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Abstract. We consider the statistical analysis of a collection of unipartite graphs,
i.e., multiple matrices of relations among objects of a single type. Such data arise,
for example, in biological settings, collections of author-recipient email, and social
networks. In such applications, typical analyses aim at: (i) clustering the objects
of study or situating them in a low dimensional space, e.g., a simplex; and (ii)
estimating relational structures among the clusters themselves. For example, in
biological applications we are interested in estimating how stable protein complexes
(i.e., clusters of proteins) interact. To support such integrated data analyses, we
develop the family of stochastic block models of mixed membership. Our models
combine features of mixed-membership models (Erosheva and Fienberg 2005) and
block models for relational data (Holland et al. 1983) in a hierarchical Bayesian
framework. We develop a nested variational inference scheme, which is necessary
to successfully perform fast approximate posterior inference in our models of re-
lational data. We present evidence to support our claims, using both real and
synthetic data.
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1 Introduction

In many applications we wish to analyze observations about attribute measurements
corresponding to pairs of objects of the same type, e.g., the presence of an interaction
between a pair of proteins, or the number of papers where an author cites another
author. In this case it is common to call the attributes “relations”. Relations can be
symmetric (e.g., two proteins reciprocate an interaction) or not (e.g., an author uni-
laterally decides to cite another author), depending on the semantics of the specific
application we consider. We distinguish such applications from those where we wish to
analyze observations about attribute measurements corresponding to individual objects
of the same type. Observations are not paired in these applications, that is, measure-
ments about the set attributes refer to a single object. For example, in the application
to document analysis we measure the number of times each word is used by individual
authors, independently of the others.

In such applications, typical analyses aim at: (i) clustering the objects of study or
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situating them in a low dimensional space, e.g., a simplex; and (ii) estimating relational
structures among the clusters themselves. For example, in biological applications we are
interested in performing two tasks: identifying stable protein complexes, i.e., clusters
of proteins, and estimating how such complexes interact with one another. In social
network analysis the two tasks above translate in to identifying groups of people, and
estimating how groups themselves communicate, from observations about email com-
munications. This latter piece of information may reveal, for example, the informal
structure of an organization.

To support such integrated data analyses, we introduce the family of stochastic

block models of mixed membership. Models in this family combine features of mixed-
membership models (Erosheva 2003; Erosheva and Fienberg 2005) and block models for
relational data (Holland et al. 1983; Anderson et al. 1992; Nowicki and Snijders 2001)
in a hierarchical Bayesian framework.

In this paper we make the following contributions: (a) we introduce stochastic block
models of mixed membership, a subset of latent variable models for analyzing relational
data, i.e., directed unipartite graphs with possibly weighted edges; (b) we subsume
possible full model specifications into a general formulation, which is amenable to the-
oretical analysis; and (c) we develop a nested variational inference scheme, which is
necessary to successfully perform fast approximate posterior inference in our models of
relational data, which does not depend on the support of the data, and which scales to
large problems. We explore theoretical and computational issues associated with these
models via simulations and a biological case study.

2 The Scientific Problem

Here we describe the relational data we are interested in modeling, and highlight the
differences with non-relational data. We describe the goals of the analysis, and we
conclude with a general formulation of the problem.

2.1 Relational versus non-Relational Data

Relational data are directed, unipartite graphs. A unipartite graph, is a graph whose
constituent nodes are of a single type, e.g., proteins; as opposed to bipartite and multi-
partite graphs, whose constituent nodes are of two and of multiple types, respectively,
e.g., authors and words, or employees, tasks and resources.

The typical independence and exchangeability assumptions adopted for non-relational
data may not be appropriate for relational data. For example, attributes measurements
at each object may be treated as independent or exchangeable, but it seems that a
different set of assumptions is needed to model relations among pairs of objects. Figure
1 provides a brief illustration of this point. Furthermore, note that arguments about
the appropriateness of assumptions do not depend on a specific goal of the analysis.
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Figure 1: A bipartite graph (left panel) and a four unipartite graphs (right panel).
In a unipartite graph setting there is one more dimension to the data, which is given
by the observations on pairs of objects for each attribute; attributes measurements at
each pairs may be treated as independent, but a set of extra assumptions is needed to
model relations among pairs of objects. This fact suggests that statistical models and
assumptions for non-relational data may not be appropriate for relational data.

2.2 Four Examples

Here we describe the essential characteristics of four example applications, which outline
the different kinds of data we can analyze with our models.

