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Previous studies have provided evidence of the positive impact of transactive memory (TM) on group per-
formance, such as the efficient storage and recall of knowledge and better product quality. This paper aims

to unify the experimental research on TM and to extend it to more dynamic and diverse group settings. In this
paper, we develop an empirically grounded computational model—ORGMEM—and apply it to explore the con-
tingent effects of TM on group performance. The comparison between virtual experimental results and relevant
laboratory experimental results demonstrates the validity of ORGMEM as a useful tool to study memory-related
phenomena. Through a series of virtual experiments, we find that TM decreases group response time by facilitat-
ing knowledge retrieval processes and improves decision quality by informing task coordination and evaluation.
Our results also suggest that the effects of TM are contingent upon group characteristics, such as group size
and environment, as well as the dimension along which group performance is assessed. Overall, TM seems to
be more beneficial to small groups using quality as the dependent variable, but more beneficial to large groups,
groups in a dynamic task environment, and groups in a volatile knowledge environment using time as the
dependent variable.
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Introduction
Knowledge has become more and more crucial in
determining the competitiveness of both firms and
individuals (Grant 1996). Yet, specialization and the
huge volume of information in modern society means
that, people cannot possess all of the knowledge they
need in their work. They rely on external assistance
such as co-workers, books, databases, and the Inter-
net to retrieve information and solve problems. To do
so, they need to know where the required knowledge
is located and be able to acquire it in a timely manner.
Wegner (1987) presented the concept of transac-

tive memory (TM) as a shared system that people in
close relationships develop for encoding, storing, and
retrieving information from different domains. Schol-
ars and practitioners have found the notion of social
knowledge or metaknowledge to be a powerful con-

cept (e.g., Argote et al. 2003, Stewart 1995). Both direct
and indirect evidence of the positive effects of TM on
group performance exists. For instance, TM facilitates
the storage and recall of knowledge through interper-
sonal relationships (Wegner et al. 1991). People work-
ing in the same group tend to become specialized in
different domains. By knowing who is good at what
and directing new knowledge in a specific domain to
the experts, group members are able to acquire and
store knowledge more efficiently as a whole than as
individuals. Groups also make better decisions when
group members recognize the relative distribution of
expertise within the group (Henry 1995, Hollenbeck
et al. 1995, Littlepage et al. 1997). A series of labo-
ratory experiments suggest that groups whose mem-
bers are trained together recall more and perform
better than those whose members are trained sepa-
rately (Liang et al. 1995, Moreland et al. 1996). There
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is also evidence that TM improves group performance
in field settings (e.g., Austin 2003, Faraj and Sproull
2000, Lewis 2003). Most studies so far have been labo-
ratory experiments, in which two or three participants
perform a single task in a stable environment (e.g.,
Hollingshead 1998, Liang et al. 1995). So, it is not clear
to what extent the findings can be generalized to other
group settings. For example, what happens if a group
has more than three members, takes on multiple tasks,
or operates in an environment where technologies
change and people forget what they knew? To gen-
eralize, researchers would need to vary and examine
factors such as group size, group task, and knowledge
environment across a broad range of values. Study-
ing these phenomena by running laboratory experi-
ments using human participants would be extremely
costly. For instance, running laboratory experiments
using groups of six different sizes (3–35), varying
the frequency at which groups change tasks (task
volatility) and the rate at which knowledge decays
(knowledge volatility) at three levels (low, medium,
and high), and assume nine groups under each condi-
tion, researchers would need to recruit and coordinate
a minimum of 10,000 human participants! This is a
situation in which we think computational modeling
can make a contribution.
In this paper, we examine the relationship be-

tween TM and group performance using computa-
tional modeling techniques. This comparatively new
method complements and extends the existing lit-
erature in several regards. First, as the number of
variables that are of interest increases, it becomes
difficult for researchers to derive predictions from
their intuitive thinking and theoretical reasoning
(Kraut et al. 2004). Doing “what if” exercises using
computational models enables researchers to add
precision to theory building and identifying, articu-
lating, and testing the underlying logic (Monge and
Contractor 2003). Second, computational modeling
can be used to verify and extend existing theories
that were derived from logical reasoning or con-
ventional research methods, especially theories that
involve complex, dynamic, and nonlinear relation-
ships (Carley and Prietula 1994). In conjunction with
research paradigms, such as experimental and field
methods, computational modeling provides a triangu-
lated view of phenomena and enables researchers to
test causal dynamic theories (Hulin and Ilgen 2000).
Finally, computational modeling enables researchers
to examine larger and richer settings, such as groups
with 20 or 30 members, and to examine them with
relatively greater ease.
The rest of this paper is organized as follows. In the

next two sections, we describe the design and imple-
mentation of the computational model we developed,
ORGMEM. Then, we present the measures of group

performance and TM. Next, we validate the com-
putational model by comparing virtual experimental
results with previous laboratory findings. Finally, we
apply the model to explore the contingent effects of
TM on group performance.

