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Abstract

     Sociologists have begun to explore the gains for theory and research that might be achieved by
artificial intelligence technology: symbolic processors, expert systems, neural networks, genetic
algorithms and classifier systems.  The first major accomplishments of artificial social intelligence
(ASI) have been in the realm of theory, where these techniques have inspired new theories as well
as helping to render existing theories more rigorous.  Perhaps the next great area of application will
be in sociological analysis of written texts and in searching the future Global Information
Infrastructure for desired data.  ASI has already been applied to some kinds of statistical analysis,
but how competitive it will be with more conventional techniques remains unclear.  To take
advantage of the opportunities offered by ASI, sociologists will have to become more computer
literate and will have to reconsider the place of programming and computer science in the
sociological curriculum.  ASI may be the only potentially revolutionary approach with any chance
of rescuing sociology from the doldrums into which many observers believe it has fallen.



INTRODUCTION

     Broadly defined, Artificial Social Intelligence (ASI) is the application of machine intelligence
techniques to social phenomena.  ASI includes computer simulations of social systems in which
individuals are modelled as intelligent actors, and it also includes methods of analyzing social data
that employ any of the techniques commonly called "artificial intelligence" by computer scientists.
To explore the scope and potential of ASI, the Sociology Program of the National Science
Foundation convened a workshop at the National Center for Supercomputing Applications at the
University of Illinois, in May 1993.

     The participants were seven sociologists, each of whom had worked on different aspects of ASI,
the authors of the present review essay.  The workshop was charged to answer three questions: (1)
What range of techniques in artificial intelligence computing can be applied to work in sociology?
(2) What tasks if any can they perform better than traditional techniques do? (3) Which approaches
and applications have the greatest promise for rapid progress and scientific achievement at the
present time?

     Both before and after the workshop, participants communicated extensively, sharing references
to literature as well as their own insights and experiences, and we undertook an aggressive
literature search.  Although each person knew the literature in one or two related subareas, we were
surprised to find how much had already been accomplished in ASI, some of it by sociologists and
more by social scientists in closely related disciplines.

     A decade has passed since the first conference on sociology and artificial intelligence was held
(Gilbert & Heath 1985), yet sociologists have made relatively less use of AI than have practitioners
of other behavioral sciences (Anderson 1989).  Certainly, there is a faddish quality to much AI
work, and much publicity has been given to computer programs that achieve only the pretence of
intelligence, not its substance.  Another factor may be that sociology has placed less emphasis on
cognition in recent decades than on social structure, outside of areas like symbolic interactionism
and the sociology of knowledge where use of computers is relatively undeveloped.  The new
interdisciplinary field of Cognitive Science is rooted in AI, and draws upon five more traditional
fields: psychology, philosophy, linguistics, anthropology, and neuroscience (Heckathorn 1989).
For whatever reason, sociology is notably absent from this list.

     With very few exceptions (e.g. Gasser 1991), computer scientists working on AI have ignored
the social roots of human intelligence.  To be sure, many of their programs allowed computers to
engage in natural-language conversations with humans, but the programming challenge was always
to simulate the behavior of a single human actor.  Although AI workers paid some attention to
selected schools of thought within psychology, they ignored sociology.  Randall Collins (1992)
argues, however, that artificial intelligence cannot really be achieved without help from
sociologists.

     We will begin with a review of the chief technical approaches that have been developed in
artificial intelligence, providing just enough description so the reader will see the possible
relevance for sociology and citing a very few recent references that can provide a deeper
introduction.  Then we consider the chief areas of theory and empirical research in which AI has
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been shown to have relevance to the social sciences, citing sociological work when possible but
also identifying accomplishments in neighboring social sciences that may foreshadow future
sociological developments.

TECHNIQUES OF ARTIFICIAL INTELLIGENCE

     At a first approximation, research in computer intelligence has taken one of two diametrically
opposed approaches, which may be somewhat crudely called the "top-down" and "bottom-up"
strategies.  Until recently, most prominent AI researchers have focused on high- level symbolic
processes that reflect the complex thought processes of which apparently only humans are capable.
In contrast, others have attempted to model the basic functioning of nets of biological nerves, like
those in relatively dumb simple organisms, with the hope that eventually they could work their way
up to the level of human consciousness.  Although some work on these "neural nets" goes back to
the 1950s, this approach was eclipsed by the symbolic approach for a considerable time, partly as
the result of propaganda from the competing symbolists that implied it was doomed to failure
(Minsky & Papert 1969, Crevier 1993).  Starting around 1986, however, the neural network
approach has achieved numerous successes and has grown in popularity as a social movement,
called "Connectionism" because it asserts that intelligence arises not in symbols but in the
connections between nerves and between computer components.

     We begin consideration of the chief AI techniques with symbolic processing - the top-down
approach - then discuss its marriage with knowledge bases in what are often called expert systems.
Neural networks - the bottom-up approach - comes next.  We end this section with a discussion of
genetic algorithms and classifier systems which draw ideas from both biology and symbolic
analysis.  Naturally, this very brief overview cannot do full justice to the complexity of this topic,
and our aim is merely to provide a reasonably accurate picture of representative methods in
each approach.

     Symbolic Processors
Since the first conference on artificial intelligence, held at Dartmouth College in 1956, most AI
workers have tended to define intelligence in terms of the manipulation of symbols and to write
computer programs that could be called symbolic processors (Crevier 1993).  Even today most
computer input and output consists of a string of symbols, and as merely a special kind of input,
essentially all computer programs are written in symbols.  For example, a symbolic processor
cannot actually look at a set of child's blocks and physically arrange them to form a tower.
However, the AI researcher can tell the program where the blocks are, define the concept tower for
it, and then ask the program to say how to move the blocks into a tower.  As intellectuals, AI
researchers have tended also to focus on relatively verbal kinds of intelligence, and like symbolic
interactionists in sociology, they believe that all the interesting kinds of intelligence involve
symbols.

     One way symbolic processors conceptualize intelligent behavior is in terms of problem spaces
and production systems (Newell 1990).  A problem space is a finite collection of states (situations,
arrangements, etc.) which can be represented in the computer, including the initial situation and
potential desired situations such as a specific goal.  The challenge for the computer is to search this
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problem space, as one might search a maze, to find a way from the initial state to the goal.  To do
this, it may need to identify a string of intermediary goals (subgoals) and to consider many
combinations and permutations of the objects.  The concept of problem space assumes that
problems are well defined and that solutions can be arrived at by a perhaps exhaustive search of the
various ways that parts of that problem space can be linked together.