Example 1. Consider the set of hand-curated protein interactions produced by
the Munich Institute for Protein Sequencing (Mewes et al. 2004). A single set of in-
teractions between proteins has been experimentally verified. Information about this
unique, symmetric relation can be stored in one square table, whose entries are random
variables with support {0, 1} that encode presence or absence of an interaction between
corresponding pairs of proteins.

Example 2. Consider the output of a battery of microarray experiments, on the
same set of genes, N , under different, R, experimental conditions, in Yeast (Krogan
et al. 2006). Without entering into biological details1, we wish to analyze probabilities
of interactions between pairs of proteins2, which are induced from correlations found
in the gene expression experiments (Bhardwaj and Lu 2005). Information about this

1However, it is not to be excluded that such biological details may suggest alternative statistical
analyses, on data with different degrees of pre-processing, as more desirable.

2Proteins are uniquely identified by genes in the microarray experiments, so far as the “one gene –
one protein” dogma of molecular biology holds, in Yeast.
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unique, symmetric relation can be stored in a collection of R square tables, one for
each experimental condition, whose entries are random variables with support [0, 1]
that encode the probability of an interaction between corresponding pairs of proteins.

Example 3. Consider a collection of email communications within a company,
say, Enron. Our observations consists of weekly summaries about how many emails
each pair of employees exchange (Priebe et al. 2005). Information about this unique,
asymmetric relation can be stored in a collection of R square tables, one for each week,
whose entries are random variables with integer, non-negative support that encode the
number of emails sent-received by the corresponding pair of employees.

Example 4. Consider a collection of sociometric relations among a group of monks
(Sampson 1968). We observe responses to questions about J distinct social relations
between pairs of monks, e.g., “Do you like X?” or “Do you trust X?”, and the question-
naire is repeated at Rj epochs for each social relation, where j = 1, . . . , J . The relations
are asymmetric by design. Information about these repeated, asymmetric relations can
be stored in a collection of

∑

j Rj square tables, Rj replicates for each distinct social
relation, j, whose entries are random variables with support {0, 1} that encode binary
responses of a monk regarding another monks.

From a modeling perspective, it is useful to give an abstract representation of the
data we plan to analyze. Say we observe a collection of unipartite graphs, whose edge
encode measurements on pair of nodes according to different, J , response variables, and
we observe multiple, Rj , replicates of each graph,

G =
{

Gjr : j = 1, . . . , J, and r = 1, . . . , Rj

}

where each graph Gjr = (Yjr ,N ), is defined over a common set of nodes, N . The
random quantities that encode the edge weights, e.g., Yjrnm, where (n,m) is a pair of
nodes in N , have support in a separable, metric space. It is possible that each of the
J response variables has support in a different spaces. The collection contains

∑

j Rj

graphs in total. Such a collection may contain missing values.

2.3 The Goals of the Analysis

There are three main goals: (1) identifying clusters of nodes; (2) determining the number
of clusters; (3) estimating the probabilities of interaction among clusters.

Let us consider the first protein example above. We analyze the set of protein-
protein interactions with the goal of identifying stable protein complexes, i.e., clusters of
proteins, since they have been shown to be important for carrying out cellular processes
(Krogan et al. 2006). Further, we want to know how many protein complexes are
needed to explain the collection of protein interactions. Last, we want to estimate
the probabilities according to which pairs of such protein complexes interact with one
another.
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The challenge is then to posit a rich class of models that is instrumental for thinking
about the scientific problems we outlined above. On the other hand, it is desirable
for such a formulation to be amenable to theoretical analysis, and for it to capture
specificities of the relational data that are not shared by non-relational data. The class
of stochastic block models of mixed-membership satisfies our desiderata.

In order to define the general specifications of models in this class we combine ele-
ments of models of mixed membership (Pritchard et al. 2000; Erosheva 2002; Rosenberg
et al. 2002; Blei et al. 2003; Xing et al. 2003a, 2004; Erosheva et al. 2004; Airoldi et al.
2005; Blei and Lafferty 2006; Xing et al. 2006) with elements of block models for net-
works (Wasserman 1980; Wasserman and Anderson 1987; Wasserman and Faust 1994;
Wasserman and Pattison 1996; Fienberg et al. 1985; Frank and Strauss 1986; Nowicki
and Snijders 2001; Hoff et al. 2002; Airoldi et al. 2006a). We combine such elements
in a hierarchical Bayes framework, where (i) latent variables encode semantic elements,
e.g., protein-specific latent variables encode their functions, and (ii) a specific structure
among observable and latent random elements is posited.