The Computational Model: ORGMEM
ORGMEM is a multiagent system that simulates
interpersonal communication, information process-
ing, and decision-making processes in organizations.
ORGMEM agents are intelligent, adaptive, and het-
erogeneous (Ren 2001). Each agent has access to speci-
fiable intellectual or physical resources, undertakes
responsibilities for subtasks, and interacts with other
agents. Each agent has TM about who talks to whom,
who knows what, and who does what in the group.
Over time, groups receive a series of tasks, which
are divided among agents in the group. Agents work
on assigned subtasks, search for required resources,
and make decisions. As a result, group communica-
tion structures regarding who talks to whom, skill
structures regarding who has access to what, and
TM structures regarding who knows what change
over time.

Group Modeling
We define a group as a collection of individuals
who are interdependent in their tasks and share
responsibility for outcomes (Cohen and Bailey 1997).
ORGMEM models groups as multiagent information-
processing and decision-making units using the
PCANNS scheme (Krackhardt and Carley 1998).
PCANNS assumes that there exist three key ele-
ments in a group: people (P), resources (R), and
tasks (T). Accordingly, there exist six relational prim-
itives among these elements: (1) Precedence of tasks
(T × T), (2) Capabilities linking people to resources
(P × R), (3) Assignment of tasks to people (P × T),
(4) Networks among people (P × P), (5) Resource
Needs of tasks (R×T), and (6) Substitutes of resources
(R×R) (Carley et al. 2000). A group is represented as
six relational matrices in which cell values are either 1
or 0. A value of 1 indicates that a connection exists
between two elements; a value of 0 indicates that
there is no connection. For example, the assignment
matrix (P×T) indicates who is assigned to which task.
Aij = 1 means that person i is assigned to task j and
Aij = 0 means that person i is not assigned to task j .
Figure 1 depicts a canonical example of the group

representation schema. Suppose that a group works
together to develop an online transaction website.
Michael is the team leader who supervises two subor-
dinates, Mary and Joe (P×P matrix). The group task
involves three subtasks (database development, inter-
face construction, and query implementation) and
requires four areas of expertise (Microsoft Access,
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Figure 1 Illustrative Group Representation Scheme and an Example
Group

Michael (P1)

Access (R1)

Mary (P3)

VB (R2)

Networks (R3)

SQL (R4)

Database (T1) Query (T2)
Interface (T3)

People Resources Tasks
People 000 0100 100

100 1001 010
100 0010 101

Resources 0000 100
0000 101
0000 001
0000 010

Tasks 011
000
000

Joe (P2)

Visual Basic (VB), SQL, and networks). According to
the Capability matrix (P×R), Michael is knowledge-
able in VB, Mary is knowledgeable in networks, and
Joe is knowledgeable in Access and SQL. According
to the Assignment matrix (P× T), Michael and Mary
are responsible for database development, which has
to be finished before the other two subtasks, as indi-
cated in the Precedence matrix (T × T). The assign-
ment matrix also indicates that Mary and Joe are
assigned to work on interface construction and query
implementation, respectively. The Substitute matrix
(R × R) shows no link between any two areas of
knowledge, which suggests that these areas of exper-
tise are not fungible. Finally, the Needs matrix (R×T)
indicates that the group requires knowledge about
Access and VB to develop the database, knowledge
about SQL to implement queries, and knowledge
about VB and networks to construct the interface.
Using PCANNS, the group setting and the interrela-
tionships among people, resources, and tasks can be
captured in the six relational matrices as shown in
Figure 1.

Agent Modeling
In ORGMEM, each agent can be assigned a name and
a title (analyst, manager, central executive office, or
president), and can be given certain skills and respon-
sibilities. Each agent can develop TM of who talks
to whom (P× P), who has access to which resources
(P× R), and who is assigned to which tasks (P× T),

Figure 2 Representation of TM in ORGMEM

Who does what

Who knows what
Who talks to whom

  1  0   0  1
  1  1 –1 –1
–1  0   1  1
  1  0   0  1

  1  0   1  0
–1  1 –1  1
  0  0   1  0
  0  1   1  0 1   1   0   0  0

0  –1  1 –1  1
1   0   0 –1  1
0   0   1   1  1

as shown in Figure 2. We represent TM using a tri-
nary rather than a binary scheme to reflect three pos-
sible states of TM. A value of 1 indicates that the
agent knows there is a connection between two ele-
ments. A value of −1 indicates that the agent knows
there is no connection between two elements. A value
of 0 indicates that the agent does not know about the
connection.
In ORGMEM, as in real groups (Krauss and

Fussell 1990), members construct and modify their
TM through interpersonal communication and obser-
vation of others (see Figure 2). Suppose each mem-
ber initially has only knowledge about his or her
own connections to other people, resources, and
tasks. Through interactions, members observe others’
behavior and exchange information with others. For
example, after person A teaches person B a technical
solution, they both know that the other party has that
bit of knowledge. Group members also communicate
with each other about third parties. For example, per-
son A may tell person B about his or her observation
of person C’s skills. Person B then gains this piece of
knowledge and can communicate it to other people.

Agent Actions
Based on their attributes, agents are able to take
actions, such as learning, searching for resources, and
exchanging information. In the model, tasks sym-
bolize generic “things to do” and arrive randomly
with different resource requirements. Group tasks are
assigned to individual agents based on the Assign-
ment matrix (P× T). Each agent is responsible for a
set of subtasks and works on these subtasks one at a
time. During the process of task performance, agents
can be involved in three types of individual actions:
learning, forgetting, and resource searching; and three
types of group actions: communication, coordination,
and decision making.

