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Abstract 
Organizational structure changes over time due to various 
reasons, such as organizational learning, situation changes 
and personnel turnovers, etc. Estimating the structure 
changes will reflect organizational performance changes, 
emergent leaders, new key links, etc. This paper introduces 
a multi-agent model that simulates the organizational 
structure evolution over time. The simulated structure 
evolution will be driven by the organizational learning 
procedure that we devised. We perform virtual experiments 
with two distinct cases, an organization with the learning 
mechanism and the other one without learning. The 
performances of the two case organizations were examines 
under situation change assumptions. The organization with 
learning mechanism was better than the other when situation 
changes were predictable. We also scan the network 
topology changes over time, and we identified that the 
average distance among the nodes gets smaller as learning 
proceeds. This work is a preliminary effort to examine the 
effect of organizational learning and to formulate the 
evolution of organizational structures. 
 
1. INTRODUCTION 
 Organizational structure [1] often changes and evolves. 
It reshapes itself to meet external constraints [2], group 
dynamic changes [3], organizational learning [4], etc. Due 
to the ever-changing nature of the organizational structure, 
anticipating its evolution is one of the key problems in the 
management of a corporate, a military command and control, 
a disaster management group, etc. By estimating the 
changes, we anticipate how the individuals in the 
organization will form their surrounding relations and what 
will be needed to facilitate the information diffusion and the 
responses to external changes. 
 In order to understand the structural evolution, we 
utilize a multi-agent model for the simulations of the 
evolution. The prediction of the evolution is not an easy task 
because we need realistic models, such as the complex 
system structure of an organization, individual agent 
behavior logics and external situation changes. In spite of 
these difficult modeling tasks, multi-agent models have 
shown its usefulness by representing the above factors to a 

certain extent [6, 7] and being utilized for theory building 
and policy making [5, 8]. Therefore, we setup a multi-agent 
model and perform a series of virtual experiments and a 
corresponding analysis to reveal an aspect of the structure 
evolution. 
 Thus, our purpose of this paper is modeling and 
simulating the evolution of an organizational structure under 
a set of assumptions. Because the assumptions define the 
agents’ interaction mechanism, we can claim that this 
evolution is induced by micro-interactions among the agents 
in the organization. After the implementation of the 
simulation model, we observe some aspects of the evolution. 
First, we examine how the evolution affects the information 
diffusion in the organization. The evolution is not an 
optimization process, so the evolution with various 
parameters and situations can turn the structure into a well-
functioning or an ill-functioning structure. Next, we analyze 
the evolved organizational structures to see the distinct 
characteristics and compare the evolved structure to the 
original one. From this structure analysis after evolution, we 
will have better understanding what may be a preferable or 
an avoidable course of structural evolution in a certain 
context. 
 
2. PREVIOUS RESEARCH 
 Organizational learning and structure changes have 
been researched since 1950s [9]. While the early works 
show interesting human subject experiments, recent results 
are supported by multi-agent modeling and distributed 
artificial intelligence approaches. The two following 
sections review the traditional and qualitative works and the 
recent, quantitative and computational model-based works 
respectively. 
 
2.1. Organizational learning and structure evolution 
 Bavelas [9] shows insightful analysis on organizational 
learning and structure. He drew several possible 
organizational structures with five individuals, and he 
analyzed the social distance, task completion rates and 
message transmit styles. We think this is a fundamental 
research to examine which organizational structure is better, 
how it changes and how the changing structure affects the 
performance. At a high level, we duplicate his research with 



a complex structure, a multi-agent simulation and detailed 
performance measures. 
 The paper by Zollo and Winter [10] is an intriguing 
qualitative research on organizational learning. Though they 
did not use any multi-agent models or human subject 
experiments, they formulated how organizational learning 
directs dynamic capabilities and the evolution of operating 
routines eventually. In our research, the operating routines 
are represented as a networked organizational structure and 
interactions on the network. Therefore, the evolution of 
operating routines in their paper will be modeled as a 
network evolution in our work. 
 Carley [11] wrote a paper clearly introducing the 
adoption of multi-agent modeling approach to the traditional 
organizational learning and adaptation. She used simulated 
annealing to adapt a given organizational structure to its 
context. In her paper, she argues that the members of a 
complex organization may not be able to find the optimal 
form of their organization, yet they still change their form 
and improve their performance. Finally, she went beyond 
just reporting the creation of models by investigating the 
nature of the adapted organizations from the viewpoints of 
social network analysis. She identifies that the evolved 
networks have fewer isolated agents and are less dense. We 
find that this analysis is a demonstration of using multi-
agent models as a theory building tool, so we perform more 
detailed social network analysis on the evolved networks 
that our model produced. 
 