     A production is a rule in the form: if C then A.  A is an action the computer must take, such as
sending a designated string of symbols to some other part of the program or calling up some
computational procedure.  C is a condition or set of conditions (C1, C2, C3...) all of which must be
satisfied before the computer does A.  The C of one production often includes the A of other
productions, so productions can chain together to form systems.  As it searches the problem space,
the computer creates new productions which represent steps toward the goal, and the growing
production system is the memory of the simulated intelligence.

     The computer can search the problem space either by working forward from the initial state or
backward from the goal.  When it discovers a chain of productions that link two prominent
locations in the problem space, it can treat the chain as a unit.  This is often called chunking, and it
is one way that symbolic processors can represent the human capacity to develop complex chunks
of knowledge that can be employed again and again to achieve different goals.

     A variety of schemes have been offered for representing knowledge, and a common practice is
to build a hierarchical knowledge structure based on linkages between concepts (Carley 1987).  In
one version, the smallest unit of knowledge is the fact, which consists of two concepts and the
relationship between them.  A knowledge base is a collection of facts, many of which may be
linked into implicit networks.  A definition is a focused network of facts, where one concept is
defined relationally in terms of others.  A frame is a network of definitions that is focused in such a
way that much information concerning a particular class of situations is brought together so that it
can be used to decide courses of action.  Thus, when an AI system faces a particular situation,
perhaps with a specific goal in mind, it searches its memory for a relevant frame in which to work.

     The crucial test for the symbolic processing approach to artificial intelligence is its capacity to
handle human language, and one test of a computer programmer's skill is the ability to write
parsers.  A parser is a set of rules tied to a dictionary, perhaps explicitly framed as a production
system, that is designed to extract meaning from samples of language.  It is trivially easy to write a
computer program that will respond correctly to keyboard-typed commands like "GO UP," "GO
DOWN," "PRINT 'YES,'" or "ADD 2 PLUS 2."  Every high-level computing language (BASIC,
Pascal, C, FORTRAN, etc.) incorporates a parser that translates human language into machine
language commands.  But the verbiage handled by most parsers is highly stylized, and the human
must learn to stay within a fairly small set of linguistic conventions if the computer is to respond
correctly.

     In the 1960s, computer workers expressed great optimism that they would soon create automatic
systems for translating between languages, for example taking Russian input and producing
grammatically correct English output with the same meaning.  Manifest failure came in the form of
rapidly proliferating sets of rules and the recognition that words may have fluid and multifaceted
meanings (Kelley & Stone 1975).  Despite these problems, natural language processing by
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computers has steadily improved, stimulated both by advances in programming and by vastly more
powerful computer hardware.  For some AI researchers, problems like the language impasse
suggested that the focus should shift from systems of abstract rules to the vast systems of factual
knowledge that human beings possess.  This stimulated symbolic processors to grow into expert
systems.

     Expert Systems
      In the editor's statement at the back of every recent issue, the International Journal of Expert
Systems says its topic is "knowledge-based approaches to the construction of intelligent artifacts...
A system is 'knowledge-based' when its behavior depends largely on information encoded in it or to
which it has access, and is a 'expert-system' when this knowledge would be considered expertise in
a human."  By these criteria, the spell- checker of a word processor could be an expert system.  It
has information that allows it to duplicate the expertise of a good human speller.  However, one
might want to reserve the term "expert system" for something a little smarter, that was able to
respond in a complex way to different situations.  While there is no clear line of demarcation, many
would consider a good income tax package to be an expert system.

     In part, expert systems are a mere popularization of symbolic processors, putting them to
practical tasks with a user interface that can be handled by people who are not trained in
programming and formal logic.  Many expert system programs have been written in LISP or
PROLOG, languages developed for symbolic processing, and the rule structures are quite
comparable (Clark 1982, Cameron & Dixon 1992).

     Expert systems can be conceptualized in many ways, but a distinction is commonly made
between two parts of the system: the inference engine and the knowledge base (Gonzalez & Dankel
1993).  The inference engine is a symbolic processor or production system for managing a
relational data base.  The knowledge base is a collection of facts about the particular subject area
that the expert system is supposed to cover.  By some definitions, confusingly enough, the
inference engine itself contains a good deal of information of the sort needed to solve general
problems, while the knowledge base is limited to a concrete application.

     Another conceptualization comes from the nature of several commercial products that have
appeared over the past decade.  An expert system shell is an inference engine embedded in a user
interface and connected to software tools that facilitate creating a knowledge base from scratch.
Ideally, the creation of the full expert system by means of the shell requires two social roles: a
knowledge engineer and one or more domain experts.  The knowledge engineer is trained in the use
of the shell and has experience in eliciting information from other people, usually through
interviews.  The domain expert is thoroughly familiar with the field of knowledge the expert
system is supposed to cover but may know nothing about computers.

     For example, to create an expert system intended to facilitate medical diagnosis in a particular
category of diseases, the knowledge engineer will locate and interview a number of senior
diagnosticians in that field, perhaps supplementing their interview responses with information from
technical publications and other sources.  After such a system has been created, it will be
distributed to medical personnel who lack expert knowledge of the particular diseases.  When they
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encounter cases they have difficulty diagnosing, they will turn to the expert system, which typically
will ask a number of questions about the case, then suggest a diagnosis.

     A chief challenge for expert systems is uncertainty, of two kinds.  First, the domain of
knowledge may be incomplete, problematic and poorly organized.  Second, the questions which the
user poses to the system may be sketchy, based on insufficient information about the case for a
definite conclusion.  A well- designed system that lacks crucial information about a case will ask
the user for it, but there are limits to how well additional information will resolve such ambiguities.
Therefore, many expert system shells employ a variety of mathematical techniques to weight
different facts and provide estimates of its confidence in its conclusions, perhaps listing several
possible conclusions with associated confidence scores.  Among these techniques are Bayesian
probability measures, certainty factors, and fuzzy logic (Gonzalez & Dankel 1993:232-262).

     In practice, commercial expert systems have run into a number of difficulties, chief among them
the problem of finding competent human experts, the great cost of all the human labor required to
create a worth-while system, the difficulty in articulating and systematizing knowledge in many
domains, and the high cost of updating expert systems as their domains of knowledge develop.  In
addition, there was the extreme public relations problem that successful systems threatened
entrenched professions.  Weaver (1986) predicted that medical expert systems might have the
effect of regulating physicians' behavior, undermining their authority and prestige, and leading to a
new division of labor among medical professions.  This has not yet happened, but one tactic has
been to drop the somewhat arrogant term "expert system" in favor of less ambitious names such as
decision support systems, intelligent advisory systems, and knowledge-based systems.