Individual Action I: Learning. Before a group
starts performing its tasks, group members can go
through training to learn knowledge or skills. Dur-
ing the training session, either a supervisor or an
experimenter-type agent demonstrates how to per-
form each subtask, and group members gain access
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to the knowledge, skills, or resources required to per-
form these tasks. Group members can be trained as
a group or individually. Depending on the experi-
mental manipulation and how the group is initially
structured, group members may become experts in
different domains, and specialization may emerge in
the group. Group members also learn by interacting
with other members of the group, especially when
they approach others to seek knowledge or resources.

Individual Action II: Forgetting. Human beings
forget because of a variety of reasons. A human
being’s memory consists of two parts: long-term
memory and short-term memory (Newell and Simon
1972). In the process of learning, new knowledge is
first stored in short-term memory. After the knowl-
edge is repeated for a number of times, it is stored
into long-term memory using an index structure.
Every time a piece of knowledge is recalled, the link-
age between the index and the knowledge is rein-
forced. However, if a piece of knowledge is not
accessed for a long time, the linkage might become
weak and even disappear. That is typically when and
how individual forgetting happens. In our model,
we assume that (1) a piece of knowledge gets for-
gotten if it has not been recalled for a fixed num-
ber of time periods, (2) different types of knowledge
have different decay rates, for example, procedural
knowledge has been shown to be less subject to decay
than declarative knowledge (Cohen and Bacdayan
1996). This phenomenon is captured in the concept
of knowledge volatility. More volatile knowledge has
higher decay rates and can be forgotten in a shorter
period of time. If a piece of knowledge has not
been recalled for such a long time that no member
has access to it, organizational forgetting happens.
The forgotten knowledge is thrown into a “knowl-
edge trash can” that simulates knowledge stored in
the form of physical products, documents, and infor-
mation systems (Argote 1999). This knowledge is
retrievable, but to a lesser extent, as compared with
knowledge in human beings’ brains.

Individual Action III: Resource Searching. To per-
form their tasks, agents need access to resources
such as equipment, materials, or technical knowledge,
while they may need to search for these resources
within the group. Even if agents have the required
resources, they can still choose to improve their skills
or gain more resources by seeking help from others.
If TM does not exist, agents search for resources by
randomly asking others until they find the resources
or have queried every member of the group. If TM
exists, instead of searching aimlessly, agents mine
their TM and approach those whom they think are
more likely to have the required resources. Knowl-
edge transfer is influenced by a variety of factors,

such as the recipient’s absorptive capacity (Cohen and
Levinthal 1990) and characteristics of the knowledge
and of the source (see Argote et al. 2003 for a review).
In ORGMEM, we assume that how much knowl-
edge a recipient can absorb from a source is inversely
proportional to the difficulty level of the knowledge
and directly proportional to the recipient’s knowledge
level and the source’s knowledge level (see Equation 1
in the appendix).

Group Action I: Communication. Communication
plays a key role in how knowledge is learned and
retrieved in TM systems (Hollingshead 1998). In
ORGMEM, communication is modeled as the process
through which people share and exchange knowl-
edge. The model assumes sufficient proximity among
group members that communication is possible. Com-
munication can be based on three mechanisms: ran-
dom, relative similarity, and information seeking.
Relative similarity models the process by which peo-
ple talk to those who are similar to them or have
knowledge in common with them; information seek-
ing models the process by which people seek new
knowledge by approaching people from different
domains (Carley 1990). The likelihood of two agents
interacting is calculated by comparing their TM and
resource structure. Driven by relative similarity (infor-
mation seeking), agent i is more likely to interact with
those who are linked to people, resources, and tasks
that are similar to (different from) those agent i is
linked to (see Equations 2 and 3 in the appendix).

Group Action II: Coordination. TM has also been
shown to facilitate task coordination in groups (Liang
et al. 1995). By knowing each other’s strengths and
weaknesses, group members can make task assign-
ments and cover each other’s weak spots. Without
the knowledge or shared consensus of who is good
at doing what, group members would have to rely
heavily on oral communication and negotiation to set-
tle on an acceptable arrangement. In ORGMEM, we
model task coordination as a process through which
members assign and reassign tasks among themselves
based on their knowledge of who is good at doing
what. To assure fairness and a reasonable amount of
work load for everyone, the agent who hands over a
task to another agent is required to take over a task
from the other party that this agent performs at least
as well.

Group Actions III: Decision Making. During task
performance, each member works on a set of sub-
tasks assigned in the Assignment matrix (P × T) by
combining personal resources and resources acquired
through within-group search. Members then integrate
individual decisions to make a group decision. In this
paper, we focus primarily on teams whose members
have an equal say in group decision making. The only
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social cues that members utilize to weigh individual
decisions are their perceptions of others’ expertise.
Members evaluate each other’s expertise using a trust
function. The P × R matrix in a person’s TM indi-
cates the skill level of every member in the group,
represented by an integer falling in the range of �0�9�.
During group decision making, group members first
construct a shared view of how knowledgeable each
member is in performing his or her tasks. A trust coef-
ficient is then derived from the shared view to deter-
mine how much weight to assign to each member’s
decision to come up with a group decision.