2.2. Multi-agent network model for organizational 

structures 
 The introduction of the multi-agent modeling motivated 
the developments of multiple multi-agent models in 
management, organization behavior research, etc. For 
example, Terano et al [12] created a multi-agent model, 
TRURL, to simulate social interactions. This is a society 
model, rather than a team model, so it is different from our 
model in scale and modeling approach. Furthermore, it 
evolved the modeled societies by changing the parameters 
of models, not the society structure specifically. Therefore, 
this result is also different in the methods and the target of 
evolution of societies. However, we share the idea of using 
multi-agent model to simulate the changes of societies and 
evolving organizations based on social interactions. 
 Gaston, et al. [13] presented an interesting paper on 
organizational learning and network changes, and the paper 
was one of the papers that motivated this work. They used a 
simple agent-based model of team formation and tried to 
find an efficient team structure. They started simulations 
with a stylized network among agents and evolved the 
network over time. Also, they observed the performance 
changes according to the network adaptation. These are very 
similar to our work, and we believe that this procedure is 
insightful to see the relation among a multi-agent model, a 

dynamic team structure and performance. In this paper, we 
use formula based adaptation, unlike the rule based 
adaptation from Gaston, et al, and investigate the topologies 
of evolved networks that are not fully done in their paper. 
 Carley [14] introduced two multi-agent models, 
OrgaHead [15] and Construct [16], utilized for 
computational organization studies. She provides a series of 
virtual experiment results and demonstrates how these 
models can be used for social, organizational and policy 
analysis. For example, OrgaHead is a multi-agent model 
simulating behavior of agents and an organization as they 
learn, interact and perform their tasks. Also, Construct is a 
tool examining the co-evolution of social structure and 
culture, information diffusion, group assimilation, etc. 
Fundamentally, we take and expand the agent behavior 
mechanism of Construct. The expansion is done in the 
interaction regarding social network distances, but the initial 
mechanism, such as relative similarity and relative expertise, 
remains same. Therefore, our model presented in this paper 
may be considered as an expansion of Construct. 
 
3. METHOD 
 The objective of this research is observing the evolution 
of an organizational structure through agent interactions. 
Therefore, we define a set of algorithms for agent 
interactions, organizational structure change and an output 
performance. The agent interactions are communications 
based on probability of interaction among agents. The 
probability of interaction is a probability model of how 
much two agents are likely to exchange a message, 
containing knowledge pieces, at the given time-point. After 
the interactions, the organization modifies its structure by 
changing the agent-to-agent network, and we regard that this 
modification is the organizational learning through 
communications. Finally, we calculate the degree of 
knowledge diffusion at a given time-tick. 
 
3.1. Agent behavior 
 Agent behavior in our model consisted of a subset of 
Dynet [17] (a.k.a. Construct) and our social distance model 
introduced in this paper. The core Dynet agent behavior 
logic is the probability of interaction formula that drives 
agents to interact with a certain agent in the organization. In 
the formula, there are various variables, such as relative 
similarity, relative expertise, social distance, spatial 
proximity, socio-demographic, etc. Among the variables, we 
will adopt relative similarity and relative expertise model in 
this paper, and the other variables will not be used. On the 
other hand, our social distance model will substitute the 
social distance model in Dynet. The distance model in 
Dynet does not reflect the dynamic organizational structure 
change. In other words, the social distance value for a pair 
of agents would not change even though a simulation 



proceeds. This paper addresses the static social distance in 
Dynet. 
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 The two metrics, relative similarity and expertise, are 
calculated for every possible pair of agents. Relative 
similarity is the ratio of how much the target agent has the 
same knowledge pieces that the source agent has. On the 
contrary, relative expertise is the degree of how much the 
target agent has unknown knowledge pieces. These two 
metrics are originated from sociology. Homophily [18] 
means that two agents are likely to interact with if they 
share common knowledge or backgrounds, so the relative 
similarity on knowledge possession is a driver for this 
homophily phenomena. Also, expertise [19] is another 
factor for the selection. In our model, these two metrics are 
variables for deciding who to communicate with whom in 
the network. Formula 1 describes how the two metrics are 
calculated in our model. As we are using a networked 
organizational structure with agents and knowledge pieces, 
we can create a network (AK) between the agents and the 
knowledge pieces by linking an agent and a knowledge bit if 
the agent knows the knowledge. Then, the AK network can 
be the basis to calculate the values for the similarity and the 
expertise. 

