
Latent Aspects Analysis: From Independence to Contagion

Edoardo M. Airoldi Stephen E. Fienberg Eric P. Xing

Abstract

Learning latent “expression themes” that best express complex patterns in a sample is a central
problem in data mining and scientific research. For example, in computational biology we seek a set of
salient gene expression themes that explain a biological process, extracting them from a large pool of
gene expression profiles. In this paper, we introduce probabilistic models to learn such latent themes in
an unsupervised fashion. Our models capture “contagion”, i.e., dependence among multiple occurrences
of the same feature, using a hierarchical Bayesian scheme. Contagion is a convenient analytical formal-
ism to characterize semantic themes underlying observed feature patterns, such as “biological context”.
We present model variants tailored to different properties of biological data, and we outline a general
variational inference scheme for approximate posterior inference. We validate our methods on both sim-
ulated data and realistic high-throughput gene expression profiles via SAGE. Our results show improved
predictions of gene functions over existing methods based on stronger independence assumptions, and
demonstrate feasibility of a promising hierarchical Bayesian formalism for soft clustering and latent as-
pects analysis.

Keywords: Contagion processes, Poisson distribution, negative-binomial distribution, hierarchical Bayesian
models, mixed membership, variability allocation, approximate posterior inference, mean-field approxi-
mation, serial analysis of gene expression (SAGE) data.

1 Introduction

As a consequence of the information glut society faces, a fundamental issue in data mining and scientific
pattern discovery is that of finding a useful representation of complex systems, which is amenable to math-
ematical and statistical learning analyses. A useful representation would summarize the plethora of feature
patterns observed in a sample with a small set of typical “feature expression themes” that replicate the
variability of the observations. For example, in computational biology, we may seek a set of salient gene
expression patterns, not directly observable, that explain a biological process from a large pool of observed
gene expression profiles; in text analysis, we may seek the set of latent topics, i.e., typical word distributions,
that best explain a collection of documents. The set of latent themes for feature can then be used for further
analyses about the behavior of the whole system.

The task of identifying latent themes is essentially a clustering problem, where we have little or no
information about the properties of the themes/clusters we seek. For any given number of latent themes1,
we seek to allocate observed feature expressions to possible underlying themes; or, in other words, we need
to cluster objects (e.g., genes or documents) that are similar in terms of their observed feature expression
profiles into coherent themes. Among existing approaches to this task, [8] introduce a variant of K-means
algorithm that minimizes non-standard scoring functions, based on the Chi-square statistic, and the Poisson
distribution of feature expression rates—see Section 6 for more details. This approach, however, constrains
all feature expression levels measured on the same object to follow the expression profile typical of a single
theme. [17] relax this assumption, and posit that feature expression levels measured on the same object (in

1Such ”themes” usually correspond to parametric formulations of the feature generation process [3].
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their case, the occurrences of a defined set of genetic polymorphisms in an individual) are mixtures of the
expression profiles typical of several themes, i.e., population-specific frequency of each polymorphism. This
model was independently re-discovered in the machile learning community [16, 5] with the goal of learning
topics from a collection of documents—we refer to this popular model as the “independence model” in the
remaining of this paper. Recently, there has been a flurry of research on soft clustering in the machine
learning and computational biology communities [11, 18, 21, 12, 6]. The proposed models, however, are
often unrealistic and fall short of replicating the true marginal variability profiles of the observations. In
particular, as discussed in Section 2.1 and Section 2.2, existing models appear to be unsuitable for the
biological application (i.e., SAGE analysis) we concern in this paper.

In this paper, we introduce a hierarchical Bayesian formalism to address these problems. Briefly, our
models

1. learn latent feature expression themes from data in an unsupervised fashion,

2. enable domain-specific information to be incorporated in the form of priors on the hyper-parameters
at the top of the hierarchy;

3. assume that each feature may be instantiated under various themes to different degrees (i.e., feature
emission probabilities are mixtures).

Furthermore, we introduce the notion of contagion, which refers to the existence of dependences among
subsequent occurrences of the same feature, when modeling objects on the basis of a generative process.
Contagion is a convenient analytical formalism to capture richer variability profiles than current models al-
low for, and it characterizes plausible semantic themes, such as “biological context”, underlying the observed
feature patterns. In this paper, we present an analysis based on the contagion process of gene expression
profiles measured via the SAGE technology. We show a new approach to summarize samples of gene expres-
sion data into latent gene expression themes, and compare our approach with extant algorithms. It is worth
pointing out that the models we present here apply to a wider array of problems, e.g., the summarization
of a collection of scientific publications into latent word frequency profiles, typically referred to as topics in
the machine learning community.

Here is the plan for the rest of paper. We introduce the biological problem, and motivate the contagion
process in Section 2. Then we present several variants of our model tailored to different properties of gene
expression data in Section 3. A general variational inference scheme for approximate posterior inference is
outlined in Section 4. And we validate our methods on both simulated data and realistic high-throughput
mouse retinal gene expression profiles via SAGE in Section 5.