     Producers of expert system shells have continually added enhancements, including graphic ways
of visualizing the structure of the knowledge, statistical analysis packages, and even the capacity
for the system to learn the habits and priorities of the particular user.  Greater use is being made of
hypertext, the organization of textual material in a nonlinear manner, allowing the user to call up all
kinds of information at any point in the process and to roam the knowledge base at will.

     Shangraw (1987) has identified a number of ways in which the approaches of social scientists
and knowledge engineers differ, thereby identifying possible limitations to use of the approach.
Sociologists do not trust expert opinion, perhaps because their research topics resist easy reduction
to rules and they know that people's views are powerfully shaped by social, cultural and economic
factors.  In contrast, knowledge engineers seek to duplicate the judgments of the experts rather than
to criticize or explain them.   Social scientists seek to maximize the validity of judgements, while
knowledge engineers are more concerned about implementation and performance.  None-the-less,
sociologists who worked with expert systems come away from the experience with considerable
enthusiasm, some suggesting that these new computer tools may revolutionize qualitative sociology
the way computerized statistical packages have revolutionized quantitative sociology (Brent 1986,
Benfer et al. 1991).

     Neural Networks
     Artificial neural networks are computer systems involving hardware and software that in some
sense emulate the behavior of biological nervous systems (Rumelhart & McClelland 1987,
Wasserman 1989, 1993, Karayiannis & Venetsanopoulos 1993).  They are radically different from
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other approaches to artificial intelligence, and quite unlike the statistical software familiar to
sociologists.  Information is stored in the connections between nerve-like structures, in a distributed
fashion, so that a particular datum is spread across a number of memory registers that it shares with
other data, rather than assigning each datum to a distinct address in the computer's memory.
Conventional statistical software reads its data in from a disk in essentially the same form it stores
that information in a memory array.  Neural networks, in contrast, learn information in training
sessions, much as a human might learn, and they store information in forms that bear no
resemblance to the raw data that were presented to them.

     A simple neural net might consist of fewer than a dozen nerve- like units, sometimes called
neurons, nodes, or neurodes.  There might be three layers of units.  The first, or input layer,
receives data.  The third, or output layer, sends out the net's reactions to the data.  Between them,
typically, lies a layer of "hidden units" that are not directly connected to the outside world.  Every
input unit is connected to every hidden unit, and every hidden unit is connected to every output
unit.  Associated with each connection is a connection strength or weight, a particular number that
changes as the network learns to respond properly to a set of input data.

     The net is trained by presenting it with a series of cases, each of which consists of an input
vector and an output vector.  The input vector is a set of numbers applied one each to the input
units.  Then the net produces an output, by using the connection weights to transform the input.
The training algorithm compares the net's actual output with the desired output vector, and it
follows a complex set of procedures to propagate the error back through the network (back
propagation), adjusting all appropriate connection weights so that in future the net should respond
with less error.  In fact, computer scientists have experimented with many different network
structures and training algorithms, but the basic idea is constant.  A network of nerve-like units
learns to respond in a desired way to a training set of data, then is ready to analyze fresh data of the
same kind.

     Neural nets are ideally suited for parallel processing, which appears to be the latest significant
revolution in computer technology.  Traditional electronic computers consisted essentially of a
bank of memory registers and a single central processing unit (CPU).  The CPU would be in charge
of everything, and all data and programming commands would pass through it.  Thus, the speed of
a computer was determined by the speed of this CPU, and everything depended upon the efficiency
and reliability of a single electronic component.  Parallel processing, as the name implies, employs
a number of processors, perhaps many thousands of them, operating simultaneously.  If problems
of coordinating the actions of these processors can be solved, the result is much faster operation,
perhaps by several orders of magnitude.  The time savings could be very important, because
techniques to train the net often require a very large number of training rounds, and early
implementations of neural nets on microcomputers often took many hours to converge.

     Ultimately, the justification for parallel distributed processing and neural nets is that the human
brain must use something very similar.  However, severe doubts have been raised whether existing
neural nets properly simulate biological nervous systems, in particular whether biological nets
make use of anything like back propagation (Hinton 1992).  Extensive work is now under way,
particularly in developing neural nets implemented in hardware rather than software, to achieve
machine vision that can match the human capacity to process visual information.  Current neural
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nets can already accomplish many useful tasks.  For example, it has been demonstrated that a
neural net with a sufficient number of hidden units, presented with a sufficiently large training set
of data, can accurately model any continuous mathematical function whatsoever (Smith 1993).

     Genetic Algorithms and Classifier Systems
     The concept of a genetic algorithm arises in Holland's (1975, 1992) general treatise on
adaptation in natural and artificial systems. As formulated by Holland (1975: 20), a general
adaptive problem has three components:  a system with an adaptive plan which determines
successive changes in structure in response to an environment, the environment of this system, and
a measure of the performance of different structures in the environment.  In each application, the
structures that undergo adaptation must be identified and represented, the mechanisms by which
structures change must be specified, and the performance criterion affecting a structure's chances of
persisting over time must be identified.  The language of biology is useful to describe and label
these three components. Structures are sets of chromosomes.  The mechanisms that change
structures are analogous to biological mechanisms of crossover and inversion (reproduction) and
mutation, and the performance evaluation represents the fitness of the structure in the environment.

     In effect, a genetic algorithm simulates an evolutionary process beginning with an initial set or
"population" of structures in a specified environment.  For convenience the process is viewed as a
discrete time process, with the system following a trajectory described by the changing probability
distribution over attainable structures.  At each point in time, the existing structures are evaluated
against the environment in relation to performance criteria.  The system's adaptive plan then takes
these evaluations and the existing population of structures and produces the next generation's
population of structures.  Good adaptive plans increase the average performance of structures in the
environment.  Viewed as a search procedure, the genetic algorithm produces, over time, a
concentration of structures in regions of the problem space that have relatively high fitness values.

     The second fundamental idea, a classifier system, receives exposition in more recent work by
Holland et al. (1986), and is essentially the same as a production system, which we considered
earlier.  Recall that a production is a rule of the form "if C then A," where C is a set of conditions
and A is an action.  Holland and his associates combine this idea with the genetic algorithm
concept to propose a general model of human cognitive functioning.  The somewhat detailed
exposition of classifier system that follows will provide insights into how productions systems of
many kinds operate.