Model Implementation
ORGMEM is implemented using an object-oriented
programming language, Java, because it provides the
compatibility to run the model on different platforms
and the flexibility to add new components. During
each simulation, the simulated group begins with
a particular design, undergoes a training session in
which members perform a fixed number of tasks,
and then operates through a working session dur-
ing which members perform a designated number of
tasks. A task is characterized by an N -bit binary string
corresponding to N subtasks, and each bit indicates
whether performing a task requires specific resources
or not. If a subtask requires specific resources, the
agent refers to the Needs matrix (R× T) to find out
which resources are required. The tasks in ORGMEM
are quasi-repetitive in nature—members work on the
same type of problems over time but some of the
information, constraints, or parameters differ across
tasks. For instance, a programming group whose pri-
mary task is coding software programs may work on
different sections of the code using different tools or
languages over time.
The initial state of the simulated group can be set

to involve a specific number of agents, resources,
and tasks. The initial relationships among agents,
resources, and tasks can be left blank, randomly gen-
erated, or fully specified. Similarly, an agent’s TM can
be set to blank randomly guessed or fully specified.
During both the training and working sessions, group
members have opportunities to observe and commu-
nicate about each other’s expertise. Group members
jointly work on the task by searching for resources
and applying these resources to make decisions. At
the same time, group members communicate in pairs
and exchange knowledge about who knows what.
Task coordination happens at a specified frequency,
every ten tasks, for instance, and knowledge that
has not been accessed for long enough automati-
cally decays out of group members’ memory. Dur-
ing the working session, group performance and TM
measures are recorded for each task and then aver-
aged across the total number of tasks that a group
performed.

Group Performance Measures
Group performance is measured by two variables
used in previous studies: (1) time taken to finish
group tasks and (2) quality of group operation or
decision (Decker 1998, Liang et al. 1995). Timing is
a crucial factor in organizational operation and deci-
sion making. Computationally, time is measured by
counting the number of time periods elapsed from
the initiation of a task to its completion. Quality is
another key dimension for assessing group perfor-
mance. In ORGMEM, quality is constructed with flex-
ibility to capture different aspects of quality such as
final product quality or group decision quality. We
assume that a member’s competence, measured as
his or her resource set, determines the quality of
his or her actions. We measure individual perfor-
mance as match closeness between the requirements
of a member’s assignments and his or her resource
set. Individual performance quality is a function of
a member’s working knowledge and how effectively
he or she engages in resource searching, communi-
cating, and group coordination. If a member has full
knowledge to perform his or her assigned tasks, he
or she receives the highest quality score. If a mem-
ber has little of the knowledge required by his or her
tasks, he or she receives a very low score. A group
quality index is then calculated as a weighted aver-
age of individual performance. How much weight is
assigned to each member is a function of how knowl-
edgeable the group thinks that person is. If the group
agrees that a member has adequate (or few) resources
to perform his or her tasks, a high (or low) weight will
be assigned. If the group has divergent opinions, a
moderate weight will be assigned. Overall, group per-
formance quality is jointly determined by resources
available to the group members to perform their tasks
and by how effectively the group members combine
and integrate their resources and individual outcomes
(Kunz et al. 1998).

TM Measures
TM density measures how much useful knowledge
exists in TM. It is calculated by dividing the actual
number of nonzero cells in an agent’s TM matrix
by the maximal possible number of nonzero cells.
Nonzero information is useful in the sense that it
indicates either there is a link or there is not a link
between two elements. Group TM density can range
from 0 when everyone knows nothing about others’
knowledge to 1 when everyone in the group has com-
plete knowledge of what others know. TM accuracy
measures the percentage of accurate knowledge in
TM. Inaccurate knowledge may come from several
sources, one of which is out-of-date knowledge. The
fact that agent i has access to knowledge k may be
true at moment t, but not true after time t+1 if agent i
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has “forgotten” k. Not being aware of this change,
other agents may continue to regard agent i as the
expert of knowledge k, and their knowledge about
agent i’s expertise in k becomes inaccurate. Compu-
tationally, TM accuracy is calculated by dividing the
number of accurate nonzero cells by the total number
of nonzero cells.

Model Validation
Computational models need to be validated before
they can be applied to generate hypotheses or test
theory (Carley 1996). The primary focus of model val-
idation is to demonstrate the comparability of the
simulated world in the computational model and the
real world. We calibrated our model using data from
a laboratory experiment using the radio assembly
paradigm to study the role of TM in group training
and group performance (Liang et al. 1995). We chose
the radio assembly experimental setting because it is a
well-developed paradigm, and has a reasonable level
of comparability with the virtual experimental set-
ting in ORGMEM. In both settings, group members
can gain access to knowledge or resources required
to perform group tasks. Group performance can be
measured by the time that a group takes to com-
plete its tasks and the quality of its performance.
Group performance primarily depends on the knowl-
edge or resources that members possess. Members
gain knowledge of who knows what through obser-
vation and interaction, and TM density and accuracy
are measured.
The radio assembly experiment consisted of two

sessions: a training session and a testing session that
happened a week apart. During the training ses-
sion, an experimenter trained participants, either indi-
vidually or in three-person groups, to assemble a
radio. During the testing session, participants were
instructed to assemble a radio together as fast as
they could in groups—those trained in groups stayed
in their original groups and those trained individu-
ally were randomly assigned to groups. The primary
difference between the individual and group train-
ing condition was that members trained in groups
had the opportunity to observe each other’s behavior
and communicate with one another, whereas partic-
ipants trained individually did not have the oppor-
tunity. The main findings were (1) groups whose
members trained together developed more complex
and accurate TM, (2) groups whose members trained
together did not take significantly more or less time
to assemble the radios, (3) groups whose members
trained together produced significantly better qual-
ity radios, (4) TM mediated the relationship between
group training and group performance quality (Liang
et al. 1995).