3.1 Model Formulation

We characterize the stochastic block models of mixed-membership in terms of assump-
tions at four levels.3

A1–Population Level. Assume that there are K classes or sub-populations in the
population of interest. We denote by f(yjnm|ηgh) the probability distribution of the
j-th response graph at the pair of nodes (n,m), where the n-th node is in the h-th sub-
population, the m-th node is in the k-th sub-population, and ηgh contains the relevant
parameters. The indices n,m run in N , and the indices g, h run in [1,K]. Within
sub-population pairs, the observed paired responses are assumed independent.

A2–Node Level. The components of the membership vector θn = (θn1, . . . , θnK)′

encodes the mixed-membership of the n-th node to the various sub-populations. The
distribution of the observed response yjnm given the relevant, node-specific membership
scores, (θn, θm), is then

Pr (yjnm|θn, θm, η) =

K
∑

g,h=1

θngf(yjnm|ηgh)θmh. (1)

Conditional on the mixed-membership scores, the response edges yjnm are independent
of one another, both across distinct graphs and pairs of nodes.

3In the remainder of this paper, we index random quantities with up to five sub-script. Typically, the
first subscript refers to the response variable, j = 1, . . . , J , the second subscript refers to the replicate,
r = 1, . . . , Rj . The next (next two) subscript refers to a node (pair of nodes), n, m ∈ N . The fifth
subscript refers to the number of latent clusters, k = 1, . . . , K, in those few cases where a vector has
to be indexed by jrnm; see Equation 9 for an example. At times we will need two subscripts to index
pairs of latent clusters, g, h = 1, . . . , K
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A3–Latent Variable Level. Assume that the vectors θn, i.e., the mixed-membership
scores of the n-th subject, are realizations of a latent variable with distribution Dα, pa-
rameterized by vector α. The probability of observing jnm, given the parameters, is
then

Pr (yjnm|α, η) =

∫





K
∑

g,h=1

θngf(yjnm|ηgh)θmh



Dα(dθ). (2)

A4–Sampling Scheme Level. Assume that the R independent replications of
the J distinct response graphs are independent of one another. The probability of
observing the whole collection of graphs, {yjrnm}, given the parameters, is then given
by the following equation.

Pr
(

{yjrnm}
∣

∣ α, η
)

=

∫





J
∏

j=1

R
∏

r=1

N
∏

n,m=1

K
∑

g,h=1

θngf(yjrnm|ηgh)θmh



Dα(dθ). (3)

The number of replications is not necessarily the same across different response graphs,
i.e., R = Rj . Likewise, the block model can be response specific, i.e., η = ηj . More
variations along these lines are possible.

A graphical representation of models in this family is given in Figure 2.

Full model specifications immediately adapt to the different kinds of data, e.g., mul-
tiple data types through the choice of f , or parametric or semi-parametric specifications
of the prior on the number of clusters through the choice of Dα.

3.2 Admixture of Latent Blocks

Airoldi et al. (2006a) introduced the Admixture of Latent Blocks model to analyze a
collection of protein-protein interactions. This model is defined by the simplest set of
model specifications for a stochastic block model of mixed membership, and it was used
to analyze the most basic kind of relational data. Given a single undirected unipartite
graph with binary edges, the Admixture of Latent Blocks model recovers membership
of nodes to clusters (i.e., the mixed membership vectors θ1:N) and cluster-to-cluster
interaction probabilities (i.e., the block model η), under the assumption that K non-
observable clusters exist.

Using this model on protein-protein interaction data: sub-populations correspond
to non-observable “stable protein complexes”, indexed by k; nodes correspond to “pro-
teins”, indexed by n; there is only one response variable that encodes whether a pair
of proteins interacts or not, so that j is omitted; there is only one replicate, since the
interactions have been measured with an experimental procedure such as “Yeast Two
Hybrid” under a single experimental condition. The model assumes that each interac-
tion in the collection is either present or absent given the memberships to specific protein
complexes of the pair of single proteins involved. That is, each protein participates in
the various interactions as a member of possibly different protein complexes. In order
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Figure 2: The graphical representation of stochastic block models of mixed membership
using plates. Notes: (i) the mixed-membership vectors, θ1:N , are sampled once for all
relations j = 1, . . . , J , however, we plotted two sets of them, i.e. j = 1 and j = J ,
for clarity; (ii) we did not draw all the arrows out of the block models η1:J , for clarity,
however, all the interactions yjrnm depend on the corresponding block model.

to simplify the inference, an explicit pair of indicator variables (z→nm, z
←
nm) is introduced

for each interaction in the observed collection, which indicates the protein complexes
that the two proteins are members of as they interact. The function f(ynm|ηgh) =
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z 1 → 1 y 1 1z 1 ← 1 z 1 → 2 y 1 2z 1 ← 2 z 1 → 3 y 1 3z 1 ← 3 z 1 → N y 1 Nz 1 ← N. . .
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Figure 3: The graphical representation of the admixture of latent blocks introduced by
Airoldi et al. (2006a) using plates. Note that we did not draw all the arrows out of the
block model η, for clarity, however all the interactions ynm depend on it.