2 The Biological Problem

Serial analysis of gene expression (SAGE) [20] is a technology that quantitatively measure the copy numbers
of mRNA transcripts, simultaneously for a large number of gene in a biological sample, such as a cell
population or a tissue.

A SAGE experiment begins by sampling a total of B transcripts at random from a biological sample under
some specific condition (e.g., a cell cycle stage), and then use N gene-specific tags to probe the existence of
possible genes in each of the B transcripts. Let Xb = (Xb1, Xb2, . . . , XbN )T , Xbn ∈ {0, 1},

∑

n Xbn = 1 be a
unit-base indicator vector recording the probing results for transcript b (i.e., Xbn = 1 indicates that gene n

is present on transcript b). The number of mRNA copies of a gene n, denoted by Yn, and the vector of copy
counts for all genes (i.e., an expression profile), Y = (Y1, Y2, . . . , YN )T , can then be simply expressed as:

Yn =

B
∑

b=1

Xbn, Y =

B
∑

b=1

Xb. (1)
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Note that Yn’s are each binomial distributed, controlled by gene-specific parameters p1:N each captures the
probability of occurrence of gene on a random transcript, and a common sample size parameter B. When
multiple cellular conditions are of interest, for example, stage sequences in a cell cycle, we can index an
expression profile with its sample condition, e.g., Y t, for measurements obtained at time t.

The main random quantities of interest are: the observed gene expression levels Y t
n ’s, for the n-th gene

at the t-th epoch; the observed gene expression profiles Y 1:T
n ’s, for the n-th gene; and the latent gene

expression themes, e.g., p1:T
k or λ1:T

k , for the k-th theme, as defined in [17] and in the basic model of Sections
3.1, respectively. Technically, the latent gene expression themes are multivariate emission probabilities for
the gene expression levels, conditionally on the “active” theme. The notation we adopt puts forward the
set of parameters underlying a specific distribution, e.g., λ1:T

k is a vector of Poisson rates, which control the
expression levels of those genes that are expressed according to the k-th theme. For example, whenever the
n-th gene is expressed according to the k-th theme we have

Y 1:T
n ∼

[

Pois(λ1
k), . . . , Pois(λT

k )
]

.

2.1 Analytical Justifications of Contagion

In the biological problem above, we often face situations where occurrences of the same gene under single and
multiple conditions are not independent of one another, because they are sampled from a cell population
or a tissue that provides a specific “biological context”. Contagion processes provide a useful analytical
mechanism to capture this notion. The two generative models we propose for analyzing temporal gene
expression data {Y 1:T

n }N
n=1, which instantiate the contagion process, are based on the a Poisson and a

negative-binomial distribution of integer counts2, at different levels.

Our choices were motivated by few main considerations. The Poisson distribution offers a computational
advantage over the binomial distribution. We can reasonably assume that the gene-specific probabilities of
occurrence p1:N are very small, given that there is a large amount of transcripts present in a specific biological
sample. Consequently, it is reasonable to approximate the binomial probabilities with Poisson probabilities,
as well as computationally efficient. The sampling algorithms underlying both the Poisson and negative-
binomial distributions lead to marginal and conditional3 distributions for the gene expression levels with
desirable properties. Assuming Poisson or negative-binomial conditional emission probabilities relaxes the
assumption that, in the (sequential) sampling process described in Section 2, subsequent observed instances
of the same gene tag are independent. In fact, such independence leads to binomial conditional emission
probabilities [17]. The dependence among different observations of the same gene tag at the conditional
level is a one characteristic of the notion of contagion we introduce. Another characteristic of our notion of
contagion is found at the marginal level. Recall that ideally we identify themes that can be interpreted as
“biological or functional contexts”. Following the intuition that each gene may be expressed under multiple
biological contexts to a different degree, we model the probability of observed gene expression levels, Y t

n ,
as a mixture of conditional emission probabilities, where the gene-specific mixture weights given by the
mixed membership vectors, θn, are constant over time (or across experimental conditions). The mixing leads
to marginal distributions that are more skewed than the corresponding conditional distributions. This is
the “contagion effect” more popular in the literature4 [19]. For example, in the case where the conditional
probabilities are Poisson, their mixing would increase the variability of the expression levels. A formal model
of contagion that encodes this intuition is the negative-binomial model, which arises as an infinite Gamma

2For a review of various parameterizations, and the corresponding estimators we refer to [2], [14] and [15].
3Conditionally on the “active” theme.
4Although this second characteristic of contagion processes is more common in the literature, there is an subtle point to

notice in latent aspect models that feature independence of subsequent observed instances of the same gene tag [17, 16, 5].
Specifically, if we model themes as multinomial distributions, then Dirichlet distributed mixing weights will not alter the mean-
to-variance ratio of the marginal distribution, which is still multinomial. Rather, the main effect of mixing is an increased
variability.
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Table 1: Methods-of-Mometns estimates of negative-binomial parameters for gene expression levels in mouse
retinal cells of at 10 different stages of development [8]. A discussion of the estimators is given in [2].