We randomly constructed 60 three-person groups
with five resources and five subtasks to simulate the
laboratory experimental setting. At the beginning of
the simulation, group members’ initial knowledge
state was set blank and members were randomly
assigned to the five subtasks. The groups then went
through a training period of 50 tasks and a testing
period of 100 tasks. Each group was simulated twice:
once under individual training and once under group
training.
Table 1 shows the results of paired t-tests of the

differences in TM density and accuracy, time taken
for groups to finish their tasks, and their performance
quality between group training and individual train-
ing conditions. Consistent with previous laboratory
studies, our virtual experimental results suggested
that (1) group training helped to develop signifi-
cantly more complex TM 
p < 0001�, (2) group train-
ing helped to develop significantly more accurate TM

p < 0001�, (3) groups trained together took less time
to finish their tasks although the difference was not
significant 
p= 0276�, and (4) groups trained together
outperformed groups trained individually by making
better quality decisions or products 
p < 0001�.
To test the mediation effect of TM, we followed

the procedures suggested by Baron and Kenny (1986).
Because of the high correlation between TM density
and accuracy (0.843, p < 0001), we constructed a TM
index by taking the average of the two. Because group
training had no significant effect on the time taken
for a group to accomplish its tasks, we focused exclu-
sively on performance quality to test the mediation
role of TM. The first equation, regressing quality 
Q�
on training condition 
T �, Q= 0113+0022T , was sig-
nificant, F 
1�118� = 7519, P < 0001. Groups trained
together performed better than groups trained indi-
vidually. The second equation, regressing TM index
(TMI) on training condition 
T �, TMI = 0621+0231T ,
was significant as well, F 
1�118� = 1�22267, P <
0001. Groups trained together developed both more
complex and more accurate TM. The third equa-
tion, regressing quality 
Q� on both training condi-
tion 
T � and TM indexes (TMI), Q= 0048− 0002T +
0104TMI, was also significant, F 
2�117�= 4486, P <
0001. The coefficient for TM (TMI) was significant,

Table 1 TM and Performance as a Function of Training Conditions

Variables N df Difference t value P value

TM density 60 59 0�265 38�87 <0�001
TM accuracy 60 59 0�198 18�80 <0�001
Time 60 59 −0�218 −1�10 0�276
Quality 60 59 0�022 8�93 <0�001

Note. The difference equals to (Group Training Condition− Individual Train-
ing Condition).
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t = 304, p < 001, but the coefficient for training con-
dition 
T � was not significant, t = −025. This con-
firmed that TM mediated the effects of group training
on group performance. In summary, our results from
the computational model corresponded nicely to pre-
viously published laboratory results, indicating that
ORGMEM is a valid tool to study TM-related phe-
nomena in groups.

The Contingent Effects of TM
Although our results on three-person groups did not
show a beneficial effect of TM on time, a previous
study using larger groups showed that TM signifi-
cantly decreased time taken for groups to finish their
tasks (Ren 2001). The discrepancy between the two
studies suggests that the effects of TM are contin-
gent on group size. According to contingency theory
(Galbraith 1973), there is no one best way to orga-
nize. The best way to organize is contingent upon
the uncertainty and diversity of the basic tasks being
performed by the organizational unit (Argote 1982,
Duncan 1972). Accordingly, we expect that TM is not
equally beneficial to all types of groups.
We chose three factors that have been studied in

the literature: group size, task volatility, and knowl-
edge volatility (So and Durfee 1998, Steiner 1972). We
selected group size because search and coordination
costs increase with size (Steiner 1972). Thus we expect
that the benefits of TM might be more pronounced
for groups that consist of many rather than few mem-
bers. We varied group size from 3 to 35 using a rough
interval of 6 (i.e., group size as 3, 9, 15, 21, 27, and 35).
The second contingency factor is task volatil-

ity. Task volatility reflects how frequently a group
changes its tasks. We expect that TM might be more
beneficial when tasks change than when they are
stable. When members switch to a new task, it is
less likely that they already possess the knowledge
and skills to successfully complete the task. Thus,
knowing whom to consult for advice is likely to be
especially beneficial under changing task conditions.
Three task conditions are simulated: never change,
switch, and oscillate. We designed two sets of tasks
that involve solving similar problems using differ-
ent resources (e.g., software development using C
versus software development using Java). Under the
never change condition, groups perform one task
throughout the experiment. Under the switch setting,
groups change from task 1 to task 2 half way through
the experiment. Under the oscillate condition, groups
alternate constantly between task 1 and task 2.
The third contingency factor was knowledge

volatility. Knowledge volatility reflects the decay rates
of the knowledge required by group tasks. The more
volatile the environment is, the sooner group mem-
bers forget knowledge that has not been recently