     In a classifier system, current information is represented by a list of messages; each message is a
string of "0"s and "1"s.  Conditions and actions are abstractly represented by strings of symbols
from the three letter alphabet "0", "1" and "#".  In conditions, "#" is the called the "don't care",
meaning that either a "0" or a "1" can occur in a message satisfying the condition; for instance,
"0#" interpreted as a condition is satisfied by either of two messages "00" and "01".  In actions "#"
is interpreted as a place holder passing along to the output message the corresponding "0" or "1" in
the input message, for instance, if "11" satisfies the (first) condition of a classifier having "0#" as
its action part, then the classifier will post the output message "01".

     A classifier C then has the form C1 ,C2,...,Cr/A where C1,...,Cr designate its r conditions and A
designates its action.  A classifier system consists of n classifiers denoted C1,C2,...,Cn, a message
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list, an input interface and an output interface.  Execution proceeds by first placing all messages
from the input interface on the message list.  The message list is then processed by the classifiers
for matches to their conditions.  Classifiers whose conditions are matched then post their messages
to a new message list which replaces the old list.  The list is then processed through the output
interface to produce the system's overall activity.  Control then returns to the first step and
execution continues.

     Associated to each classifier in the system is a quantity called its strength .  This quantity has
three functions.  First, among the classifiers whose conditions sets are matched and therefore offer
competing alternative responses to the current situation, relative strength determines which ones
win the competition to post their messages.  Second, the strength of a classifier serves as a measure
of its usefulness to the system because strength is adjusted based on system performance.  The
specific mechanism that adjusts strength is called the bucket brigade algorithm.  Third, the
application of the genetic algorithm to the generation of new classifiers uses classifier strength to
choose "parent" rules for the next generation.

     Because of the formal simplicity of their construction, classifier systems are natural candidates
for evolution by means of a genetic algorithm.  Strings specifying conditions and/or actions can be
split and recombined in the crossover process to produce new and perhaps better classifiers.  There
are several possible specifications  of the conditions under which the genetic algorithm is invoked.
It could be invoked at the end of some well-defined performance cycle as in Goldberg's (1983)
system to induce expert knowledge with respect to the regulation of gas-pipeline transmission.
Holland et al. (1986) suggest as general triggering conditions the failure of predictions and the
occurrence of unusual events.

     In relation to the concerns of artificial social intelligence, genetic algorithms are important as a
variety of search procedure, rather than as a form of ASI itself.  The "intelligence" that a genetic
algorithm program may exhibit derives from the general principle that when the search space is
sufficiently large and complex, effective search procedures cannot be distinguished from true
intelligence.  To the extent that a genetic search procedure is effective for some domains, it exhibits
intelligence.  The special interest for ASI is that the inherent parallelism in the genetic based search
procedure puts the intelligence of the procedure at the level of the population of the searching
components rather than in one central routine.  It is as if individuals independently and in parallel
examine regions of the search space and  can never "know" but a small piece of the overall
solution, yet the system itself achieves effective search and so makes intelligent decisions.

     Without resurrecting the outmoded concept of "group mind," we can note that real human
societies possess greater information and capacity to process data than does any given individual
member.  The population of strings manipulated by a genetic algorithm is analogous to the gene
pool of a human population, except possibly cultural rather than biological in nature.  Despite the
non- sociological origin of its metaphors, thus, the genetic algorithm approach reinforces the
sociological principle that real intelligence is in essence social.

APPLICATIONS OF ASI TO THEORY
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     The growing number of theoretical essays grounded in computer simulations is one indication
that social theorists are seeking ways to render their work more rigorous.  We suggest that the
development of computer-based artificial social intelligence can have as great a positive impact on
theory as did computerized statistical analysis on quantitative empirical research.  Properly
designed ASI programs can assess the logical consistency and completeness of theories, help
discover new implications of old ideas, and connect scattered hypotheses into coherent theoretical
systems.  ASI may inspire altogether new theories, increase our appreciation of classical theories
and help improve and evaluate still-developing theories of social interaction and social structure.

     ASI-Inspired Social Theories

     Fararo and Skvoretz (1984, Skvoretz & Fararo 1989) have argued that the AI concept of
production system can form the basis of a general theory of social institutions and action structures.
Since a production is a rule in which a set of conditions demands a particular action, social norms
are productions.  Institutions and roles (distinctive sets of norms linked into cultural structures) are
therefore production systems.  Fararo and Skvoretz show how a social interaction is organized by
the system of productions that defines the interrelationships of the roles being played, what they
call the rolegram.  Their work draws ideas from traditional writers, such as Talcott Parsons, and
incorporates many conventional sociological concepts, but it places them in dynamic systems that
owe much to ASI, even if they need not be realized on a computer.

     In similar manner, Carley (1989, 1991) has built a " constructuralist" theory of social behavior,
based on a mechanical cognitive model of symbolic processing, that makes specific predictions
about human behavior and can be simulated precisely on a computer.  Kontopoulos (1993) suggests
that neural networks offer an appropriate metaphor for understanding social structure, thus
incorporating insights from ASI into a general theory that need not be expressed in computational
terms.

     Some have drawn lessons for theory from the apparent successes of computer intelligence,
notably Slezak (1989) who argues that the "strong programme" in the sociology of science must be
wrong because symbolic processor AI programs have successfully derived scientific and
mathematical laws apparently without being influenced by socio-cultural factors.  Writing in the
American Journal of Sociology, Wolfe (1991) draws the opposite lesson from his readings about
AI, deciding that humans have a distinctive form of mind that cannot be duplicated either by
symbolic processors or neural networks, a conclusion that would support interpretive rather than
formal, systematic schools of sociological analysis.

     Expert System Models of Human Theorists

     Rule-based expert systems are a very promising tool for theory formalization, and they may be
used to analyze the thought of particular theorists.  Some traditional sociologists, notably George
Homans, intended their theories to be what today we might call production systems, with each
axiom or theorem represented by a production with linkages to others.  But one way to study the
thought of any social theorist would be to attempt to state his or her arguments in terms of
productions.  This difficult task might be facilitated by use of a flexible and full-featured expert
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system shell, taking the role of the knowledge engineer interrogating the writings of the theorist as
if they were domain experts.