 Unlike relative similarity and relative expertise 
originated from Dynet, there is one extended mechanism, 
social distance. The social distance between a pair of agents 
in Dynet is the number of social links on the shortest path 
connecting the two agents. However, this idea can be 
improved by changing some aspects. First, social distance 
by the number of social links does not track the agent 
interaction records and the organizational structure changes. 
It has been known that the interactions among members 
mold the organizational structure over time. Therefore, the 
model simulating the evolution of a structure should have 
feedbacks from the last agent interactions. Second, social 
distance can be modeled as a continuous value. Rather than 
a discrete model, a model of selecting interaction candidates 
will prefer a continuous social distance variable because it 
grants different priorities to agents for interactions at 
different social distances. 
 We extend the mechanism in two ways. One way is 
tracking the agent interaction records, which is closely 
related to the organizational learning. The other way is 
creating a continuous model for social distance based on the 
weighted organizational structure. Specifically, the model 1) 
updates edge weights over time by using Formula 2, 2) 
inverse the edge weights to turn them into the closeness 
value, 3) calculate the shortest distances from one agent to 
the other agents and 4) standardize the distances ranging 
from zero to one. Figure 1 describes the above procedure. 
The edge weight for the networked organization structure 
will be updated by Formula 2. Basically, the formula adds 
the incentive to interact with to the existing edge weights 
after interaction. The incentive value is the average number 
of exclusive knowledge for the two interacted agents, which 
means that the two agents have that amount of incentive for 
future interaction because the agents can gain unknown 
knowledge from future interactions.  
 

A1

A2

A3

A4 A5

1

1

1

1+N2(=1)

1

1

N1(=1)

A1

A2

A3

A4 A5

2

2

2

1

2

2

2

1) Update an edge 
weight determined by 
the number of 
exclusive knowledge 
nodes held by the two 
interacting agents (if 
N1=N2=1)

A1

SD

10111

A5A4A3A2A1

2) Inverse the edge 
weight, so the weight 
can represent the 
closeness rather than 
distance

3) Calculate the 
shortest path between 
the agent and 
standardize the path 
distance ranging from 
0 to 1

Figure 1. a diagram describing the network evolution after agent interactions 
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 Thus, agents in this model will partly implement two 
existing interaction mechanisms, such as relative similarity 
and expertise, and one extended algorithm, social distance. 
The linear sum of these three factors, shown in Formula 3, is 
the probability of interaction between two agents, and an 
agent will pick an agent to interact with based on the 
probability. As a final point, it should be noted that the 
model is a stochastic model based on the probability, not a 
deterministic indicator. Therefore, one agent may choose an 
agent with low probability of interaction coincidently. 
However, this stochastic approach imitates real world 
human interactions in some sense because we usually 
choose and meet someone with high interaction probability, 
but we rarely end up interacting with agents with low 
interaction probability against our choice. 
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3.2. Extracting the evolved organization structure 
 This model hypothesizes that only agent interactions 
induce the organizational structure changes. Therefore, we 
trace the agent interactions and apply the interaction result 
to the structure by updating the link weight. Eventually, the 
updated structure will affect social distances among agents 
and be a basis of the next structural change.  
 While the evolution of organizational structure follows 
the above rule, the evolved structure has many links with 
various degrees of weights. Though the links with low 
weight also come from agent interactions, the low weight 
links are not significant in the agent interaction mechanism 
compared to the links with high weights. For that reason, we 
generate an evolved network by cutting the links which is 
lower than a threshold. The threshold is set by the density of 
the original network. In other words, we accepted the links 
with high weight links and drop the rest of edges when the 
number of high weight links reached the number of links in 
the original network. This threshold strategy has pros and 
cons. First, it is one clear method of creating binary links 
out of a set of probabilistic links. Also, the usage of the 
original network density as the threshold may imply that the 
density is defined by the communication frequency of the 
organization, and the learning changes only the 
communication pairs without increasing or decreasing 
number of links. However, organizational learning may 
include the network density changes as well as the pair 

changes, and this threshold cut-off heuristic will not be able 
to catch the network density changes.  
 
Table 1.  network analysis measures used to examine the 
evolved network topologies 
Name Mearning 
average 
distance 

The average shortest path length between 
nodes, excluding infinite distances. 

betweenness 
centralization 

The Betweenness Centrality of node v in a 
network is defined as: across all node pairs 
that have a shortest path containing v, the 
percentage that pass through v., The 
centralization is defined as the average of 
the centrality across the agents. 

clustering 
coefficient 

Measures the degree of clustering in a 
network by averaging the clustering 
coefficient of each node. The clustering 
coefficient of a node is the density of its ego 
network - the sub graph induced by 

in-degree 
centralization 

The In Degree Centrality of a node in a 
network is its normalized in-degree. The 
centralization is defined as the average of 
the centrality across the agents. 

network 
levels 

The Network Level of a square network is 
the maximum Node Level of its nodes. 