utilized. As knowledge volatility increases, group
members are more likely to forget knowledge they
possess. Knowing whom to ask for knowledge thus
might be especially helpful when knowledge volatil-
ity is high. Three knowledge conditions are simulated:
low, medium, and high. Under low volatility, no for-
getting happens once an agent learns. Under medium
volatility, knowledge gets forgotten if it has not been
accessed for a large number of time periods. Under
high volatility, knowledge gets forgotten if it has not
been accessed for a small number of time periods.
For simplicity, we examined groups that start with
either blank TM (e.g., group members are strangers)
or full TM (e.g., group members know everyone’s
areas of expertise). Altogether, there were 6 × 3 ×
3× 2= 108 conditions.
We assume that there exist nine resources and

twelve tasks in each group. Under each experimen-
tal condition, nine groups were constructed by ran-
domly assigning four tasks and a fixed number of
resources to group members. We referred to previ-
ous studies that simulated organizational structure
and performance and picked the most commonly
used values to set these values (Lin 1994). Because
many groups in real organizations consist of mem-
bers who join with knowledge and experience and do
not need training, we skipped the training session in
the contingency experiments. Instead, group members
were randomly assigned one, three, or six pieces of
resources in the beginning. The one resource condi-
tion simulates groups whose members join with little,
and therefore rarely overlapping task-relevant knowl-
edge as in a jury. The three resource condition simu-
lates groups whose members join with moderate, and
therefore somewhat overlapping task-relevant knowl-
edge as in a software development team. The six
resource condition simulates groups whose members
join with extensive, and therefore heavily overlapping
task-relevant knowledge as in a research project team.
Once a group was created, members interacted, coor-
dinated, and made decisions to perform 100 tasks.
The time a group took to finish its tasks and the qual-
ity of its performance were recorded and averaged
across the 100 tasks.

Time as the Dependent Variable
As shown in Figure 3, groups with TM took less time
to finish their tasks regardless of group size. Further,
as groups got larger, TM seemed to be more benefi-
cial. A two-way analysis of variance (ANOVA) (see
Table 2) revealed a significant main effect for TM,
F 
1�960� = 8672; p < 0001, a significant main effect
for group size, F 
5�960�= 2002; p < 0001, and a sig-
nificant interaction effect of the two, F 
5�960�= 251;
p < 005. The Tukey test indicated that groups with
27 or 35 members suffered the most from the lack
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Figure 3 Time Taken to Finish Group Tasks Under Different Group
Sizes
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Table 2 ANOVA Summary of the Relationship Between TM, Group
Size, and Time Taken to Finish Group Tasks

Source df SS MS F

TM exist (A) 1 53�799 53�799�38 86�72∗∗∗

Group size (B) 5 62�114 12�422�71 20�02∗∗∗

A×B interaction 5 7�793 1�558�54 2�51∗

Error 960 595�560 620�38

Total 971 719�266

∗p < 0�05, ∗∗p < 0�01, ∗∗∗p < 0�001.

of TM, followed by groups of 9–21 members, and
followed by groups with 3 members (Hatcher and
Stepanski 1994).1

Similarly, the results in Figures 4 and 5 indicated
that groups in different task or knowledge envi-
ronments benefited differently from TM. Although
groups with TM took less time to perform their tasks
in all types of environments, performing in a com-
paratively more dynamic task environment or volatile
knowledge environment, without TM, seemed to be
more challenging. A three-way ANOVA analysis (see
Table 3) revealed a significant main effect for TM,
F 
1�954�= 13116; p < 0001, a significant main effect
for task environment, F 
2�954�= 8641; p < 0001, and
a significant main effect for knowledge environment,
F 
2�954� = 13850; p < 0001. Also, Table 3 revealed
a significant interaction effect between TM and task
environment, F 
2�954� = 793; p < 001 and a signif-
icant interaction effect between TM and knowledge
environment, F 
2�954� = 2928; p < 0001. The Tukey
test showed that groups that constantly changed
tasks suffered the most from the lack of TM, and
groups that occasionally changed tasks suffered sig-
nificantly less than groups that constantly changed

1 We tried an additional condition with a group size of 45. The
results suggested that the effect on group size leveled off instead
of dropping. Groups with a size of 45 took more time, although
not significantly more time, than 35-person groups to finish their
tasks both with (Mean Time = 3831) and without (Mean Time =
6192) TM.

Figure 4 Time Taken to Finish Group Tasks Under Different Task
Environments
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Figure 5 Time Taken to Finish Group Tasks Under Different Knowledge
Environments

26 26

38
34 34

67

0

20

40

60

80

Low Medium High

Knowledge volatility

T
im

e

with TM
without TM

tasks but significantly more than groups that never
changed tasks. The Tukey tests showed no significant
difference between groups under low and medium
knowledge volatility, and both types of groups suf-
fered significantly less from the lack of TM than
groups under high knowledge volatility.
As shown in Table 3, the analysis revealed a signifi-

cant three-way interaction between TM, task environ-
ment, and knowledge environment, F 
4�954� = 259;
p < 005. Groups in a double volatile environment
(high task volatility and high knowledge volatility)
suffered the most from the lack of TM. As shown in
Figures 6 and 7, TM is especially crucial to groups

Table 3 ANOVA Summary of the Relationship Between TM, Task
Environment, Knowledge Environment, and Time