      The Erving programs (Brent et al. 1989) are an expert system that simulates Erving Goffman's
dramaturgical perspective.  Designed as a teaching tool, Erving takes the software's user into a
"front-stage" bar, with associated "back-stage" party room and pool room, watching men and
women interact and predicting their "impression management" behavior according to Goffman's
principles.  The user assembles various questions, piece by piece, such as: "How would Diane feel
if Dave were to lie about age in the bar."  "Would it be disruptive for Dave to make eye contact
with members of opposite sex in the pool room?"  The computer can test the user's understanding
of Goffman's theory, and offer explanations to the answers it gives for any question.

     Banerjee (1986) wrote production systems in the PROLOG language to simulate socio-political
theories of Skocpol and O'Donnell.  The actors in each system are self-aware social groups with
well-developed theories of the interests and possible coalitions in the worlds they inhabit.
Skocpol's analysis of China in the decade following 1927, for example, posits the following seven
actors: settled peasants, displaced peasants, Communist Party, Kuomingtang Party, gentry, coopted
warlords, and independent warlords.  In both cases, Banerjee found the predicted result, indicating
that the two theories are logically constructed, and if any key assumption was removed, very
different results emerged.

     Simulations of Markets and the Iterated Prisoner's Dilemma
      Computer simulation has a long history in the social sciences (Federico & Figliozzi 1981,
Garson 1987), and mathematical models of human learning suitable for use in ASI programs were
available decades ago (Bush & Mosteller 1955).  However, most sociological computer simulations
lacked explicit representations of human intelligence until recently.  Today, many studies reported
in central sociological journals employ computer models of human learning, decision-making and
social exchange, but they seldom mention any connection to artificial intelligence, even though
retrospectively we can identify them as ASI.  At their borders, math models and artificial
intelligence blend into each other, and neural networks are an especially convenient way of
embodying math models in computer programs (Wasserman 1993).

     The complexity of social interaction has prompted the increasing use of computer simulation in
place of formal mathematical models.  The now-classic "prisoner's dilemma" computer  tournament
organized by Robert Axelrod may have been the turning point (Axelrod 1984).  The prisoner's
dilemma is a game-theoretic problem that explores the conditions under which cooperation may
arise between self-interested economic actors who might gain in the short run if they violated
agreements to cooperate (Rapoport and Chammah 1965).  Axelrod invited people to submit
computer programs that followed various strategies for playing repeated rounds of this game (the
iterated prisoner's dilemma or IPD), and his tournament showed that simulation can produce robust
yet unexpected results.  The winner was one of the simplest contestants, a strategy of "tit-for-tat"
that merely cooperated in the first move and thereafter imitated the previous action of its
interactant.  The simulation results showed how a simple norm of reciprocity could gain a toehold
even in a harshly asocial environment and then go on to flourish.  This strategy was able to displace
much more cognitively sophisticated contestants.  In short, the intelligence needed to find a way
out of the social trap is not always isomorphic with the cognitive and analytic faculties of the
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organisms.  A key contribution of ASI is the recognition that problem solving can sometimes
depend more on what goes on between organisms than on what goes on within them.

     Subsequently, other researchers have staged quite complex tournaments, one staged by Rust et
al. (1993) that was a double- auction market, like the one actually conducted in commodities and
options by the Chicago Board of Trade.  Its winning entries tended to be simple production systems
with relatively little intelligence, but one competitor was a mammoth neural net with fully 1,262
connection strength and bias parameters, that learned by means of genetic algorithms.  For several
years, the IPD strategy that drew the most attention from researchers and theorists was tit-for-tat,
but a rival called "Pavlov" has recently seized center stage (Nowak and Sigmund 1993).  This
strategy has the individual actor continue to behave in a given way (keeping bargains or violating
them) so long as it wins, and to shift behavior as soon as it loses.  Because both tit-for-tat and
Pavlov have the simulated person pay attention to what happened in the previous exchange, they
connect directly to sociological theories
of social learning.

     In a series of theoretical papers based on ASI simulations, Macy (1990, 1991a, 1991b) has
developed stochastic learning models for the IPA that show how it is possible to "walk" out of
social traps.  The prisoner's dilemma is a trap, because the  contingencies encourage people to act
in ways that are not in accord with their own long-term interests.  Real human life may be filled
with social traps, in which decisions that make sense to each individual aggregate into outcomes
that make no sense for all.  In a typical run of this series, each individual's probability of
cooperating depends upon past experience.  The interacting population may be able to escape from
a non-cooperative equilibrium if a sequence of random events (the proverbial "drunkard's walk)
brings them near enough to a cooperative equilibrium for them to settle on it.  This research is a
critique of rational choice theory, showing how learning theory can solve some of its problems.
And like Axelrod's work it demonstrates that social actors may be able to escape the Hobbesian
state of nature without the help of a king, a shared set of altruistic values, or even the degree of
intelligence required to understand their situation fully.

     An amazing variety of excellent work has been based in computer simulations of similar
exchange systems.  Kollock (1993) has examined the effect of random errors and mistaken
perceptions on the relative effectiveness of strategies like tit-for-tat.  Orbell and Dawes (1991)
explored the evolution of a cooperator's advantage when simulated actors were allowed to
withdraw from interaction.  Frank (1988, 1993) also allowed exit from the game in his theoretical
explorations of rational processes that led to the evolution of displays of emotion, thereby
unleashing much simulation work by other researchers.  Vila and Cohen (1993) modelled
exchanges among individuals who could adopt either of two strategies, producing wealth or
expropriating it, thus exploring a theory of theft based upon earlier work in behavioral population
biology.  This last study suggests that ASI may have a considerable impact on criminology and the
sociology of deviance.

     Simulations of Networks, Groups, and Organizations
      Many studies have examined social structures by means of ASI simulations, usually without
explicitly acknowledging that artificial intelligence was involved.  A good example for those who
want to learn about ASI in connection with social networks is an article by Markovsky (1987),
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because it focuses on the elemental social structure, the triad, and because it includes the actual
source code of the program that was used.  This study explored the power associated with position
in a three-person social network where person A could interact with persons B and C, who however
could not interact with each other.  In a round of a typical experiment in the series, each person
makes an offer of how 24 points could be divided between himself and another person.  Person A
compares the offers of B and C, selects one of them, and then the points are divided according to
the average of the two persons' offers.  After the first round (when the offers are randomly
determined), each person adjusts his offer on the basis of what happened last time: if the previous
offer was accepted, the new offer will be more demanding; if the previous offer was rejected, the
new offer will be less demanding.  On this simple basis, Markovsky was able to build a series of
nineteen experiments that varied the strategies employed by individuals bargaining with each other.
While rudimentary, the decision-making by actors, and their memories of the result of previous
exchanges, constitute ASI.  Similar work exploring the implications of structure in slightly larger
networks has been undertaken by several researchers (Yamagishi et al. 1988, Markovsky et al.
1993).

