, degree of plausibility, and hints. PACS algorithmic details are derived from both PAS 



[Haenni et. al. 1999] and causal analysis [Pearl 2003]. The PACS algorithm is basically a construction of causal (& 
dynamic) beams in causal graph followed by the application of PAS, but more advanced version is possible, e.g., the 
degree that ignorance, hints, degree of support, and degree of plausibility may affect the construction of causal & 
dynamic beams. Simulation experiments can be seen as a proxy of doing interventions and 
counterfactual/sustenance reasoning to derive causal relations, when doing real world interventions are unrealistic or 
unethical.  

In addition to creating our novel probabilistic argumentation causal systems (PACS) just described, WIZER 
enhances PACS by 

• Providing a mechanism to arrive at probability distributions or profiles for assumptions related to 
causations using simulation experiments driven by empirical data. 

• Automating causal analysis for simulations and enhancing it with virtual experiments. In particular, 
WIZER improves upon dynamic beams of causal analysis by doing virtual experiments, and allows the 
estimation of sufficiency by virtual experiments.  

• Utilizing simulation experiments as a proxy of the real world for doing interventions & causal beam 
calculations to uncover true causal relations driven by empirical and simulated data. Simulation model 
is analogous to imperfect electronic diagrams. Validated experiments allow us to defend and “validate” 
modeling assumptions of causal analysis. 

• Allowing better inference by letting the inference engine run simulations (e.g., supports for dynamic 
beam) in the midst of causal inferences as needed. This is not just a nice feature, but serves a function 
of checking the empirical claims of causal relations, as all causal claims are empirical. 

• Bounding the causal inferences by simulations, real data, domain knowledge, and problem-solving 
knowledge. 

• Elucidating types of uncertainty affecting resulting probability profiles (points, sets, or distributions) 
• Integrating causal knowledge-base modifier and causal inference explainer 

 
Preliminary Results 

We have implemented the alert part of WIZER, the Alert WIZER, which performs checks on the ranges and the 
means of simulated output data streams for BioWar. It was run on “Challenge 4” data of BioWar, which has twelve 
data streams, including school absenteeism, work absenteeism, doctor visits, emergency room visits, emergency 
room visits using the Surveillance Data Inc. data, and seven drug type purchase data streams. The table below shows 
the percentage of validated data streams for six cities for no attack case. 

 
Table 3. Percentage of Streams Validated 

City Streams Validated 
San Francisco 5/12 = 41.67% 
San Diego 7/12 = 58.33% 
Pittsburgh 7/12 = 58.33% 
Norfolk 6/12 = 50.00% 
Hampton 4/12 = 33.33% 
Washington DC 4/12 = 33.33% 

 
Conclusions 

The paper described an automated tool to enable the human analyst to have more trust in a simulation system 
which WIZER assists to automatically validate and provide explanations. The human analyst can see his or her 
domain knowledge in action in simulations, thus freeing the analyst to think about problems and be innovative. 
WIZER will assist human experts by doing inferences of the simulation systems based on ranges of values and 
assumptions provided by the human experts. The human experts would be able to specify both rules and causations. 
As WIZER can integrate varied knowledge-based, the expertise resided in many human expert domains and silos 
can be readily employed into one single simulation system and WIZER would show the consequences and 
explanations. WIZER would be able to search for appropriate values, assumptions, rules, and causations, by doing 
what-if analyses in a simulation-assisted inference engine bounded by empirical data. Automating inferences, 
simulation experimentation and explanation, WIZER would cut the time and resource needed to do analyses using 
simulation systems. 
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