Epoch mean var.
√
var.

mean σ ξ

1 30.1172 150.8648 2.2381 11.1733 ± 0.3655 4.3000 ± 0.2155
2 26.5542 163.8892 2.4843 9.8514 ± 0.4075 6.1021 ± 0.3304
3 28.1718 155.4820 2.3493 10.4516 ± 0.2936 2.9376 ± 0.1448
4 31.5446 204.2503 2.5446 11.7029 ± 0.3267 3.2591 ± 0.1588
5 26.0307 94.4013 1.9043 9.6572 ± 0.4154 6.4720 ± 0.3562
6 26.6489 82.0171 1.7543 9.8866 ± 0.2118 1.5748 ± 0.0795
7 27.3122 82.0405 1.7331 10.1327 ± 0.2491 2.1565 ± 0.1066
8 25.1990 53.6102 1.4586 9.3487 ± 0.2637 2.6407 ± 0.1319
9 27.1513 89.7169 1.8178 10.0730 ± 0.4472 7.2014 ± 0.4008
10 20.8160 81.2509 1.9757 7.7226 ± 0.5975 16.8959 ± 1.3156

mixture of Poisson distributions. These arguments support our distributional choices. From a data analysis
standpoint, the marginal distributions that encode contagion fit well the observed expression levels.

To summarize, contagion processes are the result of latent regularities present in structured data, such
as the SAGE profiles we study. The inherent topical structure of the data, i.e., the fact that genes may be
expressed under several latent themes, leads to hierarchical mixing of emission probabilities, and, ultimately,
to the over-dispersion of gene expression levels.

2.2 Empirical Evidence

Our motivating example is the set of mouse retinal SAGE libraries analyzed in [8]. The raw mouse retinal
data consists of 10 SAGE libraries (38,818 unique genes that appeared more than twice in the sample) from
developing retina taken at 2-day intervals, ranging from embryonic day to postnatal day, and adult, for
total of 10 epochs [4]. Of the 38,818 genes, 1,467 that appeared more than 20 times in at least one of the
10 libraries were selected. These 1,467 genes were purported as the potentially most biologically relevant
because of their high frequency of occurrence. The data analyzed in this paper consists of the pool of
observed expression profiles (Y 1

n , Y 2
n , . . . , Y 10

n ) for the 1,467 selected genes, measured at ten epochs during
the development period.

We tested the distributional intuitions we discussed in §2.1 on the SAGE data. In Table 1 we report
summary statistics and estimates for the negative-binomial parameters described in [2]. Our exploratory
data analysis confirms the expected over-dispersion of the gene counts, suggested by the “mixture of Poisson
distributions” hypothesis. Moreover, the estimates of the extra-Poissonness parameter δ are all positive5 with
very high probability, as indicated by a quick inspection of the corresponding standard deviations. Lastly,
note that the log transformation ζ = log(1 + δ) is effective in reducing the heavy tail of the distribution of
δ. Thus, we prefer to work on the ζ scale, where positing a simple prior is sensible.

In conclusion, the SAGE data we analyzed are not under-dispersed (i.e., variance < mean), as is implied
by treating the random variables {X1:B

n } as Bernoulli processes [17, 18]. Such an assumption leads to
clustering models based on Multinomial latent profiles and binomial emission probabilities for feature counts
[5, 12, 6], which are not often warranted.

5Recall that as δ → 0 the negative-binomial density degenerates into a Poisson density.
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Figure 1: Graphical representation of the generative processes of contagion based on the Poisson (top left)
and negative-binomial sampling schemes. The representation for the processes of contagion based on the
Poisson sampling scheme for the non-basic models are easily obtained, by removing the part of the graphical
models depending on δ. In fact, recall that δ is the extra-Poissonness parameter, and as δ → 0 the negative-
binomial density converges to the corresponding Poisson limit. We refer to [14] for more details.

3 Contagion Processes

In this section we introduce two hierarchical Bayesian generative processes for clustering SAGE data into
expression profiles in an unsupervised fashion. These models capture “biological context” through the
notion of contagion. Recall that we observe sequences of gene tag counts (Y 1

n , Y 2
n , . . . , Y T

n ) that measure the
expression level (i.e., the abundance) of the n-th gene in the target cell or tissue across epochs 1 though T .
In the models below we assume there is a fixed number, K, of latent expression profiles, and that genes are
expressed under different profiles to different degrees.

3.1 Poisson Generative Process

The first generative process we propose is based on the Dirichlet and Poisson distributions. There are four
flavors of the Dirichlet-Poisson generative process: basic (bDiP), normalized (nDiP), conditional (cDiP),
and smoothed (sDiP). In the “basic” model we explicitly posit the “mixed-membership” of genes to latent
profiles by assigning to each gene a Dirichlet vector of probabilities, θn. In order to generate the observed
expression levels Y 1:T

n of the n-th gene, assuming K latent expression profiles, we proceed as follows.