     Other examples cover a wide sociological territory.  Feinberg and Johnson (1988, 1990)
simulated the effect of an outside agitator on crowds, moving individuals physically toward the
center of a mob and moving them mentally toward the agitator's preferred action.  The individuals
differed initially in terms of suggestibility and the propensity to move, as well as in physical
location and action choice.  McPhail et al. (1992, McPhail & Tucker 1990) modelled the physical
movements of individuals as they threaded their way through crowds to reach a destination while
remaining with each other in collective locomotion.  Hummon (1990) simulated bureaucrats
accepting, rejecting, and referring tasks on the basis of their growing experience with different
kinds of work, thus creating the division of labor in a network.  Anderson (1991) modelled social
influence on voting behavior in small groups of union members.  Bainbridge (1987, 1995)
employed neural networks to simulate actors with the intelligence to develop schemes for
categorizing exchange partners and capable of learning which categories are most rewarding.

     ASI has begun to have a substantial influence on theories of formal organizations (Harrison &
Carrol 1991, Masuch & Warglien 1992).  In one simulation project, a sophisticated software
architecture called Soar was used to model intelligent agents performing shipping tasks in a
warehouse, exploring the effect of communication among workers (Carley et al. 1992).  Soar has
been viewed as a unified theory of cognition (Laird et al. 1987, Newell 1990, Carley & Wendt
1991), and it represents a high state of development of symbolic processors employing production
rules and chunking.  The warehouse simulation was run on a network of small computers, in which
each machine represented a separate person, but if this vivid metaphor is not considered important,
such simulations can be run on a supercomputer, simply allocating different sectors of memory to
separate individuals.

     Some traditional sociologists might complain that computer simulations inappropriately reduce
social interaction to predictable, mechanistic cartoons that fail to capture the complexity and
indeterminacy of human affairs.  The most direct refutation of this uninformed stereotype of ASI is
the fact that the results of simulations are in fact often very difficult to predict.  Markovsky (1992)
found that even very simple models of interaction across networks took the researcher beyond the
limits of predictability.  Recently, there has been great interest in the role of chance in several of
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the sciences, and the concept of deterministic chaos has been the subject of many publications of
both scholarly and popular kinds (Mandelbrot 1983; Hao 1984; Gleick 1987).  Kephart et al. (1992)
have noted that social behavior can become chaotic, and they ran simulations that showed how
some intelligent strategies can reduce chaos, in particular giving actors the capacity to base their
actions both on beliefs about the strategies of others and on the observed behavior of the system of
agents.

     Simulation work employing genetic algorithms has only just begun.  Freeman (1993) used one
to solve an old problem in social network analysis, namely, the partitioning of members of a group
into cliques or subgroups based on members' proximities to one another.  The algorithm processes
assignments of individuals to subgroups searching for an assignment that maximizes a fitness
function that is sensitive to misclassification of individuals and to average proximities.  Axelrod
(1987) has switched to genetic algorithms to evolve strategies in the Iterated Prisoner's Dilemma.
Skvoretz and Fararo (1993) conceptualize social exchange in a game-theoretic context and apply a
genetic algorithm to the evolution of mutual aid strategies.  The game is similar to the prisoner's
dilemma and the analysis is similar to Axelrod's.  However, they introduce rudimentary role-
differentiation into the problem, as strategies can function either as assistance requesters or
providers of help, and they contrast the genetic-algorithm findings with those from a learning
model implementation of the problem.

     Data-Based Simulations

     Conceptually intermediate between theory-driven simulations and quantitative analysis of data
are simulations that might be described as data-based.  The notable example, with a twenty-year
history, is the work on affect control theory begun by Heise (1986, 1987, Smith-Lovin 1987).
Based on the EPA model of affective meaning developed by Charles Osgood, who employed
semantic differential techniques to identify three dimensions of word meaning (Evaluation,
Potency, Activity), affect control theory asserts that social events are constructed so as to confirm
the meanings of social classifications.  Research subjects have provided mean EPA ratings of
hundreds of words describing social identities, attributes, behaviors, and settings.  Heise and his co-
workers have derived a number of mathematical functions to predict how people would rate various
combinations of words, and embodied both the formulas and the data in computer programs.  Their
theoretical agenda particularly stresses differences between social events that confirm or disconfirm
sentiments attached to key nouns such as those describing standard social roles, but their general
method could be applied quite widely.  Simulations based on data do not qualify as ASI unless they
also incorporate a dynamic model of human thought, but because Heise's programs meet this test
they give powerful testimony to the great potential of ASI to bring theory and data together in
important new ways.

ASI APPLICATIONS TO RESEARCH

     AI-assisted empirical sociological research is still in its infancy, so it is difficult not only to
predict the range of applications it will have in future, but also to identify the current work that
deserves closest attention.  However, considerable progress has been achieved in two areas that
clearly have great potential and nicely bracket the diversity of techniques we have described:
qualitative analysis of verbal or written texts using expert systems or other varieties of symbolic
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processor, and enhancements to conventional statistical analysis such as substituting neural
networks for multiple regression.

     Qualitative Research with Symbolic Processors

     In the 1960s, researchers found that very convincing interviewing programs could be created
with surprisingly limited computing machinery and software.  Especially controversial were
programs that simulated a psychotherapist conversing with a patient (Colby et al. 1966,
Weizenbaum 1976).  More recent work has suggested that fully computerized interviewing may
have distinct advantages for some kinds of research, for example sensitive topics like sexual
behavior where respondents might be embarrassed to answer questions posed by another human
being (Binik et al. 1989).

     Interview programs constructed along the lines of expert systems give sociologists an entirely
fresh way of looking at data.  Decades of quantitative research have been based on the concept of
rectangular data matrices consisting of a large number of cases times a large number of variables,
with the assumption that each case has a value (perhaps known or perhaps missing) for each
variable.  Relational data bases, such as incorporated in many expert systems, are very different in
structure, as we have noted.  Their topology may be very complex, but generally consists of a
network of nodes and relationships, with no matrix of cases by variables existing in the computer's
memory.  Carley has shown that such systems can be used to discover an individual's structure of
meanings, and then to compare that structure with the cognitive maps of other individuals (1986).