Pr (ynm = 1|z→nm = g, z←nm = h) = Bernoulli (ηgh), where ηgh is the probability that
a protein in complex g interacts with a protein in complex h. A mixed-membership
vectors θ1:N encode the expected protein complex proportions. They are distributed
according to Dα, i.e., a Dirichlet distribution. We obtain equation 1 integrating out
the protein complex indicator variables (z→nm, z

←
nm) at the interactions level—the latent

indicators z→nm are distributed according to a Multinomial (1, θn), whereas the latent
indicators z←nm are distributed according to a Multinomial (1, θm).

A graphical representation of this specific model is given in Figure 3.

4 Inference and Parameter Estimation

In order to learn the hyper-parameters, (α, η), and infer the mixed-membership vectors,
θ1:N , we need to be able to evaluate the likelihood, which involves the non-tractable
integral in Equation 3. Given the large amount of data available in the applications we
are concerned with, we focus on variational methods, which present a computationally
cheaper alternative to Monte Carlo Markov chain methods. Using variational methods,
we find a tractable lower bound for the likelihood that can be used as a surrogate for
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our inference purposes. This leads to approximate MLEs for the hyper-parameters and
approximate posterior distributions for the mixed-membership vectors.

4.1 Variational Expectation-Maximization

Variational methods prescribe the use of a mean-field approximation to the posterior
distribution of the latent variables given data and hyper-parameters (Jordan et al. 1999;
Xing et al. 2003b). The mean-field approximation is obtained by positing a fully-
factorized joint distributions over the latent variables,4

q
(

{θn, z
→
jrnm, z

←
jrnm}

∣

∣ {γn, φ
→
jrnm, φ

←
jrnm}

)

=

=
∏

n∈N

q
(

θn|γn

)

J
∏

j=1

rj
∏

r=1

∏

n,m∈N

(

q
(

z→jrnm

∣

∣ φ→jrnm

)

q
(

z←jrnm

∣

∣ φ←jrnm

)

)

, (4)

which depends on a set of free parameters, {γn, φ
→
jrnm, φ

←
jrnm}. The mean-field approx-

imation is then given by the following posterior distribution,

p̃
(

{θn, z
→
jrnm, z

←
jrnm}

∣

∣ {γn, φ
→
jrnm, φ

←
jrnm}, α, η1:J

)

(5)

where the conditioning on the data is now obtained indirectly, trough the optimal values

of the free parameters,

γ̃n = γ̃n

(

{Yjr : 0 ≤ j ≤ J, 0 ≤ r ≤ Rj}
)

,

φ̃→jrnm = φ̃→jrnm

(

Yjr

)

,

φ̃←jrnm = φ̃←jrnm

(

Yjr

)

.

The fully factorized distribution q in Equation 4 leads to a lower bound for the likeli-
hood. In fact, it is possible to find a closed form solution to the integral in Equation
3 by applying Jensen’s inequality, and then integrating the latent variables out with
respect q. The mean-field approximate posterior, p̃ in Equation 5, is obtained by sub-
stituting the lower bound for the likelihood in the calculations, as appropriate. Specif-
ically, the mean-field approximation corresponds to the values of the free parameters,
{γ̃n, φ̃

→
jrnm, φ̃

←
jrnm}, that minimizes the Kullback-Leibler (KL) divergence between the

true and the approximate posteriors.

The variational EM algorithm we develop for performing posterior inference is then
an approximate EM algorithm. During the E step, we tighten the lower bound for
the likelihood by minimizing the KL divergence between the true and the approximate
posteriors over the free parameters, {γn, φ

→
jrnm, φ

←
jrnm}, given the most recent estimates

for the hyper-parameters. During the M step, we maximize the lower bound for the
likelihood over the hyper-parameters of the model, (α, η1:J ), to obtain to (approximate)
maximum likelihood estimates (Carlin and Louis 2005).