1. Sample θn ∼ DirichletK (α)

2. For each epoch t = 1, . . . , T

2.1. Sample zt
n ∼ Multinomial (θn, 1)

2.2. Sample yt
n ∼ Poisson (λtk|z

t
nk = 1).
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The genes are the sampling units in SAGE experiments, and the total volume of their expressions often
vary over time. We want to recover ”calibrated” expression profiles that do not depend on the total expression
volume. Therefore, we posit the “normalized” model in order to rescale the samples (i.e., the genes) according
to their different sizes (the total expression volumes), and ultimately improve the parameter estimates. In
the basic model, the matrix λ ≡ {λtk} contains the rates that govern the expression level of genes at T

different epochs for each of the K different latent profiles. In the normalized model, the expected expression
level of a gene τn, at time t for profile k, is

λtk = ωn · µtk, (2)

where ωn is scalar and observed, and denotes the total expression level of gene τn as a multiple of a fixed total
expression level β used as a reference expression level. This new parameter β may a fixed pre-determined
value, estimated via, e.g., empirical Bayes [10], or given a distribution as part of a full Bayesian analysis [1].

In both the basic and the normalized models above, the rows of the parameter matrices λ and µ control
the rates at which genes are expressed. In particular, λtk and µtk encode the expected expression level of
genes at time t for profile k. Since profiles are by definition not observable, none of these parameters can be
estimated directly from the data.

We reparameterize the rows of the normalized rate matrix µ with the sum/ratio parameterization, i.e.,
for every epoch t we transform

(µt1, µt2, . . . , µtK) −→ (σt, ρt1, ρt2, . . . , ρtK), (3)

where the sum parameter σt :=
∑K

k=1 µtk, the ratio parameters ρtk := µtk

σt
, and the constraint that

∑K
k=1 ρtk = 1 makes the ratio parameter ρtK redundant for each t.

This reparameterization leads to the “conditional” model, where the sum parameters (σ1, σ2, . . . , σT ) are
directly estimable from the data, and we can carry out inference conditionally on them. This is possible
since the parameters σt encode the total normalized expression level at time t, sum of the expression levels
over the profiles, which is an observable quantity as it does not depend on the latent profiles. Conditioning
on the MLEs for the total expression parameters, σt, leads to a new allocation problem where we need to
infer the differential expression levels of genes under the K profiles. In other words, we need to “split” the
total expression level at each time t, given by a direct estimate of σt, among the latent profiles.

Last, we introduce the “smoothed” model, where we posit a posit a prior for the differential expression
rate parameters to smooth the estimates. It is possible to posit a prior distribution on the total expression
rate parameters as well, but we choose not to. A brief analysis of the observed total rates suggests it is
appropriate to apply a logarithmic transformation on them to stabilize the variability, and one can introduce
a Gaussian prior on the transformed rates; however, an inspection of the total rates σt over time (see Table
1) suggests that some other phenomenon is possibly going on, which leads to a decreasing occurrence of the
genes in the SAGE libraries. Therefore we choose to use the observed total rates to inform our inferences
directly, as in the conditional model6. However, in the smoothed model we sample the differential expression
levels

ρt · ∼ DirichletK (β)

for each epoch t = 1, 2, . . . , T . See Figure 1.

In conclusion, the Dirichlet-Poisson generative process possesses a few advantages: (1) this sampling
scheme encodes contagion in the sense that multiple occurrences of the same gene tag at the same epoch
depend on one another, under a specific latent expression theme; (2) this sampling scheme arises naturally in
the biological experiments we are interested in as we discussed in §2.1; (3) computing Poisson probabilities
is computationally more efficient than computing binomial probabilities, since we do not have to evaluate
binomial coefficients.

6Smoothing the overall rates {σtk} would impose a model on data that we would not be able to justify, since we do not have
an intuition of why the overall rates are declining. This would cast some doubts on the interpretability of the inferences such
a model would lead to.
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3.2 Negative-Binomial Generative Process

The generative process of contagion based on the negative-binomial sampling scheme is similar in spirit to
the previous one based on the Poisson sampling scheme. A formal treatment of models along this line,
however, would involve tedious parameterization details that is beyond the scope of this paper. Intuitively,
the negative-binomial distribution has two parameters that control mean and variance, and the variance is
greater than the mean—this is a useful feature to capture the observed over-dispersion of gene expression
levels. Its density can be written as a Poisson density with an extra parameter δ that controls the amount
of extra-Poisson variability. Such a version of the density is our starting point,

NB
(

yt
n

∣

∣ ωnµt, ωnδt) =
Γ(yt

n + κt)

yt
n!Γ(κt)

(ωnδt)
yt

n

(1 + ωnδt)(y
t
n+κt)

,

where κt := µt

δt
for convenience of notation. In normalized model, {µtk} are the profile-specific Poisson rates

and {δtk} are profile-specific extra-Poissonness parameters. We then introduce the conditional model, where
we apply the sum/ratio parameterization of equation 3 to both sets of parameters to obtain mappings

(µt1, µt2, . . . , µtK) −→ (σt, ρt1, ρt2, . . . , ρtK)

(δt1, δt2, . . . , δtK) −→ (ξt, ηt1, ηt2, . . . , ηtK).