     Possibly the greatest research potential for ASI in the coming decade is in computer assisted
analysis of written text.  The federal government is increasing its already significant support for
development of the National Information Infrastructure (Information Infrastructure Task Force
1993).  Whatever the exact form it takes, the "NII" will involve a tremendous expansion of
computer communication networks and on-line databases, with rapid growth of the libraries of text
available in electronic form.  This includes everything from newspapers, to congressional debates,
to (eventually) the entire contents of the Library of Congress.  The question then becomes: What
software tools will sociologists need if they are to navigate effectively through this ocean of words
and analyze selected portions of text in the most effective manner?

     Already a number of text-analysis software packages exist for microcomputers.  Heise (1992)
has shown that much can be accomplished with an ordinary word processor, and software packages
like HyperResearch and Ethno have some of the qualities of expert systems, and thus begin to enter
the territory of ASI.  Ethno, for example, allows one to model event structures as production
systems (Heise 1989, Griffin 1993).  "Intelligent" search procedures and modern knowledge
representation schemes can help pre-process data (Franzosi 1990a, 1990b) and recode data (Carley
1988) for general content or map analysis procedures.  For some of these procedures the
"intelligence" is built into the coding mechanism, in the form of "frames" that the researcher must
fill in (Roberts 1989, Carley  & Palmquist 1992, Carley 1993).  These frames, which embody vast
quantities of expertise are then used to postprocess and analyze the data.

     Within narrative analysis, AI procedures can be used for examining, processing, and generating
the story line in the narratives (Abell 1984, 1989).  Related approaches are decision-based



—  —15

procedural analysis or protocol analysis, where the goal is to locate the explicit and implicit "rules"
that the speaker uses to perform a task such as playing chess (Ericsson and Simon 1984).  Gilbert
and Heath (1986) have shown how PROLOG can be the basis of an intelligent system to capture
public rules from narratives and retrieve the sense of textual items, illustrating the ways this would
be done with medical records.  Cope is a software system of nodes and linkages designed to
produce cognitive maps of texts, thus helping develop grounded theory and capture verbal accounts
(Cropper et al. 1990).  Automatic procedures such as  Cirrus (VanLehn & Garlick 1987, Kowalski
& VanLehn 1988) and ACM (Langley & Ohlsson 1984) have emerged, providing hope that
larger numbers of texts can be analyzed quickly and economically.

     Social scientists of politics have used expert system shells to analyze sequences of deeds and
words in international relations (Schrodt 1988).  For example, Mills (1990) created a rule-based
expert system for analyzing negotiations, and applied it to three sessions of talks between China
and the Soviet Union.  As the program runs, it asks the social scientist a set of questions about the
behavior of each side at different points in the episode, then it outputs a summary analysis.

     Expert systems have found several applications in social welfare and human services
(Schuerman et al. 1989, Gingerich 1990, Mutschler 1990), assisting the professional in giving help,
and the creation of their knowledge bases is practically equivalent to AI- assisted research on
aspects of the profession and the social problem it addresses.

     Despite the disillusionments of the 1960s, natural language processing has made substantial
progress in translating texts and extracting meaning from them, particularly, in the realm of story
understanding (Abelson 1976, Rumelhart 1978, Schank & Riesbeck 1981, Lehnert & Ringle 1982).
Plot-based procedural analysis lends itself to automation due to the presence of basic syntactic units
(Lehnert 1981, Lehnert & Vine 1987) that make possible the automatic coding of texts.

     Often the challenge is to trace linkages between texts, and a prime example is citation analysis
in the sociology of science.  Recent work in this area has employed search procedures from
computer science to locate citation paths giving a history of which  researcher cites which
(Hummon & Doreian 1989, 1990, Hummon et al. 1990, Hummon & Carley 1993, Carley et al.
1993).  These procedures make it possible not only to  identify the main path of scientific
development, but to understand the roles played by different types of research.

     AI-Enhanced Statistical Analysis
     Neural networks can readily substitute for multiple regression and for other multivariate
techniques that aim to predict the value of one variable on the basis of the values of other variables.
It is claimed that neural nets outperform other methods, chiefly because a sufficiently large neural
net can in principle handle any pattern of nonlinearity in the relationships and complex interactions
between independent variables.  Indeed, for some problems neural nets may represent overkill, and
if a net is given too many hidden units it can overfit the data disastrously, producing an
unreasonably complex and contorted curve on the scattergram.

     Another disadvantage is that neural nets solve problems in ways that are far from transparent to
human users, and they do not automatically generate lucid equations that can be comprehended in
terms of explanatory theories.   Perhaps this is why neural nets have been employed analytically in
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the social sciences primarily to make economic predictions (Lin & Lin 1993) when predictive
power may be more important than explanatory intelligibility.

     Neural nets do readily produce some conventional measures such as mean squared error (Smith
1993), and robust estimates of errors can easily be derived through procedures related to
bootstrapping (Dietz et al. 1987).  The fact that neural nets have been doing useful statistical
analysis for less than five years suggests that a full kit of related tools will require further time and
effort.  Perhaps one of the best ways to accomplish that is simply to attempt a variety of empirical
studies and see what capabilities need to be added to those already possessed by neural nets.

     Kimber (1991) compared neural networks with traditional methods and with ID3, a
classification algorithm sometimes built into expert systems, to see which technique could best
predict the emergence of democracy in nations, on the basis of such variables as urbanization,
literacy, and economic resource distribution.  Notably, the neural network performed better than
did traditional regression analysis.   Similarly, neural nets did well in predicting outcomes of
conflict between nations, in a study by Schrodt (1991).  Huntley (1991) applied neural networks to
analysis of time series data in order to forecast manpower needs in the Navy.  Garson (1991) tested
neural nets, ID3, and some more traditional techniques on sets of simulated data where the actual
relationships between variables could be specified, finding that neural nets did a superior job with
several kinds of problem.

     Clearly, neural nets are not the only AI technique that may be useful for statistical analysis, and
some of the procedures employed in symbolic processors could be applied to quantitative rather
than qualitative data.  While genetic algorithms have scored successes in econometric modelling
(Koza 1992), their potential for analyzing social-scientific data remains largely unexplored.