4Note that the set of latent variables {z→nm, z←nm : n, m ∈ N} are introduced to simplify the varia-
tional inference, e.g., without such parameters the γng updates in Equation 8, needed to carry out the
approximate E step of a variational EM algorithm, would not be in closed form.
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In the approximate E step we update the free parameters for the mean-field approx-
imation of the posterior distribution of the latent variables, {γn, φ

→
jrnm, φ

←
jrnm}, given

the most recent estimates of the hyper-parameters of the model, (α, η1:J ), according to
Equations 6, 7 and 8,

φ→nmg ∝ exp
{

ψ(γng) − ψ(

K
∑

g=1

γng)
}

·
K
∏

h=1

f
(

ynm

∣

∣ ηgh

)φ←nmh (6)

φ←nmh ∝ exp
{

ψ(γmh) − ψ(

K
∑

h=1

γmh)
}

·
K
∏

g=1

f
(

ynm

∣

∣ ηgh

)φ→nmg (7)

γng = αg +

J
∑

j=1

Rj
∑

r=1

(

N
∑

m=1

φ→jrnmg +

N
∑

m=1

φ←jrnmg

)

. (8)

This minimizes the posterior KL divergence between true and approximate posteriors,
at the graph level, and leads to a new lower bound for the likelihood of the collection of
graphs. Note that the free parameter updates above use observations in a single graph
only, hence we suppressed the indices j, r. Further, they are general in that they do
not depend on a specific observation model. However, our derivations do assume a fully
factorized variational distribution, i.e., the mean field approximation.

In the M step, we update the hyper-parameters of the model, (α, η1:J ), by maxi-
mizing the tight lower bound for the likelihood over such hyper-parameters, given the
most recent updates of the free parameters the bound depends on, {γn, φ

→
jrnm, φ

←
jrnm}.

In the case of f(yjrnm|ηgh) = Bernoulli (ηgh), for example, this argument leads to the
following (approximate) maximum likelihood estimates for the parameters:

η∗jgh =
1

Rj

Rj
∑

r=1

∑N

n,m=1 φ
→
jrnmg φ

←
jrnmh yjrnm

∑N

n,m=1 φ
→
jrnmg φ

←
jrnmh

. (9)

It is not possible to derive closed form expression for the approximate maximum likeli-
hood estimates of the parameters underlying f(yjrnm|ηgh), in general, although closed
form expressions exist in many cases, Bernoulli, Poisson and Gaussian among them.
Further, a closed form solution for the approximate maximum likelihood estimates of α
does not exist (Minka and Lafferty 2002; Blei et al. 2003). We can produce a method
that is linear in time by using Newton-Raphson, with the gradient and Hessian for the
log-likelihood in Equations 10 and 11,

∂L

∂α[k]
= N

(

Ψ
(

K
∑

k=1

αk

)

−Ψ(αk)

)

+
N
∑

n=1

(

Ψ(γnk) − Ψ
(

K
∑

k=1

γnk

)

)

, (10)

∂L

∂αk1
αk2

= N

(

δk1=k2
· Ψ′(αk1

) − Ψ′
(

K
∑

k2=1

αk2

)

)

. (11)
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4.2 Nested versus Näıve Variational Algorithms

The variational inference algorithm presented in Figures 4 and 4 is what we term a nested

variational inference algorithm. The difference from the näıve version of the algorithm at
a glance is that to carry out the latter, we initialize the variational Dirichlet parameters
γn and the variational Multinomial parameters φij to non-informative values, then we
iterate until convergence the following two steps: (i) update φ→nm and φ←nm for all edges
(n,m), and (ii) update γn for all nodes n. In such algorithm, at each variational inference
cycle we need to allocate NK + 2N2K scalars. In our simulation experiments, where
the true block model is known, the näıve variational algorithm often converged to a bad
solution, or converged after a large number of iterations. We attribute this behavior
to a dependence that our two main assumptions (block model and mixed membership)
induce between {γng} and {ηjgh}, which is not satisfied by the näıve algorithm. Some
intuition about why this may happen follows. From a purely algorithmic perspective,
the näıve variational EM algorithm instantiates a large coordinate ascent algorithm,
where the parameters can be semantically divided into coherent blocks. Blocks are
processed in a specific order, and the parameters within each block get all updated each
time5. At every iteration the näıve algorithm sets all the elements of {γng} equal to
the same constant. This dampens the likelihood by suddenly breaking the dependence
between the estimates of parameters in {γng} and in {ηjgh} that was being inferred
from the data.