Finally, in the smoothed model we sample the differential extra-Poissonness parameters

ηt · ∼ DirichletK (γ)

for each epoch t = 1, 2, . . . , T . See Figure 1.

4 Approximate Posterior Inference

Inference in these models is a challenging task. In fact, in order to obtain the posterior for the latent
variables,

p
(

{θn, z1:T
n }N

n=1

∣

∣ {y1:T
n }N

n=1, α, {λ1:T
k }K

k=1

)

=
p
(

{θn, z1:T
n }N

n=1, {y
1:T
n }N

n=1

∣

∣ α, {λ1:T
k }K

k=1

)

p
(

{y1:T
n }N

n=1

∣

∣ α, {λ1:T
k }K

k=1

) , (4)

we need to compute the likelihood of the data, which is given by an integral with no closed form solution.
The quantity at the denominator on the right hand side of Equation 4, for example, is the likelihood of the
data we need in order to solve the Bayes problem in the basic model of Section 3.1.

In order to perform inference in these models, we develop a mean-field approximation to the posterior
that involves the substitution of an integrable lower bound for the likelihood. The mean-field approximation
involves positing a simple distribution, q, over the latent variables, which depends upon an extra set of
(variational) free parameters, {νn, φ1:T

n }N
n=1. The free parameters are then set to minimize the Kullback-

Leibler divergence between the true and approximate posteriors. This is equivalent to maximizing a lower
bound for the likelihood within each E-step, over the free parameters, and then compute pseudo-exprectations
for the latent variables off the tight lower bound. The overall inference algorithm is a variational EM scheme,
which employs the mean-field approximation to carry out the E-step, as discussed above, and alternates with a
regular M-step, where the pseudo maximum likelihood estimates of the model parameters, e.g., (α, {λ1:T

k }K
k=1)

for the basic model, are revised by further maximizing the lower bound for the likelihood. We iterate these
two steps till convergence.

The variational EM scheme just described practically translates into a coordinate ascent algorithm,
where parameters are naturally organized into batches with similar semantics. The parameter updates
corresponding to the model variants we considered here are summarized in Table 2.
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Table 2: In the table below we summarize the parsimonious mean-field approximation for the various mod-
els. The parsimonious mean-field approximation posits one latent expression profile indicator z for each
(gene,epoch) pair. Note that Υ := eEq[log θnk], and Po, NB, are short for Poisson, and Negative-Binomial,
respectvely. ∗∗ Alternatively use the Method of Moments described in [2] pretending to observe pseudo
counts {φt

nk · yt
n} as the expression levels of the n-th gene according to the k-th latent theme.

Poisson Negative-Binomial

Basic ν∗
nk = αk +

∑

t φntk

φ∗
ntk ∝ Υ · Po

(

yt
n

∣

∣ λtk

)

λ∗
tk =

P

n
φntkyt

n
P

n
φntk

α∗
k with Newton-Raphson

Norm. ν∗
nk = αk +

∑

t φntk ν∗
nk = αk +

∑

t φntk

φ∗
ntk ∝ Υ · Po

(

yt
n

∣

∣ ωnµtk

)

φ∗
ntk ∝ Υ · NB

(

yt
n

∣

∣ ωnµtk

)

µ∗
tk =

P

n
φntkyt

n
P

n
φntkωn

µ∗
tk =

P

n
φntkyt

n
P

n
φntkωn

δ∗tk = L-BFGS ∗∗

α∗
k with Newton-Raphson α∗

k with Newton-Raphson

Cond. ν∗
nk = αk +

∑

t φntk ν∗
nk = αk +

∑

t φntk

φ∗
ntk ∝ Υ · Po

(

yt
n

∣

∣ ωnσtρtk

)

φ∗
ntk ∝ Υ · NB

(

yt
n

∣

∣ ωnσtρtk

)

ρ∗tk =
P

n
φntkyt

n
P

n
φntkωnσt

ρ∗tk =
P

n
φntkyt

n
P

n
φntkωnσt

η∗
tk = L-BFGS ∗∗

α∗
k with Newton-Raphson α∗

k with Newton-Raphson

4.1 A General Bayesian Formalism for Latent Aspects Analysis

The variational inference scheme we developed is quite general. In fact, the free parameter updates (that are
used to maximize the lower bound for the likelihood within each E-step) take a generic form applicable for
all different conditional emission probability function we concern, e.g., Table 2. Furthermore, for a generic
conditional emission probabilities p(yt

n|β
t
k) for all (n, t, k), with parameter set {β1:T

k }K
k=1, we obtain the

generic the free parameter updates
φ∗

ntk ∝ Υ · p
(

yt
n

∣

∣ βt
k

)

,

where Υ := eEq [log θnk] as in Table 2. The updates for ν∗
nk do not change.