     A range of AI techniques can also be used in automatic security systems that prevent misuse of
confidential data while enabling maximum legitimate use by social scientists (Keller- McNulty &
Unger 1993).  Government agencies frequently corrupt datasets before releasing them, to satisfy
anonymity and confidentiality regulations.  Their chief concern is to prevent users from identifying
the record of a particular person, and they do this by deleting cells from a table, truncating or
collapsing values, adding random numbers to cells or values, and removing variables.  The
alternative is to embed the dataset in full- featured statistical software that employs encryption and
analysis- monitoring techniques to prevent the user from inspecting the raw data directly and from
deducing the identities of particular cases.  An AI system could watch the user and prevent any
sequence of statistical manipulations that could identify a single case, and they could also link
separate datasets about the same people through their names without letting the user see them.

     Expert systems and related tools such as hypertext can serve as methodological consultants,
whether attached to familiar statistical packages or produced as stand-alone software.  Statistical
Navigator (Brent et al. 1991) is a decision support system that helps a researcher select which
techniques of statistical analysis are appropriate for an intended research project, and it can be used
to give students an overview of statistical methods commonly used by social scientists.  In its
"consult mode," the software asks the researcher a series of questions about the aims and
assumptions of the research project, and about the intended audience for its publications, using the
answers to early questions to decide which other questions to ask.  Many require the user to rate
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various possible objectives of the work on a 0 to 10 scale.  After this, the software recommends a
short list of methods to the user, rating them in terms of how well they serve the goals, assumptions
and audience for the particular piece of research.  The hypertext feature allows the user to see a
description of each method, linked to definitions of all technical terms, and the software can also be
run in "browse mode" where the user can roam this network of information at will.  A detailed
report of how the system arrived at its conclusions can be printed directly or saved onto disk for
later editing.

CONCLUSION

     Work on artificial intelligence has been subject to innumerable fads and frequently overblown
publicity.  Early proponents often made highly exaggerated claims for the computer programs they
had written and hollow promises about what they would shortly accomplish.  But these facts should
not deter sociologists from examining the potential of artificial social intelligence, because steady
progress in computer science has brought technology to the point where several valuable
applications already exist and even modest extrapolations suggest that ASI could be of great
significance to sociology.

     Sociologists interested in exploring ASI will ask themselves how much they need to learn about
computing, as opposed to relying upon computer scientist collaborators for expertise in that field.
We think it is essential to be able to program in at least one high-level computing language,
preferably in two very different ones such as Pascal and PROLOG, and to inform oneself about a
range of recent technical developments.  Particularly in the field of artificial intelligence, it is
difficult to understand the meaning of the techniques unless one is capable of programming at least
some of them from scratch oneself.  It is true that ready-made AI software exists that can be used
for ASI, notably expert system shells and neural network packages for statistical analysis, but for
the foreseeable future most ASI applications in sociology require writing a considerable amount of
fresh code.  And the fact is that sociologists and computer scientists have great difficulty
communicating with each other, neither one generally appreciating the other's assumptions or
understanding the simplest things the other says.  We are convinced that collaborations between
sociologists and computer scientists will be highly fruitful, but the sociologist will have to go the
extra mile and enter the world of computers, if such projects are to have any chance of success.

     Current graduate training does not prepare students to take advantage of ASI.  Although some
probability theory can be useful, hardly any of the material taught in statistics courses is relevant to
the computer techniques described here.  Two or three decades ago, there was much debate about
requiring students to learn computer programming, even the bizarre idea of counting high-level
computing languages toward the then-existing foreign language requirements.  Of course, today
few sociologists write programs from scratch, because they cannot compete with the elaborate and
accurate statistical packages available on the market at low cost.  But now, we suggest, ASI
presents an array of new reasons to become competent in programming, not the least of which is
our belief that ASI skills enhance a person's capacity to think both logically and creatively.

     While recognizing the danger of being swept away by excessive enthusiasm, in a field that has
been rife with fads, we believe that ASI opens an entirely fresh era for social theory.  Indeed, we
cannot imagine how one would theorize rigorously without either mathematics or computer
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simulations of one kind or another.  The general public, to the extent that it has any opinion about
social theory at all, probably considers it to be mere ideology.  So long as theories are rambling
verbal meditations punctuated with dubious metaphors, there can be no defense against this
accusation.  ASI and mathematical formalism are compatible methods for stating a theory
precisely, connecting its concepts in rigorous intellectual structures, and identifying both hidden
assumptions and unexpected consequences.  Skillfully written simulation programs can be an
excellent medium for communication of precise theoretical statements, so long as the intended
audience has learned how to read programs.

     Whatever the future of various government initiatives in high performance computing, a Global
Information Infrastructure is gradually emerging.  Internet links the National Science Foundation
with literally millions of computer users already, and many archives and libraries are steadily
increasing the amount of text and other data available over it.  Alternately, the medium for
distribution of data may be laser discs (CD ROM) or a successor technology that carries
information in physical objects rather than in electronic bit streams.  Social scientists need to be
involved in the development of these technologies, in part because we can be sophisticated
advocates for the general public whose real data and software needs might otherwise have little
influence on systems created by engineers and bureaucrats.  As the Global Information
Infrastructure develops, both social scientists and members of the general public will need ASI
agents, specialized computer programs that can be sent into this practically infinite universe of data
in search of desired information.

     Sociologists have become adept with a wide variety of statistical tools, and one would have
thought that our quantitative methodology is thoroughly mature at this point.  Thus it is surprising
to see neural networks suddenly competing with multiple regression and other well-established
methods.  Particularly for analysis of texts, ASI techniques may prove superior to other approaches,
and it is possible that artificial intelligence will play a prominent role in management and analysis
of quantitative datasets, as well.

     There is much talk these days about the malaise into which sociology supposedly has fallen.  As
practicing sociologists, the seven of us are not at all convinced that our discipline is in trouble or
that it needs to be rescued.  However, when we scan the horizon of sociological innovations, we see
only one development that might be of revolutionary significance: artificial social intelligence.  To
be sure, if unprepared sociologists rushed to ASI in search of salvation, they would undoubtedly be
disappointed, and the substantial real gains that ASI promises might be lost in their disillusionment.
Prudent but creative incorporation of ASI methods into sociology could reinvigorate stagnant
subdisciplines, open new fields for exploration, and prevent our discipline from falling behind
other social and behavioral sciences that have more enthusiastically exploited the tremendous
possibilities offered by computer intelligence.
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