Source df SS MS F

TM exist (A) 1 53�799 53�799�38 131�16∗∗∗

Task environment (B) 2 70�889 35�444�48 86�41∗∗∗

Knowledge environment (C) 2 113�618 56�809�19 138�50∗∗∗

A×B interaction 2 6�502 3�250�76 7�93∗∗

A×C interaction 2 24�017 12�008�61 29�28∗∗∗

B×C interaction 4 54�894 13�723�45 33�46∗∗∗

A×B×C interaction 4 4�246 1�061�48 2�59∗

Error 954 391�301 410�17

Total 971 719�266

∗p < 0�05, ∗∗p < 0�01, ∗∗∗p < 0�001.
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Figure 6 Three-Way Interaction Between TM and Task and Knowledge
Environments (Without TM)
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Figure 7 Three-Way Interaction Between TM and Task and Knowledge
Environments (with TM)
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that constantly shift among multiple tasks or projects
that require different and easy-to-forget knowledge.

Quality as the Dependent Variable
A two-way ANOVA (see Table 4) of group perfor-
mance quality revealed a significant main effect for
TM, F 
1�960� = 2893; p < 0001, a significant main
effect for group size, F 
5�960�= 9915; p < 0001, and
a significant interaction effect of the two, F 
5�960�=
371; p < 001. The Tukey test showed that groups with
fewer than 15 members benefited more from their TM
systems than larger groups. As shown in Figure 8,
although larger groups tended to perform better than
smaller groups, smaller groups with the assistance
of TM approached the performance quality of larger
groups.

Table 4 ANOVA Summary of the Relationship Between TM, Group
Size, and Quality

Source df SS MS F

TM exist (A) 1 0�40 0.40 28�93∗∗∗

Group size (B) 5 6�84 1.37 99�15∗∗∗

A×B interaction 5 0�26 0.05 3�71∗∗

Error 960 13�24 0.01

Total 971 20�73

∗p < 0�05, ∗∗p < 0�01, ∗∗∗p < 0�001.

Figure 8 Group Performance Quality Under Different Group Sizes
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Figure 9 Group Performance Quality Under Different Task
Environments
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Figure 10 Group Performance Quality Under Different Knowledge
Environments
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Interestingly, contingent effects were not found for
quality with groups in different task or knowledge
environments, as shown in Figures 9 and 10. A three-
way ANOVA (see Table 5) revealed a significant main
effect for TM, F 
1�954� = 2518; p < 0001, a signif-
icant main effect for task environment, F 
2�954� =
6678; p < 0001, a significant main effect for knowl-
edge environment, F 
2�954�= 5705; p < 0001, but no
significant interactions between TM and either of the
group environment variables. The results indicated
that TM improved group performance quality across
all conditions. Groups in a comparatively stable envi-
ronment (less task switching and less knowledge for-
getting) performed better regardless of whether they
had a TM system or not.
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Table 5 ANOVA Summary of the Relationship Between TM, Task
Environment, Knowledge Environment, and Quality

Source df SS MS F

TM exist (A) 1 0�40 0.40 25�18∗∗∗

Task environment (B) 2 2�12 1.06 66�78∗∗∗

Knowledge environment (C) 2 1�81 0.90 57�05∗∗∗

A×B interaction 2 0�07 0.04 2�22
A×C interaction 2 0�07 0.03 2�13
B×C interaction 4 1�15 0.29 18�20∗∗∗

A×B×C interaction 4 0�01 0.01 0�06
Error 954 15�11 0.02

Total 971 20�73

∗p < 0�05, ∗∗p < 0�01, ∗∗∗p < 0�001.

Discussion
In this paper, we designed and implemented a com-
putational model, ORGMEM, and applied it to ex-
plore the relationships between TM and group perfor-
mance. Our virtual experimental results validate the
model as a useful tool for studying TM in groups and
correspond to previous findings on the positive effects
of TM on group performance. Our results suggest that
the effects of TM are contingent upon factors such
as group size, task environment, knowledge environ-
ment, and the performance measure used. In terms
of time that groups take to finish their tasks, larger
groups, groups in a dynamic task environment, and
groups in a volatile knowledge environment benefit
more from knowing what others know than smaller
groups and groups in more stable environments. In
terms of performance quality, smaller groups bene-
fit more from knowing what others know than larger
groups.
Similar to other computational models, ORGMEM

faces the challenge of balancing transparency (the
extent to which it is clear how the model works) and
veridicality (the extent to which the model works like
the real world) (Carley 2002). As an initial attempt to
study TM using computational modeling techniques,
we started with a simple model. As a result, the
model might not have captured all the interesting
aspects of TM in reality, such as subjective judgment
of others’ knowledge based on category member-
ship and task or knowledge specialization. Another
limitation is that we simulate only flat team struc-
tures, in which all members are at the same level and
there are no geographic or administrative barriers that
inhibit interpersonal communication. Also, only two
extreme states of TM are simulated in this paper: no
TM versus full TM. We plan to gradually relax these
assumptions and examine the effects of different TM
structures in our future research.
This paper provides useful information for both

scholars and practitioners. First, our virtual experi-
ments examining different group settings imply that
well-developed TM systems are more beneficial to