The generality of the approximate E-step in latent aspects analysis that feature one latent group indi-
cator, zt

n, for each gene-epoch pair (n, t) is due the specific hierarchical formulation of our models. Such a
formulation posits exchangeable measurements on features, e.g., gene expression levels at each epoch. Dif-
ferent conditional emission probabilities only lead to different estimators for the corresponding parameters,
{β1:T

k }K
k=1, in the M-step.

5 Experiments

A non-trivial difference in the generative process with respect to the “independence model” in [17, 16, 5]
has far reaching implications for applications. For example, models of contagion provide a better fit for data
with realistic mean-to-variance marginal ratios, such as that in biological applications to SAGE. A better
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fit helps recovering more precise mixed memberships of genes to themes, as well as finding tighter clusters,
with respect to the independence model.

In this section, we support our claims with 3 sets of experiments: (1) In simulative experiments, we
showed that DiP is better at recovering membership than the independence model when realistic SAGE
mean/variance ratio holds; (2) in small samples bearing realistic SAGE characteristics, although the re-
covered clusters differ only slightly, the estimated mixed-membership are sharper using DiP than with the
independence model (the PoissonL in [8] does not facilitate estimation); (3) in a real dataset, we recov-
ered meaningful gene expression profiles according to an empirical evaluation scheme adopted in [8] (e.g.,
rhodospin and photoreceptors in same cluster), and obtained a reasonable estimate of the total number of
salient expression themes. As in many biological clustering task, objective comparison of clustering results
are difficult, but the fact that DiP gets less fragmented clustering (15 versus 30 clusters by PoissonL), and
sharper cluster mixed-membership estimates suggests that it is a more reliable theme identification model.

5.1 Simulated Data

We first validate our models by examining to what extend they can recover the mixed-membership probabil-
ities {θn}, i.e., the soft cluster assignments of each gene, under various simulated conditions. We generated
the ground truth using our generative processes, and we focused on scenarios where the “mean” expression
level at the various epochs was lower than its corresponding “variance”— a realistic biological experimental
scenario. We compare our models, normalized DiP and conditional DiP, with two other methods, the inde-
pendence model [17, 16, 5], and the PoissonL model [8]. Our models yield higher likelihoods of expression
profiles in the test set (not shown), and more accurate predictions of the latent theme id of each gene based
on their observed expression levels. Out of 1000 genes we simulated, for example, nDiP and cDiP achieved
75.95% and 70.32% accuracy, respectively, whereas the independence model reached only 63.25%.
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Figure 2: The raw example data in [8], on the original expression scale (left); on a normalized expression
scale, by gene, into [0, 1] (center); and on a normalized expression scale, by epoch, using σ̂1:T (right).
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5.2 A 20-gene Synthetic Data Set

Here we report our analysis of a small dataset used in [8], which contains the expression profiles of 20 genes
over 5 temporal epochs. Eighteen of the 20 genes belong to one of 4 clusters (temporal themes), and the 2
remaining two are identified as outliers.

The expression profiles are generated from 6 different latent themes, or clusters, which the authors
reduce to 4 by ignoring the abundance of the gene tags observed on the transcripts sampled at each epoch.
In particular, there are 3 profiles from theme 1, 4 from theme 2, 6 from theme 3, and 6 from theme 4. The
raw data is plotted in Figure 2 on various scales. Among the profiles from theme 2, there is 1 with 10 times
as many gene tags as the others, and similarly for theme 3—number 7 and number 13 in Figure 3. Note that
these 2 profiles are “more expressed” but they follow an expression theme similar to the other expression
profiles in the respective clusters.

In Figure 3, we display the 4 themes learned by the normalized and conditional DiP models (bottom-
left panel), versus those learned by PoissonL [8] and the independence model (top-left panel). A rough
eyeballing shows that the gene expression themes learned by DiPs and the two competing methods are
similar. However, a close examination reveals the following. Arguably, we obtain a more compact themes
3, as revealed by the lower degree of dispersion among genes assigned to this theme; but for theme 2, the
genes assigned to it by the independence model and PoissonL are slightly more consistent. Overall, the
software clustering assignment of each gene are compatible across all 4 algorithms, and as shown in Figure
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Figure 3: Left: Latent gene expression themes learned by different algorithms. Top: 4 themes (numbered
1 to 4 from left to right) learned by PoissonL and the independence model. Each theme is represented by
the expression profiles of all the genes assigned to that theme base on MAP prediction using the estimated
mix-membership vector θn. In this case, PoissonL and the independence model give the same membership
prediction. Bottom: The 4 themes discovered by normalized DiP and conditional DiP. Note that due to
overlap of the profile curves, the ”occupancy” number of each theme is not apparent here. But in Fig. 3, one
can see it more clearly. Right: The estimated membership probabilities, {θ̂nk}, for the independence model
(top), nDiP (middle), and cDiP (bottom). Each row correspond to a theme, and each column corresponds
to a gene. The color shades of the cells correspond to values ranging from 1 (black) to 0 (white). The panel
shows that cDiP yields the sharpest estimates.
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3), but the mixed-membership probabilities inferred by the DiPs for each gene are sharper. If we compare
the MAP assignment of each gene to a single most probable themes, the 19 of the 20 genes are consistent
across all 4 algorithms, and their assignments agree with the true themes label given by the original dataset.
The remain one, gene no. 10, is intriguing. It has an expression profile, {Y 1:5