Instead, the nested variational inference algorithm maintains some of this depen-
dence that is being inferred from the data across the various iterations. This is achieved
mainly through a different scheduling of the parameter updates in the various blocks.
To a minor extent, the dependence is maintained by always keeping the block of free
parameters, {φ→nm, φ

←
nm}, optimized given the other variational parameters. Note that

these parameters are involved in the updates of parameters in {γng} and in {ηjgh}, thus
providing us with a channel to maintain some of the dependence among them, i.e., by
keeping them at their optimal value given the data. Further, the nested algorithm has
the advantage that it trades time for space thus allowing us to deal with large graphs;
at each variational cycle we need to allocate NK + 2K scalars. The increased running
time is partially offset by the fact that the algorithm can be parallelized and leads to
empirically observed faster convergence rates. This algorithm is also better than blocked
and collapsed Gibbs sampler in terms of memory requirements.

5 Experiments and Examples

In this section we explore the behavior of the admixture of latent blocks model described
in Section 3.2, which is a simple stochastic block model of mixed membership.

We present experimental evidence to show that: (i) our model recovers both the
mixed membership of nodes to clusters, and the latent block structure among clusters;

5Within a block, the order according to which (scalar) parameters get updated is not expected to
affect convergence.
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Outer loop

1. initialize γ0
ng = 2N

K
for all n, g

2. repeat

3. for n ∈ N
4. for m ∈ N
5. get variational φ→ t+1

nm and φ← t+1
nm = g(ynm, γ

t
n, γ

t
m, η

t)
6. partially update γt+1

n , γt+1
m and ηt+1

7. until convergence

Figure 4: The nested (two-layered) variational inference algorithm for γ and (φ→, φ←).
The inner layer consists of Step 5. The function g is described in details in Figure 5.

Inner loop

1. initialize φ→ 0
nmg = φ← 0

nmh = 1
K

for all g, h
2. repeat

3. for g = 1 to K
4. update φ→ s+1

nmg ∝ g1(φ
← s
nm , γ, η)

5. normalize φ→ s+1
nm to sum to 1

6. for h = 1 to K
7. update φ← s+1

nmh ∝ g2(φ
→ s
nm , γ, η)

8. normalize φ← s+1
nm to sum to 1

9. until convergence

Figure 5: Details Step 5. in Figure 4; the inference algorithm for the variational param-
eters (φ→nm, φ

←
nm) corresponding to the basic observation ynm. The functions g1 and g2

are updates for φ→nmg and φ←nmh described in the text of Section 4.

(ii) the nested variational algorithm drives the log-likelihood to converge faster to its
peak than the näıve algorithm; (iii) a cross-validation experiment is sufficient to perform
model selection for the parametric formulation of the admixture of latent blocks model,
where the number of clustersK is fixed prior to the analysis. We then present some of the
analysis and results in Airoldi et al. (2006a) about a set of protein-protein interactions
in Yeast, to motivate the discussion of some technical issues related to the class of
stochastic block model of mixed membership.

5.1 Inference and Parameter Estimation

Using the admixture of latent blocks model of Section 3.2, we simulated example graphs
of 100, 300, and 600 nodes from block models with 4, 10, and 20 clusters, respectively.
We used values of α ∈ {0.05, 0.1, 0.25} to simulate a range of settings in terms of
membership of nodes to clusters—from unique to mixed.

The variational EM algorithm described in Section 4 successfully recovers both the
latent block model, η, and the latent mixed membership vectors (θ1:N ). In Figure
6 we show the adjacency matrices of binary interactions where rows (corresponding
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to nodes) are reordered according to their most likely membership. The estimated
reordering reveals the block model that was originally used to simulate the interactions.
As α increases (left to right) each node is allowed to belong to more clusters; as a
consequence it may express interaction patterns of clusters other than the one it is
most likely to belong to, as we simulate the single interactions with other nodes. This
phenomenon reflects in the reordered interaction matrices as the block structure is less
evident.

Figure 6: Adjacency matrices of corresponding to simulated interaction graphs with
100 nodes and 4 clusters, 300 nodes and 10 clusters, 600 nodes and 20 clusters (top
to bottom) and α equal to 0.05, 0.1 and 0.25 (left to right). Rows, which corresponds
to nodes, are reordered according to their most likely membership. The estimated
reordering reveals the block model that was originally used to simulate the interactions.
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Figure 7: The running time of the näıve variational inference (solid, blue line) against
the running time of our enhanced (nested) variational inference algorithm (dashed, black
line), in two experimental settings: 100 nodes with 4 clusters, and 300 nodes with 10
clusters. We measure the number of iterations on the X axis and the log-likelihood on
the Y axis. The two curves (iterations/log-likelihood) in each panel correspond to the
same initial values for the parameters. Both algorithms reach the same plateau in terms
of log-likelihood, and converge to the same parameter estimates.
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Figure 8: The held-out log-likelihood is indicative of the true number of latent clusters,
on simulated data. We measure the number of latent clusters on the X axis and the
log-likelihood on a test set on the Y axis. In the example shown the peak corresponds
to the correct number of clusters, i.e., K∗ = 10.