 
3.3. Performance metrics 
 Finally, we need a measure to calculate the 
organizational performance. In this paper, we use the degree 
of knowledge diffusion. The knowledge diffusion (KD) 
stands for the degree of how much the agents in an 
organization exchanged knowledge that was exclusive to 
certain agents before simulation begins. 
 While the knowledge diffusion is used to gauge the 
performance of the organization, we use some social 
network analysis measures to examine the structure 
topology changes over time. The used social network 
measures are listed in Table 1. The calculation of the 
measures are done by Organization Risk Analyzer [20], and 
the detailed measure formula can be found in the software 
help file or general social network analysis papers [21]. 
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4. RESULT 
 The dataset used to test the introduced model is an 
organizational structure of a terrorist network from the U.S. 
Embassy bombing incident in Tanzania [22]. The network 
consists of 16 agents, 4 knowledge pieces, 4 resources and 5 



tasks, and it is relatively small. We believe that the members 
of the network tried to complete the assigned tasks by 
communicating with other members to obtain their 
necessary knowledge and resource. Among the above nodes, 
the agent nodes will be the members of the organization, 
and the knowledge and the resource nodes will form the 
knowledge pieces that are diffused across the agents. Figure 
2 is the visualization of the network. 

To verify the knowledge diffusion across the network, 
we run a short simulation, with 100 time steps, and observe 
the knowledge diffusion curve of the two cases, one with 
and without the organizational learning procedure. Each 
case is repeated 100 times, and the result is the average of 

the replications. The knowledge diffusion starts at 0.289 and 
increases as the agents exchange the knowledge with each 
other. It appears that the overall difference between the two 
is not great. However, we are able to see that the curve with 
learning is slightly better than the curve without learning. In 
the rest of this paper, we will show the deviation of the 

curve with learning from the one without learning, so the 
difference can be visualized better.  
 
4.1. Dynamic environment change and structure 

adaptation 
 As the short experiment demonstrates the modeled 
organizational learning make the organization diffuse 
knowledge faster, we run a longer virtual experiment with 
dynamic environment changes. The introduced dynamic 
environment change is a knowledge invalidation event for 
every 100 time points. In other words, the diffused 
knowledge will be invalidated at the end of each period, and 
the members should learn the knowledge again through the 
evolved structures so far. Each invalidation in this 
experiment keeps the distribution of the knowledge pieces 
to the agents same as the original status. 
 Figure 4 is the result of the long experiment, 1000 time-
step virtual experiments with nine knowledge invalidations. 
As you can see that the evolved structure shows higher 
knowledge diffusion rate compared to the structure without 
learning though there are few exceptions. The higher 
knowledge diffusion was observed mainly in the middle of 
the diffusion, and there is a brief under-performance event 
at the beginning of each period. Because the organization 
structure was adapted to the high diffusion rate status right 
before the knowledge invalidation, the structure briefly 
suffers from the over-fitting to that previous status 
immediately after the knowledge invalidation.  
 Furthermore, the learning does not always guarantee the 
increasing performance in spite of its continuing structure 
evolution. The interaction among agents is based on the 
probability of interaction, not a definite pointer or an 
indicator. Thus, if some agents chose to interact with agents 
with low probability of interaction accidentally, the 
organization may learn a bad structure, and its damaging 
consequence is shown at the fifth period in Figure 4. 

Figure 2. a test network visualization, 16 agents (4
isolates), 4 knowledge pieces and 4 resources 
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Figure 3. a knowledge diffusion curve from time 0 to 
time 100 without a knowledge invalidation event 

Figure 4. the deviation of knowledge diffusion of the 
organization with learning from the baseline. The 
experiment is done under constant knowledge 
invalidation 



However, the organization will eventually choose a better 
organizational structure because the dynamic change itself is 
predictable and the learning mechanism will give incentives 
to better interactions and structures at the given changes.  
 While the previous experiment used the predictable 
dynamic environment changes, re-assigning the knowledge 
pieces to the agents who originally possessed the pieces, the 
next experiment invalidates the diffused knowledge and 
assigns the knowledge pieces to different agents who did not 
had the pieces when the experiment originally started. This 

represents the rapid and unexpected changes in the 
knowledge acquisition of an organization. Therefore, the 
adaptation of the organization structure to this changing 
environment will be different from the adaptation to the 
predictable environment changes.  
 As Figure 5 shows, the adaptation generates a more 
fluctuating diffusion curve compared to the curve in the 
previous experiment. Furthermore, we see there are several 
periods showing worse diffusion rate than the case without 
organizational learning. The organization changes its 
structure according to the incentive gained by the 
interactions. However, if the knowledge feed to this 
organization is different from the original feed, the adapted 
structure based on the knowledge diffusion incentive will 
not be efficient as expected because the knowledge 
incentive is also from the old knowledge feed. In other 
words, the given organizational learning will not increase 
the performance when the outside situation changes 
dynamically. 
 