10 } = (4, 10, 16, 14, 6), and is
originally labeled as from theme 2, {λ1:5

2 } = (10, 30, 30, 60, 10). Apparently profile {Y 1:5
10 } exhibits great

variability with respect to its supposedly underlying theme. Using DiP, we infer the label of gene no. 10
to be theme 3, which has a prototype profile {λ1:5

3 } = (10, 10, 10, 10, 10), and indeed we found much of the
variability in gene 10 is related to the overall abundance of all genes in different epochs, rather then its
intrinsic trend. So we feel this assignment is arguable more plausible the the purported theme 2. As shown
in Figure 3), the independence model inferred a split assigned, about equally probable to theme 2 and 3.

To summarize, this little example is meant to show the role of realistic model properties in latent allocation
tasks. The intuition is that if the model cannot express, on average, the salient properties of the data, then
it may lead to artifactual effects. Specifically, the unexplained variability will need to find a “place-holder”,
and it will typically tend to increase the variability of parameter estimates.

5.3 Mouse Retinal SAGE Profiles

Here we go back to the motivating case study we introduced in Section 2.2 — the mouse retinal SAGE
libraries analyzed in [8], which contains 38,818 unique genes for total of 10 epochs. We first perform model
selection via a five-fold cross validation, to estimate the plausible number of latent themes that best explain
the data. The held-out likelihood peaked at 15 themes for cDiP, and 10 for the independence model. Figure 4
shows the prototype gene expression profile for each of the 15 themes due to cDIP. The variance of each
theme are not shown, because in many cases they are so small that the variance-bars are masked by the
”dot” symbol in our plots. Notably, we found that the magnitude of the held-out likelihood for cDiP is
about ten times larger (on the log scale) than that for the independence model, suggesting better a fit of
DiP to the data. Furthermore, the corresponding mixed-membership estimates of {θn} are more sharply
peaked (as seem before in Figure 3). This is also confirmed by the estimates of Dirichlet hyper-parameter,
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Figure 4: Gene expression themes learned from mouse retinal SAGE using conditional DiP.
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α̂Indep = 1.355 versus α̂DiP = 0.066. The themes (or clusters) shown in Figure 4 indeed lead to reasonable
predictions of mouse retinal gene functions. For example, a preliminary biological validation of our clustering
based on the GO annotation shows correlation between the latent themes and the functions for genes such
as photoreceptors and rhodospin, i.e., genes with similar functional annotations tend to fall into the same
theme in our analysis. An in-depth analysis of the biological significance of these clusters is given elsewhere.

6 Related Work

Here we discuss the connection between our algorithm and the PoissonC and PoissonL algorithms introduced
by [8]. In the problem at hand we want to allocate the observed temporal expression profiles {Y 1:T

n }N
n=1

into, say, K themes or clusters. Recall that the K-means unsupervised clustering algorithm searches for K

mean profiles m1:K that minimizes

MSE =
1

N

K
∑

k=1

N
∑

n=1

I
(

y1:T
n ∈ k

) ∥

∥y1:T
n − mk

∥

∥

2
.

That is, the mean profiles m1:K are centers of respective clusters in the sense of Euclidean norm. The
PoissonC and PoissonL algorithms introduced by [8] substitute the euclidean norm in the equation with the
chi-squared score,

χ2(n, k) =

T
∑

t=1

(

yt
n − µ̂tk ω̂n

)2

µ̂tk ω̂n

,

and the negative log-likelihood,

ℓ(n, k) = −

T
∑

t=1

log

(

e−(µ̂tk ω̂n) (µ̂tk ω̂n)yt
n

yt
n!

)

,

respectively. Our normalized model based on the Poisson distribution is an extension of the PoissonL
algorithm, where we introduce Dirichlet distributed mixed-membership vectors, θn, not known in advance.
In the PoissonL algorithm the mixed-membership vectors θn are known, i.e., for the n-th gene we can write

θnk =

{

1 if k = jn

0 otherwise,

where jn = arg min
{

L(n, k) : k ∈ [1, K]
}

. This extension is similar in spirit to that introduced by Gaussian
mixture to regular K-means. In fact, we have

θnk = Pr
(

cluster = k
∣

∣ data, parameters
)

.

Note that introducing latent Dirichlet distributed mixed-membership vectors, θn, ties together all the data
in the inference task. This has the beneficial effect of reducing the variability of profile specific parameters
as we make use of all the gene counts (independently of which profile they express the most) in estimating
each such parameters. Such an improvement in the estimates is expected [13].

Our basic Poisson model is similar to that of [9]. For a technical survey of related latent aspects models
see [7].