In Figure 7 we compare the running times of the nested variational-EM algorithm
versus the näıve implementation. The nested algorithm, which is more efficient in
terms of space, converged faster in our simulations. Further, note that the nested
variational algorithm can be parallelized given that the updates for each interaction
(i, j) are independent of one another.
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Figure 8 shows an example where cross-validation is sufficient to perform model
selection for the parametric formulation of the admixture of latent blocks model. In
the parametric formulation of the model, the number of clusters K is fixed prior to the
analysis. Cross-validation suggests the value of K that maximizes the likelihood on a
test set. In Figure 8 cross-validation suggests a latent number of clusters K∗ equals to
10. For a through exploration of model selection issues in hierarchical Bayesian models
of mixed membership we refer to Airoldi et al. (2006b).

5.2 Protein-Protein Interactions

Here we present elements of the analysis of a set of protein-protein interactions in Yeast
(Airoldi et al. 2006a) with the goal of discussing technical issues related to the class of
stochastic block model of mixed membership.

The data consists of a collection of interactions among a subset of proteins in Yeast,
such as those obtained with a yeast-two-hybrid experiment, which were experimentally
verified by researchers at the Munich institute for protein sequencing (MIPS), along with
a set of hand-curated functional annotations for the same subset of proteins (Mewes et al.
2004). The scientific investigation that provides the background theme for the analysis
aims at finding out whether a collection of protein-protein interactions alone contains
information about the functionality of the proteins involved.

Functional annotations of proteins in Yeast are organized in a tree. A possible
strategy to find out whether functional annotations correlate to latent aspects under-
lying protein interactions is as follows. We cut the annotations tree at an arbitrary
level, e.g., the first level return the 15 functional categories in Table 1. This leads to

# Category Count # Category Count
1 Metabolism 125 9 Interaction w/ cell. environment 18
2 Energy 56 10 Cellular regulation 37
3 Cell cycle & DNA processing 162 11 Cellular other 78
4 Transcription (tRNA) 258 12 Control of cell organization 36
5 Protein synthesis 220 13 Sub-cellular activities 789
6 Protein fate 170 14 Protein regulators 1
7 Cellular transportation 122 15 Transport facilitation 41
8 Cell rescue, defence & virulence 6

Table 1: In the table we report the 15 high-level functional categories we obtain by
cutting the annotation tree at the first level. We also report how many proteins, among
the 871 we considered in the MIPS collection, participate in each of such categories.
Most proteins participate in more than one function, with an average of ≈ 2.4 functional
annotations for each protein.

a 15-dimensional representation of each protein, using MIPS hand-curated functional
annotations—see Figure 9. The admixture of latent blocks model described in Section
3.2 on the other hand, as we set K = 15, provides us with estimates of 15-dimensional
mixed membership vectors. If the interactions contain information about the annota-
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Figure 9: By cutting the annotations tree at the first level we find the 15 functional
categories in Table 1. Here we plot the 15-dimensional representations of each protein,
using the MIPS hand-curated functional annotations. Each panel corresponds to a
protein; the 15 functional categories are displayed on the X axis, whereas the presence
or absence of the corresponding functional annotation is displayed on the Y axis. The
plots at the bottom zoom into the panels corresponding to three example proteins.

tions, it is conceivable that we can interpret the latent aspects the model estimates in
terms of functions, and that the 15-dimensional representation of proteins in terms of
MIPS functions will correlate with a thresholded version of the 15-dimensional mem-
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Figure 10: True annotations (solid, black bars) versus estimated mixed membership
vectors (dashed, red bars) for six example proteins. Note that these panels implicitly
assume a mapping between latent clusters and distinct functional categories. Section
5.3 discusses strategies to estimate one.

bership vectors. Indeed, the protein-protein interactions contain information about
abundant annotations to a large degree (Airoldi et al. 2006a, see Figure 10).

A thorough and more extensive evaluation is ongoing, which integrates interaction
data from different studies (Gavin et al. 2002; Ho et al. 2002; Mewes et al. 2004; Krogan
et al. 2006).