4.2. Network topology changes after learning 

The performance differences induced by the existence 
of the organizational learning mechanism can be 
investigated deeper by examining the network topology 
changes over time. Figure 6 is a collection of graphs 
describing the course of the network topology measure 
changes over simulations. The stable line is the network 
measure of the organization structure without learning. 
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Figure 6.  line charts displaying the network measure changes over time 

Figure 5.  the deviation of knowledge diffusion of the
organization with learning, the experiment is done
under random knowledge invalidation 



Because there is no learning mechanism in the case, the 
organization structure never changes, neither do the 
measures. The other two lines show the network measure 
changes of the two previous experiments, one with 
predictable situation change and the other with permuted 
situation change.  
 Figure 6 indicates that there are interesting tendencies 
in the learning process. First, the initial learning effect can 
be seen in very early period, i.e. most of the measures 
deviate from the baseline before 100 time points. However, 
the oscillation, or the tuning of the organization structure, 
has been continued until the end of the simulation. 
 The figures also exhibit that the organizational learning 
under different situations results different adapted structures.  
For instance, the average distance of the learned structure 
under the constant situation change is lower than that of the 
structure under the permuted situation change. Moreover, 
the other network measures display different levels of 
plateaus where the two adapted structure reaches after the 
simulation period. Specifically, the lower centrality 
measures of the adapted structure under permuted situation 
change is an indicator that the learning under changing 
situations prohibits the centralization of the network 
structure, and its adaptation makes no clear emergence in 
the structure, rather the adaptation keeps or renders slightly 
its original structure. This can be seen in the average 
network visualization shown in Figure 7. The bottom of the 
figure presents three visualized network structure which 
shares a similar topology, a network with two cells, with the 
original network structure.  
 On the other hand, the organizational learning under 
constant situation change shows a clear directionality in the 
structure adaptation. The cellular network at the original 

status changes its topology to the core-periphery, or a star, 
network structure. We believe that the core agents of the 
evolved network have more knowledge pieces to share, and 
the communication incentive catches this skewed 
knowledge distribution and update the network by putting 
the agents at center positions.  
 Surely, organizational learning is different from 
organizational structure optimization. Therefore, the 
modeled learning mechanism may not find the most 
appropriate organizational structure for a given situation. 
However, if the situation change is predictable, i.e. daily 
basis routines, the learning over time gives a direction, how 
to change the organization structure to adapt the given 
predictable situation. On the contrary, the learning under 
unpredictable and random situation changes, i.e. 
dynamically changing combat situation, might fail to 
converge to a certain desirable topologies.  
 
5. CONCLUSION 
 Anticipating the organization structure change is one of 
the important issues in management, disaster response and 
command and control structure research. The structure 
evolution may be driven by a number of factors, such as 
organizational learning, personnel changes, external 
situation changes, etc. In this paper, we model the 
organizational structure change under organizational 
learning. Our model is a multi-agent model based on a 
networked organizational structure and agent interactions on 
the network. The agent interaction and its corresponding 
incentive lead the structure change over time in the model. 
 Mainly, we setup and simulate three virtual experiment 
cases, an organization without learning, one with learning 
under constant situation change and one with learning under 
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Figure 7.  visualizations of adapted structures under two conditions, constant knowledge invalidation and random knowledge
invalidation 



random situation change. Our analysis suggests that the 
learning factor increases the performance over time under 
the constant situation updates, but the learning factor does 
not increase, even sometimes decrease, the performance if 
the situation erratically changes. This reflects the 
organizational learning that we designed is not an 
optimization procedure, and the learning can be facilitated 
under the predictable situation. On the other hand, the 
organizational learning under unpredictable situation may 
damage the performance. 
 This model is at its conceptual level in terms of virtual 
experiments, validation and complex modeling. It only 
demonstrates that the introduced organizational learning 
algorithm evolves network structure differently under 
different situations. On the other hand, it does not model 
various virtual experiment cases like personnel turn over or 
loss, link disconnections, task reassignments, etc. 
Furthermore, there should be a validation using some 
ground theories or live experiments with human subjects. 
Also, this organizational learning algorithm can be 
integrated into complex and realistic models, such as Dynet 
[17], for further usages.  
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