some groups than others. Larger groups suffer more
in terms of time from not having a TM system than
groups of smaller sizes. The more people consulted,
the longer time it takes. By contrast, only a few group
members need to be queried in small groups as com-
pared to large groups to locate a piece of knowledge.
As an extreme case, in three-person groups, the time
taken to search for specific knowledge is so trivial that
even if all group members are queried, the time is
inconsequential. Thus our results suggest that man-
agers should pay more attention to foster TM in large
groups if time is a critical factor by promoting interac-
tion opportunities for employees to get to know each
other and build ties through which they can acquire
resources later.
Second, the virtual experimental results suggest

that groups in a dynamic task environment take sig-
nificantly longer to complete their tasks because of
the lack of TM than groups in a comparatively sta-
ble environment. When group tasks change more fre-
quently, group members need to search for resources
more frequently. Our robustness check on the effect of
task volatility suggests that although the effect of high
task volatility (switching tasks constantly) is robust
across all conditions, the effect of medium task volatil-
ity (changing tasks once in the middle) is partially
determined by the direction of the change. Groups
take less time to adjust to new tasks when they
change from complicated tasks that require exten-
sive resources to less resource-demanding tasks than
when they change in the other direction. Similarly,
our results suggest that groups in a volatile knowl-
edge environment suffer more from not having TM
than groups in a comparatively stable environment.
When knowledge is less volatile, group members do
not need to search for resources as frequently as they
would in a more volatile environment.
Third, the three-way interaction effects of TM, task

environment, and knowledge environment on time
suggest that TM is most beneficial to groups in a dou-
ble volatile environment, such as software develop-
ment teams. Software development typically involves
development cycles, in which different pieces of soft-
ware are designed, implemented, and tested using
different tools and applications. As the software gets
scaled and complicated, the knowledge associated
with its development becomes so detailed and com-
plex that it can be easily forgotten. Very often pro-
grammers complain about having to go back to the
original documentation or co-workers to understand
a piece of code only two months after they worked
on it. Our results imply that TM could play an impor-
tant role in determining the performance of software
development teams, which corresponds to previous
findings from the field (e.g., Faraj and Sproull 2000).
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Another interesting finding is the general lack of
contingent effects of TM on group performance qual-
ity. Our results suggest that both TM and being in
a stable environment lead to better performance. In
contrast to our finding that TM is more beneficial
to large groups than small groups in shortening per-
formance time, our analyses using quality as the
dependent measure suggest the opposite—knowing
others’ expertise helps small groups more than large
groups make better quality decisions. These discrep-
ancies may be the result of somewhat different mech-
anisms through which TM affects the two dimensions
of group performance. Time is primarily a function
of the resource searching process. Quality depends
on both individual activity (resource searching) and
group activities (task coordination and group decision
making), especially the latter. While TM facilitates
resource searching in both large and small groups,
large groups suffer more from its absence because
more extensive searches are required to locate a piece
of knowledge. Concerning quality, large groups may
benefit less from TM processes such as task coordi-
nation and expertise evaluation because they have
greater difficulty in obtaining and maintaining an
up-to-date shared view of expertise distribution than
small groups.
In conclusion, our virtual experimental results sug-

gest that group size and environment matter in under-
standing the effects of TM on group performance.
Although TM, in general, improves group perfor-
mance, it benefits different types of groups along dif-
ferent dimensions. If the primary goal is to get work
done as quickly as possible, TM is more beneficial to
large groups, groups in a highly dynamic task envi-
ronment, and groups in a highly volatile knowledge
environment. If the primary goal is to make opti-
mal decisions, TM is more beneficial to small groups.
Thus, managers should not only promote the idea of
knowing what others know and provide opportuni-
ties for gaining the knowledge, but also align their
policies or practices with specific organizational goals,
processes, and circumstances.
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Appendix

Knowledge Transfer. Let agent i’s knowledge in domain
r at time 
t� be denoted by Sir 
t�, agent j’s knowledge in
domain r at time 
t� be Sjr 
t�, and the maximum knowledge
in domain r be Mr . Let the difficult level of domain r be
denoted by �r . What agent i knows at time 
t + 1� can be
calculated as

Sir 
t+ 1�= Sir 
t�+�r ∗ Sjr 
t� ∗ Sir 
t�
s.t. 0≤ Sir 
t�≤Mr and 0≤ �r ≤ 1 (1)

Communication Probability. Let Sir 
t� be agent i’s
knowledge in domain r and Sjr 
t� be agent j’s knowledge
in domain r , RSij 
t�, the probability that agent i will interact
with agent j based on relative similarity, can be calculated as

RSij 
t�=
∑R

r=1 min
Sir 
t�� Sjr 
t��
∑I

k=1
∑R

r=1 min
Sir 
t�� Skr 
t��

s.t. 0≤RSij 
t�≤ 1 (2)

The probability that agent i will interact with agent j based
on information seeking, ISij , can be calculated by dividing
the relative expertise of agent j compared to agent i with
the sum of relative expertise of everyone else in the group
compared to agent i.

ISij 
t�=
∑R

r=1
Sir 
t�= 0 & Sjr 
t� �= 0�
∑I

k=1
∑R

r=1
Sir 
t�= 0 & Sjr 
t� �= 0�

s.t. 0≤ ISij 
t�≤ 1 (3)
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