5.3 Discussion

From the simulations and the case study two main points for discussion emerge, which
apply to stochastic block models of mixed membership in general.

The first point concerns the lack of identifiability of latent clusters. Fitting the model
with no information about node-to-cluster memberships leads to non-identifiable clus-
ters. In the biological case study, for example, the estimates of the mixed-membership
vectors, θ̂1:N , do not carry information about which of the 15 dimensions corresponds
to which functional category. However, it is possible to resolve the mapping of latent
clusters to distinct functions by means of known functional annotations for a small set
of proteins. Assuming that the known functional annotations are given for a random
set of proteins, P , we may look for the mapping that minimizes some measure of dis-
tance between the marginal membership distribution of proteins in P and the estimated
marginal membership distributions of all proteins, derived from θ̂1:N . Such two distri-
butions are shown in Figure 11, for the biological case study. Alternatively, it is possible
to make use of known functional annotations of proteins in P by calibrating informa-
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Figure 11: The observed marginal distribution of membership counts, of proteins to
functional categories, in a small random sample of about 90 proteins (left panel). Note
that the marginal distribution of membership counts in the sample roughly follows the
true marginal distribution implied by Table 1. The estimated marginal distribution of
membership counts of all proteins, derived from θ̂1:N (right panel).

tive priors for the corresponding mixed-membership vectors, {θn : n ∈ P} and for the
relevant elements of the block model, η.6

The second point concerns the contribution of the mixed membership assumption to
the analysis. Figure 9 shows that mixed membership of nodes to clusters is a feature of
Yeast’s proteins in the MIPS collection. It is then reasonable to ask “how much” this
assumption is really contributing to the model fit, at maximum likelihood. Figure 12 of-
fers some evidence that suggests mixed membership as a reasonable assumption, which
contributes to model fit. The figure shows a histogram of the estimated mixed mem-
bership vectors, θ̂1:N . Apart from the overwhelming amount of negligible estimates,7

among the positive estimates we find that 9.2% are smaller than 0.1, 45.5% are bigger
than 0.8 and 45.3% are in between. The large percentage of estimated memberships
in between 0.1 and 0.8 (i.e., the gaps in the histogram in Figure 9) portrays mixed
membership as a reasonable assumption, which contributes to model fit. We recognize,
however, that there may be alternative explanations for this phenomenon. For example,
relaxing the constraint of single membership to allow for mixed membership of nodes to
clusters introduces an extra set of random elements in the model, whose estimates can
be distorted by the lack of fit due, e.g., to the fact that the model is bad in some sense. In
such a case, estimated memberships “in between” would be capturing systematic error
and noise. Hence a more detailed analysis is needed to support a conclusive argument
regarding the contributions of the mixed membership assumption to the analysis.

6Further, it is possible to use the model for testing hypotheses about single elements, or specific
structures, of the stochastic stochastic block model, but we do not discuss this type of analysis here.

7We find that θ̂nk < 0.214 for 90% of the estimated memberships, suggesting absence of the k-th
functional annotation for the n-th protein.
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Figure 12: A histogram of the top 10% estimated memberships, {θ̂nk > 0.214}.

6 Conclusions

In this paper we introduced stochastic block models of mixed membership; a novel class
of latent variable models for relational data. These models provide support for scientific
analyses of interest in applications where the observations can be represented as a
collection of unipartite graphs; we discuss this in Section 2. Importantly, it is the data
and the goals of the analyses that motivate our technical choices, e.g., latent variables
in our models are introduced to represent domain-specific elements of interest. For
example, the biological case study discussed in Section 5.2, which reports on the analysis
of a collection of protein-protein interactions by Airoldi et al. (2006a), suggests that
latent aspects, which were introduced to represent stable protein complexes, correlate
with functional processes in the cell.

The applications we consider share considerable similarities in the way domain-
specific semantic concepts (e.g., protein to stable protein complexes, and individuals
to social groups) relate. This allows us to state a general formulation of the problem,
which is no longer specific to an application domain, in Section 2.2. We subsume full
model specifications aimed at analyzing diverse kinds of data, under both parametric
and nonparametric assumptions on the number of non-observable clusters, into a general
formulation amenable to theoretical analysis, in Section 3. Working within specifica-
tions, we develop variational methods for carrying out approximate posterior inference
in these models, in Section 4.

To conclude, we note that the nested variational inference algorithm we developed
is parallelizable and allows for fast approximate inference on large graphs. However,
there is considerable opportunity to improve both upon computation, and efficiency of
approximation.
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