7 Conclusions

In problems where features co-occur frequently (e.g., a gene can be present on multiple transcript, as picked up
by SAGE), computational gains are hardly warranted. Applications to problems that arise in computational
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biology, e.g., SAGE and microarray data, are one such case. In this paper, we introduce probabilistic models
to learn latent expression themes in an unsupervised fashion. Our models capture the notion of “contagion”
to characterize semantic themes underlying observed feature patterns, such as “biological context”, within a
hierarchical Bayesian scheme. We present model variants tailored to different properties of biological data,
and we outline a general variational inference scheme for approximate posterior inference.

Our results suggest the possibility of obtaining reasonable predictions of gene functions in an unsupervised
fashion. The estimates our models provide, in scenarios that feature realistic variability profiles for the data,
are sharper than those entailed by existent methods based on stronger independence assumptions, and
demonstrate feasibility of a promising hierarchical Bayesian formalism for soft clustering and latent aspect
analysis.

Acknowledgements

The author’s thinking about the issues discussed in this paper has benefited greatly from discussions and col-
laborations with William Cohen, at Carnegie Mellon University, and with David Blei, at Princeton University.
This work was partially supported by National Institutes of Health (NIH) under Grant 1 R01 AG023141-01,
by the Office of Naval Research (ONR) under Dynamic Network Analysis (N00014-02-1-0973), the National
Science Foundation (NSF) and the Department of Defense (DOD) under MKIDS (IIS0218466). The views
and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the NIH, the ONR, the NSF, the DOD, or the
U.S. government.

References

[1] E. M. Airoldi, A. G. Anderson, S. E. Fienberg, and K. K. Skinner. Who wrote Ronald Reagan radio
addresses? Bayesian Analysis, 1(2):289–320, 2006.

[2] E. M. Airoldi, W. W. Cohen, and S. E. Fienberg. Bayesian models for frequent terms in text. In
Proceedings of the Classification Society of North America and INTERFACE Annual Meetings, 2005.

[3] E. M. Airoldi, S. E. Fienberg, C. Joutard, and T. M. Love. Model comparison and choice for hierarchical
Bayesian mixed-membership models with application to scientific publications. Technical Report CMU-
MLD-06-101, School of Computer Science, Canregie Mellon University, April 2006.

[4] S. Blackshaw, S. Harpavat, J. Trimarchi, L. Cai, H Huang, W. P. Kuo, R. E. Fraioli, S. H. Cho, R. Yung,
and E. Asch. Genomic analysis of mouse retinal development. PLoS Biology, 2004.

[5] D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[6] W. Buntine and A. Jakulin. Applying discrete PCA in data analysis. In Uncertainty in Artificial

Intelligence, 2004.

[7] W. L. Buntine and A. Jakulin. Discrete components analysis. In C. Saunders, M. Grobelnik, S. Gunn,
and J. Shawe-Taylor, editors, Subspace, Latent Structure and Feature Selection Techniques. Springer-
Verlag, 2006. to appear.

[8] L. Cai, H. Huang, S. Blackshaw, J. S. Liu, C. L. Cepko, and W. H. Wong. Clustering analysis of SAGE
data using a Poisson approach. Genome Biology, 5(7):R51, 2004.

[9] J. Canny. GaP: A factor model for discrete data. In Proceedings of the 27th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, 2004.

13



Airoldi, Fienberg & Xing Draft, April 2006

[10] B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall,
2005.

[11] D. Cohn and T. Hofmann. The missing link—A probabilistic model of document content and hypertext
connectivity. In Advances in Neural Information Processing Systems 13, 2001.

[12] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy of

Sciences, 101(Suppl. 1):5228–5235, 2004.

[13] W. James and C. M. Stein. Estimation with quadratic loss. In Proceedings of the 4th Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, pages 361–379, 1961.

[14] N. L. Johnson, S. Kotz, and A. W. Kemp. Univariate Discrete Distributions. John Wiley, 1992.

[15] J. B. Kadane, G. Shmueli, T. P. Minka, S. Borle, and P. Boatwright. Conjugate analysis of the Conway-
Maxwell-Poisson distribution. Bayesian Analysis, 1(2):363–374, 2006.

[16] T. Minka and J. Lafferty. Expectation-propagation for the generative aspect model. In Uncertainty in

Artificial Intelligence, 2002.

[17] J. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus genotype
data. Genetics, 155:945–959, 2000.

[18] N. A. Rosenberg, J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. Zhivotovsky, and M. W.
Feldman. Genetic structure of human populations. Science, 298:2381–2385, 2002.

[19] H. A. Simon. On a class of skew distribution functions. Biometrika, 42:425–440, 1955.

[20] V. E. Vesculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. Serial analysis of gene expression. Science,
270:484–487, 1995.

[21] E. P. Xing, M. I. Jordan, R. M. Karp, and S. Russell. A hierarchical bayesian markovian model for
motifs in biopolymer sequences. In Advances in Neural Information Processing Systems, volume 16,
2003.

14


